

UNIVERSIDAD POLITÉCNICA DE MADRID

Escuela Técnica Superior de

Ingeniería y Sistemas de Telecomunicación

Contributions to the Efficient Implementation of
High-Computational Demanding Video Algorithms

over Heterogeneous Platforms

TESIS DOCTORAL

Anup Saha
Doble máster en Mechatronics Engineering, Universidad de

Trento, Italia y Mechanical Engineering, Universidad de
Lisboa, Portugal

2023

Departamento de Ingeniería Telemática y Electrónica

Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación

Contributions to the Efficient Implementation
of High-Computational Demanding Video
Algorithms over Heterogeneous Platforms

Tesis Doctoral

Autor: Anup Saha
T.I.M.E. título de doble máster en Mechatronics Engineering, Universidad de Trento, Italia
y Mechanical Engineering (Major in System Engineering), Instituto Superior Técnico –
Universidad de Lisboa, Portugal

Directores:

Fernando Pescador del Oso
Doctor por la Universidad Politécnica de Madrid

Miguel Chavarrías Lapastora
Doctor por la Universidad Politécnica de Madrid

2023

TÍTULO: Contributions to the Efficient Implementation of High-Computational

Demanding Video Algorithms over Heterogeneous Platforms

AUTOR: Anup Saha

DIRECTORES: Fernando Pescador del Oso
 Miguel Chavarrías Lapastora

El Tribunal nombrado con fecha de de 2023 por el Rector Mgfco. de la
Universidad Politécnica de Madrid, compuesto por los doctores:

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Suplente:

Suplente:

realizado el acto de lectura y defensa de la tesis doctoral en la Escuela Técnica Superior
de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid,
acuerda otorgar la calificación de

Madrid, a de de 2023

EL PRESIDENTE EL SECRETARIO

LOS VOCALES

v

I dedicate this work to my parents, my wife, and my son.

vi

vii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my directors Fernando Pescador
and Miguel Chavarrías for the guidance, for the ideas provided during this thesis and for
constantly challenging me to overcome myself. This gratitude also extends to the rest of
the research group: César Sanz, Eduardo Juárez, Matías Garrido, Ángel Manuel Groba,
Pedro Lobo, thank you for having welcomed me.

I would like to especially thank Miguel for his extraordinary support from day one. I
would not be able to come to Madrid and it would be very difficult for me to survive in
Madrid without Miguel’s support.

I express my very deep gratitude to my parents for providing me with constant sup-
port and continuous encouragement, especially to my mother and father, who always
encouraged me ‘you can do it’. They are my source of energy.

Now, I would like to thank Jaime, Pallab, Guille G., Gonzalo, Manu, Alberto, and
Guille V. for so many good times. I also would like to thank the students who have
completed their final-year project and master’s thesis with me, and especially Victor, for
your contribution to making this possible.

I want to express my heartfelt gratitude to Jaime’s family: Pepi, Juan, Marisa,
Paulina, and Aurora. They are my Spanish family who made my stay in Madrid as
home.

I thank my friend Adnan for the motivation and support that even with distance
makes you present, and also for all my friends that were not mentioned.

During my doctorate, I have had the opportunity to carry out an international research
stay at the INESC-ID in IST Lisbon, and I would like to thank Nuno Roma for his
willingness and availability to supervise me during the international stay. I learned a lot
about GPU processing and I was able to excel in my research. I am also grateful to Tiago
Dias for all those long discussions and for everything you have taught me. I must also
thank Aleksandar Ilic for allowing me to participate in the "Parallel and Heterogeneous
Computing Systems" course.

Lastly, I wish to express my deep and sincere gratitude for all the support I have
received from my wife. Her patience, love, and care were essential to the development of
this thesis.

viii

ix

Abstract

Nearly everybody in the modern era frequently uses video compression technology in
the form of watching TV, under-demand content, video streaming, multimedia content
on social networks, self-made videos, etc. Video compression technology is essential to
transmit videos through the network and store them in an efficient way. The very first of
video compression technology was introduced and patented by Ray Davis Kell in 1929. It
consisted on store differences of frames as the variations in the inductance of transformer
coils. However, researchers from industry and academia started working on standardising
video compression technology from the 19th century. But, it was necessary to wait till
1984 for the standardization of the first video coding standard, H.120, proposed by the
International Telegraph and Telephone Consultative Committee (CCITT). CCITT further
developed the H.261 standard by cooperating with the International Telecommunication
Union (ITU) in 1988. Afterwards, all the video coding standards followed the same
fundamental video coding recommendations with a hybrid coding inner structure, where
transform coding is combined with intra-prediction and, later on, inter-prediction. Since
then, and almost on average every six years, a new standard was released due to the
increased demand for higher quality videos and with the aim of achieving significant
bitrate savings for comparable subjective video quality.

During the last decades, the demand for higher quality videos (full and ultra high
definition) has increased rapidly due to the wide availability of consumer electronics de-
vices. To meet this demand, the Joint Video Experts Team (JVET) released the Versatile
Video Coding (VVC) standard in July 2020. VVC provides up to 50% bitrate savings
compared to the previous High Efficiency Video Coding (HEVC) standard by keeping
the same video quality. However, this reduction in bitrate causes a major increase in
computational complexity, especially for real-time video processing on embedded devices
with limited resources. To overcome this added computational complexity challenge for
obtaining real-time performance, it is highly required to exploit the available parallelism
either in software and hardware.

In this scenario, this doctoral research focused on the development of a hybrid approach
to accelerate the newer VVC-based decoders over heterogeneous platforms using fine-
grain parallelism, coarse-grain parallelism, and hardware accelerators. Here, data-level
parallelism technique Single Instruction Multiple Data (SIMD), Central Processing Unit
(CPU) + Graphics Processing Unit (GPU) based implementation were integrated with

x

native coding default features and coarse-grain parallelism.

First, a detailed analysis was performed by profiling the state-of-the-art VVC decoder
to identify the most computationally demanding blocks. Thus, coarse-grain and fine-grain
profile of the decoder were carried out. Moreover, parallel processing abilities of different
VVC decoder blocks were analysed to apply optimisation techniques.

Secondly, different platforms and open source video decoders were chosen and migrated
to the selected platforms. Then, SIMD optimisation was efficiently implemented on the
latest version of the decoders on heterogeneous platforms. Therefore, a hybrid approach
was implemented on heterogeneous platforms, both SIMD optimisation and heterogeneous
CPU+GPU based implementation were used in parallel with native coding default features
and coarse-grain parallelism. These processes were repeated for different versions of the
decoders on different platforms. This work was verified by conducting a wide set of
experiments with fifteen sequences with different configurations included in the common
test conditions standard set.

Lastly, a design methodology was synthesised using the experience of previous opti-
mization. This methodology proposes some recommendations to accelerate the optimiza-
tion process of video decoders with different platforms. It has been used to optimize other
decoder implementation (OpenVVC) with good results and reducing the development ef-
fort.

Keywords

Versatile Video Coding (VVC), Heterogeneous Platforms, Single Instruction Multiple
Data (SIMD), Graphics Processing Unit (GPU), VVdeC, OpenVVC, Design Methodology,
Multicore, Parallelism, Embedded platforms.

xi

Resumen

En la actualidad los algoritmos de compresión de vídeo son empleados en multitud
de aplicaciones de la vida cotidiana como son la televisión, el video bajo demanda, el
streaming de vídeo, los contenidos multimedia existentes en las redes sociales, etc. En
este marco la tecnología empleada para comprimir la información que tienen todas estas
fuentes de vídeo de alta calidad es esencial ya que es necesario transmitirlos por redes de
comunicaciones de ancho de banda limitado o almacenarlos en dispositivos de capacidad
también limitada.

Los primeros avances en la compresión de vídeo fueron desarrollados y patentados por
Ray Davis Kell en 1929. Estos consistían en almacenar como variaciones de la inductancia
de bobinas las diferencias entre imágenes de una secuencia de vídeo. Sin embargo, fue
necesario esperar hasta que en 1984 el International Telegraph and Telephone Consulta-
tive Committee (CCITT) propone el primer estándar de codificación denominado H.120.
Posteriormente, en 1988 el CCITT en colaboración con la International Telecommunica-
tion Union (ITU) desarrollan el estándar H.261 que ya incluye una arquitectura híbrida
que sigue estando presente en los estándares implementados en las siguientes tres décadas
después.

Dicha arquitectura híbrida se basa en una predicción de las imágenes (frames) a partir
de la información existentes en otras imágenes de la secuencia de vídeo (predicción in-
ter) así como es la misma imagen (predicción intra). Desde entonces, y aproximadamente
cada seis años, se han ido publicando sucesivos estándares para soportar el continuo incre-
mento en la demanda de videos de mayor resolución espacial y temporal, que requieran un
menor número de bits pasa su transmisión o almacenamiento manteniendo o mejorando
en todo momento la calidad objetiva y subjetiva. Durante la última década, la demanda
de videos de cada vez mayor calidad (full high definition y ultra high definition) se ha
incrementado debido a la disponibilidad de dispositivos de electrónica de consumo que
demandan este tipo de contenidos. Para atender esta demanda el Joint Video Experts
Team (JVET) publica en julio de 2020 el estándar denominado Versatile Video Coding
(VVC) que proporciona una reducción en la tasa de bits del vídeo codificado un 50%
menor que su predecesor, el estándar High Efficient Video Coding (HEVC) manteniendo
la misma calidad de vídeo. Sin embargo, esta reducción en la tasa de bits provoca un
incremento en la complejidad en los algoritmos que es especialmente relevante para dis-
positivos que deben trabajar en tiempo real con unos recursos limitados, como es el caso

xii

de los empleados para el desarrollo de esta tesis doctoral.

Para abordar este incremento en la complejidad del algoritmo y lograr el rendimiento
necesario, es imprescindible explotar las posibilidades de paralelización tanto a nivel har-
ware como software. En este escenario la presente tesis doctoral propone una arquitectura
híbrida para acelerar implementaciones del estándar VVC sobre plataformas heterogéneas
usando técnicas de paralelización de grado fino y grueso (fine- and course-grain paral-
lelism) y aceleradores hardware. En concreto se han empleado técnicas basadas en el
paralelisto a nivel de datos mediante el uso de instrucciones Single Instruction Multi-
ple Data (SIMD) y arquitecturas que integran procesadores de propósito general (GPP)
con procesadores que son capaces de realizar un paralelismo masivo de datos, como las
unidades de procesamiento gráfico (GPU).

Para lograr estos objetivos, inicialmente se ha realizado un análisis de rendimiento del
decodificador para identificar los bloques que demandan una mayor carga computacional.
Este análisis se ha realizado desde un enfoque de los principales bloques del algoritmo,
pero posteriormente se han analizado en detalle aquellos módulos que presentaban una
mayor carga computacional y que son susceptibles de ser optimizados. Posteriormente
se han evaluado diferentes plataformas hardware con diferentes arquitecturas y recursos
para seleccionar las más adecuadas para estos objetivos. Paralelamente se han analizado
los decodificadores de código abierto existentes en el mercado para tomarlos como punto
de partida a la hora de realizar la optimización de sus prestaciones y aplicar sobre ellos
las metodologías de optimización que se sintetizarían a partir de la experiencia acumulada
durante la optimización de algunas partes del algoritmo.

Una vez elegidas las implementaciones a optimizar y las plataformas sobre las que
llevar a cabo dichas optimizaciones se han aplicado técnicas que aprovechan el paralelismo
de datos a nivel de instrucción (instrucciones SIMD) así como ejecución de parte de los
algoritmos en aceleradores hardware para mejorar sus prestaciones. Este proceso se ha
repetido para diferentes versiones de los decodificadores, diferentes módulos del algoritmo
y con diferentes secuencias del estándar codificadas con distintos parámetros.

Finalmente, toda la experiencia acumulada tras este proceso ha permitido sintetizar
una metodología de diseño que ha sido aplicada a otros módulos de otras implementaciones
(como OpenVVC) obteniendo buenos resultados y reduciendo el tiempo requerido para
realizar la optimización.

xiii

Palabras clave

Codificación de Vídeo Versátil (VVC), Plataformas Heterogéneas, Una Instrucción
Múltiples Datos (SIMD), Unidad de Procesamiento Gráfico (GPU), VVdeC, OpenVVC,
Metodología de diseño, Multinúcleo, Paralelismo, Plataformas Empotradas, Plataformas
Embebidas.

xiv

xv

Contents

List of Figures xxi

List of Tables xxvii

1 Introduction 1

1.1 Motivation . 1

1.2 Research objectives . 3

1.3 Work methodology . 3

1.4 Main contributions . 5

1.5 Thesis outline . 6

2 Background 9

2.1 Digital video concepts . 9

2.1.1 Colour spaces . 9

2.1.2 RGB colour space . 10

2.1.3 YCbCr colour space . 10

2.1.4 RGB – YCbCr colour conversion 11

2.1.5 Frame rate . 12

2.1.6 Video resolution . 12

2.2 Video coding standards . 12

2.2.1 Brief historical review of video coding standards 13

2.3 Overview of Versatile Video Coding standard encoder 15

2.4 Overview of Versatile Video Coding standard decoder 16

2.4.1 Entropy decoder . 16

xvi CONTENTS

2.4.2 Inverse quantization and inverse transform 17

2.4.3 Intra Prediction . 18

2.4.4 Inter prediction . 19

2.4.5 Luma mapping with chroma scaling 20

2.4.6 Deblocking filter . 20

2.4.7 Sample adaptative offset . 22

2.4.8 Adaptive loop filter . 22

2.5 Open source VVC decoders . 25

2.5.1 VVC test model . 26

2.5.2 Versatile video decoder . 27

2.5.3 OpenVVC . 27

2.5.4 O266dec . 28

3 State-of-the-art on the implementation of video decoders 29

3.1 Parallelism in video codecs . 29

3.1.1 Fine-grain parallelism: Single Instruction Multiple Data 29

3.1.2 Coarse-grain parallelism . 30

3.2 Hardware accelerators for video coding tools 32

3.2.1 Graphics Processing Unit . 32

3.2.2 Field Programmable Gate Arrays 34

3.3 Related work on different hardware . 35

3.3.1 Conclusion . 37

4 Implementation of video decoders over heterogeneous platforms 39

4.1 Working methodology . 39

4.1.1 Validation . 40

4.2 Platform selection . 41

4.2.1 Test platforms . 42

CONTENTS xvii

4.2.2 Summary . 46

4.3 Selection of video algorithm . 47

4.4 Profiling video algorithm and decoder block selection for acceleration . . . 47

4.4.1 Profiling of VTM v8.0 . 48

4.4.2 Generalization . 52

4.5 Open source decoder optimisation for ARM-based platforms 53

4.5.1 Configuration of the VVdeC v0.2 decoder for ARM-based platforms 53

4.5.2 Fine-grain optimising the VVdeC v0.2 decoder for ARM-based plat-
forms . 54

4.5.3 Profile of the VVdeC v0.2 decoder with and without SIMD 56

4.5.4 Optimising the OpenVVC v1.0 decoder for ARM-based platforms . 59

4.5.5 Generalization . 59

4.6 Algorithm redesign for parallelising the VVdeC decoder using CPU+GPU . 60

4.6.1 Algorithm redesign . 61

4.6.2 Parallelise the VVdeC ALF filtering in GPU 64

4.6.3 Generalization . 67

4.7 Memory management . 68

4.7.1 Memory usage . 68

4.8 Energy consumption . 69

4.9 Summary of the proposed methodology . 70

5 Experimental Results 71

5.1 Test bench description and platform setup 72

5.1.1 Test bench description . 72

5.1.2 Platform setup . 73

5.2 Performance analysis of the native GCC auto vectorizer 74

5.3 Performance and speedup analysis of VVdeC v0.2 decoder 75

5.3.1 Preliminary analysis of VVdeC v0.2 75

xviii CONTENTS

5.3.2 Performance analysis of VVdeC v0.2 with SIMD activated 77

5.3.3 Speedup analysis . 78

5.4 Performance and speedup analysis of VVdeC v1.3 decoder for embedded
platforms . 82

5.5 Performance and speedup analysis of OpenVVC v1.0 decoder 83

5.6 Decoding performance analysis of OpenVVC v1.0 decoder for different
frame-tile configurations . 86

5.7 Performance comparison between VVdeC v1.3 and OpenVVC v1.0 decoder 88

5.8 Experimental results of the CPU+GPU implementation of VVdeC v1.3
decoder . 89

5.9 Comparison performance of VVdeC v1.3 decoder for different implementa-
tions . 90

5.10 Comparison study of memory usage for VVdeC v1.3 and OpenVVC v1.0
decoder . 92

5.11 Energy consumption analysis . 94

5.11.1 Comparison study of energy consumption for VVdeC v1.3 and OpenVVC
v1.0 decoder . 94

5.11.2 Comparison study of energy consumption for CPU and CPU+GPU
implementation of VVdeC v1.3 decoder 94

5.12 Summary and discussion . 96

6 Proposed methodology 99

6.1 Methodology specification . 99

6.1.1 Selection of the target platform . 100

6.1.2 Selection of the reference software 101

6.1.3 Analysis of the computational performance of the algorithm 102

6.1.4 Evaluation and adaptation to the most suitable techniques for par-
allel processing . 104

6.1.5 Algorithm acceleration on heterogeneous platform 105

6.1.6 Validation . 109

CONTENTS xix

7 Results and contributions of the Thesis 111

7.1 Objectives of the Thesis . 111

7.2 Contributions of the Thesis . 112

7.3 Works published related with the Thesis 113

7.4 Other results related to the Thesis . 115

7.4.1 Research projects . 115

7.4.2 Collaboration during the Thesis with the INSA in Rennes 116

7.4.3 Collaboration and stay during the Thesis at the INESC-ID in IST . 116

7.4.4 Supervision of Final Degree Projects 117

7.4.5 Scholarships and awards obtained 117

8 Conclusions and future work 119

8.1 Conclusions . 119

8.2 Future work . 122

9 Bibliography 125

xx CONTENTS

xxi

List of Figures

1.1 Thesis outline. 6

2.1 RGB color space (source:[24]). 10

2.2 YCbCr color space. 11

2.3 Typical video coding/decoding bitstream flow. 13

2.4 Chronological review of video compression standards. 14

2.5 Simplified blocks diagram of a VVC encoder (source:[40]). 16

2.6 Simplified blocks diagram of a VVC decoder. 17

2.7 Representation of the 67 intra prediction modes (source:[40]). 18

2.8 Example of four reference lines neighboring to a prediction block (source:[40]). 19

2.9 Decoding side motion vector refinement (source:[40]). 20

2.10 Four samples boundary segment formed by block P and block Q. Deblock-
ing decisions are based on line 0 and line 3. 21

2.11 Edge offset 1D classification for 3 pixels pattern in degree: 0 (left), 90, 135,
and 45 (right). 22

2.12 Edge offset 1D classification for 3 pixels pattern in degree: 0 (left), 90, 135,
and 45 (right). 23

2.13 ALF filter working flow diagram. 24

2.14 ALF DMS filters: left 7×7, right 5×5. 25

2.15 Diagram of the CCALF architecture. 25

2.16 Release date of different VTM version. 26

2.17 Release date of different VVdeC version. 27

2.18 Release date of different OpenVVC version. 28

xxii LIST OF FIGURES

3.1 SIMD operation example where four multiplication operations are per-
formed simultaneously. 30

3.2 Illustration of tile partitioning in VVC decoder, where one frame is divided
into four tiles. 31

3.3 Example of Wavefront Parallel Processing (WPP) and an example of the
dependency involved in WPP between CTUs using 6 threads in parallel. . 32

3.4 Illustration of the architecture of a generic CPU and GPU in high-level. . . 33

3.5 Illustration of a kernel execution on GPU (source:[80]). 34

3.6 An example of the generic architecture of an FPGA (source:[82]). 35

4.1 General view of applied working methodology. 40

4.2 Options to specify a raw video format, with instant preview. 41

4.3 Examine the difference between two files with PSNR, MSE and SSIM. . . . 41

4.4 AMD Ryzen threadripper (source:[105]). 43

4.5 A diagram of the architecture of AMD Ryzen threadripper processor. . . . 43

4.6 Intel X-series processor (source:[106]). 44

4.7 A diagram of the architecture of Intel X-series processor. 44

4.8 NVIDIA Jetson Xavier development kit (source:[110]). 45

4.9 A diagram of the architecture of NVIDIA Jetson Xavier development kit. . 45

4.10 NVIDIA Jetson Nano development kit (source:[110]). 46

4.11 A diagram of the architecture of NVIDIA Jetson Nano development kit. . . 46

4.12 Average time distribution for different blocks of the VTM V8.0 decoder (in
%) over the HGPP (Ryzen) for AI (left) and RA (right) sequences. 49

4.13 Average time distribution for different blocks of the VVC decoder (in %)
over Xavier for AI (left) and RA (right) sequences. 49

4.14 Average processing times (in secs) for each decoding block and the ratio
between Ryzen and Xavier. 50

4.15 Average processing times (in %) for the EP, DBF and ALF block profiled
over HGPP (Ryzen). 51

LIST OF FIGURES xxiii

4.16 Average processing times (in %) for the EP, DBF and ALF block profiled
over Xavier. 52

4.17 Average time distribution for different blocks of the VVdeC v0.2 (in %)
without SIMD over the HGPP (X-series) for AI (left) and RA (right) se-
quences. 57

4.18 Average time distribution for different blocks of the VVdeC v0.2 (in %)
with SIMD over the HGPP (X-series) for AI (left) and RA (right) sequences. 57

4.19 Average time distribution for different blocks of the VVdeC v0.2 (in %)
without SIMD over Xavier for AI (left) and RA (right) sequences. 58

4.20 Average time distribution for different blocks of the VVdeC v0.2 (in %)
with SIMD over Xavier for AI (left) and RA (right) sequences. 58

4.21 Rearranging of data access pattern. 61

4.22 a) 7×7 DMS, b) sliding DMS filter over CTU, c) data ordering pattern in
the first approach. 62

4.23 Data ordering pattern in the final approach. 64

4.24 Diagram of hybrid approach using CPU and GPU. 67

4.25 Diagram of the GPU task scheduling. 68

5.1 Average performance (in FPS) and speedup obtained for VVdeC v0.2 de-
coding for different thread numbers without SIMD optimisation over X-
series for AI (left) and RA (right) sequences. 77

5.2 Average performance (in FPS) and speedup obtained for VVdeC v0.2 de-
coding for different thread numbers without SIMD optimisation over Xavier
for AI (left) and RA (right) sequences. 78

5.3 Average performance (in FPS) and speedup obtained for VVdeC v0.2 de-
coding for different thread numbers with SIMD optimisation over X-series
for AI (left) and RA (right) sequences. 79

5.4 Average performance (in FPS) and speedup obtained for VVdeC v0.2 de-
coding for different thread numbers with SIMD optimisation over Xavier
for AI (left) and RA (right) sequences. 79

5.5 Average speedup for different blocks of the VVdeC v0.2 decoder by using
SIMD extensions over X-series (left) and Xavier (right). 80

xxiv LIST OF FIGURES

5.6 FPS and speedup comparison: un-optimised and Un-vectorization vs. un-
optimised vs. optimised VVdeC v0.2 implementations over Xavier for AI
(left) and RA (right) sequences. 81

5.7 Average FPS obtained with/without SIMD and speedup for different se-
quences of VVdeC decoder v1.3 over Xavier for AI (left) and RA (right)
sequences. 82

5.8 Average FPS obtained with/without SIMD and speedup for different video
quality of VVdeC decoder v1.3 by using SIMD optimisations over Nano for
AI (left) and RA (right) sequences. 84

5.9 Average FPS obtained with/without SIMD and speedup for different video
quality of OpenVVC decoder v1.0 by using SIMD optimisations over Xavier
for AI (left) and RA (right) sequences. 85

5.10 Average FPS obtained with/without SIMD and speedup for different video
quality of OpenVVC decoder v1.0 by using SIMD optimisations over Nano
for AI (left) and RA (right) sequences. 85

5.11 Average decoding performance (FPS) of the OpenVVC v1.0 decoder for
different frame-tile configurations with QPs 27 and 37 RA sequences on
Xavier (left) and Nano (right). 87

5.12 Average decoding performance (in FPS) of OpenVVC and VVdeC for QPs
(27 and 37), number of cores over Xavier (left) and Nano (right). 88

5.13 Average time distribution for different blocks of the VVdeC v1.3 decoder
(in sec.) using CPU and CPU+GPU of Xavier with SIMD activated for
AI (left) and RA (right) sequences. 90

5.14 Average FPS obtained for the proposed implementation on 1) CPU-only
without SIMD (dotted line), 2) CPU with SIMD (dashed line) and 3)
CPU+GPU (solid line) with SIMD activated for different thread numbers
with QP 22 to 37 of AI (left) and RA (right) sequences over Xavier. 91

5.15 Average FPS obtained for the proposed implementation on 1) CPU-only
without SIMD (dotted line), 2) CPU with SIMD (dashed line) and 3)
CPU+GPU (solid line) with SIMD activated for different thread numbers
with QP 22 to 37 of AI (left) and RA (right) sequences over Nano. 92

LIST OF FIGURES xxv

5.16 Average maximum memory (in MB) used for different thread configurations
of OpenVVC and VVdeC with QPs 27 and 37 sequences over Xavier (left)
and Nano (right). 93

5.17 Average energy (in J) consumed for different thread configurations of OpenVVC
and VVdeC with QP 27 and 37 sequences over Xavier (left) and Nano (right). 95

5.18 Average energy consumed (in J per frame) of FHD and UHD over CPU
and CPU+GPU for AI (left) and RA (right) configurations with QP 22-37
and SIMD activated. 96

xxvi LIST OF FIGURES

xxvii

List of Tables

4.1 Specifications of all platforms used in this thesis. 47

4.2 Comparison of average processing times (in %) for the EP, DBF and ALF
block on Ryzen and Xavier. 52

4.3 List of intrinsics extensions used by modules (source:[17]). 55

4.4 Main functions optimised with SIMD implementation in each block for
VVdeC v0.2 decoder on Xavier (source:[17]). 56

4.5 Main functions optimised with SIMD in OpenVVC (source:[18]). 60

4.6 Reduction of data copied on the basis of different data ordering approaches. 64

5.1 Summary and organisation of sections in Chapter 5. 72

5.2 Features of the test video sequences Set A. 73

5.3 Features of the test video sequences Set B. 73

5.4 Performance (in FPS) obtained by VVdeC decoder v0.2 over Xavier for
different combination of the native GCC auto vectorization options using
8 cores without SIMD. 75

5.5 Performance (in FPS) obtained for VVdeC v0.2 decoder over X-series for
different threads without SIMD optimisations. 76

5.6 Average speedup obtained for ALF and total decoding time (TOT) using
CPU+GPU over using only CPU with SIMD activated for four QPs (22-37). 89

6.1 Summary of the approximate impact on performance improvement, in-
dicative development time, main dependencies and interoperability for the
different techniques considered. 105

6.2 A comparison of four memory allocation methods (source:[120]). 108

6.3 Summary of the different operations suggested to be considered for GPU-
based implementation and their evaluation. 109

xxviii LIST OF TABLES

xxix

Abbreviations and Acronyms

1D One-dimensional. 22, 63

2D Two-dimensional. 30, 36, 63

3D three-dimensional. 30, 32–34

AI All Intra. 48–52, 56–58, 72, 74–85, 89–92, 94–97

ALF Adaptive Loop Filter. 5, 6, 16, 22–25, 28, 48–53, 55–62, 64–68, 70, 80, 89, 97, 98,
102, 106, 107, 112–114, 116, 120, 121

ALU Arithmetic Logic Unit. 42

AMT Adaptive Multiple Transform. 6, 115

AMVR Advanced Motion Vector Resolution. 19

AoM Alliance for Open Media. 14

AOV ArenaOfValor. 72

API Application Programming Interface. 33, 42, 116

AV1 AoM Video 1. 14

AVC Advance Video Coding. 13, 14, 16

AVX Advanced Vector Extensions. 30, 54, 55

BBD BasketballDrive. 48, 72, 75, 77

BDOF Bi-directional Optical Flow. 19

BQT BQTerrace. 48, 72, 75, 77

BS Boundary Strength. 20

CABAC Context Adaptive Binary Arithmetic Coding. 15, 16, 26, 32

Cb chroma blue. 25, 66

xxx Abbreviations and Acronyms

CCALF Cross-component ALF Filtering. 25, 66

CCITT International Telegraph and Telephone Consultative Committee. 13

CCT Cactus. 72

CHCF Chroma Component Filtering. 51, 52

CHF Chroma Filter. 50–52

CITSEM Software Technologies and Multimedia Systems for Sustainability. 2, 112, 115

CMF Campfire. 48, 72, 75, 77

CPLB Calculate Position and Length of the Boundaries. 50–52

CPU Central Processing Unit. 6, 7, 28, 32, 33, 35–37, 39, 40, 43, 60–71, 89–91, 94, 95,
97, 106–108, 112–116, 119–122

Cr chroma red. 25, 66

CR1 CatRobot1. 72

CRCF Cross-Component Filtering. 51, 52

CRY Copy Reconstructed YUV. 51, 52

CSP Chroma Scaling. 20

CTU Coding Tree Unit. 15, 22, 27, 28, 31, 32, 35, 61, 63, 64, 66

CU Coding Unit. 15, 18, 19, 28, 36

CUDA Compute Unified Device Architecture. 33, 34, 42, 65, 107, 108, 116

DBF Deblocking Filter. 5, 16, 20, 22, 28, 37, 48–52, 55–58, 80, 97, 113, 123

DCT Discrete Cosine Transform. 17, 35, 36, 59

DeC Derivative Classification. 51, 52

DMS Diamond-shape. 24, 25, 60–63, 66

DMVR Decoder-side Motion Vector Refinement. 19, 50–52, 59

DR2 DaylightRoad2. 48, 72, 75, 77

DSP Digital Signal Processing. 2, 4, 35, 37, 122

Abbreviations and Acronyms xxxi

DST Discrete Sine Transform. 17, 35, 36, 59

ED Entropy Decoder. 16, 48, 49, 55–58, 80, 81

EGPP Embedded General Purpose Processors. 44–46, 121

EGPU Embedded Graphics Processing Unit. 44, 45

EP Inter Prediction. 5, 16, 19, 20, 28, 48–53, 55–59, 80, 121

ETSIST Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación. 117

FD Filtering Decision. 50–52

FHD Full HD. 12, 36, 37, 73, 75, 82–84, 87, 88, 91–94, 96, 100, 122

FM4 FoodMarket4. 48, 72, 75, 77

FPGA Field Programmable Gate Arrays. 2, 4, 32, 34–37, 41, 42, 100, 101, 122

FPS frame per second. 12, 35–37, 74–79, 81–84, 87–91, 97

FRP FourPeople. 72

GDEM Electronic and Microelectronic Design Group. 2, 42, 112, 113, 115, 116, 123

GPP General Purpose Processors. 2–4, 30, 42, 46, 48, 53, 54, 59, 100, 105, 106, 111, 119

GPU Graphics Processing Unit. 2–4, 6, 7, 32–37, 39–42, 44–46, 60–72, 89–92, 94–97,
100, 105–108, 111–116, 119–123

HD High Definition. 1, 12, 73, 82–84, 87, 88, 91–94, 96, 97, 101, 122

HDL Hardware Description Language. 34

HEVC High Efficiency Video Coding. 1, 2, 13–16, 18–20, 22, 31, 32, 36, 37, 53, 122, 123

HGPP High-performance General Purpose Processors. 5, 31, 42, 43, 46–48, 53, 73, 100,
113, 114, 121

HM HEVC Test Model. 26

IEC International Electrotechnical Commission. 13

IOB Input Output Block. 34

xxxii Abbreviations and Acronyms

IP Intra Prediction. 16, 18, 19, 28, 48, 49, 55–59, 80, 113, 122

ISO International Organization for Standardization. 13

ITEX Inter Texture. 50–52

ITU International Telecommunication Union. 13

JNY Johnny. 72

JVET Joint Video Experts Team. 1, 13

JVT Joint Video Team. 13

KAS KristenAndSara. 72

LB Logic Block. 34

LCF Luma Component Filtering. 51, 52

LFNST Low-Frequency Non-Separable Transform. 17

LMCS Luma Mapping with Chroma Scaling. 16, 20, 28

LMP Luma Mapping. 20

LUF Luma Filter. 50–52

MP Motion Prediction. 19

MPEG Moving Picture Experts Group. 13

MPL MarketPlace. 72

MSE Mean-Square Error. 40, 41, 109

MTS Multi Transform Selection. 17, 35

MV Motion Vector. 19

MVD Motion Vector Differences. 19

Nano NVIDIA Jetson Nano development kit. 5, 45–47, 53, 59, 69, 72–74, 82–84, 86–88,
91–95, 97, 101, 114, 116

OT other. 48–52, 57, 58, 80

Abbreviations and Acronyms xxxiii

PR3 ParkRunning3. 48, 72, 75, 77

PSNR Peak Signal-to-Noise Ratio. 40, 41, 109

QHD Quad HD. 12

QP Quantization Parameter. 17, 21, 48, 49, 56, 72, 74–77, 81–83, 87–92, 94, 95

RA Random Access. 48–52, 56–58, 72, 75–85, 87, 89–92, 94–97

RAM Random-Access Memory. 69

RUD RitualDance. 72

Ryzen AMD Ryzen Threadripper Processor. 5, 43, 47–51, 53, 73, 74, 113

SAO Sample Adaptative Offset. 16, 22, 24, 28, 37, 48, 49, 55–60, 66, 80

SD Standard Definition. 12

SIMD Single Instruction Multiple Data. 2–7, 27–30, 37, 39, 40, 53–60, 70–72, 74–84, 86,
88–91, 94, 96, 97, 111, 112, 114, 116, 119–123

SIMDe SIMDEverywhere. 54, 59, 60

SM Streaming Multiprocessor. 34, 44, 108

SMVD Symmetric Motion Vector Differences. 19

SoC System on Chips. 1, 34

SPUB Sub-Prediction Unit Bio. 50–52

SPUM Sub-Prediction Unit MC. 50–52

SSE Streaming SIMD Extensions. 30, 54

SSIM Structural Similarity Index Measure. 40, 41, 109

SSSE Supplemental Streaming SIMD Extensions. 30

TG2 Tango2. 72

TX Inverse Quantization and Inverse Transform. 16, 17, 28, 48, 49, 55–59, 80, 122

UDP Uni-Directional Prediction. 50–52

xxxiv Abbreviations and Acronyms

UHD Ultra HD. 12, 36, 37, 47, 48, 66, 73, 75, 82–85, 94, 96, 100, 122

UnOP Un-optimised. 81

UnVec Un-vectorization. 81

UPM Universidad Politécnica de Madrid. 2, 112, 113, 115–117

VBC Virtual Boundaries Check. 51, 52

VCEG Video Coding Experts Group. 13

VTM VVC Test Model. 4, 5, 26, 27, 47, 48, 50, 74, 112, 113

VVC Versatile Video Coding. 1, 3–7, 13–20, 22–28, 30, 31, 35–37, 47, 48, 52, 60, 71, 77,
101, 111–113, 115, 119–123

VVdeC Versatile Video Decoder. 4–7, 26, 27, 47, 48, 53–57, 59–62, 64–68, 70, 71, 74–77,
79–83, 86, 88–90, 92–97, 106, 107, 112, 114, 116, 120, 121

WP Weighted Prediction. 50–52

WPP Wavefront Parallel Processing. 32, 36

X-series Intel core i9-10900x Processor. 43, 44, 47, 53, 55–58, 72, 73, 75–78, 80, 114

Xavier NVIDIA Jetson Xavier development kit. 5, 44–51, 53, 55–60, 69, 72–75, 77, 78,
80–97, 101, 113–116

ZMV Zero Motion Vectors. 19

1

Chapter 1

Introduction

This chapter presents the motivation for the doctoral study in Section 1.1, the main
research objectives of the thesis is to define new design methodologies to implement ef-
ficient video decoders on heterogeneous platforms in Section 1.2, the methodology that
has been applied during the development of the thesis work in Section 1.3, the list of the
main contributions of the thesis in Section 1.4, and the outline of the thesis document in
Section 1.5.

1.1 Motivation

The world has entered in a new phase of information and communication technology, in
which video communication has become an essential part of everyday life. The demand for
full High Definition (HD) videos, with a resolution of 1920×1080 pixels, and 4k ultra HD,
with 3840×2160 pixels, is growing rapidly. Notably, it is estimated that video contents
will represent the 82% [1] of global internet traffic by end of 2022. The transmission
of high-resolution videos requires additional bandwidth and storage facilities. However,
the capacities of storage facilities and communication channels are limited, particularly
for a resource-constrained embedded System on Chips (SoC). In this situation, it has
become necessary to develop better video coding technology for achieving a higher video
compression rate.

To handle the situation, the Joint Video Experts Team (JVET) released the current
state-of-the-art Versatile Video Coding (VVC) standard [2] in July 2020. VVC offers the
same video quality by allowing a bitrate saving of 50% compared with the previous High
Efficiency Video Coding (HEVC) standard [3]. However, this reduced bitrate results
in increased computational complexity of 10× for the encoder and 2× for the decoder

2 Introduction

with respect to HEVC [4]. Therefore, it has become challenging to achieve real-time
video encoding/decoding with single core implementation due to the higher computational
complexity, especially for embedded systems.

Video compression/decompression algorithms are commonly accelerated and opti-
mised by using a variety of parallelisation techniques. In particular, multithreading and
Single Instruction Multiple Data (SIMD) intrinsics-based parallelisation are the two most
used parallelisation approaches in recent video coding applications [5], [6], [7]. However,
these parallelisation approaches are restricted to General Purpose Processors (GPP) and
cannot take straightforward advantage of hardware accelerators or Graphics Processing
Unit (GPU), which are integrated into contemporary heterogeneous system-based plat-
forms.

Nowadays, GPUs have become an essential coprocessing unit that helps GPPs to han-
dle computationally heavy operations such as machine learning, general graphics acceler-
ation, image processing, etc. In brief, GPUs are powerful accelerators that are specially
designed to optimise throughput [8]. Although modern GPPs have multicore processing
capacity for parallel processing, GPU provides better parallelisation for algorithms with
high computational demands and simple repetitive operations. However, the main chal-
lenge lies in the use of GPUs in conjunction with GPP multithreading to maximise the
use of all the resources of heterogeneous system-based platforms, while avoiding undesired
bottlenecks in the data path of the architecture.

In a context in which both video features and processor architectures evolve rapidly,
there is a clear need for methodologies that facilitate the development of video solutions on
heterogeneous architectures. For almost two decades now, researchers at Electronic and
Microelectronic Design Group (GDEM), founding member of the research center Software
Technologies and Multimedia Systems for Sustainability (CITSEM), integrated in Uni-
versidad Politécnica de Madrid (UPM), have been working on video decoder optimization
methodologies for different types of architectures such as GPUs, GPPs, Digital Signal
Processing (DSP)s [9], and Field Programmable Gate Arrays (FPGA) [10]. In addition,
the GDEM participated in the IVME [11], MR-UHDTV [12], and H2B2VS [13] research
projects, among others, aligned with the research of architectures for video encoding/de-
coding towards methodologies for the implementation of video decoders with multicore
processors.

This doctoral thesis has been carried out in the GDEM research group to address
the state-of-the-art video decoding algorithm using collectively the parallelism techniques
mentioned above over state-of-the-art heterogeneous platforms.

Research objectives 3

1.2 Research objectives

The main aim of this doctoral thesis is to define new design methodologies to imple-
ment efficient video decoders on heterogeneous platforms. This research work identifies
the key elements of the VVC decoders that are computationally intensive. Therefore, re-
design the algorithm for parallel processing of videos by exploiting the multicore features
of the GPP, SIMD optimisation, and GPU accelerator simultaneously.

In this way, the side objectives of this thesis are defined:

• To carry out profiling and performance analysis of the video decoders to identify
computationally intensive blocks of VVC decoders.

• To analyse the parallel processing abilities of the VVC decoder blocks by tracing
data and process dependencies.

• To establish a design methodology to accelerate the applications of video decoding
over heterogeneous platforms.

• To parallelise the video decoding algorithm of a VVC based decoder with the high-
est computational demands and parallel processing capability using the multicore
feature of the GPP, SIMD optimisation and GPU accelerators.

• To conduct an analysis of energy consumption and memory usage over embedded
heterogeneous platforms. These are two of the most important factors for resource-
constrained embedded platforms.

• To compare the proposed solutions by means of the decoding performance, energy
consumption, and memory usage of different VVC decoders on different heteroge-
neous platforms.

1.3 Work methodology

The methodology that has been applied during the development of the thesis work is
divided into three main stages in which the following activities have been carried out:

1) Study of the state-of-the-art on the implementation of video processing algorithms
over heterogeneous platforms. A detailed study has been carried out about other con-
tributions published in the scientific literature related to video coding and contemporary
heterogeneous platforms mainly focusing on GPU-based technologies. This study has not

4 Introduction

been limited to video coding applications, nor to systems based on multicore processors,
and has been generalised to other types of application (image depth estimation or point
cloud generations, among others) and using other platforms (FPGA, DSP, etc.) (see
Section 3.3) to have a more general vision regarding the implementation of algorithms
based on heterogeneous systems. In addition, a thorough analysis has been performed on
different heterogeneous platforms available in the market for video and image processing
applications. Here, GPU-based heterogeneous platforms were chosen as it has been found
more appropriate for this doctoral thesis (see Section 4.2).

2) Implementation of VVC video decoder solutions over heterogeneous processing sys-
tems. The following has been done: firstly, the reference software has been used to have
a reference against which the other implementations could be compared. The VVC Test
Model (VTM) 1 is the reference software [14] for VVC which was under development
during the first half part of this doctoral work2. Later, Versatile Video Decoder (VVdeC)
[15] software solution was selected and a detailed analysis of its building blocks was car-
ried out. VVdeC is an open source and the most performance-efficient VVC software
decoder developed on top of VTM. The source code of these solutions have been modified
as follows: 1) The compatibility of the selected video decoders with the selected hetero-
geneous platforms has been ensured (see Section 4.5.1). 2) The decoding performance of
the selected video decoders have been improved by using SIMD vectorised operations (see
Section 4.5). 3) The decoding speed has been accelerated using the load-sharing approach
between GPP and GPU (see Section 4.6). Finally, a methodology has been developed to
calculate the memory usage (see Section 4.7.1) and energy consumption (see Section 4.8)
of the VVC decoders.

3) Synthesis of the methodology. The experience gained implementing VVC video
decoders over two heterogeneous platforms has made the implementation generalise for
different heterogeneous platforms. Lastly, methodological conclusions have been drawn
that have made it possible to define a design methodology; it eases the development of
these applications and helps make the implementation more flexible for different VVC
decoders.

These three phases have been developed as follows: the main effort of the first phase
was made at the beginning of the thesis, although it was necessary to continue to update
the information collected with the new contributions that have continued to be published
throughout the development of the thesis. The second and third phases have run in

1VTM is a reference software of VVC (Rec. ITU-T H.266 | ISO/IEC 23090-3). It is an open source
project which has both encoding and decoding functionality.

2The choice of VTM as the first software solution is also justified as this doctoral work began in
parallel with the development of the new standard.

Main contributions 5

parallel and have fed each other for much of the development of the thesis.

1.4 Main contributions

Following is a list of the main contributions of the thesis, which can be indicated with
the objectives of the doctoral work:

The VTM8.0 based VVC decoder was profiled in detail on the HGPP-based Ryzen
and resource-constrained embedded Xavier platform. In addition, fine-grain profiling
was carried out for the Inter Prediction (EP), Deblocking Filter (DBF) and Adaptive
Loop Filter (ALF) blocks. This result of the coarse and the fine-grain profile was the
fundamental need to target the VVC modules for acceleration. The following publication
presents these results:

• A. Saha, M. Chavarrías, F. Pescador, Á.M. Groba, K. Chassaigne, P.L. Cebrián,
"Complexity Analysis of a Versatile Video Coding Decoder over Embedded Systems
and General Purpose Processors," Sensors 2021, 21, 3320. https://doi.org/10.3390/
s21103320. [16].

Different video decoders (VVdeC and OpenVVC) were accelerated using SIMD optimi-
sation based on Neon for ARM-based embedded platforms Xavier and Nano. It includes
Neon-based SIMD optimisation technique for VVdeC and OpenVVC decoders. In addi-
tion, memory usage and energy consumption analysis was performed for the VVdeC and
OpenVVC decoders. Lastly, a comparison study was carried out between the VVdeC and
OpenVVC decoders by means of decoding performance, energy consumption, and mem-
ory usage. This work result in two contributions; the first one relates to the Neon-based
SIMD optimisation of the VVdeC decoder and the second one relates Neon-based SIMD
optimisation of OpenVVC (currently under review process).

• A. Saha, M. Chavarrías, V. Aranda, M. J. Garrido and F. Pescador, "Implemen-
tation of a Real-time Versatile Video Coding Decoder based on VVdeC over an
Embedded Multi-core Platform," in IEEE Transactions on Consumer Electronics,
2022, doi: 10.1109/TCE.2022.3202512. [17].

• A. Saha, W. Hamidouche, M. Chavarrías, G. Gautier, F. Pescador, and I. Farhat,
"Performance Analysis of Optimized Versatile Video Coding Software Decoders on
Embedded Platforms" [Online]. Available:https://arxiv.org/abs/2206.15311.
(currently under review process) [18].

https://arxiv.org/abs/2206.15311

6 Introduction

Finally, a methodology was developed to accelerate the VVdeC decoder using a hy-
brid approach based on Central Processing Unit (CPU)+GPU. Here, VVdeC ALF was
accelerated using GPU and the rest of the decoder modules were accelerated using SIMD
optimisation in CPU. In addition, energy consumption analysis was conducted, where
almost the same energy per frame was achieved with higher performance. This final syn-
thesis work is published in the following contribution (currently under review process).

• A. Saha, N. Roma, M. Chavarrías, T. Dias, F. Pescador and V. Aranda, "GPU-
based Parallelisation of a Versatile Video Coding Adaptive Loop Filter in Resource-
Constrained Heterogeneous Embedded Platform,", DOI: 10.21203/rs.3.rs-2381512/v1.
(currently under review process) [19].

Partial VVC features were accelerated on top of OpenHEVC [20] over heterogeneous
platforms using. Some new Adaptive Multiple Transform (AMT) features of VVC in that
time were studied and accelerated using GPU and CPU-based parallelisation. The results
of these works were presented at the following international conferences.

• R. Medina, A. Saha, M. Floriano, M. Chavarrías and F. Pescador, "Porting Adaptive
Multiple Transforms of a Versatile Video Coding decoder using OpenMP," 2019
IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), 2019,
pp. 138-139, doi: 10.1109/ICCE-Berlin47944.2019.8966176. [21].

• M. F. Vázquez, A. Saha, R. M. Morillas, M. C. Lapastora and F. P. d. Oso, "Work-
in-Progress: Porting new Versatile Video Coding transforms to a heterogeneous
GPU-based technology," 2019 International Conference on Compliers, Architectures
and Synthesis for Embedded Systems (CASES), 2019, pp. 1-2. [22].

1.5 Thesis outline

Figure 1.1. Thesis outline.

This dissertation contains eight chapters which topics are outlined (see Figure 1.1) as
follows:

Thesis outline 7

• Chapter 1: presents the motivation of the Thesis topic, outlines the research
objectives, describes the methodology followed during the development of the work,
and lists the main contributions of the thesis in terms of scientific publications.

• Chapter 2: introduces the basics of digital video, a brief historical review of video
coding standards, and a brief overview of the Versatile Video Coding standard
encoder and decoder. In addition, a brief overview of different VVC decoders is
presented.

• Chapter 3: provides a brief overview of different parallelism techniques used to
optimise video codecs, including fine-grain and coarse-grain parallelism. Moreover,
a brief overview of different hardware accelerators for video coding tools is provided.
Lastly, a brief discussion of the state-of-the-art work on different hardwares for video
algorithms is presented.

• Chapter 4: provides a detailed description of the implementation process, includ-
ing the working methodology, the use of memory, the consumption of energy, and
the summary of the proposed methodology. Furthermore, a brief description of the
selection of platforms, the selection of the video algorithm, the profiling and evalu-
ation of the video algorithm, the open source decoder optimisation for ARM-based
platforms, algorithm redesigning for CPU+GPU based implementation, and gener-
alisation of the proposed implementation are included in the working methodology.

• Chapter 5: presents a detailed description of the obtained experimental results
including performance analysis, memory usage, and energy consumption. In ad-
dition, the test bench description, the setup of the platform, and a discussion of
the experimental results are included. The results contain the native GCC auto
vectorizer based performance analysis, the performance results without/with SIMD
optimisation, the speedup analysis based on SIMD optimisation, the CPU+GPU im-
plementation, and memory usage, and energy consumption of the VVdeC decoder.
Furthermore, the results of the OpenVVC decoder for the speedup analysis based
on SIMD optimisation, the analysis of memory usage, and the analysis of energy
consumption are also presented. Lastly, comparison analyses between VVdeC and
OpenVVC are provided for performance, memory usage, and energy consumption.

• Chapter 6: provides a methodology that should be followed for future problems to
address the increased complexity and performance requirements of state-of-the-art
video decoding software.

8 Introduction

• Chapter 7: discusses the results and contributions of the Thesis. Furthermore,
a brief description is provided for research publications, research projects, interna-
tional collaborations, direction of final degree projects, and scholarships obtained
during the development of the doctoral Thesis.

• Chapter 8: highlights the main conclusions of this doctoral Thesis and offers some
suggestions for future research.

9

Chapter 2

Background

This chapter contains background information on digital video and common termi-
nologies in video coding (see Section 2.1). In addition, a historical overview of video
coding standards is presented in Section 2.2. Therefore, a brief overview of the VVC
encoder and decoder is given in Sections 2.3 and 2.4, respectively. Lastly, different open
source VVC complaint decoders are presented briefly in Section 2.5.

2.1 Digital video concepts

Digital video revolutionised information and telecommunication technology by rep-
resenting and storing moving visual images in digital binary format. In 1986, the first
commercial uncompressed video was recorded in digital form [23]. On the contrary, in
analog video, moving visual images are typically captured in the form of an analog signal
stored in a film. Several sequential analog images are put together in analog videos. In
digital video, images are divided into several horizontal lines or blocks inside the frame.
Further, horizontal lines are divided into several dots named pixels. Pixels are represented
by intensity and colour in digital video. Colour spaces and some other topics widely used
in digital video are briefly discussed below for better understanding the digital video as
this research is based on digital video.

2.1.1 Colour spaces

Images are mainly two types: 1) black and white or grayscale, and 2) colour. Grayscale
images are represented by one numeric value for each pixel. These numeric values are the
brightness of the image. On the other hand, pixels in colour images are represented by

10 Background

numeric values indicated by the colour space. Colour space is a mathematical diagram
that contains a variety of colours produced by combining basic colours. Commonly used
colour spaces are RGB and YUV.

2.1.2 RGB colour space

RGB colour space is based on chromaticity consisting of red, green, and blue compo-
nents. These three colours are combined to represent colours that range from fully white
to fully black (see Figure 2.1). The basic RGB colour space contains a total of 24 bits,
with 8 bits each for red, green, and blue colours. It is called RGB24 and it supports 16.7
million colour combinations. 1

Figure 2.1. RGB color space (source:[24]).

2.1.3 YCbCr colour space

YCbCr colour spaces are designed by considering the human perception. It con-
tains one luminance component Y and two chrominance components Cb (blue) and Cr
(red). The luminance component controls the brightness, and the chrominance compo-
nent controls the colour information of the digital images and videos. This colour space
is widely used for compressing digital image and video. Human eyes are more sensitive to
brightness than to colour information. Video compression using the YCbCr colour space
benefited the human visual system by allowing independently compress of luminance and
colour components. Therefore, different formations of the YCbCr colour space are used
to reduce the storing and communication channel requirement for video processing and

1There are other formats of RGB colour space but the common one is presented.

Digital video concepts 11

transportation by removing less important information from the video samples. Figure
2.22 presents 4:4:4, 4:2:2 and 4:2:0 video sample where the luminance components are
kept unchanged for all formats. In Figure 2.2a, every 4 luma Y pixel has 4 Cb and 4 Cr
pixels. In Figure 2.2b, every 4 luma Y pixels has 2 Cb and 2 Cr pixels. For the first and
second row two chroma pixels are taken, each in the dotted box. In Figure 2.2c, every
4 luma Y pixels has 1 Cb and 1 Cr pixel. The first two chroma pixels are taken in the
dotted box.

Figure 2.2. YCbCr color space.

2.1.4 RGB – YCbCr colour conversion

Conversion between RGB colour space to YCbCr colour is an essential operation in
the image and video processing application. The reason is that the YCbCr colour space
is widely used for image and video compression to reduce the storing space requirements,
while most capturing devices store images and video in the RGB colour space. YCbCr
colour space can be obtained from the RGB colour space using equation 2.1. Here, the
luminance component Y is calculated by adding the multiplication of the weight factors
Kr, Kg, and Kb with the red (R), green (G), and blue (B) components, respectively.
Furthermore, chrominance red Cr and blue Cb are calculated using equations 2.2 and 2.3,
respectively.

Y = KrR +KgG+KbB (2.1)

Cr = R− Y (2.2)

Cb = B − Y (2.3)

2There are other formats of YCbCr colour Space. However, the most widely used formats are presented.

12 Background

2.1.5 Frame rate

Frame rate [25] is the frequency measured encoding and decoding images in frames
per second. The frame rate is also used to the video camera, other capturing devices, and
display devices. For instance, 60 frame per second (FPS) are maintained for television
broadcast [26]. That means that 60 consecutive images are displayed in a second.

2.1.6 Video resolution

Video Resolution [27] can be expressed as an organisation of the number of pixels by
width and height in a frame of the video (see 2.4). Commonly used video resolutions are
Standard Definition (SD) with 640× 480 pixels and 640× 360 pixels, HD with 1280× 720

pixels, Full HD (FHD) with 1920×1080 pixels, Quad HD (QHD) with 2560×1440 pixels,
2K with 2048 × 1080 pixels, 4K Ultra HD (UHD) with 3840 × 2160 pixels, and 8K Full
UHD with 7680× 4320 pixels.

V ideo_Resolution = Pixel_width ∗ Pixel_height (2.4)

With the aim to not overextend this dissertation, in this section only the general and
main basic concepts about digital video are presented. For a more detailed summary of
this topic, the following reference is recommended [28].

2.2 Video coding standards

Video codecs provide a technological solution for storing and transmitting digital video.
They reduce the size of raw video files by using different techniques which may introduce
or not losses and or remove redundant information. The basic video codec contains the
encoder and decoder, as shown in Figure 2.3. Video coding standards provide a set of
specific coding tools for optimising coding efficiency targeting bit-rate savings.

Video coding standards 13

Figure 2.3. Typical video coding/decoding bitstream flow.

2.2.1 Brief historical review of video coding standards

First video coding standard H.120 [29] was introduced in 1984 by the International
Telegraph and Telephone Consultative Committee (CCITT). Therefore, CCITT have col-
laborated with International Telecommunication Union (ITU) and created the ITU-T
group where Video Coding Experts Group (VCEG) of ITU-T manages the video coding
standard. In 1988, the VCEG group within ITU-T released the H.261 [30] standard. H.261
included the classical hybrid video coding scheme, transform coding, spatial-prediction,
and temporal-prediction. The brief historical evolution of video compression standards is
presented in Figure 2.4.

In 1993, the Moving Picture Experts Group (MPEG)-1 [31] video coding standard
was introduced by MPEG. MPEG group was a result of the collaboration of two stan-
dard organisations: International Organization for Standardization (ISO) and Interna-
tional Electrotechnical Commission (IEC). Therefore, the VCEG group within ITU-T
and ISO/IEC jointly released H.262/MPEG-2 [32] video coding standard in 1995. Fur-
thermore, the Joint Video Team (JVT) was created by the VCEG and MPEG groups.
In 2003, the JVT introduced the widely used video standard H.264/MPEG-4 also called
Advance Video Coding (AVC) [33]. The continuation of this collaboration was successful,
and they released the H.265/HEVC [3] standard in 2013. The Joint Video Experts Team
(JVET) was then formed between VCEG (Q6/16) and ISO/IEC JTC1 SC29’s MPEG in
2017 who standardised the latest H.266/VVC video coding standard in June 2020.

On the other hand, the first industrial video coding standard TrueMotion S was re-
leased by On2 Technologies in 1995. Therefore, TrueMotion RT and TrueMotion 2 [34]
were released in 1996 and 1997, respectively, by the On2 technologies company. True-
Motion coding standards support processing of 2 dimensional images from 3 dimensional
models. All industrial video standards are presented on the right side of the Figure 2.4.
Further, On2 technologies introduced the royalty-free VP3 [35] video standard that con-
centrated on natural scenes images in 2000. On2 Technologies continued the release of the
VP4, VP5, VP6, and VP7 video standard until 2008, before it was acquired by Google in

14 Background

Figure 2.4. Chronological review of video compression standards.

2008. After that, Google released the open source video standard VP8 in 2008. VP8 of-
fered features similar to H.264/AVC. Therefore, Google released the VP9 video standard
in 2013. Like VP8, VP9 provided similar features of HEVC. VP9 is also used in Youtube
videos. Besides, Microsoft developed the VC-1 video standard in 2006 and Cisco devel-
oped the Thor [36] video standard in 2015. In addition, Alliance for Open Media (AoM)
was formed by Google, Netflix, Facebook, Amazon, Microsoft, Apple, ARM, Nvidia, Intel
Corporation, Cisco, IBM, and Mozilla to develop the royalty-free AoM Video 1 (AV1) [37]
video standard in 2018. AV1 is the successor of VP9 and originally focused on internet
video transmissions.

In this document, special emphasis will be placed on the contextualisation of the two
most current developments of the H.26x line, reaching H.266, on which the research of
this Thesis has been based. In this order, first comes the H.265 or High Efficiency Video
Coding standard, which introduces improvements, generally achieving a 50% higher com-
pression rate than its predecessor, AVC/H.264. And secondly, the VVC/H.266 standard
is presented as a solution to the growth forecasts of the digital video sector today.

Structurally, all coding standards since the pioneer H.261 in 1990 are based on the same

Overview of Versatile Video Coding standard encoder 15

general principle known as the hybrid video coding scheme [38]. The term hybrid refers
to the combination of two tools with the aim of reducing redundancy in information: the
first is prediction, and the second is transformation with quantification of the prediction
residue. The general scheme of VVC standards is shown in Figure 2.5, which is based on
the hybrid video coding scheme.

2.3 Overview of Versatile Video Coding standard en-
coder

VVC has the similar basic structure as like HEVC standard. The simplified blocks
diagram of VVC coder is displayed in Figure 2.5. The input of VVC encoder is the
raw video signal and the output is the encoded bitstream. In addition, VVC encoder
contains 1) picture partitioning, 2) Intra-Picture Prediction, 3) Inter-Picture Prediction,
4) transform/quantization, 5) in-loop filters, and 6) entropy coding.

In video encoding process of VVC standard, input video is divided into square shaped
Coding Tree Unit (CTU)s. VVC supports up to 128 × 128 pixels CTU size, which is
double than HEVC supported maximum partition size 64× 64 pixels. CTUs are further
divided into coding units (Coding Unit (CU)s) of different sizes. VVC supports 128×128

maximum CU size with square and non-square shaped, whereas HEVC supports only
square shaped CU with maximum size 64 × 64. In VVC, the intra-picture prediction,
inter-picture prediction, and transform/quantization are performed at CU level. Here,
the intra-picture prediction predicts next block of data using the current block in the
same frame. The inter-picture prediction predicts next frames from the current frame.
Therefore, the integer transform is applied to the prediction residual and then quantization
is applied. Then in-loop filters correct the block artifacts generated by picture partitioning
and quantization. Lastly, compressed bitstream is produced by Entropy coding using
Context Adaptive Binary Arithmetic Coding (CABAC) [39].

16 Background

Figure 2.5. Simplified blocks diagram of a VVC encoder (source:[40]).

2.4 Overview of Versatile Video Coding standard de-
coder

Same as the AVC and HEVC standard, the hybrid coding scheme is the basis of the
VVC standard, where transform, intra prediction and inter prediction coding are ex-
ploited. The simplified block diagram of a VVC decoder is shown in Figure 2.6, where
the encoded bitstream is the input and the decoded video is the output of the processing
chain. At the beginning of the decoding process, the bitstream is decoded by Entropy
Decoder (ED), where CABAC is exploited to produce all essential information for video
decompression. CABAC uses coded residual data, intra, and inter prediction to provide
block partitioning information. Therefore, Inverse Quantization and Inverse Transform
(TX) are used to recreate the coded residual data. Then, the prediction pixels of Intra
Prediction (IP) or Inter Prediction (EP) are combined with these reconstructed resid-
ual data. Therefore, these cumulative predicted and residual data are filtered to obtain
decoded video using four in-loop filters: Luma Mapping with Chroma Scaling (LMCS),
Deblocking Filter (DBF), Sample Adaptative Offset (SAO), and Adaptive Loop Filter
(ALF).

2.4.1 Entropy decoder

VVC adopted similar Entropy Decoder (ED) with a more powerful CABAC engine
than HEVC standard. Probability is linearly expressed here using the current condition

Overview of Versatile Video Coding standard decoder 17

Figure 2.6. Simplified blocks diagram of a VVC decoder.

index. In order to improve accuracy, a modernised multihypothesis probability estimation
method was used. In addition, the computed look-up table was discarded. A Quantiza-
tion Parameter (QP)-dependent initialisation paradigm was also introduced in the VVC
CABAC. Here, 6-bit precision was achieved on total initialisation values. Furthermore,
1×16, 2×8, 8×2, 2×4, 4×2, and 16×1 coefficients group sizes were added for the trans-
formation block size to optimise the coefficient coding [40].

2.4.2 Inverse quantization and inverse transform

Inverse Quantization and Inverse Transform (TX) are implemented to extract the
spatial domain coefficients from the frequency domain. Multi Transform Selection (MTS)
[41], a novel tool introduced in VVC, is used to encode the residual inter- and intra-
coding blocks. Furthermore, the transformations of Discrete Cosine Transform (DCT)-II,
DCT-VIII, and Discrete Sine Transform (DST)-VII are supported by MTS. Here, the
permitted transformations of rectangular blocks with height and width are ≤ 32 for
DCT-VIII and DST-VII, and ≤ 64 for DCT-II. The high frequency coefficients are zeroed
when the allowed height and width is in the highest point (e.g., 64×64 for DCT-II)
to minimise computational complexity. Afterwards, for additional signal decorrelation,
Low-Frequency Non-Separable Transform (LFNST) [42] is applied to the low frequency

18 Background

transform coefficients, where these coefficients derive from directional intra prediction.

2.4.3 Intra Prediction

Intra Prediction (IP) in VVC supports sixty-five directional intra predictions (see
Figure 2.7), one planar and one DC modes. Compared to the previous HEVC standard,
VVC added thirty-two new directional intra predictions modes. Moreover, in VVC IP,
several regular angular modes were removed and wide-angle intra modes were added.
The precision of the prediction was increased by extending the list of candidates for the
most probable modes to six. Furthermore, VVC included the following IP coding tools:
1) The matrix IP tool used the left and above lines of the reconstructed neighbouring
components. These two blocks were taken as input vectors. Therefore, linear interpolation
was performed in the vertical and horizontal directions after some pre-processing. 2) Intra
sub-partitions tool was used for IP the block by processing sub-partitions gradually. Here,
the luma coding block was divided into two sub-partitions vertically or four sub-partitions
horizontally. 3) Multiple reference line tool was adapted in which the neighbouring lines
1 and 3 of the prediction block were referenced for angular prediction (see Figure 2.8)
[40]. 4) The cross-component linear model tool [43] was introduced to predict the chroma
components from the luma components in the same CU. 5) The mode-dependent intra-
smoothing tool applied a four-tap intra filter for improving the prediction.

Figure 2.7. Representation of the 67 intra prediction modes (source:[40]).

Overview of Versatile Video Coding standard decoder 19

Figure 2.8. Example of four reference lines neighboring to a prediction block (source:[40]).

2.4.4 Inter prediction

In VVC Inter Prediction (EP), the merge mode was adapted along Motion Vector
Differences (MVD) which improves the representation of Advanced Motion Vector Reso-
lution (AMVR) [44] and the motion parameters collected from adjacent CUs. The merge
mode in VVC is equivalent to the previous HEVC standard, which accepts candidates
from temporal, spatial, and Zero Motion Vectors (ZMV). VVC EP performs Motion Pre-
diction (MP) at the sub-CU level, which improves the prediction precision compared to
the HEVC standard. Furthermore, motion-compensated prediction was obtained by ap-
plying 8-tap filters to the luma components, while 4-tap filters were applied to the chroma
components to interpolate [45]. In addition, VVC includes these coding tools: (1) Sym-
metric Motion Vector Differences (SMVD) derived the MVD of the reference picture list
1 from the list 0 at the decoder. (2) Bi-directional Optical Flow (BDOF) [46] was applied
at the pixel level, where it may be applied on top of the extended bi-prediction mode.
(3) Combined EP and IP enhanced the intra mode in the inter-pictures. It combined the
decided intra mode with an extra merge indexed prediction [47]. (4) Decoder-side Motion
Vector Refinement (DMVR) [48] (see Figure 2.9) was applied around the initial motion
vectors of the list of reference pictures L0 and L1 to improve the accuracy of the merge
mode Motion Vector (MV)s.

20 Background

Figure 2.9. Decoding side motion vector refinement (source:[40]).

2.4.5 Luma mapping with chroma scaling

Luma Mapping with Chroma Scaling (LMCS) [49] is one of the novel tools presented
by VVC. After EP, LMCS is applied in the decoding process of VVC. It was made up
of Luma Mapping (LMP) and Chroma Scaling (CSP), where the predicted luma samples
were processed by LMP and the chroma residues were processed by CSP. In principle,
LMP maximises the utilisation of the available range of luma code values for a certain bit
depth. For instance, for a 10-bit video with narrow range, the permitted luma code range
is between 64 and 940, while the values of the 0 to 63 and 941 to 1023 luma code might be
permitted to be used only in the coding process. In addition, LMP efficiently reallocates
the luma code values in the coding domain. Furthermore, CSP is responsible for correcting
the chroma residual samples with the error caused by the interaction between the luma
and the chroma signals corresponding to the luma [50].

2.4.6 Deblocking filter

VVC used a similar but advanced Deblocking Filter (DBF) [51] compared to HEVC
standard. The DBF in VVC is performed on the boundary aligned on 8×8 sample blocks,
where the vertical edges are first filtered and then the horizontal edges are filtered. DBF
was designed to improve subjective quality by reducing visible discontinuities at the block
boundaries. The functionalities of DBF are briefly described as follows:

2.4.6.1 Boundary strength

Boundary Strength (BS) determined the type of components that will be filtered.
There are three possible values of BS in VVC DBF: 0, 1 and 2. If the BS value is zero:
DBF is not applied, if the BS value is one: only the luma components are filtered, and the
BS value is two: the luma and chroma components are filtered. Furthermore, BS value
is obtained from the coding mode and parameter of the boundary of the transformation

Overview of Versatile Video Coding standard decoder 21

unit and the prediction unit. Figure 2.10 shows the boundary segment blocks P and Q of
the four samples for lines 0 to 3.

Figure 2.10. Four samples boundary segment formed by block P and block Q. Deblocking
decisions are based on line 0 and line 3.

2.4.6.2 The computation of filter parameters

Two filter parameters β and tc are responsible for the threshold at the time of filtering.
These parameters are computed using QP of the boundary of both sides. The calculations
are shown in equations 2.5, 2.6, 2.7 and 2.8 [52].

QPL = (QPP +QPQ + 1) ≫ 1 (2.5)

Q = Clip3(0, 51, QPL + (slice_beta_offset_div2 ≪ 1)) (2.6)

β = β′ ∗ (1 ≪ BitDepthY − 8) (2.7)

tc = t′c ∗ (1 ≪ BitDepthY − 8) (2.8)

Here, QPL is the average QP value from the boundary of both sides. The QPL limit
is used to get Q parameter by clipping. Then, β′ and t′c values along with the bitdepth
are used to calculate β and tc.

22 Background

2.4.6.3 Filtering decision

The Equation 2.9 is used to make the decision on basic filter. Here, first part is
dedicated to P block pixels for 0th to 3rd row. In addition, the second part is focused
on Q block pixels for 0th to 3rd row. Afterwards, the filter is applied depending on the
decision of the type of filter.

|P2,0−2P1,0+P0,0 |+ |P2,3−2P1,3+P0,3 | +
|Q2,0−2Q1,0+Q0,0 |+ |Q2,3−2Q1,3+Q0,3 | < β

(2.9)

2.4.7 Sample adaptative offset

Sample Adaptative Offset (SAO) [53] is applied after DBF in decoding process of
VVC. SAO in VVC is exactly the same as HEVC [50]. SAO is used to minimise the
distortion of the mean sample in a region. Here, for every category, an offset is selected
using a classifier taken from several categories to filter the pixel [54]. There are two types
of offset used in the SAO filtering process: 1) edge offset and 2) band offset.

Figure 2.11. Edge offset 1D classification for 3 pixels pattern in degree: 0 (left), 90, 135,
and 45 (right).

In edge offset, adjacent pixels are used to classify the type of edge offset. One-
dimensional (1D) classification for the 3 pixel pattern of edge offset (0, 90, 135 and 45
degrees) is shown in Figure 2.11. Moreover, the SAO band offset divides all the pixels in
thirty two equal bands as presented in Figure 2.12. As seen in Figure 2.12, the sample
values for four subsequent bands are adjusted by applying an offset [55]. The same offset
is applied to each CTU, each luma, and each chorma components.

2.4.8 Adaptive loop filter

Adaptive Loop Filter (ALF) is the last decoder block that is introduced in VVC.
Although ALF is part of the VVC standard, it was not included in HEVC. ALF was de-

Overview of Versatile Video Coding standard decoder 23

Figure 2.12. Edge offset 1D classification for 3 pixels pattern in degree: 0 (left), 90, 135,
and 45 (right).

signed based on Wiener filters [56] to minimise the mean square error of the reconstructed
samples with respect to the original ones. The general working flow diagram of VVC ALF
is presented in Figure 2.13. VVC ALF filtering process are classified mainly in following
parts that are explained later:

• luma components classification.

• Luma and chroma component filtering.

• Cross-component filtering.

2.4.8.1 Luma components classification

ALF uses the classification process at the level of sub-block, where the classification
process is applied only on luma component [50]. Here, 25 classes are used to categorise
each 4 × 4 block. Moreover, the directionality and a numerical value that depicts the
activity of each sample inside the block provide the foundation for this categorisation.
Equations 2.10, 2.11, 2.12 and 2.13 are used to calculate vertical (Gv), horizontal (Gh),
and two diagonal gradients (Gd0, Gd1) for the reconstructed sample, Y [57]. Gradient
values are used for classification of each 4 × 4 luma block.

Gv(i, j) = |2Y (i, j)− Y (i− 1, j)− Y (i+ 1, j)| (2.10)

Gh(i, j) = |2Y (i, j)− Y (i, j − 1)− Y (i, j + 1)| (2.11)

Gd0(i, j) = |2Y (i, j)− Y (i− 1, j − 1)− Y (i+ 1, j + 1)| (2.12)

Gd1(i, j) = |2Y (i, j)− Y (i− 1, j + 1)− Y (i+ 1, j − 1)| (2.13)

24 Background

Figure 2.13. ALF filter working flow diagram.

2.4.8.2 Luma and chroma component filtering

ALF is applied to the output samples of SAO after completing the luma component
classification process. In VVC ALF, the supported Diamond-shape (DMS) filters are 5×5

for the chroma component and 7 × 7 for the luma component, as shown in Figure 2.14.
Each square denotes the luma and chroma components. In addition, a coefficient value is
presented by ci. Equation 2.14 [58] is used to filter the center square of the DMS filter.

Ỹ(x, y) = Y (x, y) + (
N−2∑
i=0

ci(Y (x+ xi, y + yi)− Y (x, y))

+
N−2∑
i=0

ci(Y (x− xi, y − yi)− Y (x, y)) + 64) ≫ 7

(2.14)

Where as Ỹ(x,y) is the value of the filtered component at the coordinate (x,y). ci

corresponded value of the component are Y(x+xi,y+yi) and Y(x-xi,y-yi). The number of
coefficients is N, where N = 13 and 7 for 7× 7 and 5× 5 DMS filter, respectively.

Open source VVC decoders 25

Figure 2.14. ALF DMS filters: left 7×7, right 5×5.

2.4.8.3 Cross-component filtering

The Luma components are utilised in the Cross-component ALF Filtering (CCALF)
process to enhance chroma components. As shown in Figure 2.15, CCALF chroma blue
(Cb) components are added with ALF Cb components and CCALF chroma red (Cr)
components are added with ALF Cr components to obtain the output. For this reason
CCALF received its name cross-component filtering. Furthermore, CCALF adopted the
DMS filter similar to the ALF luma and chroma filter with asymmetric configuration.
VVC CCALF included the 3 × 4 DMS filter, while initially the 5 × 6 DMS filter was
proposed [50]. The amount of multiply and accumulate operations and the amount of
coefficients needed for the implementation of CCALF was decreased due to the fact that
CCALF adopted the DMS filter.

Figure 2.15. Diagram of the CCALF architecture.

2.5 Open source VVC decoders

After the standardisation in 2020, VVC reference software was available only for test
and comparison. Then some optimised VVC implementation was developed by some

26 Background

companies and communities. In this doctoral study, the target was to optimised open
source VVC decoder using heterogeneous platforms.

At this time, a small number of open source software decoders are available that
comply with the VVC standard. The decoders are the following:

• VVC test model (VTM) [14].

• Versatile Video Decoder (VVdeC) [15].

• OpenVVC [63].

• O266dec [66].

2.5.1 VVC test model

Every video standard comes with reference software solutions that includes the fun-
damental features of the standard. However, reference software provides very basic per-
formance in terms of speed, but offers a base to the scientific community, industries, and
research groups for developing more sophisticated and optimised solutions. VVC Test
Model (VTM) [14] (see Figure 2.16 for release date of different VTM version) is the refer-
ence software solution for the VVC standard. VTM was develop on top of the HEVC Test
Model (HM) [59]. Some of the block-level functionalities such as parsing CABAC and
searching motion of HM were included to VTM. However, most of them were redesigned
for VVC. In addition, VTM is written in the C++ programming language version 11
using a modern standard library. The code and data structure of VTM are not optimised
for different platforms. Particularly for embedded platforms, which is the target of this
study.

Figure 2.16. Release date of different VTM version.

Open source VVC decoders 27

2.5.2 Versatile video decoder

Versatile Video Decoder (VVdeC) is an open source and optimised VVdeC (see Figure
2.17 for release date of different VVdeC version) decoder released by the Fraunhofer
Heinrich Hertz Institute in October 2020 [15]. It has been written based on VTM reference
software using the C++ programming language. VVdeC is compliant with VVC Main
10 profile and is compatible with FFmpeg [60] and GPAC [61]. In addition, VVdeC is
capable of decoding all the VVC encoded bitstreams [62].

VVdeC uses SIMD and multithreading parallelisation to provide optimised decoding
performance. The decoding process in VVdeC begins with the simultaneous parsing of
multiple frames. Then, a reconstruction process is initiated for the parsed frames, and
tasks are divided based on CTUs and CTU lines. In this process, each CTU receives
a stage for achieving synchronisation among the tasks. It facilitates parallel performing
of tasks after dependencies are fulfilled. Here, each CTU is given to a task worker, and
the thread-pool scans available tasks for the task worker. Finally, the decoded video is
exported after completing the filtering of all CTUs. VVdeC has obtained as far as 90%
[5] decoding run-time reduction compared to VTM.

Figure 2.17. Release date of different VVdeC version.

2.5.3 OpenVVC

OpenVVC [63] (see Figure 2.18 for release date of different OpenVVC version) is a
VVC software decoder mainly developed at INSA Rennes (France) that is compliant to
main profile of the VVC. It is a royalty-free open source project designed and optimised
for commonly used operating systems and hardware systems. It is written completely
in C programming language. In addition, it is integrated with several widely used video

28 Background

players including GPAC, FFplay, and VLC [64]. Furthermore, the data level optimi-
sation technique based on SIMD instructions is integrated into OpenVVC for x86 and
ARM processors. OpenVVC also supports multiple CPU cores-based frames and tiles
parallelisation, and it uses very low memory while obtaining a high decoding speed.

In the beginning of the decoding process of OpenVVC, the parameters of the picture
and sequence are parsed by main thread. Therefore, main thread provides the necessary
instructions and data to the worker threads to perform motion compensation. Here,
reconstruction tasks are carried out at the level of CU whereas TX, LMCS, EP, and IP
are the reconstructed tasks. After the reconstruction process is finished, all threads are
available to process the pixel for DBF filtering at the CTU level. This prompt assignment
of threads reduces the memory requirements to store quantization parameter map and
CU dimension for DBF filtering [65]. At the end of the decoding process, SAO and ALF
filters are performed in an orderly fashion at the level of CTU line.

Figure 2.18. Release date of different OpenVVC version.

2.5.4 O266dec

Tencent Media Lab has released a real-time VVC decoder named O266dec, which
is widely available in [66]. It integrates multiple level parallelisation strategies: picture
level, task level, CTU level, and sub-CTU level. Moreover, O266dec is written in the
C++ programming language version 11. It uses the C++ class, function template [67],
and thread libraries to design the decoder. It offers portability to multiple operating
systems with multi-threading and SIMD parallelization-based optimization [68]. However,
no updates have been released since May 2021.

29

Chapter 3

State-of-the-art on the implementation of video
decoders

This chapter is organised as follows: Section 3.1 presents different parallelism tech-
niques used for optimising video codecs, which includes fine-grain and coarse-grain par-
allelism. Section 3.2 shows different hardware accelerators used for accelerating video
processing algorithm. Section 3.3 provides a discussion of related work on different hard-
ware platforms published on scientific literature.

3.1 Parallelism in video codecs

This section presents the most relevant parallelism techniques used in video codecs.
First, fine-grain parallelism technique is discussed in Section 3.1.1. Therefore, different
coarse-grain parallelism techniques are outlined in Section 3.1.2.

3.1.1 Fine-grain parallelism: Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) is a data-level parallel technique in which
multiple data are loaded into a single register (up to 512 bits) to perform arithmetic
operations [18]. For instance, two 64-bit, four 32-bit, eight 16-bit, or sixteen 8-bit data
can be loaded into one 128-bit SIMD register. Due to this characteristic, concurrent
data processing can provide a theoretical acceleration of up to ×16 for 8-bit data. SIMD
offers higher processing performance by improving processor throughput, which overcomes
the fact that the processor clock speed is rigid and limited. Therefore, SIMD is an
interesting tool for video encoding/decoding that involves intensive arithmetic operations.

30 State-of-the-art on the implementation of video decoders

An example of multiply operation between two vectors (each having a group of operands)
by SIMD is presented in Figure 3.1. Here, four values of "A" and "B" are multiplied
concurrently, and outputs are stored independently in "C".

Figure 3.1. SIMD operation example where four multiplication operations are performed
simultaneously.

Nowadays, SIMD units with up to 512 bits are available in most of the GPPs. x86-
based processor supports Streaming SIMD Extensions (SSE), SSE2, SSE3, Supplemen-
tal Streaming SIMD Extensions (SSSE)3, SSE4.1, SSE4.2, Advanced Vector Extensions
(AVX), AVX2, and AVX-512 [69] instruction sets which implement SIMD on x86-based
processor. Moreover, ARM-based architecture supports Neon-based SIMD instruction
sets [70].

Neon is the advanced vector computing SIMD extension for ARM processors. Most
of the ARM processors including Cortex A8 and A9 included Neon technology. It was
developed aiming for enhancing user experiences by speeding up audio and video process-
ing, gaming, and Two-dimensional (2D) and three-dimensional (3D) graphics [70]. ARM
provided a standard set of Neno instructions that perform operations that are difficult
to write in C/C++ [71]. Neon instructions can perform the same operation on multiple
elements concurrently in Neon registers (up to 128 bits). It supports multi-data types
including integer and floating-point. Neon can be included in C program by simply adding
arm_neon.h header file [72].

3.1.2 Coarse-grain parallelism

This section describes some widely used coarse-grain parallelism techniques in different
video coding standards including the VVC standard.

Parallelism in video codecs 31

3.1.2.1 Frame-level parallelism

In frame-level parallelism, several frames are processed at the same time. Here, the
dependencies of the motion compensation should be fulfilled. The length of the motion
vector is the deterministic factor for the parallelism level in frame-level parallelism. This
is the biggest drawback, which negatively affects the parallelism of video sequences with
large motion sequences [73]. However, due to the absence of motion correction require-
ments, sequences with all intra configuration benefit the most from frame-level parallelism.
Furthermore, for parallel decoding, each thread requires extra picture buffers and local
buffers storage in frame-level parallelism. Therefore, it requires more memory than se-
quential decoding. This is an important limitation for embedded platforms but it is widely
used in HGPP-based platforms.

3.1.2.2 Tile parallelism

Tile parallelism was introduced in HEVC standard [74]. VVC standard supports tile
partitioning of grid shaped only [75] as its preceding HEVC standard. Moreover, CTUs
are the basic component of a rectangular tile inside a frame. Figure 3.2 shows an example
of 2 × 2 tile partitioning of a frame, where A to D represents four tiles. The boundaries
split the tiles, which makes the tile processing independent. Moreover, it removes the
dependencies from the prediction but decrease the performance due to a reduction of the
efficiency of the encoder. Therefore, parallel processing of a frame during decoding is
facilitated using multiple threads. On the other hand, pixels from both sides of the tile
boundary need to be reconstructed before processing the in-loop filters.

Figure 3.2. Illustration of tile partitioning in VVC decoder, where one frame is divided
into four tiles.

32 State-of-the-art on the implementation of video decoders

3.1.2.3 Wavefront Parallel Processing

Wavefront Parallel Processing (WPP) also was introduced for the first time in the
previous HEVC standard [76]. WPP divides frame into multiple CTU rows that can
be processed at the same time. However, the dependencies remain unchanged at the row
boundaries. The information of left, top-left, top and top-right CTUs is needed to process
CTU. Therefore, two CTUs of the previous row needed to be processed in order to process
each row in parallel by different threads. Figure 3.3 shows an example of WPP and the
dependency involved in WPP between CTUs. However, for picture subdivision during
the initialisation of the entropy engine at the beginning of each CTU line, the above-right
coding dependency is eliminated. As a result, the CABAC context is re-initialised at the
start of each CTU row and depends on the information from the first CTU of the upper
row. In these cases, the encoder must encode the sequence taking each technique into
account.

Figure 3.3. Example of Wavefront Parallel Processing (WPP) and an example of the
dependency involved in WPP between CTUs using 6 threads in parallel.

3.2 Hardware accelerators for video coding tools

There are several hardware accelerator-based platforms available in the market. How-
ever, the most commonly used platforms for video processing algorithms are based on
GPU and FPGAs. This section provides a brief description of both technologies. This
section is only an overview of the technology, but more details can be found in [].

3.2.1 Graphics Processing Unit

GPUs are the coprocessing units of CPUs that are suitable for parallel processing.
Although the initial purpose of GPU was to accelerate 3D graphics rendering, today
GPU is used to accelerate various applications because GPU has become versatile and

Hardware accelerators for video coding tools 33

easy programmable. GPUs are skilled at managing applications with high degree of data
parallelism and high computational requirements. On the other hand, CPU is a special-
ist in the handling of sequential applications. The main comparison between CPU and
GPU is that CPU contains a small number of processing units called cores with a higher
clock frequency, while GPU comes with hundreds or thousands of cores with a lower clock
frequency (see Table for some example of CPU and GPU). The high-level architecture
of CPU and GPU is presented in Figure 3.4. Hence, CPU is highly dependent on data
caching and control flow, while GPU is highly dependent on processing units. GPU gives
priority to throughput over latency. However, GPUs work as slave devices of CPUs. Cur-
rently, NVIDIA is the market leader in GPUs manufacturing, where NVIDIA GPUs are
programmed using the Compute Unified Device Architecture (CUDA) [79]. For example
Sancho et al. [77] used NVIDIA GPU to generate real-time 3D models of HyperSpectral
images by exploiting Hyperspectral Depth Estimation Tool for Medical Applications. In
addition, Punithakumar et al. [78] proposed a GPU-based implementation to accelerate
deformable image registration with improved efficiency.

Figure 3.4. Illustration of the architecture of a generic CPU and GPU in high-level.

3.2.1.1 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is the programming Application Pro-
gramming Interface (API) that is used to program NVIDIA GPU for CPU. The program
that is executed on GPU is called the CUDA kernel. The parallel portion of the kernel
is processed by the CUDA threads (see Figure 3.5: left-top) in parallel. The threads are
grouped into one CUDA thread block (see Figure 3.5: left-middle), where the threads
in a CUDA thread block are organised in multidimensional ways. CUDA thread blocks

34 State-of-the-art on the implementation of video decoders

are independent and one CUDA thread block can be processed by only one Streaming
Multiprocessor (SM). Parallel processing of multiple CUDA thread blocks by one SM (see
Figure 3.5: right-middle) is allowed. However, parallel processing of one CUDA thread
block by multiple SMs are not allowed. Furthermore, multiple CUDA thread blocks are
grouped into the CUDA kernel grid (see Figure 3.5: left-bottom), where the CUDA thread
blocks in a CUDA kernel grid are organised in multidimensional ways. The execution of
the CUDA kernel on GPU is illustrated in Figure 3.5. Here, default CUDA definition are
used for 3D threads and blocks, where threadIdx was used for threads 3D indexing and
blockIdx was used for blocks 3D indexing. Moreover, CUDA built-in definition blockDim
variable provides access to the dimension of the thread block to the kernel. However, the
architecture of CUDA only supports up to 1024 threads/block.

Figure 3.5. Illustration of a kernel execution on GPU (source:[80]).

3.2.2 Field Programmable Gate Arrays

FPGAs are integrated circuits consisting of programmable Logic Block (LB)s. FPGAs
are highly configurable in nature, where Hardware Description Language (HDL) [81] is
used to configure FPGAs. The programmer can employ sophisticated logic operations
thanks to the HDL commands used to design gates and connections. Logical, arithmetic,
and digital logic are supported by FPGAs. An example of FPGAs architecture is shown
in Figure 3.6. Here, the internal routing SoC among the LBs is established by electrical
wiring. Customisation of FPGAs can be performed by switching on and off the inter-
nal routing and programming the LBs. Therefore, FPGAs are appropriate for devices
and systems that need repeated modifications, as they can be reconfigured even after
deployment. Furthermore, FPGAs contain programmable Input Output Block (IOB)s for
connecting to external circuits.

Related work on different hardware 35

Figure 3.6. An example of the generic architecture of an FPGA (source:[82]).

3.3 Related work on different hardware

Several architectures were exploited to accelerate different video coding algorithms.
However, GPU and FPGAs are the most used hardware in video coding algorithms.
The authors in [83] exploited FPGAs to reduce the computational cost of DST-VII and
DCT-VIII of VVC standard. They proposed hardware implementation for VVC forward
and inverse MTS where the approximation method was adopted. The proposed solution
achieved 386 FPS for 2K video and 96 FPS for 4K video. Garrido et al. used FPGAs to
calculate MTS of VVC standard, MTS enables DCT-II, DCT-VIII and DST-VII trans-
forms of size between 4× 4 and 64× 64 [10]. They proposed VVC MTS implementation
based on a deeply pipelined high-performance architecture which was protyped on a sys-
tem on a programmable chip. This implementation obtained up to 64 FPS for 4K video
sequences with 4× 4 transform sizes.

In [84], OpenCL-based design was proposed to accelerate VVC transformation and
quantization in the intra-frame coding using FPGAs. Here, the authors addressed the
trade-off between the usage of resources and the speed of processing as huge FPGA
resources were required for acceleration. This proposed implementation showed an average
3.22 times speedup compared to CPU implementation. In addition, 83.3 FPS was achieved
for 64× 64 CTU size.

VVC intra prediction was accelerated using two DSP blocks and two adders of FPGA in
[85]. Here, thirty DSP data paths used in a way that 2 DSP blocks and 2 adders belonged
to one DSP data paths. This implementation efficiently exploited FPGA for processing

36 State-of-the-art on the implementation of video decoders

4× 4, 8× 8, 16× 16, and 32× 32 prediction unit sizes of angular intra prediction modes.
34 FPS was achieved in worst case for FHD videos using the proposed implementation.

In [86]-[87], FPGAs was used to accelerate HEVC intra prediction. All these study pre-
sented implementation for angular prediction modes of prediction unit size between 4× 4

and 32× 32, except [87] only implemented 4× 4 DC and angular prediction modes. The
proposed implementation was capable of using an average 27% FPGA resources. The au-
thors in [88]-[89] presented the implementation of inverse DCT/DST using FPGAs. Here,
real-time decoding was achieved with 54 FPS for FHD videos using high-level synthesis
tool in [88]. In [89], the high-level synthesis tool was also used to implement the 2D
inverse DCT/DST. Here, a 4-point and an 8/16/32-point inverse DCT/DST was included
for small transform blocks and other transform blocks, respectively. This implementation
obtained real-time decoding with up to 68 FPS using FPGA.

It can be seen in the literature that FPGAs were used primarily to accelerate trans-
formation, quantization, and intra prediction blocks of different video algorithms. On the
other hand, it was found in the literature that GPU was used to accelerate different de-
coder blocks. Han et al. [90] accelerated decoding speed using a GPU-based VVC motion
compensation scheme. GPU resources were efficiently used by managing data dependency
and thread organisation for different situations of CU repartition. This implementation
demonstrated a speedup of 16 times in which motion compensation was completed in
only 5 ms for 4K UHD videos. In [91], CTU-level parallel motion search scheme was
implemented using GPU. The proposed method obtained an average of 70% time-savings
over CPU only implementation. Igarashi et al. in [92] presented a parallel processing
technique of HEVC transformation and quantization block by merging irregular load or
store of transform unit data in different memory addresses with transformation and quan-
tization. Here, a speedup of ×10.8 with real-time performance for 4K video was obtained
by the proposed implementation.

GPU also used in [93] to process one luma block with 64 × 64 size and two chroma
blocks with 32 × 32 size in parallel to accelerate the HEVC inverse transformation and
quantization block. This experiment obtained a speedup of 33 times for inverse trans-
formation and quantization block which reduced the decoding time of 40.7% than the
conventional implementation.

Radicke et al. [94] accelerated HEVC intra prediction blocks of encoder side by us-
ing GPU. The proposed method extended the encoder of single-threaded with the WPP
mechanism. The experimental results of this methods achieved 64.5% and 94.8% time
reductions for the single-threaded and single-threaded with WPP system, respectively. In
[95], a pipeline structure was proposed to accelerate HEVC in-loop filter of the encoder

Related work on different hardware 37

side, where DBF and SAO were processed on GPU. The proposed implementation ob-
tained a time reduction of an average 47% compared to CPU only implementation. The
authors in [96]-[97], used GPUs to accelerate decoder side in-loop filter. The pattern re-
designing is proposed for HEVC DBF and SAO to efficiently use GPU architecture in [96].
Here, real-time decoding was achieved with approximately 50 FPS for 4K UHD videos.
Souza et al. in [97] proposed a parallel algorithm for HEVC DBF, where the following
three situations were evaluated using 1) CPU cores, 2) GPU only and load balance imple-
mentation, and 3) CPU cores and GPU. This experiment demonstrated that CPU+GPU
implementation performed best among all the approaches that obtained a speedup of up
to 35.8 times compared to the conventional method for 4K UHD videos.

Although GPU and FPGA are the most suitable for video processing algorithms, DSP
was used also for different video processing algorithms in scientific research. The au-
thors in [98]-[101] used DSP architectures to accelerate the HEVC standard. In [98], a
video decoding system was proposed for the HEVC standard which is composed of two
reconfigurable processors, a bitstream process unit, and a memory process unit. The pro-
posed implementation achieved 40% performance improvements with real-time decoding
for FHD videos on DSP. In addition, three different HEVC implementations on DSP were
developed and compared in [99]. Here, the performance of OpenHEVC was improved by
10% by combining RVC-CAL descriptions and native C-code. Zhang et al. [100] acceler-
ated HEVC encoder using SIMD on DSP. The experimental presented a speedup of up
to 87.32 and 6.56 for the C-based encoder and O3 optimisation enabled encoder, respec-
tively. Then, a DSP-based implementation of HEVC was proposed in [101] where Orcc
and OpenMP were used together. The proposed implementation achieved 70% speedup
using two DSP cores compared to one DSP core. Moreover, they claimed that the same
implementation can be used for N cores.

3.3.1 Conclusion

There are not too many VVC implementations published in the scientific literature
during the development of the doctoral Thesis. Therefore, various implementations of
previous video coding standard was studied on different hardware accelerators, where the
optimisation of full VVC decoder using software and hardware-based hybrid approach
was not found. Moreover, only one GPU-based implementation of VVC standard was
published. Nevertheless, after reviewing the scientific literature, it is found that FPGAs
were used primarily to accelerate transformation, quantization, and intra prediction blocks
of different video algorithms. In addition, GPU was used for accelerating most of the
decoder blocks.

38 State-of-the-art on the implementation of video decoders

39

Chapter 4

Implementation of video decoders over hetero-
geneous platforms

This chapter presents the details of the work carried out implementing different video
decoders over heterogeneous platforms (see Section 4.1). It is worth noting that the set
of steps followed on the implementation process have, at the end, served to build up
the proposed design methodology that it is the main contribution of this Thesis work.
In details, the working methodology includes the selection of platforms (see Section 4.2),
video algorithm selection (see Section 4.3), profiling (see Section 4.4), open source decoder
optimisation for ARM-based platforms (see Section 4.5), CPU+GPU based hardware
accelerator (see Section 4.6), and generalisation of the proposed implementation. Lastly,
both memory usage and energy consumption are evaluated in Sections 4.7.1 and 4.8,
respectively.

4.1 Working methodology

The general view of the working methodology is presented in Figure 4.1. Firstly,
the platform (see Section 4.2) and the video algorithm (see Section 4.3) were selected.
Therefore, the profile (see Section 4.4) of the selected video algorithms was performed
on the selected platforms to identify the most time-consuming blocks for applying opti-
misation techniques. Then, a hybrid approach was implemented to accelerate the video
algorithm in which the fine-grain SIMD optimisation (see Section 4.5), and CPU+GPU
based hardware accelerator (see Section 4.6) were used along with the default coarse-
gain optimisation in the development of the hybrid approach. After all implementations,
the validation (see 4.1.1) was performed to determine the accuracy of the optimisation

40 Implementation of video decoders over heterogeneous platforms

process. Furthermore, the generalisation of the proposed implementation is provided.

Figure 4.1. General view of applied working methodology.

4.1.1 Validation

Validation of the optimised decoded video is essential to determine the accuracy of
the optimisation process. In this doctoral Thesis, the Vooya [122] application was used
to analyse decoded videos. Vooya is a raw video player and viewer that supports .yuv
format. It offers raw video format specification options as shown in Figure 4.2. Moreover,
it has a feature to compare two videos with the value of Peak Signal-to-Noise Ratio
(PSNR), Mean-Square Error (MSE), and Structural Similarity Index Measure (SSIM)
metrics. It also provides a mouse highlighter that shows PSNR, MSE, and SSIM values
for two different videos pixel by pixel, which also helps to identify the differences visually
(see Figure 4.3). Furthermore, if two videos are the same, the values of PSNR, MSE and
SSIM are infinite, zero, and one, respectively. In this Thesis, PSNR, MSE and SSIM values
were checked using Vooya after every optimisation (e.g. SIMD optimisation, CPU+GPU
implementation). Finally, it was made sure that the values PSNR, MSE and SSIM were
infinite, zero, and one, respectively, in all cases. This means that the original decoded
video was exactly the same as the decoded video with the modified decoders.

In addition, the MD5 [123] message-digest algorithm hash function was used in this
Thesis for comparing two videos. MD5 generates a 128-bit hash value for each unique file.
The hash value is changed even if the video is slightly changed. Therefore, this method
can be used to know only if two videos are exactly the same or not.

Platform selection 41

Figure 4.2. Options to specify a raw video format, with instant preview.

Figure 4.3. Examine the difference between two files with PSNR, MSE and SSIM.

In this Thesis, Vooya and MD5 were used to compare the videos after each implemen-
tation with the reference videos. In all cases, PSNR value was infinite, MSE value was
zero, SSIM value was one and the MD5 was exactly the same.

4.2 Platform selection

There are different heterogeneous platforms available in the market for video and im-
age processing applications. Among all, the heterogeneous platforms based on GPU and
FPGA are the most suitable for the video decoding application. Generally speaking,
FPGAs usually require longer design and implementation time, but they offer very good
performance for highly parallel task processing, where as GPU is good at executing sim-

42 Implementation of video decoders over heterogeneous platforms

ple repetitive computing operations at high speeds [102]. Both platforms have several
advantages. However, in this doctoral thesis GPP+GPU-based heterogeneous platforms
were chosen for the following reasons.

• GPU contains numerous parallel processors (Arithmetic Logic Unit (ALU)s) that
provides fast and efficient computing.

• GPU is easy to program using programming API, like CUDA.

• GPU is widely available and cheaper than FPGA.

• GPU has a large user community.

• GPU is widely used in different consumer electronics devices [103].

• Video algorithms have modules with repetitive operations (e.g. filters).

• GDEM group has long experience working with GPU and several other research
lines using GPU.

• GPUs are very extended as coprocessors in consumer electronics.

Nowadays, NVIDIA is the market leader for GPU-based embedded heterogeneous plat-
forms and has a large user community. Therefore, in this study, heterogeneous platforms
based on GPU manufactured by NVIDIA were chosen. Furthermore, two HGPP were
used as reference because video codecs are originally developed aimed at general purpose
platforms. The test platforms used in this study are presented in Section 4.2.1.

4.2.1 Test platforms

This section presents the different platforms that have been selected to carry out the
implementations and tests of the research work during the doctoral thesis. This work
focuses on studying two types of platforms: 1) HGPP, and 2) embedded heterogeneous
platforms.

4.2.1.1 High-performance general purpose processor

The video algorithms are initially developed for HGPP-based platforms. In this study,
two different HGPP-based platforms have been used: 1) Intel core i9-10900x HGPP pro-
cessor, and 2) AMD Ryzen Threadripper HGPP processor. These platforms were state-
of-the-art in HGPP when the doctoral study started.

Platform selection 43

AMD Ryzen threadripper HGPP processor: AMD Ryzen threadripper (from now
on, Ryzen) processor (see Figure 4.4) has an AMD Zen microarchitecture [104] based on
the CPU complex. Each CPU complex contains four cores and Ryzen has four CPU com-
plexes. Here, each core is capable of executing two threads with simultaneous multipro-
cessing power. Therefore, the Ryzen processor can provide a maximum of 32 concurrent
threads with a clock frequency of up to 3.7 GHz.

Figure 4.4. AMD Ryzen threadripper (source:[105]).

Furthermore, Ryzen has a L1 cache memory of 96 KB and a L2 cache memory of 512
KB for each core. Moreover, 8 MB of L3 cache memory is shared by each four cores. The
L3 cache is accessible to all cores of the four CPU complexes. Figure 4.5 shows a diagram
of the architecture of the AMD Ryzen Threadripper processor.

Figure 4.5. A diagram of the architecture of AMD Ryzen threadripper processor.

Intel core i9-10900x HGPP processor: Intel core i9-10900x (from now on, X-series)
processor (see Figure 4.6) has a Cascade Lake architecture that offers twenty operating
threads, where each ten physical cores can launch two threads concurrently using simulta-
neous multithreading technology. Each core can operate between a base clock frequency
of 3.7 GHz and a turbo clock frequency of 4.7 GHz.

44 Implementation of video decoders over heterogeneous platforms

Figure 4.6. Intel X-series processor (source:[106]).

A diagram of the architecture of the Intel X-series processor is shown in Figure 4.7.
Each core has a L1 cache memory of 64 KB and a L2 cache memory of 1 MB. Additionally,
the ten cores share 19.25 MB of L3 cache memory. The X-series processor offers a bus
speed of 8 GT/s [107].

Figure 4.7. A diagram of the architecture of Intel X-series processor.

4.2.1.2 Embedded heterogeneous platforms

This doctoral study focuses on the implementation of a video decoder on heterogeneous
platforms, particularly low-cost and resource-constrained embedded platforms. In this
research work, NVIDIA Jetson Xavier development kit [108] and Nano development kit
[109] have been used. Both platforms were integrated with Embedded General Purpose
Processor (EGPP) and Embedded Graphics Processing Unit (EGPU).

NVIDIA Jetson Xavier development kit: NVIDIA Jetson Xavier development kit
(from now on, Xavier) (see Figure 4.8) consists of an ARM EGPP with eight cores and a
Volta architecture based EGPU complex. Here, each EGPP core has 1.19 GHz minimum
and 2.26 GHz maximum clock speed. In addition, Xavier has 4 MB of L3 cache memory
shared by eight EGPP cores and 8 MB of L2 cache memory shared by two cores each 2
MB. The EGPU complex in Xavier contains 512 embedded GPU cores (64 cores in each
SM) with a clock frequency of 1.38 GHz maximum. EGPU complex has 512 MB of L2

Platform selection 45

cache memory. Lastly, Xavier includes random access memory of 32 GB 256-Bit with 137
GB/s speed. A diagram of the architecture of the NVIDIA Jetson Xavier development
kit is shown in Figure 4.9.

Figure 4.8. NVIDIA Jetson Xavier development kit (source:[110]).

Figure 4.9. A diagram of the architecture of NVIDIA Jetson Xavier development kit.

NVIDIA Jetson Nano development kit NVIDIA Jetson Nano development kit
(from now on, Nano) (see Figure 4.10) contains an ARM EGPP with four cores and a
Maxwell architecture based EGPU complex with 128 embedded GPU cores. Each EGPP
cores and each Maxwell EGPU core run with a maximum clock frequency of 1.48 GHz and
0.92 GHz, respectively. Moreover, EGPP in Nano has L2 cache memory of 2 MB. Lastly,
Nano includes random access memory of 4 MB 64 bit with 25.6 GB/s speed. A diagram
of the architecture of the NVIDIA Jetson Nano development kit is shown in Figure 4.11.

46 Implementation of video decoders over heterogeneous platforms

Figure 4.10. NVIDIA Jetson Nano development kit (source:[110]).

Figure 4.11. A diagram of the architecture of NVIDIA Jetson Nano development kit.

4.2.2 Summary

This section presents a summary of all the platforms selected in this thesis. Table 4.1
compare the features of two HGPPs and two heterogeneous embedded platforms used in
this thesis. HGPPs come with a high-performance processor that provides high number of
cores with a high clock frequency, larger cache memory, and a large number PCI Express
Lanes compared to heterogeneous embedded platforms. On the other hand, heterogeneous
embedded platforms are integrated with embedded GPP and embedded GPU. These
EGPP have lower clock speed and lower numbers of cores than HGPP, but consumed up
to 36 times less power. Furthermore, Xavier has almost 2-3 times higher processing units
(GPP and GPU) than Nano. However, Nano requires 2-3 times less power to operate and
less physical space for installation, and it cost approximately 8 times less than Xavier.

Selection of video algorithm 47

Table 4.1. Specifications of all platforms used in this thesis.

Platform Ryzen X-series Xavier Nano
Processor AMD Threadripper 1950X Intel i9-10900X ARMv8.2 ARM A57
Max freq. 3.7 GHz 4.7 GHz 2.26 GHz 1.48 GHz
N. of cores 16 (32 threads) 10 (20 threads) 8 4

Processor tech. 14 nm 14 nm 12 nm 16 nm
L2 cache 8 MB 1 MB 8 MB 2 MB
L3 cache 32 MB 19.25 MB 4 MB N/A

GPU: No of core N/A N/A 512 128
GPU: Max Freq. N/A N/A 1.38 GHz 0.92 GHz

RAM speed N/A N/A 137 GB/s 25.6 GB/S
Cost €510 €640 €1000 €130
Power 180 w 165 w 10 w/30 w 5 w/10 w

PCI Express Lanes 1 x64 (PCIe Gen3) 1 x48 (PCIe Gen3) 1 x8 (PCIe Gen4) 1 x4 (PCIe Gen2)
Platform volume N/A N/A 100 x 87 x 65 69.6 x 45 x 26

4.3 Selection of video algorithm

Several implementations of VVC decoders are considered in the doctoral thesis. Firstly,
VTM (see Figure 2.16 for release date of different VTM version) version 8.0 was selected
as it is the VVC reference and was the only software solution available when the Thesis
started. This helps to identify the key part of VVC standard for parallelising the process
on heterogeneous platforms. Therefore, the VVdeC decoder (available from October 2020,
see Figure 2.17 for release date of different VVdeC version) was considered to accelerate
over different heterogeneous embedded platforms with limited resources. It was the first
open source and optimised VVC decoder that offered real-time decoding up to UHD
quality videos over HGPP. Finally, the OpenVVC decoder was considered for this study
as it is a lightweight open source and optimised VVC decoder. The OpenVVC decoder
(available from March 2021, see Figure 2.18 for release date of different OpenVVC version)
was considered as interesting candidate to be accelerated over different heterogeneous
embedded platforms with limited resources. This also helps to validate the proposed
methodology on two different software solutions, which increases the robustness of the
proposed methodology. Lastly, the selection of OpenVVC also provides an opportunity
to compare with the VVdeC decoder.

4.4 Profiling video algorithm and decoder block selec-
tion for acceleration

Profiling provides information about the computational load of different blocks of
the video processing algorithm. It is an essential process for future optimisations to

48 Implementation of video decoders over heterogeneous platforms

be successful. It helps to identify the most computation demanding blocks. Therefore,
those blocks can be targeted for future optimisations. In this study, VTM and VVdeC
decoders were profiled on the selected platforms using one core. Although VVdeC supports
multithreading-based decoding, one core was used to profile for fair comparison as VTM
does not support multithreading-based decoding process.

4.4.1 Profiling of VTM v8.0

This section presents coarse and fine-grain profiling of the VTM v8.0 decoder over
Ryzen and Xavier platforms. This decoder was the only available when this Thesis started.
The purpose of this study is to obtain the most computationally heavy modules of the
VVC decoder as a first approach. It is worth considering that VTM v8.0 is not optimised
at all. This information is essential because computationally heavy blocks are considered
for optimisation to accelerate the VVC decoder. To do so, several timestamps were placed
before and after each call of the following modules of the VTM v8.0 decoder: ED, TX,
IP, EP, DBF, SAO, ALF, and other (OT). OT was calculated by subtracting the time
consumed by all decoder modules from the total decoding time. In addition, an open
source Valgrind [111] tool suite profiler named Callgrind [112] was used to profile the
VTM v8.0 decoder running on the HGPP processor. However, Callgrind can only be used
on HGPP processor as Xavier has limited run-time storage, which does not allow profiling
some UHD sequences. In addition, the profiling results of both profilers were similar.

FoodMarket4 (FM4), Campfire (CMF), DaylightRoad2 (DR2), ParkRunning3 (PR3),
BasketballDrive (BBD) and BQTerrace (BQT) sequences of the common JVET test con-
dition [126] from Table 5.2 (Set A) were used to profile the VTM v8.0 decoder, all with
QP values of 22, 27, 32 and 37. Figure 4.12 shows the average time consumption for
different blocks of the VTM v8.0 decoder (in %) over Ryzen for All Intra (AI) (left) and
Random Access (RA) (right) sequences with QP 22-37. It can be seen that the in-loop
filters that include DBF, SAO, and ALF are the most time consuming decoder block. It
consumed on average around 40% for AI and RA sequences. Furthermore, EP consumed
on average 33% of the decoder time for RA sequences. ED and IP consumed on average
20% and 23%, respectively, for AI sequences. Lastly, TX and OT consumed on average
5%-9% of total decoding time.

Figure 4.13 presents the average time consumption for different blocks of the VTM v8.0
decoder (in %) over ARM-based GPP of Xavier for AI (left) and RA (right) sequences with
QP 22-37. Similarly to the profiling on Ryzen, in-loop fiters were the most time consuming
decoder module, which is at least 43% of the total decoding time for AI and RA sequences.

Profiling video algorithm and decoder block selection for acceleration 49

ED:20%

TX:9%

IP:23%

EP:0%

DBF:32%
SAO:2%

ALF:7%

OT:7%

ED:10%

TX:5%

IP:6%

EP:33%

DBF:26% SAO:2%

ALF:10%

OT:8%

Figure 4.12. Average time distribution for different blocks of the VTM V8.0 decoder (in
%) over the HGPP (Ryzen) for AI (left) and RA (right) sequences.

Furthermore, IP and ED represent 21% and 18% decoding times, respectively, for the AI
sequences. For RA sequences, EP consumed 35% of the decoding time. Lastly, the rest
of the blocks consumed decoding time ranging between 3% and 19% individually.

ED:18%

TX:8%

IP:21%

EP:0%

DBF:25%

SAO:1%
ALF:19%

OT:19%

ED:8%

TX:3%
IP:5%

EP:35%

DBF:17%

SAO:1% ALF:25%

OT:6%

Figure 4.13. Average time distribution for different blocks of the VVC decoder (in %)
over Xavier for AI (left) and RA (right) sequences.

Although the profile in % shows the computational load for the individual platform, it
cannot present the performance comparison between Ryzen and Xavier. In this situation,
a correlation study of the profiling was performed between Ryzen and Xavier to determine
the impact of hardware resources on the performance of decoder modules. Figure 4.14
shows the average processing times (in secs) for each decoding block and the ratio between
Ryzen and Xavier. Here, ED, TX, IP and OT consumed approximately ×2 more time over
Xavier compared to Ryzen for both AI and RA sequences. However, the time consumption
by SAO is the same, and ALF roughly ×7 more time over Xavier compared to Ryzen for all
sequences and QPs. ALF processing over Ryzen took advantage of larger cache memory
as ALF involves repetitive arithmetic operation. On the other hand, Xavier has very

50 Implementation of video decoders over heterogeneous platforms

smaller cache memory than Ryzen as a result ALF consumed less time on Ryzen. Lastly,
for RA sequences, EP consumed ×3.5 higher on Xavier. The reason for that EP has
several filtering operations (e.g. 8-tap interpolation filter) that took advantage of large
cache memory.

ED TX IP EP DBF SAO ALF OT
0

50

100

150

200

49
.5

1
9
.9

5
1.
9

0

7
2
.2

5.
7 13
.9

1
6
.3

1
13

43
.6

1
21
.3

0

1
43
.8

5.
7

9
8.
3

4
7
.9

2.
3

2.
2

2
.3

2 1 7.
1

2.
9

All Intra

Ryzen
Xavier
Ratio

ED TX IP EP DBF SAO ALF OT
0

50

100

150

200

12
.4

5.
7

6.
5

31
.7

28
.2

1.
6 10
.5

8.
130

.3

13
.5

16
.2

11
1
.6

61
.8

1.
6

77
.8

20

2.
5

2.
4

2
.5 3.
5

2.
2

1 7.
4

2.
5

Random Access

Ryzen
Xavier
Ratio

Figure 4.14. Average processing times (in secs) for each decoding block and the ratio
between Ryzen and Xavier.

The coarse-grain profile for both platforms shows that EP, DBF and ALF are the most
time-consuming decoder modules of the VTM V8.0 decoder. Therefore, a fine-grain profile
of EP, DBF, and ALF was performed. The profile of these modules on Ryzen is presented
in Figure 4.15. Figure 4.15(a) shows the average time consumption of different parts of EP
for RA sequences. Here, the time consumption of Inter Texture (ITEX), Sub-Prediction
Unit MC (SPUM), Sub-Prediction Unit Bio (SPUB), Uni-Directional Prediction (UDP),
DMVR, Weighted Prediction (WP) and OT represent 8%, 5%, 6%, 18%, 40%, 6% and
17% of the total EP time, respectively.

In Figure 4.15(b) and Figure 4.15(c), the profile of DBF is presented for AI and RA
sequences. Luma Filter (LUF) consumed the most DBF time, which represents more
than 60% for all sequences. Calculate Position and Length of the Boundaries (CPLB),
Filtering Decision (FD), Chroma Filter (CHF) consumed between 6% and 15% for all
sequences.

Profiling video algorithm and decoder block selection for acceleration 51

The profile of ALF is shown in Figure 4.15(d) for AI and in Figure 4.15(e) for RA se-
quences. Derivative Classification (DeC), Luma Component Filtering (LCF) and Chroma
Component Filtering (CHCF) consumed approximately 70% of ALF time for AI and RA
sequences. However, Cross-Component Filtering (CRCF) consumed double time for AI se-
quences compared to RA sequences. The ALF time consumption by Copy Reconstructed
YUV (CRY), Virtual Boundaries Check (VBC), and OT ranges from 1% to 13%.

ITEX:8%

SPUM:5%
SPUB:6%

UDP:18%

DMVR:40%

WP:6%

OT:17%

(a) EP for RA sequences.

CPLB:6%

FD:6%
LUF:64%

CHF:9%

OT:15%

(b) DBF for AI sequences.

CPLB:11%

FD:7%

LUF:68%

CHF:6%

OT:8%

(c) DBF for RA sequences.

CRY:8%

DeC:17%
VBC:1%

LCF:38%

OT:2%
CHCF:11%

CRCF:23%

(d) ALF for AI sequences.

CRY:13%

DeC:21%
VBC:1%

LCF:43%

OT:2%
CHCF:8%

CRCF:12%

(e) ALF for RA sequences.

Figure 4.15. Average processing times (in %) for the EP, DBF and ALF block profiled
over HGPP (Ryzen).

For Xavier, the profiles of EP, DBF, and ALF are shown in Figure 4.16. It can be seen
in Figure 4.16(a) that the profile of EP is similar to the profile over Ryzen except DMVR
consumed 5% more time. The rest of the parts were slightly differed to accommodate
5%. The scenario is the same for the profile of DBF for both AI (see Figure 4.16(b)) and
RA (see Figure 4.16(c)) sequences. The time consumption of LUF over Xavier is 5% and
6% higher than over Ryzen for AI and RA sequences, respectively. The rest of the parts
of DBF were slightly varied to adjust the increase percentages of LUF. Furthermore,
the profile of ALF is demonstrated in Figure 4.16(d) for AI and in Figure 4.16(c) for
RA sequences. LCF consumed 66% and 72% of ALF time for AI and RA sequences,
respectively. Furthermore, the comparison of average processing times (in %) for the EP,
DBF and ALF block on Ryzen and Xavier is presented in 4.2.

52 Implementation of video decoders over heterogeneous platforms

ITEX:6%

SPUM:5%

SPUB:7%
UDP:17%

DMVR:45%

WP:6%

OT:14%

(a) EP for RA sequences.

CPLB:5%

FD:7%

LUF:69%

CHF:7%

OT:12%

(b) DBF for AI sequences.

CPLB:7%

FD:8%

LUF:74%

CHF:5%

OT:6%

(c) DBF for RA sequences.

CRY:1%

DeC:11%

VBC:1%

LCF:66%

OT:1%

CHCF:16%

CRCF:4%

(d) ALF for AI sequences.

CRY:1%

DeC:12%

VBC:1%

LCF:72%

OT:1%

CHCF:11%

CRCF:2%

(e) ALF for RA sequences.

Figure 4.16. Average processing times (in %) for the EP, DBF and ALF block profiled
over Xavier.

Table 4.2. Comparison of average processing times (in %) for the EP, DBF and ALF
block on Ryzen and Xavier.

AI Sequences
EP Ryzen Xavier Diff. DBF Ryzen Xavier Diff. ALF Ryzen Xavier Diff.

CPLB 6 5 1 CHCF 11 16 -5
FD 6 7 -1 CRCF 23 4 19
LUF 64 69 -5 CRY 8 1 7
CHF 9 7 2 DeC 17 11 6
OT 15 12 3 VBC 1 1 0

LCF 38 66 -28
OT 2 1 1

RA Sequences
ITEX 8 6 2 CPLB 11 7 4 CHCF 8 11 -3
SPUM 5 5 0 FD 7 8 -1 CRCF 12 2 10
SPUB 6 7 -1 LUF 68 74 -6 CRY 13 1 12
UDP 18 17 1 CHF 6 5 1 DeC 21 12 9

DMVR 40 45 -5 OT 8 6 2 VBC 1 1 0
WP 6 6 0 LCF 43 72 -29
OT 17 14 3 OT 2 1 1

4.4.2 Generalization

It can be summarised from the profile that EP, DBF, and ALF were the most com-
putationally heavy VVC decoder blocks regardless of the architecture. Moreover, all the

Open source decoder optimisation for ARM-based platforms 53

decoder blocks except EP and ALF consumed approximately ×2 more decoding time over
Xavier compared to Ryzen as Ryzen has GPP with ×1.63 higher clock speed, more cores
and larger cache memory than Xavier. In addition, EP and ALF consumed about ×3.5

and ×7 more time over Xavier compared to Ryzen, respectively. The reason for that
is these decoder blocks contains filtering operation with repetitive arithmetic operations
which took the best advantage of the larger cache memory of Ryzen. The repetitive
arithmetic operations of these blocks made them the most potential candidate for future
optimisation. Furthermore, the methodology used in the study for the profiling using
the Callgrind profiler and timestamp which can also be used for other software solutions
(e.g. HEVC or future and new standards). However, timestamps are more suitable for
resource-constraint embedded platforms as it requires very low operating memory and it
is easy to target any part of the software. Moreover, it is easy to implement timestamps
also for other programs written in C/C++. Lastly, Callgring provides GUI and accu-
rate profile for Linux, Android, and Mac OS operating systems with the cost of higher
operating memory requirements.

4.5 Open source decoder optimisation for ARM-based
platforms

For open source decoder optimisation, the VVdeC v0.2 decoder (released in December
2020) was selected to evaluate on the HGPP (X-series) and Xavier platforms. This section
focuses on three parts: 1) the configuration of the VVdeC v0.2 decoder for ARM-based
platforms, since the VVdeC v0.2 decoder did not support ARM-based platforms. 2)
Optimising the VVdeC v0.2 decoder for ARM-based platforms as most of the consumer
electronics platforms are based on ARM architecture and is also the targeted architecture
of the thesis, and 3) the profile of the VVdeC v0.2 decoder with and without SIMD, which
shows the impact of the optimisation on different decoding modules. Furthermore, the
same methodology was applied to accelerate the OpenVVC v1.0 decoder using Neon-based
SIMD optimisation on Xavier and Nano platforms (see section 4.5.4).

4.5.1 Configuration of the VVdeC v0.2 decoder for ARM-based
platforms

This section presents a brief description of the migration process of the VVdeC v0.2
decoder to ARM-based platforms. This step is a prerequisite for the study to accelerate

54 Implementation of video decoders over heterogeneous platforms

the VVdeC v0.2 decoder using ARM-based platforms, as they were originally designed for
x86 GPP. However, the adaptation of the standard code for special environments such as
ARM-based platforms is challenging and experience and good knowledge about working
on different video algorithms are required. Moreover, the compilation configurations of
different video algorithms are very different from each other. To properly configure the
ARM-based architecture, several files were modified, added, or eliminated. The main
"CMakeLists.txt" file and "CMakeLists.txt" from CommonLib1, DecoderLib2 and vvdec
source folder were modified. At the beginning of the migration process, all the dependen-
cies of external libraries that do not exist in an ARM-based architecture were removed
or adapted. Therefore, optimisations based on x86 GPP were adapted or deactivated,
including the disabling of SIMD extensions for x86 processors: SSE and AVX. All these
changes were made into the CMakeList.txt files given by VVdeC, which simplifies the
compilation process. Then, for avoiding the compilation errors, the flags indicating the
target architecture of the processor were deactivated. Finally, the sse2neon.h [113] library
was included to convert some SSE instructions such as _mm_prefetch due to the fact
that they were activated even after disabling SIMD extensions from the CMakeList.txt
files.

4.5.2 Fine-grain optimising the VVdeC v0.2 decoder for ARM-
based platforms

The VVdeC v0.2 decoder was optimised using ARM Neon-based [70] SIMD intrinsics.
The optimisation process begins by defining the decoder modules to be processed using
ARM Neon. Therefore, all functions of different decoder modules affected by SIMD
are considered and targeted using macros. Then, x86 GPP-based SSE and AVX SIMD
intrinsics were substituted using Neon intrinsics. This step helps the compiler to recognise
the SIMD register and intrinsics in the ARM-based architecture. However, Neon intrinsic
sets are not as powerful as the x86 GPP-based SIMD intrinsics. For example, some
x86 GPP-based SIMD intrinsics required two or more Neon intrinsics to perform the
same operation (e.g._mm512_fmaddsub_pd, _mm512_fmaddsub_round_pd, etc.). In
addition, ARM-based architecture contains a maximum 128-bit SIMD register, while x86
GPP-based architecture contains a 512-bit SIMD register. For this reason, it is difficult
to adapt AVX-512 instructions using Neon intrinsics. To handle these difficulties, the
SIMDEverywhere (SIMDe) [114] library was adapted to convert the x86 GPP-based SIMD
intrinsics to Neon intrinsics. SIMDe supports SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX,

1CommonLib contains files used in encoder and decoder side.
2DecoderLib contains files used in decoder side only.

Open source decoder optimisation for ARM-based platforms 55

AVX2, AVX-512 conversion to Neon intrinsics.

Table 4.3. List of intrinsics extensions used by modules (source:[17]).

Module Intrinsics used1 Utility

All2

loadu_si128
add_epi16
shuffle_epi8
sub_epi16
set1_epi32
prefetch
unpacklo_epi16
unpackhi_epi16
min_epi16
max_epi16
srai_epi32
packs_epi32
storeu_si128/64
setzero_si128

loads a value into a register
adds two registers
shuffles a value based on a mask
subtracts two values
set a register to all ones
allocates cache memory
interleaves two lower half integers
ibid high half
minimum values to a register
maximum values to a register
shift right a number of bits
converts types
stores a register into memory
sets all bits to zero

ALF madd_epi16
blend_epi16

multiply&add horizontally the results
blenders two values into a masked reg.

DBF set_epi64x
srli_epi32

set a register with a specified value
variation of srl_epi32 (shift packed 32-bit integers)

SAO
EP sign_epi16 negates an integer if a given value

is also negative

EP

slli_epi16
cvtsi128_si32
cvtepi16_epi32
bsrli_si128

left shifting
copies lower 32-bit of a value
extends sign into a 32-bit value
right shifting

1 All functions begin by _mm_ 2 Also including ED, IP and TX

The most used SIMD intrinsics in VVdeC are listed in Table 4.3. The list was arranged
according to the decoder modules where the intrinsics are classified into decoder modules.
Here, the intrinsics used in all decoder modules are included into the ’All’ section. In
addition, the main functions of the VVdeC v0.2 decoder that were optimised with SIMD
are presented in Table 4.4. Here, the percentage of workload for each decoder block was
obtained from the profile. In addition, the workload of different decoder modules before
SIMD optimisation for AI and RA video sequences is shown in Table 4.4: columns 2 and 3,
respectively. It can be seen from Table 4.4 that approximately 40% of ALF and EP were
suitable for SIMD optimisation. However, the functions contain repetitive arithmetic, and
matrix computation achieved the greatest benefit of SIMD optimisation. The profile of
the VVdeC v0.2 decoder with and without SIMD over X-series and Xavier is presented in

56 Implementation of video decoders over heterogeneous platforms

the following section.

Table 4.4. Main functions optimised with SIMD implementation in each block for VVdeC
v0.2 decoder on Xavier (source:[17]).

Module Workload AI Workload RA Affected functions

ALF 44.5% 38%

cross-component filter
chroma component filter
luma component filtering
Derivative classification

DBF 5.5% 2.5% luma filter
SAO 2% 1% offset block function

EP 0% 44.5%

bidirectional optical flow
pred. refinement w/ optical flow
interpolation filters
sub prediction unit Bio
weighted prediction
uni-directional prediction

IP 16% 3%

prediction angle luma
prediction angle chroma
planar prediction
prediction sample filter

TX 11.5% 2.5% inverse transformations
clipping operations

ED 12% 2.5% CABAC engine

4.5.3 Profile of the VVdeC v0.2 decoder with and without SIMD

This section presents coarse-grain profiling of the VVdeC v0.2 decoder with and with-
out SIMD on X-series and Xavier. The purpose of this section is to measure the impact
of SIMD optimisation on different decoder blocks. The VVdeC v0.2 decoder was profiled
in this section using the same profiler and test sequences as in Section 4.4.1.

Figure 4.17 shows the average time distribution for different blocks of VVdeC v0.2
(in %) without SIMD over HGPP (X-series) for AI (left) and RA (right) sequences. The
average was taken for QP 22, 27, 32, and 37. ALF consumed most of the decoding
time with 54% shares for AI sequences. For RA sequences, ALF consumed 43% and EP
consumed 44% of the total decoding time. Furthermore, the average time distribution for
different blocks of VVdeC v0.2 (in %) with SIMD over HGPP (X-series) for AI (left) and
RA (right) sequences is presented in Figure 4.18. Here, for AI sequences, the percentages
of average time consumption by all decoder blocks increased compared to implementation
without SIMD except ALF consumed an average 43% less time. The scenario is similar

Open source decoder optimisation for ARM-based platforms 57

for RA sequences, where ALF consumes on average 26% less time. Although EP benefited
from SIMD optimisation, it consumed the most decoding time. This is due to the fact
that the profile is presented in %. The speedup result of SIMD optimisation (in sec.) is
presented in Section 5.3.3.1, which explains this phenomenon.

ED:13%

TX:9%
IP:12%

EP:0%
DBF:5%

SAO:2%

ALF:54%

OT:5%

ED:2%
TX:2%
IP:2%

EP:44%

DBF:2%
SAO:1%

ALF:43%

OT:4%

Figure 4.17. Average time distribution for different blocks of the VVdeC v0.2 (in %)
without SIMD over the HGPP (X-series) for AI (left) and RA (right) sequences.

ED:31%
TX:12%

IP:20%

EP:0%

DBF:18% SAO:2%

ALF:11%

OT:6%

ED:12%

TX:4%
IP:5%

EP:39%

DBF:15%
SAO:1%

ALF:17%

OT:7%

Figure 4.18. Average time distribution for different blocks of the VVdeC v0.2 (in %) with
SIMD over the HGPP (X-series) for AI (left) and RA (right) sequences.

The profile result over X-series shows that the impact of SIMD optimisation. Here,
EP and ALF benefited from SIMD optimisation (see Section 5.3.3.1). However, IP and
DBF were not optimised enough by SIMD. Because, approximately up to 16% of IP and
up to 5.5% of DBF modules were suitable for SIMD optimisation. This information is
useful to targer the block for future optimisation.

The average time distribution for different blocks of VVdeC v0.2 (in %) over Xavier for
AI (left) and RA (right) sequences without and with SIMD is presented in Figures 4.19
and 4.20, respectively. The profile of the VVdeC v0.2 decoder on Xavier shows a pattern

58 Implementation of video decoders over heterogeneous platforms

similar to the profile on X-series with and without SIMD. Here, for the implementation
with SIMD, the average time consumption of ALF was reduced by 23% for AI and 13%
for RA sequences compared to the implementation without SIMD. Moreover, ED, IP and
DBF took the least benefit from SIMD optimisation. As a result, the percentages of
average time consumption by those blocks increased a lot.

It can be seen that ED, IP, and DBF could not take enough advantage of SIMD
optimisation on Xavier. Similarly to the impact of SIMD optimisation on X-series, the
blocks EP and ALF were optimised the most by SIMD on Xavier (see Section 5.3.3.1).
However, EP and ALF consumed the most decoding time even after SIMD optimisation.
Therefore, those blocks were also interesting candidates for future optimisation to further
accelerate the decoder.

ED:14%

TX:9%IP:17%

EP:0%

DBF:9%

SAO:2%

ALF:44%

OT:5%

ED:3%
TX:2%

IP:4%

EP:47%

DBF:6%
SAO:1%

ALF:35%

OT:2%

Figure 4.19. Average time distribution for different blocks of the VVdeC v0.2 (in %)
without SIMD over Xavier for AI (left) and RA (right) sequences.

ED:22%

TX:15%

IP:20%

EP:0%

DBF:13%

SAO:2% ALF:21%

OT:7%

ED:7%

TX:4%

IP:5%
EP:45%

DBF:11%
SAO:1%

ALF:22%

OT:5%

Figure 4.20. Average time distribution for different blocks of the VVdeC v0.2 (in %) with
SIMD over Xavier for AI (left) and RA (right) sequences.

Open source decoder optimisation for ARM-based platforms 59

4.5.4 Optimising the OpenVVC v1.0 decoder for ARM-based plat-
forms

Unlike VVdeC v0.2 decoder optimisation, no additional configuration is required to
optimise the OpenVVC v1.0 decoder, as it supports ARM-based platforms. In this doc-
toral study, the OpenVVC v1.0 decoder was optimised using Neon-based SIMD intrinsics
for ARM-based platforms. The optimisation technique was similar to the VVdeC decoder
optimisation presented in Section 4.5.2, where the x86 GPP-based SIMD intrinsics used
in OpenVVC were converted to Neon intrinsics by adapting the SIMDe library. This
validated that the proposed methodology is applicable for different video algorithms.

The main modules of the OpenVVC v1.0 decoder that were optimised with SIMD are
presented in Table 4.5. SIMD intrinsics were used to optimise different modules of TX:
DCT-II and VIII, DST-VII, inter-component transform, and low-frequency non-separable
transform. These modules contain numerous matrix operations, which was efficiently
handled by Neon instrinsics: vmul, vadd, vand, veor, etc [115]. Furthermore, EP block
contains several arithmetic and clipping operations which were tackled by vadd, vsub,
vmin, and vmax Neon intrinsics. In addition, EP took advantage of vld and vst instrincs
to load and store data in larger SIMD registers. Luma 8-tap filters, chroma 4-tap filters,
bi-directional optical flow, DMVR, and prediction refinement with optical flow are the
modules of EP that greatly benefited by the SIMD optimisation. The most beneficial
modules of IP were DC, planar, cross-component linear model, and matrix-based intra
prediction. The Neon intrinsics for the store masks, clip, and value offset were used to
handle the prediction of pixels inside the picture of IP block. Then, the edge and band
filter of SAO were optimised using the intrinsics vceq, vadd, and vsub, since it involves
several arithmetical operations. Furthermore, shuffle intrinsic was used to store ALF
parameters concurrently. Lastly, ALF utilised the entire 128-bit SIMD register with the
help of load and store intrinsics. The results obtained by SIMD optimisation of OpenVVC
v1.0 over Xavier and Nano is presented in Section 5.5.

4.5.5 Generalization

In this doctoral thesis, Neon-based SIMD optimisation was applied to accelerate
VVdeC and OpenVVC decoders for ARM-based architectures. Since Neon is the standard
SIMD suite for ARM-based architectures the proposed solution would be easily adapt-
able to other or newer platforms. As far as the integration of SIMD instructions into the
source code itself is concerned, more manual work might be necessary. However, it is rare
that the first open source versions of decoders do not have partial accelerations of their

60 Implementation of video decoders over heterogeneous platforms

Table 4.5. Main functions optimised with SIMD in OpenVVC (source:[18]).

VVC Block Module

TX
DST-VII, DCT-II, DCT-VIII
Inter-component transform
Low-frequency non-separable transform

EP

Luma 8-tap filters
Chroma 4-tap filters
Bi-directional optical flow
Decoder side motion vector refinement
Prediction refinement with optical flow

IP
DC, Planar
Cross-component linear model
Matrix-based intra prediction module

SAO, ALF
filters

Edge and band filter of SAO
ALF 7×7 DMS filters for the luma component
ALF 5×5 DMS filters for the chroma component
Block classification of ALF

functions using SIMD for x86-type architectures. So, in the same way done in this work,
it is a matter of adapting these optimisations from one architecture to another. To do
this, libraries such as SIMDe can be firstly sought, leaving the manual work reduced to a
more detailed optimisation and, above all, guided by the computational load study. Both
aspects have been analysed and further developed in this work, validating the proposal
on two different software solutions and for two different embedded platforms.

4.6 Algorithm redesign for parallelising the VVdeC de-
coder using CPU+GPU

The profile presented in Section 4.5.3 shows that ALF block in the VVdeC decoder
is one of the most time consuming blocks (in all cases consumed more than 20% of the
decoding time) on Xavier, even after SIMD optimisation was applied. Moreover, the ALF
block took the most advantage of SIMD optimisation on Xavier. Therefore, VVdeC ALF
was considered for further optimisation. This doctoral study proposed a hybrid approach
to parallelise VVdeC ALF using CPU+GPU. However, the GPU architecture is different
from the CPU architecture, and the VVdeC decoder was written for CPU only. Therefore,
a redesign of the algorithm was needed to take advantage of the GPU architecture for

Algorithm redesign for parallelising the VVdeC decoder using CPU+GPU 61

parallelising VVdeC ALF module.

4.6.1 Algorithm redesign

In VVdeC ALF, pixels within CTU are scanned for filtering operation following zigzag
raster scan [116] pattern for each 4×4 sub-block as each 4×4 sub-block is classified for one
type of filter out of 25 filters (see Section 2.4.8.1). Figure 4.21 demonstrated an example
of pixels scanning pattern of VVdeC ALF for 128× 128 CTU. It can be seen in the figure
that pixel scanning starts from the left top (yellow color) 4×4 sub-block. It also followed
zigzag raster scan pattern inside the sub-block (e.g. 0 to 3 then 128 to 131). Therefore,
scanning of the next right side (green color) sub-block is started when the scanning of
the first sub-block is completed. This process continued until the scanning of the CTU is
completed. To execute this scanning pattern, four nested for loops are placed one inside
another in the ALF 7× 7 and 5× 5 DMS filters. Two inner loops are used to access the
4× 4 pixel block, and two outer loops are used to access the CTU following zigzag raster
scan pattern with a four-pixel stride.

Figure 4.21. Rearranging of data access pattern.

To take advantage of parallel processing capabilities of the GPU, four nested for loops
of VVdeC ALF were substituted with one for loop to access all CTU pixels. In Figure
4.21 (bottom), the proposed access pattern is shown, which made it simpler for data to be
transferred from CPU to GPU. Here, data was arranged sub-block by sub-block following
zigzag raster scan pattern. The reason for that GPU threads can get all the required data
in the adjacent memory location. Moreover, the GPU-based implementation filters the
pixels in the same way as the CPU-based implementation, as the number of GPU threads

62 Implementation of video decoders over heterogeneous platforms

was replaced by the size of the for loop. Only data pointer addresses were changed,
which is presented in Section 4.6.1.1. The implementation maximised the use of GPU for
VVdeC ALF filtering by setting threads per block equal to 128. Furthermore, the number
of blocks was calculated using the total number of pixels divided by threads per block
(=128).

4.6.1.1 Data ordering

Data ordering was one of the most important tasks for GPU-based implementation
of VVdeC ALF as data transferring between CPU and GPU may imply important bot-
tlenecks. In this study, three different data ordering approaches were implemented and
evaluated for GPU-based implementation of VVdeC ALF.

Figure 4.22. a) 7×7 DMS, b) sliding DMS filter over CTU, c) data ordering pattern in
the first approach.

In all cases, ALF 7× 7 DMS filter (see Figure 4.22a) (see Section 2.4.8.2) needs up to
three pixels in four directions: top, bottom, left, and right. In Figure 4.22a and c, ImgX
represents the rows of the DMS filter. In addition, the 5× 5 DMS filter is exactly like the
7× 7 DMS filter with the exception that it needs up to two pixels in four directions. The

Algorithm redesign for parallelising the VVdeC decoder using CPU+GPU 63

scanning process of the DMS filter is shown in Figure 4.22b. It is exactly the same scanning
zigzag pattern shown in Figure 4.21, Where DMS filter scans sub-blocks horizontally as
the red arrow shows and then follows the blue arrow. In addition, inside the sub-blocks
it follows the same raster scan based zigzag pattern shown in Figure 4.21. This pattern
continues until the scanning of CTU is finished.

• In the first approach of data ordering, all sliding pixels of each row of the DMS
filter were stored in one array, as shown in Figure 4.22c. In this case, the same
pixel information was copied multiple times for the purpose of filtering neighbouring
pixels.

• To avoid multiple copies of pixel information, the second approach was adapted.
Here, all pixel information of each ImgX (X="0 to 6") row was copied for each
CTU row. This approach prevented duplicate copy of pixel information, where
horizontal neighbouring pixels share the same pixels data. However, the vertical
neighbouring pixels used different pixel data. Here, the same pixel information was
duplicated vertically. Although this approach copies fewer data than approach one,
data are copied multiple times.

• Finally, a third approach was applied to prevent duplication of pixel data. Here, the
CTU pixel information was copied between CPU and GPU along with three pixels
in the top, bottom, left, and right directions, as illustrated in Figure 4.23a. In each
corner, a total of six additional (3 blue, 2 pink, and 1 purple) pixels surrounding
the CTU were copied because they are also required for filtering the pixels along
the CTU’s boundary. Then, 2D pixel data of CTU were converted to a 1D array, as
illustrated in Figure 4.23b. Although these extra pixels were copied from CPU to
GPU, they were not used for the 7× 7 and 5× 5 DMS filters. Copying these extra
pixels simplifies the data addressing process in GPU.

The benefits of using this last approach are the following.

• There is only one copy of each pixel (the minimum possible).

• All pixel information is stored in a single memory vector.

• It has very low implementation complexity.

The drawbacks of using the approach are the following.

• A thread cannot have coalescent access to the information of pixels if the pixels
belong to a different row as there is a stride of 6 + CTU width.

64 Implementation of video decoders over heterogeneous platforms

Figure 4.23. Data ordering pattern in the final approach.

A comparison among three data ordering approaches is presented in Table 4.6 for
128×128 and 64×64 CTU sizes. Here, data transfer was calculated in bytes. Furthermore,
approach 3 and approach 2 obtained more than 95% and 70% reductions in data copy
time between CPU and GPU compared to approach 1 for both CTU sizes, respectively.

Table 4.6. Reduction of data copied on the basis of different data ordering approaches.

Transferred data (in bytes) Reduction over approach 1 (in %)
CTU size Approach 1 Approach 2 Approach 3 Approach 2 Approach 3
128×128 409600 116992 17956 71.4% 95.6%
64×64 102400 29824 4900 70.8% 95.2%

4.6.2 Parallelise the VVdeC ALF filtering in GPU

Parallel processing of VVdeC ALF filtering using GPU involves several factors: mem-
ory allocation, data transfer, kernel distribution and task schedule. Detailed descriptions
of these factors are presented in the following sections.

Algorithm redesign for parallelising the VVdeC decoder using CPU+GPU 65

4.6.2.1 Memory allocation

Memory allocation is one of the important factors for the parallel processing of VVdeC
ALF filtering using GPU. The reason is that GPU does not have access to the CPU’s mem-
ory, even though it processes the task with the instruction received from CPU. There-
fore, data transfer between CPU and GPU causes the main bottleneck for CPU+GPU-
based implementation [117] [118]. In this thesis, different memory allocation techniques
of CUDA API were studied to optimise the performance.

CUDA offers unified memory allocation function named cudaMallocManaged, which
allows both CPU and GPU to access data from a single memory address. It is simpler to
use, as it replaces the data allocation and copy function with only one function. However,
two copies are needed under the hood to perform the memory allocation by cudaMal-
locManaged [119]: 1) unified memory to pinned memory [120] and 2) pinned memory to
device. On the other hand, cudaMallocHost allocates page-locked memory to the host
that the device can access. It offers higher bandwidth for read and write operations by
device than that of pageable memory. Moreover, it comes with the constraint that per-
formance decreases when a large amount of data is allocated. However, the allocation
with cudaMallocHost for CPU+GPU-based VVdeC ALF implementation provides better
performance than cudaMallocManaged as a little amount of data per filter (about 100
KB) is required. Therefore, cudaMallocHost was used in the final implementation of this
study.

4.6.2.2 Data transfer

As mentioned in previous Section 4.6.2.1, cudaMallocHost was used for data transfer
between CPU and GPU, which allows the use of the memcpy function for coping the
data. The memcpy function consumed less copy time and faster data transfer than the
cudaMemcpy function for CPU+GPU-based VVdeC ALF implementation. Furthermore,
to parallelise data copy and CPU execution, cudaMemcpyAsync was examined. However,
performance decreased due to the fact that cudaMemcpyAsync consumed approximately
18 µs setup overhead. In contrast, when memcpy was used synchronously, the copy time
for all variables of a filter was hardly around 10 µs. Therefore, it can be concluded that
to take advantage of cudaMemcpyAsync a large amount of data (≥ 100MB) is needed.
Subsequently, CudaMemPrefetchAsync was examined, which is better than cudaMem-
cpyAsync as it spend 14.5 µs less setup overhead. But the performance was still better
with memcpy than CudaMemPrefetchAsync, as CudaMemPrefetchAsync spends 3.5 µs
when it executed.

66 Implementation of video decoders over heterogeneous platforms

Finally, memcpy was included in the final version of CPU+GPU-based VVdeC ALF
implementation to copy data synchronously when the data were allocated by cudaMallo-
cHost to obtain the highest performance.

4.6.2.3 Kernel distribution

ALF filtering tasks are executed in GPU by the GPU kernels. Therefore, it is im-
portant to study different kernel distributions to maximise process parallelisation so that
optimum filtering performance can be obtained.

All the SAO reconstructed pixels are delivered to GPU from CPU before starting the
ALF filtering in GPU as these data are needed to begin the ALF filtering. Then, all pixels
within one CTU are filtered using appropriate filters between 7×7 and 5×5 DMS filters.
The concurrent processing of ALF CTUs is allowed because ALF CTUs do not depend
on each other.

In the first approach, one kernel was designed to execute the 7 × 7 DMS filter on
the luma component, and if needed, the 5 × 5 DMS filter on the chroma Cb and Cr
components of each CTU. This approach reduce the required time for kernel launching
up to 3× if luma and chroma filters are applied. It has a great impact on performance,
as the kernel consumes some initialisation time before performing any execution in GPU.
For example, kernel initialisation consumed 180µs when 8 CPU threads simultaneously
call a kernel, while kernel execution consumed 7µs for processing the 7 × 7 DMS filter
in GPU. In this approach, CPU implementation of ALF filtering performed better than
the implementation of GPU. Therefore, the following approach was implemented, where
one kernel was designed to perform all filters in a frame. In the beginning, all necessary
data was loaded from CPU to GPU using a combination of cudaMallocHost and memcpy.
Then, the exact same filtering operations in CPU were performed by the GPU kernel
in parallel. Therefore, the frame is marked as reconstructed and the GPU thread is
available to attend the next task. In addition, the Cb and Cr components of CCALF
were loaded into GPU and added to the Cb and Cr components of the 5 × 5 DMS
filter. Subsequently, the clipping operation was performed on the results obtained in
the previous step, and the results were sent to CPU after synchronisation. Figure 4.24
shows the diagram of the hybrid approach based on CPU + GPU. This hybrid approach
obtained better performance than the implementation of CPU only because the parallel
processing of multiple CTUs were performed by one GPU kernel. For example, with this
approach, the UHD sequences with 3840× 2160 pixels can be decoded by performing 500
7× 7 and 1000 5× 5 DMS filters in one kernel.

Algorithm redesign for parallelising the VVdeC decoder using CPU+GPU 67

Figure 4.24. Diagram of hybrid approach using CPU and GPU.

4.6.2.4 Task schedule

There are two factors in the CPU+GPU-based hybrid approach that need to be ef-
ficiently managed to maximise the performance of the decoder: 1) GPU task scheduling
and 2) transferring data between CPU+GPU. In this study, these factors were managed
using the double buffer technique.

Initially, the CPU thread had to wait after the launch of the GPU kernel and until
copying back the filter data from GPU to CPU. This is not a real CPU+GPU parallelisa-
tion, where the rest of the CPU threads cannot execute operations in parallel. The double
buffer technique was used to achieve efficient CPU+GPU parallelisation of VVdeC ALF.
Figure 4.25 presents the diagram of the GPU task scheduling with the example of two
CPU threads, where two memory buffers were created using cudaMallocHost : 1) memory
buffer 1 and 2) memory buffer 2. Here, both memory buffers were used by the CPU
threads to copy the essential data (e.g. pixel data, filter coefficients, CTU size) to GPU
for filtering (see dashed black arrow in Figure 4.25). The memory buffer is then released
when the GPU kernel is launched (see green arrow for thread 1 and red arrow for thread
2 in Figure 4.25). In this way, the memory buffer became available for other CPU threads
to continue copying the data. Finally, the image was set as reconstructed after the GPU
kernel completed its operations and returned the results to CPU (see blue arrow in Fig-
ure 4.25). This strategy was replicated for all CPU threads when the GPU kernel was
launched. Furthermore, the double buffer technique is capable of automatically managing
the storage capacity if more data is needed to be stored by the filter.

4.6.3 Generalization

In this doctoral thesis, the VVdeC decoder was optimised using platforms with CPU+GPU,
where ALF block was processed in GPU and the rest of the decoder blocks were processed

68 Implementation of video decoders over heterogeneous platforms

Figure 4.25. Diagram of the GPU task scheduling.

in CPU. Here, the algorithm redesign approach is proposed to take advantage of the par-
allel processing capabilities of GPU to accelerate VVdeC ALF. This approach is also ap-
plicable to other algorithms that use raster scan for accelerating using GPU. In addition,
this approach will help other algorithms that exploited GPU to reduce memory usage by
lowering data transfer between CPU and GPU. Furthermore, the proposed methodology
will be suitable for other types of GPU as here the number of data transfers was optimised
by improving the data access pattern, which makes the implementation straightforward
for other GPUs.

4.7 Memory management

Memory usage and memory transfer are the very essential aspects of video processing
over resource-constrained heterogeneous platforms. Section 4.6.1 discusses 3 approaches
to reduce the memory transfer requirement that helps to obtain efficient performance
using CPU and GPU. In addition, memory usage information is also needed to manage
available resources.

4.7.1 Memory usage

For video processing operations, memory usage is one of the important factors for
heterogeneous embedded platforms with limited resources. In this thesis, the maximum
memory usage was measured using the GNU/Linux command /usr/bin/time -f %M for

Energy consumption 69

Xavier and Nano. This command provides maximum memory usage (in kilo bytes) of
Random-Access Memory (RAM) during video processing operations [124]. The same
methodology can be applied to other platforms configured with GNU/Linux for measuring
the maximum memory usage. In this thesis, the maximum memory usage was only
calculated for different video decoders, because the focus of the thesis was mainly based
on optimising different video decoders on different heterogeneous platforms to extract a
work methodology. Yet, the information of the maximum memory usage by video decoder
is very essential to assess the portability of different platforms with limited resources. The
results of memory usage are presented in Section 5.10.

4.8 Energy consumption

Energy consumption is also an important factor for heterogeneous embedded platforms
with limited resources. In this study, the energy consumption analysis of video decod-
ing was performed on Xavier and Nano platforms, since both heterogeneous embedded
platforms have limited resources. Both platforms are integrated with a built-in power
monitor [125] that provides power consumption readings in milliwatts (mW) for CPU
and GPU. For the energy consumption analysis of video decoding, the average energy
consumption (in Joule) was measured from the average power consumption during video
decoding multiplied by the total decoding time as shown in Equation 4.1.

Energy_Consumption = Power_Consumption ∗ Decoding_Time (4.1)

The same methodology can be applied to calculate energy consumption on other plat-
forms if the hardware provides the monitor. Moreover, other latest platforms from differ-
ent manufacturers also contain built-in power monitor. In this thesis, energy consumption
was measured but not optimised. The reason for that this study mainly focused on opti-
mising different video decoders on different heterogeneous platforms.

However, at the time of writing this doctoral thesis, this data related to energy con-
sumption is being heavily used to construct machine learning models which may adjust
and improve the energy consumption. This point is introduced as future work in Section
8.2.

70 Implementation of video decoders over heterogeneous platforms

4.9 Summary of the proposed methodology

The platform and the video algorithm were selected in the beginning of the implemen-
tation of video decoders over heterogeneous platforms, The coarse and fine-grain profile
of the selected video algorithms was carried out on the selected platforms to identify the
most time-consuming blocks. Then, Neon-based SIMD optimisation was implemented for
VVdeC and OpenVVC decoders. Furthermore, the hybrid approach was implemented to
accelerate the VVdeC decoder where the fine-grain SIMD optimisation and CPU+GPU
based hardware accelerator were used along with the default coarse-gain optimisation in
the development of the hybrid approach. In CPU+GPU, algorithm redesigning was pro-
posed to accelerate VVdeC ALF. Lastly, the methodology to measure memory usage and
energy consumption were presented.

The obtained experimental results using the methodology proposed in this Chapter are
presented in Chapter 5. In addition, Chapter 6 synthesises and collected these proposals
into the design methodology.

71

Chapter 5

Experimental Results

In the previous chapter, the implementation and optimisation of different VVC de-
coders on different platforms was presented in detail. This chapter will show the ex-
perimental results obtained in this thesis work, including performance analysis, memory
usage, and energy consumption. Here, the test bench description and platform setup are
included in Section 5.1. The native GCC auto vectorizer based performance analysis is
presented in Section 5.2. The performance results without/with SIMD optimisation and
GPU optimisation of VVdeC decoder is demonstrated in Section 5.3, 5.4 and 5.8. Dur-
ing the doctoral study, different versions (v0.2, 1.0, 1.1, 1.2, 1.3) of the VVdeC decoder
were accelerated using SIMD optimisation and GPU (see Section 5.8). However, in this
chapter, only the results of the VVdeC v0.2 and the latest v1.3 (see Section 5.4) version
are presented to avoid repeating the same results. Similarly, only the results with SIMD
optimisation of OpenVVC v1.0 are included, but not the results for v0.2 and 0.3 to avoid
repetition (see Section 5.5). Therefore, the results of the performance analysis is com-
pared in Section 5.7 for the VVdeC v1.3 and OpenVVC v1.0 decoder. Then, the results
of the comparative analysis on memory usage and energy consumption are presented in
Sections 5.10 and 5.11.1 for the VVdeC v1.3 and OpenVVC v1.0 decoder, respectively.
Furthermore, a study of energy consumption is included in Section 5.11.2 to compare
CPU and CPU+GPU implementations with SIMD optimisation. Lastly, a discussion of
the experimental results is provided in Section 5.12. In Table 5.1, a summary of the organ-
isation of the sections is provided. Here, the columns contain the following information
of the section: decoder, sequence set (see Section 5.1.1), platform (see Section 5.1.2) and
optimisation used.

72 Experimental Results

Table 5.1. Summary and organisation of sections in Chapter 5.

Section Decoder Sequences Platforms SIMD Tile GPU
5.3 VVdeC v0.2 Set A X-series, Xavier Yes — —
5.4 VVdeC v1.3 Set A Xavier, Nano Yes — —
5.5 OpenVVC v1.0 Set B Xavier, Nano Yes Yes —
5.6 OpenVVC v1.0 Set B Xavier, Nano Yes Yes —
5.7 OpenVVC v1.0, VVdeC v1.3 Set B Xavier, Nano Yes Yes —
5.8 VVdeC v1.3 Set A Xavier Yes — Yes
5.9 VVdeC v1.3 Set A Xavier, Nano Yes — Yes
5.10 OpenVVC v1.0, VVdeC v1.3 Set B Xavier, Nanoo Yes Yes —

5.11.1 OpenVVC v1.0, VVdeC v1.3 Set B Xavier, Nano Yes Yes —
5.11.2 VVdeC v1.3 Set A Xavier, Nano Yes — Yes

5.1 Test bench description and platform setup

This section presents the description of the test bench used in the doctoral thesis and
the platform setup needed to run the video decoders on targeted heterogeneous embedded
platforms.

5.1.1 Test bench description

A total of fifteen video sequences were used in this doctoral thesis. These sequences are
from the common JVET test sequences [126]. Three sequences of Class A1 with resolution
3840×2160: Tango2 (TG2), FoodMarket4 (FM4), and Campfire (CMF); three sequences
of Class A2 with resolution 3840×2160: CatRobot1 (CR1), DaylightRoad2 (DR2), and
ParkRunning3 (PR3); and six sequences of Class B with resolution 1920×1080: Market-
Place (MPL), RitualDance (RUD), Cactus (CCT), BasketballDrive (BBD), BQTerrace
(BQT), and ArenaOfValor (AOV); three sequences of Class E with resolution 3840×2160:
FourPeople (FRP), Johnny (JNY), and KristenAndSara (KAS). All test sequences were
encoded with QP 22, 27, 32 and 37 for the AI and RA configurations. The features of
these sequences are presented in Table 5.2.

In this thesis, Set A sequences were mainly used for most of the experiments as all
the decoders support frame partitioning. A second set of sequences, Set B, was also used.
This set was encoded using a 8 titles with 4× 2 configuration and has been used to test
OpenVVC decoder as it supports tile parallelism. In Set B sequences only QP 27 and 37
(see Table 5.3) have been used. Lastly, the bit depth was set to 10 for all the sequences
of both sets.

Test bench description and platform setup 73

Table 5.2. Features of the test video sequences Set A.

Class Sequence Resolution No. Frames Bitdepth

A1 (UHD)
Tango2 (TG2) 3840×2160 294 10
FoodMarket4 (FM4) 3840×2160 300 10
Campfire (CMF) 3840×2160 300 10

A2 (UHD)
CatRobot1 (CR1) 3840×2160 300 10
DaylightRoad2 (DR2) 3840×2160 300 10
ParkRunning3 (PR3) 3840×2160 300 10

B (FHD)

MarketPlace (MPL) 1920×1080 600 10
RitualDance (RUD) 1920×1080 600 10
Cactus (CCT) 1920×1080 500 10
BasketballDrive (BBD) 1920×1080 500 10
BQTerrace (BQT) 1920×1080 600 10
ArenaOfValor (AOV) 1920×1080 600 10

E (HD)
FourPeople (FRP) 1280×720 600 10
Johnny (JNY) 1280×720 600 10
KristenAndSara (KAS) 1280×720 600 10

Table 5.3. Features of the test video sequences Set B.

Class Sequence Resolution No. Frames Bitdepth

A1 (UHD)
Tango2 (TG2) 3840×2160 294 10
FoodMarket4 (FM4) 3840×2160 300 10
Campfire (CMF) 3840×2160 300 10

A2 (UHD)
CatRobot1 (CR1) 3840×2160 300 10
DaylightRoad2 (DR2) 3840×2160 300 10
ParkRunning3 (PR3) 3840×2160 300 10

B (FHD)

MarketPlace (MPL) 1920×1080 300 10
RitualDance (RUD) 1920×1080 300 10
Cactus (CCT) 1920×1080 300 10
BasketballDrive (BBD) 1920×1080 300 10
BQTerrace (BQT) 1920×1080 300 10
ArenaOfValor (AOV) 1920×1080 300 10

E (HD)
FourPeople (FRP) 1280×720 300 10
Johnny (JNY) 1280×720 300 10
KristenAndSara (KAS) 1280×720 300 10

5.1.2 Platform setup

Two HGPPs: Ryzen and X-series (see Section 4.2.1.1); and two heterogeneous embed-
ded platforms: Xavier and Nano (see Section 4.2.1.2) were configured with the Ubuntu

74 Experimental Results

18.04 operating system, GCC version 7.5, and CMake [127] version 3.16.5. In addition,
the compiler optimisation -O3 was activated for all platforms to achieve the maximum
performance in terms of speed. The detailed analysis of the GCC auto vectorizer [128] is
presented in Section 5.2. Furthermore, two embedded heterogeneous platforms: Xavier
and Nano were configured with CUDA (see Section 3.2.1.1) version 10.2. All experiments
were performed using the maximum clock rate of the CPUs and the GPUs.

It is worth mentioning that the Ryzen platform was mainly used only in the early
stages of the development of the thesis. Specifically, it was used in the evaluation of the
first versions of the VTM software, analysing the computational load of the main blocks
integrating the decoder. The results of these analyses were published in [16] (See Section
7.3). For this reason, and in order not to overextend this dissertation, no further details
of this study are included here.

5.2 Performance analysis of the native GCC auto vec-
torizer

This section presents the performance analysis of the VVdeC decoder over Xavier
without SIMD using the different combinations of the native GCC auto vectorization1

options. The purpose of this study was to evaluate the performance of different auto
vectorization options on the targeted heterogeneous platforms and to choose the best
option for all future experiments. Here, the average FPS obtained for all sequences shown
in Section 5.3.1 with QP 27 and QP 32 for different combinations of native GCC auto
vectorization options “-O1”, “-O2”, “-O3”, “-Os” (optimise for size), “-Ofast” (disregard
strict standards compliance with “-O3”), and “-ftree-vectorize” (performs vectorization on
trees) is provided in Table 5.4. It can be seen that “-Os” was the worst of all options. On
the contrary, “-O3” was the best option for all configurations, although the combination
of “-O3” and “-ftree-vectorize” was slightly better (0.1 FPS) for AI sequences with QP
27. Moreover, the performance using “-Ofast”, and also the combination of “-Ofast”, and
“-ftree-vectorize” options was similar to that using “-O3” option for some configurations.
Therefore, the resulting fastest option “-O3” was selected to use in all experiments over
all platforms.

1GCC compiler automatically looks for loops and transforms loops to vector operations if auto vec-
torization flags are enabled [129]. An example of vectorization operation is given in Section 3.1.1.

Performance and speedup analysis of VVdeC v0.2 decoder 75

Table 5.4. Performance (in FPS) obtained by VVdeC decoder v0.2 over Xavier for different
combination of the native GCC auto vectorization options using 8 cores without SIMD.

Average FPS AI Sequences RA Sequences
QP 27 QP 32 QP 27 QP 32

O1 15.0 17.7 16.6 19.0
O2 15.5 17.4 16.8 19.3
O3 15.9 18.7 17.8 20.2
Os 13.2 15.6 15.8 18.1

Ofast 15.9 18.7 17.3 19.8
O1-ftree 15.6 18.3 16.6 19.0
O2-ftree 15.7 18.4 17.1 19.6
O3-ftree 16.0 18.7 17.5 20.0
Os-ftree 13.2 15.5 15.8 18.1

Ofast-ftree 15.9 18.6 17.3 19.7

5.3 Performance and speedup analysis of VVdeC v0.2
decoder

This section contains performance analysis of VVdeC v0.22 decoder (released on Dec.
2020) with and without SIMD, speedup analysis for SIMD, and comparison analysis of
speedup for vectorization and SIMD.

5.3.1 Preliminary analysis of VVdeC v0.2

This section presents the global performance (in FPS) of VVdeC v0.2 for different
numbers of cores available on X-series and Xavier without SIMD3. Here, CMF, DR2,
FM4, PR3, BBD and BQT test sequences of Set A (see Table 5.2) were used for all
experiments. Table 5.5 shows the performance (in FPS) obtained for VVdeC v0.2 decoder
over X-series without SIMD optimised for 1 to 15, 18 and 20 threads. Here, it can be
seen that real-time decoding was obtained for some UHD sequences with 20 threads, and
for all FHD sequences with 10 threads, except BQT QP22. In the following section of
this document only average results are presented due to improve the readability of the
document and not to overextend this dissertation.

2The reason for choosing VVdeC v0.2 for this experiment is that it was the available version of VVdeC
on the time of experiment (Dec. 2020).

3VVdeC v0.2 does not support the ARM-based platform and is not SIMD optimised for the ARM-
based platform. Therefore, this preliminary analysis provides the reference performance for speedup
analysis.

76 Experimental Results

The presented results were averaged for all sequences and for four QPs (22, 27, 32,
and 37). Figure 5.1 shows the average performance in FPS and the speedup obtained
from the decoding of VVdeC v0.2 using 1 to 20 threads over X-series for AI (left) and RA
(right) sequences without SIMD. For AI sequences, the average between 5.1 and 43.5 FPS
was obtained using between 1 and 20 threads without SIMD. In addition, a 8.5 speedup
was achieved using 20 threads. Furthermore, 50.2 FPS with a 9.7 speedup was obtained
using 20 threads for RA sequences without SIMD.

Table 5.5. Performance (in FPS) obtained for VVdeC v0.2 decoder over X-series for
different threads without SIMD optimisations.

Seq. QP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 20
22 2.3 3.1 4.5 6.0 7.5 8.9 10.4 11.7 13.1 14.3 14.6 14.9 15.2 15.5 15.7 16.5 16.9
27 2.6 4.1 6.1 7.9 9.6 11.4 13.3 14.9 16.8 18.4 18.8 19.1 19.4 19.7 20.0 21.0 21.5
32 3.0 5.4 8.0 10.3 12.5 14.9 17.3 19.4 21.8 24.1 24.5 24.9 25.3 25.6 26.0 26.9 27.6CMF

37 3.0 5.9 8.7 11.5 14.3 17.0 19.8 22.2 25.0 27.6 28.0 28.5 28.9 29.2 29.6 30.4 31.4
22 2.0 2.5 3.7 4.9 6.1 7.3 8.4 9.5 10.7 11.7 11.9 12.1 12.3 12.5 12.8 13.5 13.9
27 2.7 4.6 6.7 8.7 10.5 12.5 14.5 16.3 18.3 20.2 20.6 20.9 21.3 21.6 21.9 22.8 23.3
32 2.9 5.2 7.6 9.9 12.0 14.2 16.6 18.6 20.9 23.1 23.4 23.9 24.2 24.5 24.9 25.9 26.5DR2

37 3.1 5.8 8.4 11.1 13.9 16.5 19.2 21.5 24.1 26.7 27.2 27.6 28.0 28.5 28.8 29.9 30.6
22 2.6 4.3 6.3 8.3 10.3 12.3 14.3 16.0 18.0 19.8 20.2 20.5 20.8 21.1 21.4 22.3 22.9
27 2.9 5.1 7.5 9.8 11.8 14.1 16.4 18.3 20.5 22.7 23.1 23.5 23.9 24.2 24.4 25.5 26.1
32 3.1 5.6 8.2 10.7 12.9 15.4 17.9 20 22.5 24.9 25.3 25.7 26.1 26.3 26.6 27.8 28.4FM4

37 3.1 6.0 8.8 11.6 14.4 17.1 20.0 22.4 25.2 27.8 28.3 28.7 29.1 29.5 29.8 30.8 31.6
22 2.1 2.9 4.2 5.6 7.0 8.3 9.7 10.9 12.2 13.3 13.6 13.8 14.1 14.3 14.5 15.3 15.6
27 2.3 3.6 5.3 6.8 8.2 9.8 11.4 12.7 14.3 15.7 16.1 16.4 16.7 16.9 17.2 18.0 18.4
32 2.5 4.2 6.1 7.9 9.6 11.4 13.3 15.0 16.7 18.5 18.8 19.1 19.5 19.8 20.0 20.9 21.5PR3

37 2.8 4.8 7.0 9.2 11.5 13.7 15.9 17.9 20.1 22.2 22.5 22.9 23.2 23.6 23.9 24.9 25.5
22 8.4 11.8 17.3 22.6 28.3 33.9 39.5 45.0 50.6 55.3 56.3 57.2 58.1 59.0 59.9 62.7 63.4
27 10.1 16.5 24.1 31.0 37.5 44.9 52.3 59.6 66.9 73.5 74.5 75.5 76.4 77.5 78.5 81.5 82.8
32 10.7 19.3 28.2 36.5 44.1 52.8 61.4 70.0 78.3 86.4 87.6 88.8 89.7 90.7 92 94.9 96.0BBD

37 11.0 21.8 31.7 41.8 52.0 62.2 72.4 82.6 92.4 102.0 103.0 104.0 106.0 107.0 108.0 111.0 112.0
22 8.5 9.7 14.2 18.7 23.3 27.9 32.4 37.0 41.4 45.0 45.9 46.8 47.7 48.5 49.5 51.9 51.2
27 9.3 13.9 20.2 26.0 31.7 37.9 44.1 50.3 56.4 61.7 62.7 63.8 64.8 65.8 66.7 69.5 70.7
32 10.3 16.8 24.7 31.8 38.4 46.0 53.5 61.0 68.4 75.2 76.2 77.1 78.4 79.5 80.5 83.7 85.0

A
ll

In
tr

a

BQT

37 11.2 19.1 27.9 36.8 45.7 54.7 63.6 72.6 81.3 89.4 90.8 92.0 93.2 94.4 95.6 99.0 100.0
22 2.5 4.2 6.1 8.1 10.1 12.1 14.0 15.9 17.8 19.6 19.8 20.1 20.3 20.7 21.0 21.9 22.4
27 3.1 5.8 8.7 11.4 13.9 16.6 19.3 21.9 24.4 26.9 27.1 27.5 27.8 28.2 28.4 29.7 30.3
32 3.6 6.9 10.1 13.2 16.0 19.1 22.2 25.2 28.2 31.3 31.5 31.9 32.3 32.6 33.1 34.5 35.3CMF

37 3.8 7.2 10.5 14.0 17.4 20.8 24.2 27.5 30.8 34.1 34.6 34.6 35.5 35.6 36.4 37.3 38.7
22 2.1 4.0 5.9 7.8 9.7 11.7 13.5 15.4 17.3 19.0 19.3 19.5 19.7 19.9 20.1 20.8 21.2
27 2.4 4.5 6.7 8.8 10.6 12.6 14.7 16.7 18.8 20.7 21.0 21.2 21.4 21.6 21.9 22.6 23.2
32 2.6 5.1 7.5 9.8 11.7 14.1 16.4 18.6 20.9 23.1 23.4 23.6 23.9 24.2 24.5 25.3 25.9DR2

37 3.0 5.9 8.6 11.4 14.1 16.9 19.7 22.4 25.1 27.8 28.0 28.3 28.8 29.2 29.5 30.4 31.1
22 2.3 4.3 6.4 8.5 10.5 12.6 14.7 16.7 18.7 20.7 20.9 21.1 21.4 21.7 21.9 22.5 23.0
27 2.5 4.9 7.2 9.4 11.3 13.6 15.8 18.0 20.2 22.3 22.5 22.8 23.1 23.3 23.6 24.4 24.9
32 2.8 5.5 8.1 10.5 12.6 15.1 17.6 20.0 22.5 24.9 25.1 25.4 25.8 26.0 26.4 27.3 27.9FM4

37 3.0 5.9 8.6 11.4 14.2 17.0 19.7 22.4 25.2 27.8 28.1 28.5 28.8 29.2 29.5 30.5 31.1
22 1.8 3.1 4.6 6.0 7.5 9.0 10.5 11.9 13.4 14.7 14.9 15.1 15.2 15.4 15.7 16.2 16.6
27 1.9 3.6 5.3 6.9 8.3 9.9 11.5 13.1 14.7 16.2 16.4 16.6 16.8 17.0 17.2 17.8 18.2
32 2.0 3.9 5.7 7.4 9.0 10.7 12.5 14.2 16.0 17.7 17.9 18.1 18.3 18.5 18.7 19.3 19.8PR3

37 2.1 4.0 5.9 7.9 9.8 11.7 13.7 15.6 17.5 19.4 19.6 19.8 20.0 20.2 20.5 21.2 21.7
22 8.6 15.7 23.0 30.4 37.8 45.1 52.4 59.5 66.6 73.6 74.2 74.7 75.7 76.3 77.2 80.3 82.0
27 9.8 18.3 27.1 35.1 42.3 50.4 58.5 66.5 74.3 81.9 82.7 82.9 83.9 84.9 85.8 89.9 92.7
32 10.8 20.6 30.3 39.3 47.4 56.5 65.6 74.3 83.4 92.2 92.7 93.8 94.6 95.2 96.7 101.0 103.0BBD

37 11.0 21.1 30.9 41.0 51.1 60.8 70.5 80.1 89.6 99.2 100.0 101.0 102.0 103.0 104.0 106.0 111.0
22 8.2 14.3 20.9 27.7 34.5 41.2 47.9 54.3 60.8 67.0 67.7 68.4 69.6 70.5 71.4 74.1 76.0
27 10.3 19.3 28.4 36.8 44.4 52.9 61.4 69.6 77.8 85.5 86.6 87.6 88.7 89.8 90.8 94.0 96.4
32 11.6 22.3 32.7 42.4 51.1 61.0 70.8 80.3 89.8 99.3 100.0 101.0 102.0 103.0 105.0 108.0 110.0

R
an

do
m

A
cc

es
s

BQT

37 12.2 23.5 34.3 45.4 56.5 67.3 78.0 88.5 99.0 109.0 110.0 111.0 113.0 114.0 115.0 119.0 122.0

Performance and speedup analysis of VVdeC v0.2 decoder 77

1 2 3 4 5 6 8 10 20

0

10

20

30

40

50

1 1.6 2.4 3.1 3.9 4.6
6.1 7.5 8.5

5.1
8.4

12.3

16.1

19.7

23.5

31.1

38.3

43.5

No. of thread

F
P

S

AI sequences

Speedup

1 2 3 4 5 6 8 10 20
0

10

20

30

40

50

1 1.9 2.8 3.6 4.5 5.3
7

8.7 9.7

5.2

9.7

14.3

18.8

23

27.4

36.2

44.7

50.2

No. of thread
F
P

S

RA sequences

Speedup

Figure 5.1. Average performance (in FPS) and speedup obtained for VVdeC v0.2 decoding
for different thread numbers without SIMD optimisation over X-series for AI (left) and
RA (right) sequences.

Figure 5.2 shows the average performance in FPS and the speedup obtained from the
decoding of VVdeC v0.2 using 1 to 8 threads over Xavier for AI (left) and RA (right)
sequences without SIMD. For AI sequences, the average between 2.5 and 16.4 FPS was
obtained using between 1 and 8 threads without SIMD. In addition, speedup a 6.6 was
achieved using 8 threads. Moreover, a 18.7 FPS with a speedup of 6.7 was obtained using
8 threads for RA sequences without SIMD. The algorithm has a high degree of parallelism
because with 8 cores VVC obtained an speedup from 6.6 to 6.7 on Xavier. Moreover, the
difference between Xavier and X-series in speedup is very small.

5.3.2 Performance analysis of VVdeC v0.2 with SIMD activated

This section presents the results obtained for the performance analysis of VVdeC v0.2
with SIMD optimisation explained in Section 4.5.2. Similarly to Section 5.3.1, the test
sequences FM4, CMF, DR2, PR3, BBD and BQT of Set A and four QP (22, 27, 32 and
37) were used to average performance in FPS. The average FPS and the speedup obtained
for VVdeC v0.2 over X-series using 1-20 cores for AI and RA with SIMD are presented in
Figure 5.3. Here, 12.1 to 90.5 FPS was obtained using 1 to 20 threads for the AI sequences,
where a 7.5 speedup was obtained using 20 threads. For RA sequences, 155.3 FPS with
8.2 speedup was obtained using 20 threads. Moreover, Figure 5.4 presents the average
performance in FPS and the speedup achieved for VVdeC v0.2 decoding for different

78 Experimental Results

1 2 3 4 5 6 7 8
0

10

1
1.8

2.6
3.4

4.3
5.1

5.9
6.6

2.5

4.4

6.5

8.6

10.7

12.7

14.7

16.4

No. of thread

F
P

S

AI sequences

Speedup

1 2 3 4 5 6 7 8
0

10

20

1
1.8

2.7
3.6

4.4
5.2

6
6.7

2.8

5

7.5

9.9

12.2

14.5

16.8

18.7

No. of thread
F
P

S

RA sequences

Speedup

Figure 5.2. Average performance (in FPS) and speedup obtained for VVdeC v0.2 decoding
for different thread numbers without SIMD optimisation over Xavier for AI (left) and RA
(right) sequences.

thread numbers without SIMD over Xavier for AI (left) and RA (right) sequences. For
AI sequences, the average FPS achieved from 5.1 to 27.4 using 1 to 8 threads with SIMD
optimisation. a 5.4 speedup was gained using 8 threads compared with one thread over
Xavier. Moreover, 38.8 FPS was obtained with a 6.5 speedup using 8 threads for RA
sequences.

5.3.3 Speedup analysis

The first part of this section focuses on speedup analysis for SIMD optimisation over
X-series and Xavier platforms. The second part focuses on the comparison analysis of
speedup for vectorization and SIMD.

5.3.3.1 Speedup analysis with SIMD optimisations

This subsection asses the speedup achieved by different decoder blocks using SIMD
optimisation on X-series and Xavier platforms. The speedup was calculated using the
Equation 5.1:

SUfps = FPSsimd/FPSwosimd (5.1)

Performance and speedup analysis of VVdeC v0.2 decoder 79

1 2 3 4 5 6 8 10 20

0

20

40

60

80

100

1 1.4 2 2.7 3.3 3.9 5.1 6.2 7.5
12.1

16.2

24.7

32.1

39.7

47.1

61.6

75.2

90.5

No. of thread

F
P

S

AI sequences

Speedup

1 2 3 4 5 6 8 10 20

0

20

40

60

80

100

120

140

160

1 1.7 2.5 3.1 4 4.8 6.1 7.2 8.2
19

32.9

47.9

62.5

76.5

90.2

114.9

136.5

155.3

No. of thread
F
P

S

RA sequences

Speedup

Figure 5.3. Average performance (in FPS) and speedup obtained for VVdeC v0.2 decoding
for different thread numbers with SIMD optimisation over X-series for AI (left) and RA
(right) sequences.

1 2 3 4 5 6 7 8
0

10

20

1 1.5 2.3 2.9 3.6 4.3 4.9 5.45.1

7.7

11.4

14.8

18.3

21.7

25

27.4

No. of thread

F
P

S

AI sequences

Speedup

1 2 3 4 5 6 7 8
0

10

20

30

40

1 1.8 2.7 3.6 4.4 5.2 5.9 6.56

11

16.4

21.5

26.5

31.2

35.6

38.8

No. of thread

F
P

S

RA sequences

Speedup

Figure 5.4. Average performance (in FPS) and speedup obtained for VVdeC v0.2 decoding
for different thread numbers with SIMD optimisation over Xavier for AI (left) and RA
(right) sequences.

Where, SUfps represents speedup for FPS, FPSsimd is FPS obtained with SIMD and
FPSwosimd is FPS obtained without SIMD.

Figure 5.5 shows the average speedup obtained for different blocks of the VVdeC v0.2

80 Experimental Results

decoder by using SIMD over X-series (left) and Xavier (right) for AI and RA sequences
using 8 cores. ALF block of VVdeC v0.2 decoder is the most benefited from SIMD
optimisation, where roughly average ×8 speedup over X-series and ×3.5 speedup over
Xavier were obtained for AI and RA sequences. For RA sequences, EP block gained
average ×3.64 and ×2.45 speedup over X-series and Xavier, respectively. Furthermore,
over X-series, the TX, IP, DBF, and SAO blocks obtained around average ×1.6, ×1.3,
×1.2, and ×2.1 speedup, respectively for AI and RA sequences. However, ED and OT
blocks gained a little average speedup for all sequences over X-series.

Moreover, the scenario is similar over Xavier, the IP block obtained average ×1.3,
the DBF block obtained average ×1.1, and SAO block obtained average ×1.6 for all
sequences. But, the ED, TX and OT blocks achieved a little average speedup ranging
between ×1.01 and ×1.1 for all sequences over X-series. In addition, average ×2 and ×3.3

speedup is obtained of total decoding over X-series for AI and RA sequences, respectively.
On Xavier, the average speedup obtained of total decoding was ×1.6 for AI and ×2.1 for
RA.

ED TX IP EP DBF SAO ALF OT Total
0

1

2

3

4

5

6

7

8

9

10

1
.0
2 1
.6
1

1
.3
4

0

1
.1
6

2
.2
2

8

1
.0
2

1
.9
9

1
.0
1 1
.5
4

1
.3
3

3
.6
4

1
.2

1
.9
7

7
.6
3

1
.0
9

3
.2
7

X-series

% in AI seq.
% in RA seq.

ED TX IP EP DBF SAO ALF OT Total
0

1

2

3

4

5

1
.0
2

1
.0
3 1
.3
2

0

1
.0
6

1
.6
9

3
.5
4

1
.0
3

1
.5
7

1
.0
1

1
.0
5 1
.3
2

2
.4
5

1
.1

1
.4
5

3
.5
7

1
.1
4

2
.1
2

Xavier

% in AI seq.
% in RA seq.

Figure 5.5. Average speedup for different blocks of the VVdeC v0.2 decoder by using
SIMD extensions over X-series (left) and Xavier (right).

The results of the speedup analysis of the VVdeC v0.2 decoder show that the similar
speedup was obtained of different decoder blocks for two types of platforms. However,
most benefited blocks (e.g. ALF or EP) obtained better speedup over X-series than
Xavier, which impact on the overall decoding time. This is reasonable since X-series has
higher number of cores with a higher clock speed, larger cache memory, different SIMD
register size, and a large number of PCI Express Lanes with higher memory speed than

Performance and speedup analysis of VVdeC v0.2 decoder 81

Xavier. Moreover, the ED block did not benefit from the SIMD optimisation, as this
decoder block is serial in nature.

5.3.3.2 Comparison analysis of speedup for vectorization and SIMD

The performance and speedup comparison on Xavier among Un-optimised (UnOP)4 +
Un-vectorization (UnVec)5, UnOP, and optimised by SIMD for eight cores are presented
in this section. Figure 5.6 displays the FPS and speedup comparison: UnOP+UnVec
vs. UnOP vs. optimised VVdeC v0.2 implementations over Xavier for AI (left) and
RA (right) sequences. Here, UnOP implementation gained ×1.2 speedup and the SIMD
optimisation implementation gained ×2.0 with respect to UnOP+UnVec implementation
for AI sequences with all QPs (22-37). For RA sequences, the average ×1.1 and ×2.4

speedup obtained by UnOP and the SIMD optimisation implementation, respectively.

This analysis shows that auto-vectorization6 achieved a small improvement (10-20%).
The proposed SIMD optimisation is needed to improve performance on heterogeneous
platforms with limited resources.

UnOp+UnVec UnOp Opt.

0

10

20

30

1 1.2 2

17.1

20.7

34.3

F
P

S

AI sequences

Speedup

UnOp+UnVec UnOp Opt.

0

10

20

30

40

45

1 1.1 2.4

20.8
23.7

49.9

F
P

S

RA sequences

Speedup

Figure 5.6. FPS and speedup comparison: un-optimised and Un-vectorization vs. un-
optimised vs. optimised VVdeC v0.2 implementations over Xavier for AI (left) and RA
(right) sequences.

4Un-optimised version is without SIMD optimization.
5Un-vectorization version is without auto vectorization.
6Auto vectorizer looks for loops and, if possible, executes them automatically using the vector registers

and instructions of the targeted device.

82 Experimental Results

5.4 Performance and speedup analysis of VVdeC v1.3
decoder for embedded platforms

As it was introduced in Section 5.3, a new version of VVdeC was released in Dec. 2021
and it supports better tile parallelism, and uses 3 times less memory than previous version,
which is essential to compare with OpenVVC. This section presents the performance (in
FPS) with and without SIMD optimisation and speedup obtained with SIMD optimisation
for VVdeC v1.3 decoder using maximum number of cores over Xavier and Nano platforms.
All test sequences of Set A (see Table 5.2) were used for all experiments. The presented
results were averaged for all sequences and for four QPs (22, 27, 32, and 37).

Figure 5.7 illustrates the average FPS obtained with or without SIMD and speedup
for different video quality of the VVdeC v1.3 decoder by using SIMD optimisation over
Xavier for AI (left) and RA (right) sequences. For AI sequences, the average ×1.6 speedup
was achieved, where the average 39.9 and 60 FPS were obtained with and without SIMD
optimisation, respectively. For RA sequences, real-time decoding was achieved for all HD
and FHD, and some of the UHD video sequences with SIMD optimisation. Moreover,
for RA sequences, the average FPS 75.5 and 144.1 was achieved with and without SIMD
optimisation with an speedup of ×2.1.

without SIMD (FPS) SIMD (FPS) Speedup
0

50

100

9
.6 1

6
.1

1
.7

3
3
.7

5
3
.6

1
.6

7
6
.3

1
1
0
.5

1
.4

3
9
.9

6
0

1
.6

AI sequences

UHD
FHD
HD

Average

without SIMD (FPS) SIMD (FPS) Speedup
0

50

100

150

200

250

300

350

1
0
.2 2
2
.4

2
.2

4
2
.8

8
8
.9

2
.1

1
7
3
.5

3
2
1

1
.9

7
5
.5

1
4
4
.1

2
.1

RA sequences

UHD
FHD
HD

Average

Figure 5.7. Average FPS obtained with/without SIMD and speedup for different sequences
of VVdeC decoder v1.3 over Xavier for AI (left) and RA (right) sequences.

This result shows how SIMD optimisation of the VVdeC v1.3 decoder affects different
qualities of videos on the Xavier platform. Here, all FHD sequences obtained real-time

Performance and speedup analysis of OpenVVC v1.0 decoder 83

decoding and HD reached up to approximately ×7 more FPS than real-time decoding
using SIMD optimisation. Moreover, up to about ×2.2 in performance (FPS) was obtained
for the UHD sequence, where some of them achieved real-time decoding. This information
are useful for future research to focus more on acceleration of UHD videos.

Figure 5.8 shows the average FPS obtained with/without SIMD and speedup for video
of the VVdeC v1.3 decoder by using SIMD optimisation over Nano for AI (left) and RA
(right) sequences. The average speedup of ×1.5 and ×1.8 was achieved for both AI and
RA sequences, respectively. The average of 9.3 FPS for AI and 19.2 FPS for RA sequences
was obtained without SIMD optimisation. In addition, 14.4 FPS for AI sequences and
33.6 FPS for RA sequences was obtained with the SIMD optimisation. Only HD video
sequences achieved real-time decoding for RA sequences with SIMD optimisation.

Over the Nano platform, the SIMD optimisation of the VVdeC v1.3 decoder obtained
real-time decoding only for HD videos. FHD and UHD videos were very far from real-time
decoding. Therefore, it can be concluded that this kind of platform is not recommended
if real-time decoding of FHD and UHD videos is required. This result is expected because
the hardware resources are very limited but the speedup is similar to the one obtained
with Xavier.

5.5 Performance and speedup analysis of OpenVVC v1.0
decoder

This section presents the performance (in FPS) without and with SIMD optimisation
(see Section 4.5.4) and speedup obtained with SIMD optimisation for OpenVVC v1.0
decoder (released on Dec 2021) over Xavier and Nano. The purpose of the experiment is
to assess the performance of the OpenVVC decoder for SIMD optimisation on embedded
platforms. It serves to validate the methodology proposed in this Thesis because the same
methodology was applied for VVdeC. Furthermore, in this experiment, all test sequences
of Set B (see Table 5.3) were used as OpenVVC supports tile parallelisation (see Section
5.6 for different frame-tile configurations of OpenVVC).

Figure 5.9 shows the average FPS obtained with and without SIMD and speedup for
different video quality of the OpenVVC decoder v1.0 by using SIMD optimisation over
Xavier for AI (left) and RA (right) sequences. The presented results were averaged for
all sequences and for two QPs7 (27 and 37). For AI sequences, average ×1.8 speedup

7two QPs are included in this experiment for reducing number of experiments and accelerating the
results obtaining process.

84 Experimental Results

without SIMD (FPS) SIMD (FPS) Speedup
0

10

20

30

40

50

60

2
.1 3
.4

1
.6

7
.3

1
1

1
.5

1
8
.6

2
8
.8

1
.5

9
.3

1
4
.4

1
.5

AI sequences

UHD
FHD
HD

Average

without SIMD (FPS) SIMD (FPS) Speedup
0

10

20

30

40

50

60

70

80

90

2
.3 4
.3

1
.9

1
0
.5

1
9
.7

1
.9

4
4
.9

7
6
.8

1
.7

1
9
.2

3
3
.6

1
.8

RA sequences

UHD
FHD
HD

Average

Figure 5.8. Average FPS obtained with/without SIMD and speedup for different video
quality of VVdeC decoder v1.3 by using SIMD optimisations over Nano for AI (left) and
RA (right) sequences.

was achieved, where the average of 76.3 FPS and 136.3 FPS were obtained with and
without SIMD optimisation, respectively. In addition, real-time decoding was achieved
for all HD and FHD, and some of UHD video sequences with SIMD optimisation. The
scenario was similar with RA sequences. An average 97 FPS and 171.9 FPS were obtained
with and without SIMD optimisation, where the achieved speedup was ×1.9. It can be
observed from the results that FPS obtained on Xavier for HD videos was more than ×4

than real-time decoding. As a result, FHD and HD video sequences were included in the
experiments presented in the following sections.

In Figure 5.10, the average FPS obtained with/without SIMD and speedup for different
video quality of the OpenVVC v1.0 decoder by using SIMD optimisation over Nano for
AI (left) and RA (right) sequences are presented. Here, the average speedup of ×1.7 was
achieved for both AI and RA sequences. The average of 18.9 and 23.4 FPS was obtained
without SIMD optimisation for AI and RA sequences, respectively. Furthermore, 30.9 FPS
was obtained for AI and 37.7 FPS was obtained for RA sequences with SIMD optimisation.
It can be concluded from this study that only HD video sequences achieved real-time
decoding with SIMD optimisation for all sequences. Therefore, HD video sequences were
included in the experiments presented in the following sections.

Similar to results presented in the previous Section 5.4, the SIMD optimisation of
the OpenVVC v1.0 decoder obtained real-time decoding only for HD videos on the Nano
platform and for FHD and HD on the Xavier platform. Moreover, most of the UHD

Performance and speedup analysis of OpenVVC v1.0 decoder 85

without SIMD (FPS) SIMD (FPS) Speedup
0

50

100

150

200

250

300

350

1
1
.7 2
3
.3

2

4
9
.1

9
3
.8

1
.9

1
6
8
.6

2
9
1
.8

1
.7

7
6
.5

1
3
6
.3

1
.8

AI sequences

UHD
FHD
HD

Average

without SIMD (FPS) SIMD (FPS) Speedup
0

50

100

150

200

250

300

350

400

1
5
.9 3
1
.1

2

6
5

1
2
4
.4

1
.9

2
1
0
.1

3
6
0
.3

1
.7

9
7

1
7
1
.9

1
.8

RA sequences

UHD
FHD
HD

Average

Figure 5.9. Average FPS obtained with/without SIMD and speedup for different video
quality of OpenVVC decoder v1.0 by using SIMD optimisations over Xavier for AI (left)
and RA (right) sequences.

without SIMD (FPS) SIMD (FPS) Speedup
0

10

20

30

40

50

60

70

80

90

2
.5 4
.6

1
.8

1
1
.1

1
9
.7

1
.8

4
3
.1

6
8
.5

1
.6

1
8
.9

3
0
.9

1
.7

AI sequences

UHD
FHD
HD

Average

without SIMD (FPS) SIMD (FPS) Speedup
0

10

20

30

40

50

60

70

80

90

100

3
.3 5
.9

1
.8

1
4
.7

2
5
.5

1
.7

5
2
.1

8
1
.6

1
.6

2
3
.4

3
7
.7

1
.7

RA sequences

UHD
FHD
HD

Average

Figure 5.10. Average FPS obtained with/without SIMD and speedup for different video
quality of OpenVVC decoder v1.0 by using SIMD optimisations over Nano for AI (left)
and RA (right) sequences.

videos are close to real-time over Xavier platform. Therefore, it is suggested to consider
the OpenVVC v1.0 decoder for further optimisation to reach real-time decoding for UHD
videos.

86 Experimental Results

The presented results justified the fact that the proposed methodology reduced the
decoding time for the OpenVVC decoder as like VVdeC decoder, demonstrating its adapt-
ability and generality. The working time required for the SIMD optimisation process was
reduced for OpenVVC since the same experience and the defined methodology was used.

5.6 Decoding performance analysis of OpenVVC v1.0
decoder for different frame-tile configurations

The influence of tiles in the decoder performance and the selection of the best config-
uration is analysed in this section. In this study, the OpenVVC v1.0 decoder performance
analysis was conducted for different frame-tile configurations over Xavier and Nano. Here,
five and four combinations of frame-tile configurations were used to analyse the decoding
performance of OpenVVC v1.0 decoder considering Xavier has 8 cores and Nano has 4
cores, respectively. This analysis was done to determine the best frame-tile configuration8.
The configurations for Xavier are the following, where f denotes the number of frames
and t denotes the number of titles processed in parallel.

• 8-frame and 0-tile per frame in parallel (f8/t0) (only frame parallelism without tile
parallelism).

• 1-frame and 8-tile per frame in parallel (f1/t8).

• 2-frame and 4-tile per frame in parallel (f2/t4).

• 4-frame and 2-tile per frame in parallel (f4/t2).

• 2-frame and 8-tile per frame in parallel (f2/t8).

The four configurations for Nano are the following:

• 4-frame and 0-tile per frame in parallel (f4/t0) (only frame parallelism without tiles
parallelism).

• 1-frame and 4-tile per frame in parallel (f1/t4).

• 2-frame and 2-tile per frame in parallel (f2/t2).

• 2-frame and 4-tile per frame in parallel (f2/t4).
8An example of 4 tiles per frame is given in Section 3.1.2.2.

Decoding performance analysis of OpenVVC v1.0 decoder for different frame-tile configurations87

Figure 5.11 illustrates the average decoding performance (in FPS) of the OpenVVC
decoder v1.0 for different frame-tile configurations with QPs 27 and 37 RA sequences on
Xavier (left) and Nano (right). It can be seen that, as expected, the configuration with
only the frame configuration (f8/t0 for Xavier and f4/t0 for Nano) performed worse than
any frame-tile configuration. For the analysis over Xavier, f4/t2 was the best performing
and f1/t8 was the worst performing configuration for video with all qualities and resolu-
tions. The FPS obtained for the f4/t2 combination was average ×1.4 for FHD and ×1.3

for HD compared to the f1/t8 combination. Moreover, f2/t2 was the best performing
configuration and f1/t4 was the worst performing configuration for HD video with all
QPs over Nano. The combination f2/t2 was achieved in average ×1.1 fps compared to
the combination f1/t4 for HD sequences.

f8/t0 f1/t8 f2/t4 f4/t2 f2/t8
0

100

200

300

400

1
9
7
.3

2
0
2
.1 2
4
3
.1

2
5
8
.1

2
1
9
.4

2
3
6
.4

2
4
2
.5

2
9
3
.3

3
0
8
.5

2
6
4

7
3
.3

7
5
.5 9
9
.2

1
0
6
.4

8
9
.6

7
7
.7

7
9
.7 1
0
4
.8

1
1
1
.3

9
4

Thread configuration

D
ec

od
in

g
fr

am
e

ra
te

(F
P

S)

Xavier

HD-QP27 HD-QP37 FHD-QP27 FHD-QP37

f4/t0 f1/t4 f2/t2 f2/t4
0

20

40

60

80

100
2
9

5
5
.6 6
2
.6

5
9
.7

3
8
.2

6
5
.2

7
4
.5

7
0
.6

Thread configuration

D
ec

od
in

g
fr

am
e

ra
te

(F
P

S)

Nano

HD-QP27 HD-QP37

Figure 5.11. Average decoding performance (FPS) of the OpenVVC v1.0 decoder for
different frame-tile configurations with QPs 27 and 37 RA sequences on Xavier (left) and
Nano (right).

The results show the performance of the OpenVVC v1.0 decoder for different frame-tile
configurations on two platforms. Here, the configuration with two tiles per frame (f4/t2
for Xavier and f2/t2 for Nano) achieved the highest performance for both platforms. This
information is useful in choosing the number of frames and tiles depending on the available
cores of the platform to maximise performance.

88 Experimental Results

5.7 Performance comparison between VVdeC v1.3 and
OpenVVC v1.0 decoder

This section presents the performance (in FPS) comparison between VVdeC v1.3 and
OpenVVC v1.0. The purpose of the study is to compare the performance between VVdeC
and OpenVVC. All FHD and HD test sequences of Set B with QPs 27 and 37 were used
in this section for a fair comparison. This comparison was performed using the default
(best) frame-tile configuration for theVVdeC v1.3 and OpenVVC v1.0 decoder. Figure
5.12 shows average decoding performance (in FPS) of OpenVVC and VVdeC for QPs (27
and 37), number of cores over Xavier (left) and Nano (right). It can be seen that in all
cases VVdeC obtained similar but a little higher FPS over Xavier and Nano. VVdeC
achieved up to average ×1.11 more FPS compared to OpenVVC on Xavier using 1 to 8
threads. However, the saturation point was reached by VVdeC using 7 cores for HD video
sequences on Xavier. Furthermore, the maximum average ×1.16 more FPS was obtained
by VVdeC compared to OpenVVC on Nano using 1 to 4 threads.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Number of cores

D
ec

od
in

g
fr

am
e

ra
te

(F
P

S)

Xavier
QP27 QP37

OpenV V C : HD
OpenV V C : FHD
V V deC : HD
V V deC : FHD

1 2 3 4
0

10

20

30

40

50

60

70

80

90

Number of cores

D
ec

od
in

g
fr

am
e

ra
te

(F
P

S)

Nano

OpenVVC:HD (QP27)
VVdeC:HD (QP27)

OpenVVC:HD (QP37)
VVdeC:HD (QP37)

Figure 5.12. Average decoding performance (in FPS) of OpenVVC and VVdeC for QPs
(27 and 37), number of cores over Xavier (left) and Nano (right).

This result presents the performance achieved by the VVdeC v1.3 and OpenVVC v1.0
decoder using the SIMD optimisation on two platforms. Here, it can be seen that the
performance of the VVdeC v1.3 decoder decreased for the eighth core and the trend in
the performance of the OpenVVC v1.0 decoder was flattening after the seventh core. This
means that platforms with more cores with the same feature will barely help to improve

Experimental results of the CPU+GPU implementation of VVdeC v1.3 decoder 89

the performance. The proposed methodology took almost maximum advantage of the
SIMD optimisation for the VVdeC v1.3 and OpenVVC v1.0 decoder on both platform.

5.8 Experimental results of the CPU+GPU implemen-
tation of VVdeC v1.3 decoder

This section presents the speedup and performance (in FPS) obtained with CPU+GPU
based implementation (see Section 4.6) of VVdeC v1.3 ALF block over Xavier platform.
All test sequences of Set A (see Table 5.2) were used for all experiments. Here, the average
time distribution for different blocks of the VVdeC v1.3 decoder (in seconds) using CPU
and CPU+GPU of Xavier with SIMD activated for AI (left) and RA (right) sequences is
shown in Figure 5.13. The presented results were averaged for all sequences and for four
QPs (22, 27, 32, and 37). It can be seen that all decoder blocks consumed similar time
for both CPU and CPU+GPU implementation, except the ALF block which consumed
roughly 50% less time using CPU+GPU implementation compared to CPU implementa-
tion for all sequences. Moreover, the total decoding time of CPU+GPU is 11% and 12.6%
less for AI and RA sequences, respectively. As the ALF block was processed on GPU,
ALF and the total decoding time consumed less time for CPU+GPU implementation.

Table 5.6 presents the average speedup obtained for ALF and the total decoding time
using CPU+GPU over CPU with SIMD activated for four QPs (22, 27, 32 and 37). The
ALF was accelerated on average ×2.02 and ×2.01 for AI and RA sequences, respectively.
As a result, an average increase of ×1.13 in the total decoder times was achieved for all
sequences.

This improvement may seem slightly limited. However, it is worth remembering that
1) it is considering the overall improvement of the whole decoder by migrating only one of
its main blocks, 2) it is including in the processing time the transfer operations between
memories, and 3) the performance comparison is being made against an already optimised
software. The following section elaborates more on the details of these results.

Table 5.6. Average speedup obtained for ALF and total decoding time (TOT) using
CPU+GPU over using only CPU with SIMD activated for four QPs (22-37).

AI Sequences RA Sequences
QP 22 27 32 37 Avg. 22 27 32 37 Avg.
ALF 1.91 1.93 1.95 2.28 2.02 2.02 2.09 2.01 1.93 2.01
TOT 1.08 1.12 1.15 1.18 1.13 1.13 1.14 1.13 1.11 1.13

90 Experimental Results

ED TX IP EP DBF SAO ALF OT Total
0

10

20

30

40

50

60

70

80

90

1
7
.5

9
.6

1
4
.3

0

1
0
.9

1
.6

1
5

3
.9

7
2
.8

1
7
.1

9

1
4
.8

0

1
1

1
.7

7
.4

3
.8

6
4
.8

Se
co

nd

AI sequences

CPU
CPU+GPU

ED TX IP EP DBF SAO ALF OT Total
0

10

20

30

40

50

60

70

80

90

4
.9

2
.8 3
.4

2
8
.6

1
0
.1

0
.6

1
6
.7

1
.8

6
9

4
.8

2
.6 3
.5

2
8
.6

1
0
.3

0
.6

8
.1

1
.7

6
0
.3

Se
co

nd

RA sequences

CPU
CPU+GPU

Figure 5.13. Average time distribution for different blocks of the VVdeC v1.3 decoder (in
sec.) using CPU and CPU+GPU of Xavier with SIMD activated for AI (left) and RA
(right) sequences.

5.9 Comparison performance of VVdeC v1.3 decoder
for different implementations

This section presents the performance (in FPS) comparison among CPU-only, CPU+
SIMD and CPU+GPU+SIMD implementation of the VVdeC v1.3 decoder for four QPs
(22, 27, 32 and 37). The purpose of this experiment is to present a performance compar-
ison of fine-grain optimisation using SIMD and CPU+GPU based hardware accelerator
along with the reference implementation without SIMD.

Figure 5.14 illustrates the average FPS obtained for the proposed implementation on
1) CPU without SIMD (dotted line), 2) CPU with SIMD (dashed line) and 3) CPU+GPU
(solid line) with SIMD activated for different thread numbers with QP 22 to 37 of the
sequences AI (left) and RA (right) on Xavier. Here, the obtained FPS was averaged for
the sequences with QP 22, 27, 32 and 37 of Set A. The average speedup of ×1.7 (maxi-
mum/minimum: ×2.0/×1.4) and ×2.2 (maximum/minimum: ×2.5/×1.7) was obtained
using CPU+GPU+SIMD over CPU-only implementation on Xavier with 8 cores and QP
22, 27, 32 and 37 for the sequences AI and RA, respectively. In addition, the average
speedup of ×1.1 was obtained using CPU+GPU+SIMD over CPU+SIMD implementa-
tion on Xavier with 8 cores for all sequences of all video qualities.

Figure 5.15 presents the average FPS obtained for the proposed implementation on

Comparison performance of VVdeC v1.3 decoder for different implementations 91

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

Number of threads

D
ec

od
in

g
fr

am
e

ra
te

(f
ps

)
AI Sequences

QP22
QP27
QP32
QP37

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Number of threads
D

ec
od

in
g

fr
am

e
ra

te
(f

ps
)

RA Sequences

QP22
QP27
QP32
QP37

Figure 5.14. Average FPS obtained for the proposed implementation on 1) CPU-only
without SIMD (dotted line), 2) CPU with SIMD (dashed line) and 3) CPU+GPU (solid
line) with SIMD activated for different thread numbers with QP 22 to 37 of AI (left) and
RA (right) sequences over Xavier.

1) CPU-only without SIMD (dotted line), 2) CPU with SIMD (dashed line), and 3)
CPU+GPU (solid line) with SIMD activated for different thread numbers with QP 22 to
37 of AI (left) and RA (right) sequences on Nano. Here, the obtained FPS was averaged
for all the HD and FHD sequences of Set A. The average speedup of ×0.6 was obtained for
AI and ×0.7 for RA using CPU+GPU+SIMD implementation over CPU+SIMD in Nano
with 1 core for all the sequences of all video qualities. Moreover, the average speedup of
×0.3 and ×0.5 was obtained using CPU+GPU+SIMD over CPU+SIMD implementation
on Nano with 4 cores and QP 22 to 37 for the sequences AI and RA, respectively. It
can be seen from the result that the performance was slower for CPU+GPU+SIMD
implementation, where performance were dropped further with the increment of number
of cores. The main reason for the performance drop are data transfers, which caused a
bottleneck in the decoding process. Furthermore, the decoder algorithm and execution
were studied in detail and found that GPU threads waited the majority of the time for
the data transferring from CPU to GPU. This behaviour is due to the fact that Nano
has a memory bandwidth of 7 GB/s and Xavier has a memory bandwidth of 170 GB/s.
This very limited memory bandwidth of Nano caused the obstacle in the transfer of data
between CPU and GPU. In addition, the request for data transfer between CPU and GPU
increased tremendously with the number of CPU cores increased. As a result, most of the
time average estimated around two CPU cores waited for data transferring between CPU
and GPU. Although the proposed methodology could not benefit on the Nano platform,

92 Experimental Results

it could be applied to other GPUs. In conclusion, the platform was the main limiting
factor for the performance loss on Nano.

1 2 3 4
0

5

10

15

20

25

Number of threads

D
ec

od
in

g
fr

am
e

ra
te

(f
ps

)

AI Sequences

QP22
QP27
QP32
QP37

1 2 3 4
0

5

10

15

20

25

30

35

40

45

50

Number of threads

D
ec

od
in

g
fr

am
e

ra
te

(f
ps

)

RA Sequences

QP22
QP27
QP32
QP37

Figure 5.15. Average FPS obtained for the proposed implementation on 1) CPU-only
without SIMD (dotted line), 2) CPU with SIMD (dashed line) and 3) CPU+GPU (solid
line) with SIMD activated for different thread numbers with QP 22 to 37 of AI (left) and
RA (right) sequences over Nano.

5.10 Comparison study of memory usage for VVdeC
v1.3 and OpenVVC v1.0 decoder

The memory usage of a decoder is a very important factor because nowadays vari-
ous video processing applications are performed on limited resource mobile devices and
embedded platforms. Moreover, the demand for video processing applications on lim-
ited resource mobile devices and embedded platforms is growing rapidly. This section
presents the comparison of the maximum memory usage (in MB) (see Section 4.7.1) be-
tween VVdeC v1.3 and OpenVVC v1.0. All FHD and HD test sequences of Set B with
QPs (27, 37) were used in this section for a fair comparison. This comparison was made
using the default (best) frame-tile configuration of the VVdeC v1.3 decoder and different
frame-tile configurations (see Section 5.6) of the OpenVVC v1.0 decoder. Figure 5.16
shows the average maximum memory (in MB) used for QPs 27 and 37 sequences over
Xavier (left) and Nano (right).

On Xavier, the configuration f2/t8 consumed the highest memory and f1/t8 the lowest

Comparison study of memory usage for VVdeC v1.3 and OpenVVC v1.0 decoder 93

memory among all the OpenVVC v1.0 decoder configuration for all video qualities. It jus-
tifies that memory consumption increases according to the number of concurrent frames
decoding and then concurrent titles decoding in a frame. Moreover, the VVdeC v1.3
decoder used ×2.7 and ×2.1 additional memory than the OpenVVC with f2/t8 configu-
ration for the FHD and HD sequences, respectively. Furthermore, the highest memory
usage configuration of OpenVVC was for configuration f2 / t4 and the lowest memory
usage OpenVVC configuration was f1/t4 for all HD sequences on Nano. On the other
hand, the average ×2.4 memory was consumed by VVdeC compared to the OpenVVC
f2/t4 configuration.

f1/t8 f2/t4 f4/t2 f2/t8 VVdeC
0

100

200

300

400

55
.1

59
.5

68 81
.2

17
2
.7

55
.9

60
.1

67
.1

80
.9

17
6
.2

93
.2

10
1
.4

11
7
.4

12
2
.9

33
8
.8

91
.7

10
0
.7

11
8
.4

12
3
.3

32
9
.1

Thread configuration

M
em

or
y

(M
B

)

Xavier

HD-QP27 HD-QP37 FHD-QP27 FHD-QP37

f1/t4 f2/t2 f2/t4 VVdeC
0

50

100

150

200

44
.3

48
.6 59
.5

14
3
.8

44
.2

47
.9 59
.9

14
1.
7

Thread configuration

M
em

or
y

(M
B

)
Nano

HD-QP27 HD-QP37

Figure 5.16. Average maximum memory (in MB) used for different thread configurations
of OpenVVC and VVdeC with QPs 27 and 37 sequences over Xavier (left) and Nano
(right).

This result presents the maximum memory usage of VVdeC v1.3 and the different
frame-tile configurations of the OpenVVC v1.0 decoder. Here, it can be seen that the
VVdeC v1.3 decoder consumed a higher amount of memory than OpenVVC. Moreover,
this result shows how the maximum memory usage varies for different frame-tile config-
urations. These information will be useful in choosing the appropriate decoder and the
configuration for designing low resources consumer electronics devices.

94 Experimental Results

5.11 Energy consumption analysis

This section contains the energy consumption analysis of different decoders on different
platforms and different types of architecture. The section is divided into two parts:
1) comparison study of energy consumption for the VVdeC v1.3 and OpenVVC v1.0
decoder on Xavier and Nano, and 2) comparison study of energy consumption for CPU
and CPU+GPU implementation of VVdeC v1.3 decoder on Xavier.

5.11.1 Comparison study of energy consumption for VVdeC v1.3
and OpenVVC v1.0 decoder

This section presents the comparison of the energy consumption (in J) (see Section 4.8)
between VVdeC v1.3 and OpenVVC v1.0. All FHD and HD test sequences of Set B with
QPs (27, 37) were used in this section for a fair comparison. This comparison was made
using the default (best) frame-tile configuration of the VVdeC v1.3 decoder and different
frame-tile configurations (see Section 5.6) of the OpenVVC v1.0 decoder. The average
energy (in J) consumed for QP 27 and 37 sequences over Xavier (left) and Nano (right)
is presented in Figure 5.17. Here, the OpenVVC configuration f1/t8 consumed the most
energy and f4/t2 consumed the least energy among all OpenVVC configurations for all
sequences on Xavier. Compared to the OpenVVC f4/t2 configuration, VVdeC consumed
×1.04 and ×1.17 more energy for FHD and HD sequences, respectively. However, the
scenario was the opposite; OpenVVC consumed on average ×1.2 more energy than VVdeC
for all sequences over Nano. In addition, all OpenVVC configurations consumed similar
energy over Nano.

5.11.2 Comparison study of energy consumption for CPU and
CPU+GPU implementation of VVdeC v1.3 decoder

This section presents the comparison of the energy consumption per frame (in J/frame)
(see Section 4.8) between CPU and CPU+GPU implementation of VVdeC v1.3 with SIMD
activated. All UHD and FHD test sequences of Set A with QPs (22, 27, 32 and 37) were
used for the comparison study. Figure 5.18 illustrates the average energy consumed (in
J/frame) of FHD and UHD over CPU and CPU+GPU for AI (left) and RA (right) con-
figurations with QP 22, 27, 32 and 37, and SIMD activated. It can be seen that the
energy consumption by CPU+GPU implementation was a bit higher than CPU imple-
mentation for both AI and RA sequences. The CPU+GPU implementation consumed

Energy consumption analysis 95

f1/t8 f2/t4 f4/t2 f2/t8 VVdeC
0

10

20

30

40

50

60

13
.1

13 12
.8

12
.8

14
.7

11
.8

11
.3

11
.4

11
.2 13
.6

45
.2

43
.2

42
.9

43
.9

45
.9

33
.9

33
.5

33
.4

34
.1

33
.6

Thread configuration

E
ne

rg
y

(J
ou

le
)

Xavier

HD-QP27 HD-QP37 FHD-QP27 FHD-QP37

f1/t4 f2/t2 f2/t4 VVdeC
0

5

10

15

20

16
.4

16
.1

16
.5

13
.414
.4

14
.1

14
.5

11
.6

Thread configuration

E
ne

rg
y

(J
ou

le
)

Nano

HD-QP27 HD-QP37

Figure 5.17. Average energy (in J) consumed for different thread configurations of
OpenVVC and VVdeC with QP 27 and 37 sequences over Xavier (left) and Nano (right).

4% more energy for AI sequences and 3% more energy for RA sequences compared to
the CPU implementation. In addition, low quality videos with lower QPs consumed less
energy than higher quality videos with higher QPs as it has higher computational load.
For AI sequences, the sequences with QP22 consumed roughly average ×2 energy than
the sequences with QP37. Moreover, the sequences with QP22 consumed approximately
average ×1.5 energy than the sequences with QP37 for RA sequences.

This result of the energy consumption analysis shows that similar energy was required
to decode videos using VVdeC and OpenVVC decoder over two different platforms. It
validates that the energy consumption results are reasonable. Moreover, this information
will be useful in choosing the appropriate energy source while designing consumer elec-
tronics devices. Furthermore, the energy consumption by CPU+GPU implementation
shows that similar energy consumption per frame compared to only CPU implementation
can be obtained by the proposed methodology, where as GPUs normally consume very
high energy.

96 Experimental Results

QP22 QP27 QP32 QP37
0

0.5

1

1.5

0.
38

0
.2
9

0.
23

0.
19

0
.3
8

0.
28

0.
23

0
.1
9

1
.3
7

0.
93

0.
76

0
.6
3

1
.4

0.
97

0.
79

0
.6
7

Jo
ul

e/
Fr

am
e

AI Sequences

CPU:FHD CPU+GPU:FHD CPU:UHD CPU+GPU:UHD

QP22 QP27 QP32 QP37
0

1

2

0.
95

0.
7
7

0
.6
7

0
.5
9

0.
99

0.
79

0
.6
8

0.
61

2.
28

1.
9
6

1
.7
7

1.
57

2.
38

2.
01

1
.8
1

1.
6

Jo
ul

e/
Fr

am
e

RA Sequences

CPU:FHD CPU+GPU:FHD CPU:UHD CPU+GPU:UHD

Figure 5.18. Average energy consumed (in J per frame) of FHD and UHD over CPU
and CPU+GPU for AI (left) and RA (right) configurations with QP 22-37 and SIMD
activated.

5.12 Summary and discussion

The experimental results of the doctoral thesis show that the VVdeC decoder was
overall accelerated on average ×1.7 for AI sequences and ×2.2 for RA sequences on
a resource-constrained embedded platform Xavier using SIMD optimisation and GPU.
Real-time decoding of all HD, FHD, and some UHD sequences was achieved using SIMD
optimisation and GPU over the embedded heterogeneous platform Xavier. The experi-
mental results are briefly summarised as follows: First, the results of the VVdeC decoder
without SIMD optimisation demonstrated that none of the sequence achieved real-time
decoding in Xavier, which led to the optimisation of the VVdeC decoder. Then, dif-
ferent GCC auto vectorization options were analysed and found that "-O3" is the best
performing option. Therefore, VVdeC v0.2 decoder was accelerated by average ×1.6 for
AI sequences and ×2.1 for RA sequences using SIMD optimisation over most of the de-
coding blocks on Xavier, although the most efforts were invested on EP and filtering
blocks (mainly DBF and SAO). The same acceleration was obtained for the VVdeC v1.3
decoder using SIMD optimisation on Xavier. These speedups were considered significant
as were obtained for the whole decoding process against an already optimised decoder
which achieved real-time decoding up to FHD sequences and some UHD sequences over
resource-constrained embedded platform Xavier.

Summary and discussion 97

Furthermore, the VVdeC v1.3 decoder obtained average ×1.5 and ×1.8 speedup on
Nano for AI and RA sequences, respectively. In addition, OpenVVC was accelerated using
SIMD optimisation by average ×1.9 on Xavier and ×1.7 on Nano for video sequences
with RA configurations. Then, an analysis was performed to compare the performance
(in FPS) between the VVdeC v1.3 decoder and the OpenVVC v1.0 decoder, where the
VVdeC v1.3 decoder obtained similar but little higher FPS than the OpenVVC v1.0
decoder. Moreover, the decoding results of VVdeC and OpenVVC over Nano were real-
time for all HD ready sequences, which are substantial for a very low-cost and highly
resource-constrained embedded platform.

Subsequently, the VVdeC v1.3 decoder was further optimised using GPU, where the
average speedup of ×1.1 was obtained in Xavier for all video configurations. Here, VVdeC
ALF obtained average ×2 speedup against SIMD optimisation, which was already accel-
erated the average ×3.55 against without SIMD implementation. Therefore, ALF was
accelerated average ×7.1 compared to the without SIMD implementation which caused
an average up to ×2.2 speedup for total decoding time. Moreover, DBF could be consid-
ered as future work to be accelerated using GPU because it did not benefit much from
SIMD optimisation (DBF consumed an average 12% of decoding time). GPU-based DBF
implementation might cause speedup ×1.1-×1.2 for total decoding time. However, VVdeC
v1.3 decoder did not get benefit from the optimisation based on GPU over Nano due to
the fact that Nano has very little bandwidth (×24 lower than Xavier). Therefore, a study
was carried out to compare the memory usage between VVdeC v1.3 and OpenVVC v1.0
decoder and found that the VVdeC v1.3 decoder consumed on average ×2.4 maximum
memory than the OpenVVC v1.0 decoder on Xavier and Nano.

Moreover, a study was performed to compare the energy consumption between the
VVdeC v1.3 and OpenVVC v1.0 decoder, where the VVdeC v1.3 decoder consumed aver-
age ×1.1 more energy and ×1.2 less energy than the OpenVVC v1.0 decoder over Xavier
and Nano, respectively. Finally, a comparative analysis of energy consumption was per-
formed between CPU and CPU+GPU implementation of the VVdeC v1.3 decoder. Here,
the energy consumption by CPU+GPU implementation was up to 4% higher than CPU
implementation for both Xavier and Nano. It can be seen from the result that obtained
performance compensated the energy consumption/frame as GPU consumed much higher
energy than CPU.

As a general conclusion, and from a platform- and software-agnostic point of view,
the following can be stated: it might be noted that the largest share of the performance
improvements obtained in all platforms and experiments comes from the optimisation
of the source code through the use of vectorised SIMD instructions. The improvements

98 Experimental Results

resulting from the migration to the GPU are clearly in second place. However, as outlined
above, the increase obtained from this second line of work is the result of moving only
ALF filtering. Furthermore, the result obtained has been compared to a highly optimised
version and includes all the penalties for memory transfers in this type of architecture.
Furthermore, it has been shown that this solution has a negligible impact in terms of
energy consumption.

99

Chapter 6

Proposed methodology

In Chapter this chapter, the working methodology followed on the implementation
of video decoder over heterogeneous platforms is presented. Later, in Chapter 5, the
experimental results obtained using the working methodology are shown. This chapter
gathers that work and proposes a design methodology based on experimental results and
the experience obtained during the development of this Thesis.

This thesis address the increased complexity and performance requirements of state-
of-the-art video decoding software and the complexity of the embedded heterogeneous
platforms, which provide the following proposals that should be followed for future opti-
mizations.

6.1 Methodology specification

To address the increased complexity and performance requirements of state-of-the-art
video decoding software, the proposed methodology shall fulfil the following requirements:

• Selection of the target platform.

• Selection of the reference software.

• Analysis of the computational performance of the algorithm and the most compu-
tational intensive modules.

• Evaluation and adoption to the most suitable techniques for parallel processing.

• Algorithm acceleration on the heterogeneous platform using the accelerator avail-
able.

100 Proposed methodology

• Validation.

Here, the platform and software selection can be done in parallel at the beginning.
Therefore, the decoder blocks of the selected software must be analysed and selected
over the targeted platform before starting the optimisation. Then, different parallelism
techniques must be explored and selected. Finally, a validation has to be performed to
verify whether the impact of the modification in the algorithm affects the quality.

6.1.1 Selection of the target platform

Platform selection is an important and difficult task for any application. However, for
video coding applications, it is much more challenging as video coding demands heavy
computational capabilities while many target applications will be mobile devices with
important constraints. Even so, video codecs are used in various areas. Therefore, and at
least, the following factors must be considered for choosing the platform:

• Required video resolution (e.g. SD, FHD, UHD, etc.) and quality.

• Power consumption.

• Memory speed, size and management.

• Cost and availability of the platform.

• Physical space of the platform.

As mentioned above, one of the most important requirements for platform selection
is the video quality requirement. This methodology supports the well-known fact that
HGPP is the most suitable for decoding high-resolution and quality video. Therefore,
a HGPP-based platform must be considered for the application demands very high-
resolution video (e.g. UHD 4K, 8K). Because HGPP comes with high number of cores,
high clock speed, larger memory and large cache, which can handle higher computa-
tional load demands of high-quality videos. On the other hand, it will consume higher
power. However, embedded heterogeneous platforms are suggested in the case where the
application demands mobile platforms and/or less physical space and/or low power and
resources. More and more, the embedded heterogeneous platforms come with integrated
GPU or FPGA accelerators. In addition, GPP in embedded heterogeneous platforms, like
high performance ARM-based ones, have lower clock and less speed than HGPP. Even
so, after a guided optimisation process, they are able to support real-time FHD videos

Methodology specification 101

comfortably, as shown in this Thesis. Moreover, very low cost platforms like Nano are sug-
gested for applications requiring video quality up to HD ready. Nano cost almost 8 times
less and consumes 3 times less physical space than Xavier. Therefore, the platform selec-
tion process is the trade-off between computational power, cost, and space. On the other
hand, FPGA-based platform could be considered for this kind of applications requiring
reconfigurable hardware accelerator. The literature review presented in Section 3.3 shows
that FPGA-based platforms are suitable for inverse transformation and quantization, and
intra prediction block of H26x decoders. Therefore, it must be considered while choosing
the platform but the development time with this platform is probably higher due to the
experience needed to optimise modules using HDL languages.

6.1.2 Selection of the reference software

H.26x series, VPx series or AV1 are the well-known video standard families with a wide
range of available solutions (implementations) in the market. VPx series and AV1 can be
considered for applications that primarily focus on internet video transmission. Then, if
the application focuses on consumer electronics, but not only, the video coding software
based on H.26x standard series should be considered. As this doctoral study is mainly
focused on consumer electronics, it was certain to choose H.26x family. In addition, it
is important to take into account the large number of companies, members of industry,
universities, centres and research groups directly or indirectly involved in the different
groups participating in the standardisation process. This guarantees the impact of the
standard, its use and future development.

When undertaking work such as that presented in this Thesis, there is a need to choose
a software or reference solution over which to carry out most of the development. Once a
standard has been stabilised, it is relatively easy to find a plethora of available solutions in
the state of the art, both open source (the case of this thesis) and proprietary. However,
if this work takes place 1) either during the process of discussing and building a new
standard (in the case of VVC between 2018 and 2020), or 2) in the period just after the
standardisation, this would be a problem.

In the first case, it is usual to find partial developments of some of the potential new
features of the standard. Bearing in mind that until official standardisation some proposals
could fall out of the final release. In this period, the reference software is very changeable
and it is difficult to make improvements to the codec as a whole. In the second case, there
is usually a fast-paced development. Optimisations and enhancements rush in, and new
versions are released in a short space of time. During this period it is very interesting to

102 Proposed methodology

follow the standardisation process and to profile the different versions in order to know the
most important challenges to solve when the proposal is finally standardised. Important
efforts in optimisation can not be very efficient because the changes are continuous in this
phase of the coded development.

Based on the experience accumulated during the development of this Thesis, and
taking into account the above mentioned points, the following aspects are highlighted to
be taken into account when looking for a software as a reference for the implementation
and optimisation process of video codecs for consumer electronics. Here, technical aspects,
such as the paradigm or the desired programming language (based on data flow definitions,
HDL, C/C++, etc.) are left aside. The aspects are as follows:

• Widely used: It is important to choose software that is used and supported by a
wide community. It continuously ensures that the reference is ’alive’ and will receive
updates of the software and support. Thus, making easier further optimisation
works.

• Open source: It is important to have an open source solution for scientific research
as it allows collaboration among different research groups. In addition, no cost
involved to use the software.

• Performance: It is beneficial to choose software that comes with added optimisation.
It helps to increase added performance for the future optimisation. However, it
might increase adaptation difficulties.

• Compatibility: It is advantageous if the software comes with integrated support for
different types of architecture, i.e. SIMD optimisations across X86 architectures or
ARM-based processors.

6.1.3 Analysis of the computational performance of the algorithm

The proposed methodology is based on the analysis of the computational load of the
different blocks integrating the decoder. This work has proven to be essential for decision-
making and the effective targeting of working efforts.

Initially, it might be thought that this analysis is only necessary when considering the
optimisation or migration to a hardware accelerator of one -or several- blocks; as stated
in this work with ALF filtering. However, this type of analysis has also been positive
entailing the efficiently managing of data transfers between memories or redesigning some
of the algorithms for their better adaptation to the hardware architecture of an accelerator.

Methodology specification 103

These are the clear advantages of having a detailed analysis of the computational load of
the target software.

On the other hand, the following drawbacks should be taken into account: 1) the
dependence of the results on software versions. That is, each time a substantial change is
included in a new version of the decoder, the process would have to be repeated in order
to adjust to the new computational load distribution. 2) Hardware dependency, in case
different platforms are to be worked with, an analysis should be performed for each of
them, and 3) profiling may result in a high time-consuming task.

Therefore, in the first approach, a coarse-grain profile is suggested to have a whole
point of view of the computational profile of the decoder block. Then, a fine-grain profile
may be conducted for those computationally intense decoder blocks with higher parallel
capabilities.

Fortunately, there are numerous profilers available on the market. GNU Profiler
(gprof), Intel VTune Profiler, perf, Valgrind tool suite profiler named Callgrind, and
C/C++ timestamps are the most used open source C/C++ profiler for Linux operating
systems. It is suggested to use Callgrind and VTune Profiler if a GUI is required. In ad-
dition, both profilers provides a detailed profile with higher accuracy. Furthermore, gprof
and pref are the lighter profilers that require much less memory. However, it is difficult to
target a specific portion of the software to profile as it does not allow specification inside
the program. Finally, timestamps is the lighter profile most suitable to target a particular
area of the software. In this thesis, Callgrind and timestamps are used since the target
platforms are ARM-based limited resource embedded platforms. The Callgrind was cho-
sen over vtune as it supports non-Intel architectures. Finally, the use of timestamps can
consume a lot of development time because some changes must be done in the code but
they are very useful if profile needs a high accuracy and/or if the application uses multi
threads. If timestamps are needed, it is interesting to create a library to simplify the
way to define the code to measure and to move the measured sections/modules to a new
version of the decoder.

From above mentions requirement set the following factors are listed that should be
considered when selecting the profiler:

• Operating system compatibility: The profiler must have compatibility with the
operating system used in the project.

• Memory requirements: It is one of the main factors considered for a limited resource
platform. A profiler can not be used if a higher memory is required for operating
than the platform has.

104 Proposed methodology

• Open source: It is important to have an open source solution for scientific research
as it is developed and used by a wide range of communities.

• GUI availability: It provides visual representation of the profiling results. It can
help to see the profile results easily.

• The profile accuracy: The preciseness of the profile results is dependent on the
application requirement. Some profiler provides very accurate results and some are
rough results.

In conclusion, it is highly recommended to carry out a computational load analysis,
adjusting the level of detail in accordance with the impact of each block on the total
share. It is interesting to define a standard test set (sequences and configurations) and
try to automate the process in order to minimise the impact on the working flow, easily
adapt to new versions of the reference code and/or to facilitate its interoperability between
different hardware platforms, if necessary.

6.1.4 Evaluation and adaptation to the most suitable techniques
for parallel processing

There are various parallelism techniques used for video coding in scientific literature,
apart from the use of hardware accelerators, which is discussed in the next section, this
work has focused on the use and application of four widely known methods, all explained
in Chapter 3:

• Parallelising the video stream processing (coarse-grain parallelism)

o Frame-level parallelism

o Tile-level parallelism

o Wavefront Parallel Processing

• Optimising the implementation of algorithms (fine-grain parallelism)

o Using Single Instruction Multiple Data (SIMD) operations

As far as the parallelisation of the video stream is concerned, a second subdivision
is needed. On the one hand, the parallelisation of the decoding process (frame), where
the inter-frame dependencies shall be maintained, but the execution of the whole decoder
(including the CABAC decoding, the main serial element) is parallelised. On the other
hand, there are the methods that parallelise intra-frame decoding (tiles and WPP). Here,

Methodology specification 105

the dependencies within the frame have to be managed, including those within the video
stream itself, which also affects the encoder.

In these cases, the coding of the functionality can be a complex task, mainly because of
the need to maintain a correct and efficient (non-blocking) synchronisation of the internal
decoding pipeline. These parallelism is done usually using threads and once implemented,
it is often easily portable and the performance improvement can be very significant if
multiple processing cores are available. This effect has been clearly stated in Chapter 5.

Regarding the direct writing of sections of code in low-level language, usually using
SIMD instructions, as mentioned throughout this Thesis, it can be very effective, as has
been shown in the results Chapter. However, this optimisation is strongly dependent on
the technology used and the compatibility of the libraries that support them. This lack
of cross-platform interoperability is being mitigated by the development of some libraries
such as SIMDe for the case of ARM platforms, but a direct translation is still far from
being achieved. This kind of optimisation needs a big effort so it is very important to select
the most suitable modules. To select these modules the profile defined in the previous
step in the methodology is essential.

The Table 6.1 summarises all these impressions. The expected improvement factor
should be understood as a mere orientation based on the experience during the develop-
ment of this thesis. Furthermore, in the case of coarse-grained parallelisation, it has to be
taken into account that its use can be combined and is highly dependent on the platform
hardware.

Table 6.1. Summary of the approximate impact on performance improvement, indicative
development time, main dependencies and interoperability for the different techniques
considered.

Improvement type Development time Expected improvement Main dependencies Interoperativity
Frame Medium 40 to 90% Software High
Tiles High 15 to 80% Software High
WPP High 25 to 90% Software High
SIMD Very high Up to 95% Hardware, Software Medium

6.1.5 Algorithm acceleration on heterogeneous platform

In this Thesis, a GPP+GPU-based heteregenous platform was selected as target SoC.
Therefore, suggestions are provided for the future GPU-based acceleration and implemen-
tation of video applications. During the technical development of this Thesis. All of them

106 Proposed methodology

should be normally necessary in a GPP-to-GPU migration of code1. The effort to move
some modules to the GPU is high so it is important to identify the most interesting ones
before starting the process. Some points should be taken into account:

• Algorithm analysis in order to identify the level of parallelism. GPUs are able to
execute some simple algorithms in parallel but it require to redesign the code and
probably a new data ordering. To know the details of the algorithm is critical.

• Design data access for GPU. exploring different memory allocation and data transfer
methods is important because each one have different features. The bandwidth
needed to move data from CPU to GPU and vice versa is very important because
the performance of the global implementation is reduced by the time expended
for these copies. A preliminary analysis of this performance in interesting before
starting the algorithm moving to the GPU.

• Kernel distribution, the code of the GPU is organised in kernels and it is important
an optimised distribution

• Task schedule. In order to optimise the performance of data movement, a ping pong
buffer to paralyse the execution and the copy of the data is recommended.

6.1.5.1 Algorithm redesign and data ordering

GPU cores have a different architecture and run with the instruction from a governor
CPU. Therefore, for GPU implementation, the possibility of algorithm redesign is a likely
scenario. Redesigning a code allows it to fit more precisely to the target architecture
(GPU in this case), and to exploit all the advantages of the new hardware. However,
this task will undoubtedly be one of the most costly in terms of manpower time and the
level of expertise of the person in charge of this work. As can be seen, it is necessary to
redesign a complex algorithm to have a deep knowledge not only of how the algorithm
is implemented, but also of the particularities of the architecture. This is necessary to
successfully undertake this phase of the design methodology.

For example, and as stated in this Thesis, the pixel scanning pattern in VVdeC ALF
was resigned for GPU implementation. During the algorithm redesign, it had to be
considered that the data should be linearly organised depending on the processing order.
This must be followed as GPU threads, within a thread block, can easily access the

1In this case, it is understood that the functionality to be migrated has a significant entity or com-
plexity, usually greater than what would be allocated to a GPU-type accelerator.

Methodology specification 107

data without causing a bottleneck. Then, data ordering should be optimised for GPU
implementation2. It should be considered to reduce the amount of data transfer while
data ordering is performed. It will reduce the complexity of implementation, the time
needed to transfer data and the energy consumption. In addition, the GPU execution
time will be reduced as an efficient data ordering approach facilitates coalescent access of
the data by GPU threads.

In conclusion, this phase is crucial when working with GPU, and the success of adopt-
ing this technology depends to a large extent on the skill of the staff in charge of code
migration. Alternatively, there are methodologies based on the automatic generation of
code according to graphical descriptions [9], [121]. However, these solutions often do not
perform significantly better in terms of the overall performance of the application. This
aspect is not limited to this sub-section, but is common to the following sub-sections.

6.1.5.2 Design data access for GPU

GPU parallelism of video applications begins after algorithm redesign and data order-
ing are completed. The main challenge of parallelism using GPU comes from data access
because GPU does not have access to CPU memory, although it executed the operations
with the instruction received from CPU. In this situation, first, the memory allocation
needs to be addressed for achieving efficient data transfer between CPU and GPU.

There are four types of memory allocation supported in CUDA: 1) pageable memory, 2)
pinned memory, 3) mapped memory, and 4) unified memory. Here, the memory allocation
in pageable memory causes the greatest delay in transferring data between CPU and GPU
because it is located on the hard drive. On the other hand, the fastest data transfer
between CPU and GPU can be achieved by allocating memory to pinned memory. The
data transfer is fastest in this allocation type due to the fact that two data transfers
between pageable and pinned memory are discarded. Moreover, mapped memory can
be considered if GPU has less memory. It enhances transfer rates of PCIe by avoiding
data transfers between CPU and GPU. However, this increases the execution time of the
kernel. Lastly, unified memory allocation makes the data accessible by CPU and GPU,
which makes it easy to program. However, data transfer is slower than pinned memory,
as two copies are needed under the hood to perform the memory allocation: 1) unified
memory to pinned memory and 2) pinned memory to GPU.

A comparison of these four methods is provided in Table 6.2 for simple integer array
summation operation (c[x] = a[x]+b[x]) with 1048576 array elements (x) [120]. Here,

2Data ordering of VVdeC ALF is presented in Section 4.6.1.1.

108 Proposed methodology

for pinned memory allocation, less kernel execution time and comparatively less memory
transfer are needed. Although memory transfer time is zero in mapped memory allocation,
the kernel execution time is almost 10 times for this simple example, which may increase
much for complex problem. Therefore, it is suggested that the type of memory allocation
should be chosen depending on the target application and platform.

Table 6.2. A comparison of four memory allocation methods (source:[120]).

Memory type Memory transfer time (ms) Kernel execution time (ms) Total time (ms)
Pageable 19.43 0.44 19.87
Pinned 4.26 0.44 4.70
Mapped 0.00 3.72 3.72
Unified 1.96 16.13 18.09

6.1.5.3 Kernel distribution

GPU starts executing the program after all data are transferred and available. The
program that is executed on GPU is called the kernel [79]. As it has been aforementioned,
it is very important to efficiently design a kernel to properly exploit the GPU architecture.
One kernel is executed in parallel by threads, where threads are members of a thread block.
Moreover, a thread block is processed by one GPU processing unit SM. SM execute a
thread block with the unit of warp, where each warp contains 32 threads. All member
threads of a warp share the same data and execution instruction. Therefore, SM of GPU
must be considered for designing a kernel, and it is recommended that threads per block
should be multiplied by warp size 32. However, a maximum of 1024 threads per block is
supported by CUDA.

6.1.5.4 Task schedule

Lastly, task scheduling should be considered to manage the execution of multiple
CPU cores and GPU for maximising the performance of the target application. The main
bottleneck of CPU+GPU is data availability during program execution. To overcome this
limitation, the use of multiple memory buffers is recommended as it will allow multiple
threads to access the data at the same time. This point, proposing to scheduling using
two memory buffer is presented in Section 4.6.2.4.

Table 6.3 provides a general overview based on the experience accumulated during the
development of this Thesis. Thus, guessing an assessment for different types of actions
(operations), of how deep the knowledge of the architecture and hardware needs to be,
an estimation of the development time, and additional dependencies, if any.

Methodology specification 109

Table 6.3. Summary of the different operations suggested to be considered for GPU-based
implementation and their evaluation.

Operation Knowledge level Time to development Dependencies
Algorithm redesign Very high Very high Knowledge about the algorithm

Data ordering Low Medium Knowledge about the algorithm
Memory allocation Low Medium CUDA instruction set

Data transfer Low Low CUDA instruction set
Kernel distribution Medium High CUDA instruction set, Knowledge about algorithm

Task schedule Medium High CUDA instruction set, Knowledge about algorithm

6.1.6 Validation

Validating the modified implementation is crucial to assess the precision and quality
of the video decoder. For video applications, PSNR, MSE, and SSIM metrics are rec-
ommended to be tested to check the quality of videos against its reference. The optimal
value of PSNR is infinite, MSE is zero, and SSIM is one, i.e. when two videos are exactly
the same. In this work, for measuring these metrics, Vooya raw video player has been
used, which also provides different visual tools to check the video. Vooya supports Linux,
Windows, and Mac operating systems, but is open source for Linux operating systems
only. Moreover, the MD5 message-digest algorithm hash function can be used to compare
two videos. MD5 provides a 128-bit hash value for each unique file. The hash value
is changed even if the video is slightly modified. Therefore, it is only suggested to use
this method for comparing two videos if the exact same video is required after optimisa-
tion. In addition, this method does not provide any information about the differences.
This methodology is intended to keep the exact same quality of the raw videos after its
use, where the trade-off between video quality and performance improvement using lossy
optimisation is not considered. However, that can be easily defined by the application
requirements using different values of PSNR, MSE, and SSIM metrics.

110 Proposed methodology

111

Chapter 7

Results and contributions of the Thesis

This chapter summarises the results obtained in this thesis work and lists the contri-
butions that have been generated during its development (publications, contributions to
research projects, and direction of student’s work).

7.1 Objectives of the Thesis

The objectives of the doctoral thesis were presented in Chapter 1. As a reminder, the
main objective of this doctoral thesis is to define new design methodology to implement
efficient video decoders on GPP+GPU based embedded heterogeneous platform. This
objective was achieved by parallel exploiting the multicore technology of GPP’s, SIMD
optimisation, and GPU accelerator, where the decoder was redesigned for the parallel pro-
cessing of video sequences. This methodology was validated through the implementation
of different video decoders and different versions of the same video decoder compatible
with the VVC standard on different platforms.

The secondary objectives are the following:

• To provide the profile and performance analysis of the decoder that is necessary to
target the decoder module for its acceleration.

• To analyse the parallel processing abilities of the VVC decoder blocks and estab-
lish a design methodology to accelerate the applications of video processing over
heterogeneous platforms.

• To analyse the energy consumption and the memory usage analysis on embedded
heterogeneous platforms.

112 Results and contributions of the Thesis

This Thesis concludes by addressing these objectives in the following Section they are
summarised according to their respective contribution.

7.2 Contributions of the Thesis

This section presents the results achieved during the doctoral thesis that satisfied the
objectives summarised in Chapter 1. The most relevant contributions are highlighted
below.

• During the development of this doctoral thesis, different versions of various VVC
decoders were migrated for different types of hardware, including VTM v8.0, 10.2,
VVdeC v0.2, 1.0, 1.1, 1.2, 1.1, 1.3. These decoders were initially designed for the x86
architecture. In this study, these decoders were configured for widely used ARM
based architecture used in different consumer electronics devices, and numerous
embedded heterogeneous platforms. This contribution enhanced the versatile use of
the state-of-the-art VVC video decoders.

• A detailed analysis of the above mentioned VVC decoders was performed where
the coarse-grain and fine-grain profiles are performed to identify computationally
heavy decoder modules with the aim of accelerating the decoder. This study was
published in a peer-reviewed scientific journal [16]. This information was helpful
in accelerating VVC decoders during this doctoral thesis and will also be useful to
other researchers.

• The above mentioned version of the VVdeC decoders was optimised using Neon-
based SIMD for ARM-based embedded platforms. This optimisation resulted in
an average speedup of ×2 in the total decoding time. This work was published
in an international peer-reviewed journal [17]. In addition, a similar approach was
adapted by the VVdeC decoder in its version 1.4.

• Different versions (0.2 and 0.3) of the OpenVVC decoder were studied and developed
the Neon-based SIMD implementation of OpenVVC v1.0 for the ARM architecture.
This work achieved an average speedup of ×1.8 on embedded platforms, which led
to a joint publication [18] (currently under review process) between the INSA IETR
laboratory in Rennes (France) and the GDEM CITSEM of UPM.

• Further, the VVdeC decoder was accelerated using a CPU+GPU based approach.
Here, a methodology was developed to process VVdeC ALF block using GPU. An

Works published related with the Thesis 113

average speedup of ×2 was achieved for this module which causes an increase of
up to 20% in the total decoding time on an embedded heterogeneous platform
Xavier. This work was the result of international collaboration between INESC-ID
in IST, Lisbon Portugal, and GDEM of UPM, where a joint journal article [19] was
submitted to a peer-reviewed international journal and is currently under review
process.

• The energy consumption and memory usage analysis were conducted on embedded
heterogeneous platforms, which are two important factors for resource-constrained
mobile platforms. The results of these analyses will be helpful in choosing the right
platform for the video processing application. Furthermore, the results obtained
for the analysis of energy consumption show that a similar energy consumption per
frame was achieved for proposed CPU+GPU based approach compared to the CPU
based approach. This means that more performance was achieved using almost the
same energy consumption.

7.3 Works published related with the Thesis

The results obtained in this doctoral thesis have resulted in two publications and two
submitted papers, currently under review process to journals included in the JCR index
and two in international conferences with peer review. In this doctoral Thesis, we mainly
focused on journals rather than conferences. We avoided travel due to the COVID-19
pandemic. The publications in journals are summarised below:

• A. Saha, M. Chavarrías, F. Pescador, Á.M. Groba, K. Chassaigne, P.L. Cebrián,
"Complexity Analysis of a Versatile Video Coding Decoder over Embedded Systems
and General Purpose Processors," Sensors 2021, 21, 3320. https://doi.org/10.3390/
s21103320. Quartile Q2 and impact factor 3.847 (2021).

This article [16] presents a detailed complexity analysis of the VTM8.0 based VVC
decoder on the HGPP-based Ryzen and resource-constrained embedded Xavier platform.
Here, a detailed analysis of the new VVC standard was performed to support future im-
plementation and essential optimisations. In addition, the ALF, DBF, and IP blocks were
profiled in depth. This served as a starting point for characterising VVC decoders with
the only implementation available at the time. Moreover, a comparison of the correla-
tions between the computational load of the decoder blocks over two different types of
architecture was shown. Finally, the obtained results were compared with other VVC
implementations published in scientific journals.

114 Results and contributions of the Thesis

• A. Saha, M. Chavarrías, V. Aranda, M. J. Garrido and F. Pescador, "Implemen-
tation of a Real-time Versatile Video Coding Decoder based on VVdeC over an
Embedded Multi-core Platform," in IEEE Transactions on Consumer Electronics,
2022, doi: 10.1109/TCE.2022.3202512. Quartile Q2 and impact factor 4.414 (2021).

In this article [17], the profile of the VVdeC v0.2 decoder was shown for the imple-
mentation with and without SIMD optimisation in the X-series architecture based on the
HGPP and embedded Xavier platform. Here, a optimisation technique was introduced
to accelerate the VVdeC v0.2 decoder over Xavier using Neon-based SIMD optimisation.
Lastly, the obtained results were compared with other research available at that time.

• A. Saha, W. Hamidouche, M. Chavarrías, G. Gautier, F. Pescador, and I. Farhat,
"Performance Analysis of Optimized Versatile Video Coding Software Decoders on
Embedded Platforms" [Online]. Available: https://arxiv.org/abs/2206.15311
(under review process in IEEE Transactions on Consumer Electronics).

This study [18] focused on accelerating the OpenVVC v1.0 decoder using frame-tile
parallelism and Neon-based SIMD optimisation for two embedded platforms. Here, differ-
ent frame-tile configurations of the OpenVVC v1.0 decoder were studied. In addition, the
results of performance, energy consumption, and memory usage analysis were compared
for different configurations of the OpenVVC v1.0 decoder and VVdeC v1.3 decoder on
Xavier and Nano.

• A. Saha, N. Roma, M. Chavarrías, T. Dias, F. Pescador and V. Aranda, "GPU-
based Parallelisation of a Versatile Video Coding Adaptive Loop Filter in Resource-
Constrained Heterogeneous Embedded Platform, (under review process in Journal
of Real-Time Image Processing)"

This article [19] proposed a GPU-based parallelisation technique to accelerate the
VVdeC v1.3 decoder by accelerating ALF. Here, the redesign of the VVdeC ALF al-
gorithm was carried out to exploit the GPU architecture. In addition, this proposed
implementation uses GPU simultaneously with the multithreading feature and SIMD op-
timisation of CPU. Lastly, energy consumption analysis was reported and found that the
proposed solution achieved higher performance using almost the same energy per frame.

International conferences with peer review process: There are not many conferences
published during the development of this Thesis, because COVID19 does not allow trav-
elling.

https://arxiv.org/abs/2206.15311

Other results related to the Thesis 115

• R. Medina, A. Saha, M. Floriano, M. Chavarrías and F. Pescador, "Porting Adaptive
Multiple Transforms of a Versatile Video Coding decoder using OpenMP," 2019
IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), 2019,
pp. 138-139, doi: 10.1109/ICCE-Berlin47944.2019.8966176.

This article [21] introduced a GPU based approach to accelerate the VVC AMT feature
on top of OpenHEVC. Here, AMT was processed on GPU and the rest of the decoding
tasks were processed on CPU on Xavier. This was a preliminary work done before the
standardisation of the VVC standard.

• M. F. Vázquez, A. Saha, R. M. Morillas, M. C. Lapastora and F. P. d. Oso, "Work-
in-Progress: Porting new Versatile Video Coding transforms to a heterogeneous
GPU-based technology," 2019 International Conference on Compliers, Architectures
and Synthesis for Embedded Systems (CASES), New York, USA, 2019, pp. 1-2.

This article [22] discussed OpenMP [131] based implementation of the VVC AMT
feature on top of OpenHEVC over three different architectures. Here, POSIX [132] based
approach was replaced by OpenMP based implementation. This was a preliminary work
done when the VVC standard was under development.

7.4 Other results related to the Thesis

This section presents other results and funding related to the research work carried out:
the development of new international collaboration between the GDEM group of CITSEM
UPM and INESC-ID in IST Lisbon, strengthen the existing international collaboration
between the GDEM group and INSA RENNS, the direction of different end-of-degree
projects and master thesis by the doctoral candidate, and the scholarships received during
the development of the thesis.

7.4.1 Research projects

The work developed during this doctoral thesis has been closely related to one research
project of which the GDEM group was a part. This provided funding for the development
of the doctoral Thesis.

IVME – Immersive Visual Media Environments (30-12-2016 to 29-12-2019, TEC2016-
75981-C2-2-R, Ministerio de Economía y Hacienda)[11]. The goal of this project is to

116 Results and contributions of the Thesis

develop omnidirectional digital video processing techniques, which enable users to provide
novel immersive visualisation and interaction experiences. In addition, one activity of the
project was related to the optimisation of video decoders.

7.4.2 Collaboration during the Thesis with the INSA in Rennes

This doctoral candidate collaborated with the INSA IETR laboratory in Rennes
(France) between 30 July 2021 and 30 January 2022. This collaboration strengthened
the historic relationship between the INSA IETR laboratory in Rennes (France) and
GDEM of UPM. The INSA IETR laboratory in Rennes (France) developed the OpenVVC
decoder and GDEM optimised the OpenVVC decoder using SIMD for ARM-based plat-
forms. The OpenVVC decoder was accelerated on average ×1.9 on Xavier and ×1.7 Nano
using Neon-based SIMD instructions. This collaboration resulted in a joint publication
that was submitted to an international journal [18].

7.4.3 Collaboration and stay during the Thesis at the INESC-ID
in IST

During the doctoral study, the doctoral candidate spent a research stay in the INESC-
ID laboratory of the Instituto Superior Técnico (IST), University of Lisbon Portugal
between September 15th 2021 and December 17th 2021. The professor responsible for
the stay was Dr. Nuno Roma. This research stay aimed to acquire knowledge about
parallel programming mainly using GPU. Here, GPU architecture and CUDA program-
ming API were explored and extensively studied in the area of video decoder application
to accelerate VVdeC. In addition, the student attended the "Parallel and Heterogeneous
Computing Systems" course during the stay. This course provided the fundamentals of
parallel programming and introduced different types of parallel programming techniques.
To summarise, the result obtained from this collaboration was the hybrid implementation
of the VVdeC decoder using CPU+GPU, which achieved an average speedup ×2 in the
ALF filtering time and an average speedup ×1.1 of the total decoding time compared
to the SIMD optimised solution in CPU. Moreover, this collaboration resulted in a co-
authored article in the journal [19]. Finally, this research stay started a collaboration
between INESC-ID, IST and GDEM, UPM. This research stay is also one of the re-
quirements for PhD international mention. This stay was funded by Santander Research
Scholarships (see Section 7.4.5).

Other results related to the Thesis 117

7.4.4 Supervision of Final Degree Projects

Different works were carried out by students from Escuela Técnica Superior de Inge-
niería y Sistemas de Telecomunicación (ETSIST)-UPM that have led to respective Final
Projects and Master’s Thesis in regarding to some of the milestones that were developed
during the research work associated with the doctoral thesis.

The doctoral candidate has supervised the following Bachelor Degree Project:

• Manuel Floriano Vázquez, "Integración de nuevos algoritmos de descodificación de
vídeo digital HEVC y VVC sobre la plataforma heterogénea de NVIDIA Jetson
AGX Xavier". Completed in July 2019 (Mark 10/10).

• Sergio Baz López, "Integración de técnicas de procesamiento paralelo en un descod-
ificador de vídeo de última generación sobre la plataforma Jetson AGX Xavier".
Completed in October 2020 (Mark 10/10).

• Víctor Aranda López, "Integración de técnicas de optimización y aceleración sobre
un descodificador Versatile Video Coding en sistemas empotrados heterogéneos".
Completed in July 2021 (Mark 10/10).

• Kheyter Augusto Chassaigne, "Integración de técnicas de procesamiento paralelo
en el descodificador de vídeo de última generación VVC, sobre la plataforma Jetson
AGX Xavier". Completed in September 2021 (Mark 10/10).

The doctoral student has supervised the following Master’s Degree Thesis:

• Víctor Aranda López, "Analysis, optimization and testing of the Versatile Video
Coding codec over edge devices for IoT-based applications". Completed in July
2022 (Mark 10/10).

These works mentioned above are closely related to the research work carried out in
this doctoral thesis.

7.4.5 Scholarships and awards obtained

During the development of the thesis, the following scholarships were obtained:

• Santander Research Scholarships: "Programa propio de I+D+i de la UPM. Ayudas
al personal investigador en formación predoctoral contratados o becados OTT" -
September 2021. The duration of the scholarship was 3 months in Lisbon.

118 Results and contributions of the Thesis

119

Chapter 8

Conclusions and future work

8.1 Conclusions

The optimisation of complex applications with high computational demanding using
limited resources platforms is a challenge and the developers spend a lot of time in this
process. To reduce the time to market of these applications, the definition of an optimisa-
tion methodology can be considered an interesting contribution to the state of the art. In
this methodology special attention must be taken with the use of the selected hardware
architectures based usually in GPPs and accelerators as GPUs.

In this PhD an efficient way to implement VVC decoders on resource-constrained em-
bedded heterogeneous platforms based on ARM processors, where multithreading based
parallelisation of CPU, SIMD optimisation and GPU are used concurrently, were the main
objective. In order to handle the added complexity imposed by the state-of-the-art VVC
decoder, the proposal is to optimise the use of threads with the parallelisation tools in-
cluded in the standard (multi frame, tiles, WPP) and to parallelise efficiently the most
computationally demanding modules with higher parallel processing ability using GPU
and the rest of the decoder modules using the data-level parallelisation based on the SIMD
instructions of the General Propose CPU.

These techniques have been applied to a limited resources heterogeneous platform
called Xavier (see Section 4.2.1.2) using an state of the art open source decoder VVdeC
(see Section 2.5.2) with excellent results achieving real-time performance for HD, full HD
and some ultra high definition sequences defined in the standard. An average speed-up
of ×2 is obtained with this platform and this implementation.

To achieve these goals several optimisations phases have been defined, first, fine-grain

120 Conclusions and future work

and coarse-grain profiling of the VVC decoders was carried out first. Next some auto-
matic course-grain techniques was applied. The speed-up obtained is limited so additional
techniques must be applied. Therefore, VVdeC was optimised using Neon-based SIMD
instructions available in the the ARM architecture. The results obtained was very signifi-
cant and real time performance is obtained for some standard sequences. Then, an hybrid
approach was used in order to take advantage of the GPUs integrated in the platform.
In CPU+GPU implementation, the VVdeC ALF was accelerated using GPU and other
decoding blocks were processed in CPU. ALF was chosen to be processed in GPU due to
the fact that it was found the most time-consuming block of VVC decoders on hetero-
geneous platforms even after SIMD optimisation was applied. Moreover, ALF algorithm
has a high degree of parallel processing ability, as it involves several repetitive arithmetic
operations. In this optimisation phase, it is critical to analyse the data transfer efficiency
between GPP and GPU because it can spend more time than the improvement achieved
with the parallel processing of the algorithm.

Using the experience obtained after the optimisation process, other platform called
Nano was selected (see section 4.2.1.2) with lower resources (memory size, number of cores
or memory bandwidth), and the same decoder was optimised with the same techniques
obtained similar results with an average speed-up of ×1.7. This result was obtained with
a lower effort than needed in the previous platform. In this platform the use of GPU
doesn’t generate an improvement due to the low bandwidth between GPU and GPU.

In order to generalise the optimisation process, other VVC decoder implementation
called OpenVVC (see Section 2.5.3) has been optimised for both platforms using the same
techniques in a shorter period of time. In this platform an average speed-up of ×1.8 is
obtained for Xavier and ×1.7 for Nano. Again, these results are similar to achieved with
the previous decoder.

Finally, with the experiences obtained, the methodology presented in chapter 6 was
developed to optimise algorithms using the hybrid approach where the fine-grain SIMD
optimisation and CPU+GPU based hardware accelerator were used along with the de-
fault coarse-gain optimisation. This methodology allows the developers to accelerate the
optimisation process of video applications using heterogeneous platforms and it could be
applied to other complex algorithms in similar heterogeneous platforms.

Additionally to the methodology to optimise the performance, other critical factors
for resource-constrained embedded platforms have been analysed in this work: 1) memory
usage and 2) energy consumption. Both parameters have been measured and compared
for different decoder implementations and platforms. A comparison was made between
the memory usage and energy consumption of the VVdeC and OpenVVC decoders (see

Conclusions 121

Section 5.10 and 5.11.1). Additionally, the energy consumption analysis of the CPU+GPU
based hybrid implementation was conducted and compared with CPU implementation.
This information will be useful in determining the most suitable platform for the video
processing application and for future optimisations.

To better highlight the presented novelties, the main contributions of this dissertation
are summarised as follows:

• Fine-grain and coarse-grain profiling of the VVC decoders was performed on HGPP
and EGPP based platforms. This insight was essential in speeding up the VVC
decoders for this doctoral dissertation and will be beneficial to other studies.

• Optimisation of the VVC-based video decoders: VVdeC and OpenVVC was acceler-
ated using SIMD instructions for heterogeneous embedded platforms based on the
ARM architecture. Moreover, an average ×2 and ×1.8 speedup was achieved on two
ARM architecture-based embedded platforms for the VVdeC and OpenVVC decoder
implementations, respectively. Here, EP and ALF were the most benefited decoder
blocks by SIMD instructions for both OpenVVC and VVdeC decoder, which also
were the highest computational demands decoder blocks. It means that the same
methodology can be used for different decoder implementations and different plat-
forms.

• A hybrid approach was implemented using the fine-grain SIMD instructions and
CPU+GPU based hardware accelerator along with the default coarse-gain optimi-
sation. In the CPU+GPU based implementation, data accessing pattern for ALF
filtering has been redesigned, different data transfer methods have been evaluated
and the most efficient data transfer method has been identified. The selection of
the data transfer method between GPP and GPU is critical to decide if the use of
GPUs can help to improve the performance.

• An analysis of energy consumption and memory usage over embedded heterogeneous
platforms has been carried out. The results of the energy consumption analysis
presented that almost the same energy per frame was consumed to achieve better
performance using CPU+GPU based hybrid approach than CPU based approach.
Although GPU normally consumes very high energy, the proposed implementation
compensated energy per frame by achieving better decoder performance optimisa-
tion.

• The proposed solutions have been compared by means of the decoding performance,
energy consumption, and memory usage of VVdeC and OpenVVC decoders on dif-
ferent heterogeneous platforms.

122 Conclusions and future work

In summary, a methodology was proposed where at the beginning the platform and
video standard were selected. Then, a detailed analysis of the decoder was performed
to identify the most computationally intensive modules for optimisation using a coarse-
and fine-grain profile. A hybrid approach was implemented using the fine-grain SIMD
instructions and CPU+GPU based hardware accelerator along with the default coarse-
gain optimisation.

A complete decoding solution using two decoder implementations was provided using
the proposed methodology that maximises the use of resources on embedded heteroge-
neous platforms. In general, an average speedup of ×2.1 was achieved for the proposed
approach on embedded heterogeneous platforms (see Section 5.9). Here, real-time decod-
ing was achieved for all HD resolution sequences with 1280 × 720, FHD sequences with
1920× 1080, and some UHD sequences with 3840× 2160 over Xavier platform based on
ARM architecture. Similar speed-up has been achieved with the platform Nano, obtaining
real time performance for all HD resolution sequences with 1280 × 720 and some FHD
sequences with 1920× 1080.

This work has been acknowledged by several publications in scientific forums and
journals. All these contributions have been summarised in Chapter 7, Section 7.3.

8.2 Future work

Finally, and as a conclusion to this dissertation, the following points are presented as
proposals for future work. These items should be considered as lines of work that extend
or complement the thesis from two points of view: a technical one (generation of energy
consumption models or migration of other blocks from the decoder to the accelerators),
and a second one that includes alternative approaches to some parts of the proposed design
methodology (exploration alternative parallel coding techniques or the use of alternative
accelerator architectures).

• Platforms including other accelerating architectures like FPGA or DSP could be
considered and explored to execute the different blocks of state-of-the-art VVC de-
coders. These architectures were widely used for the preceding HEVC standard
[86]-[89],[98]-[101]. Moreover, it is found from the work published in scientific liter-
ature that FPGA has proven to be efficient hardware used to run some blocks such
as TX and IP [86]-[89]. The use of other architectures will not only accelerate the
decoding speed but also increase the versatility of the decoder.

• Other concurrent code management techniques, like OpenMP, could be considered

Future work 123

to handle the intrinsic parallelism of state-of-the-art VVC decoders. OpenMP was
already used as main parallel task manager in previous video decoders. In [133]-
[135], HEVC decoders were instrumented using OpenMP. OpenMP-based source
code is proposed for future work to accelerate VVC decoder due to the fact that
most of the VVC decoder blocks are similar or based on same principle of HEVC
decoder blocks.

• Moving other blocks of VVC decoder to GPU is suggested for future work. For
example, DBF could be considered to be accelerated using GPU because it did not
benefit much from SIMD optimisation. In addition, several works [95]-[97] published
in scientific literature accelerated HEVC DBF using GPU. As VVC DBF is similar
to HEVC DBF, it is recommended to use GPU for processing VVC DBF.

• Design a model based on energy-efficient machine learning techniques that dynam-
ically adapts power usage according to the needs of both the environment (video
demand) and video performance. Applications such as video decoding are likely to
improve their impact on energy usage through machine learning models by having
easy and continuous access to parameters such as performance or energy consump-
tion. The GDEM research group, where this Thesis has been conducted, is currently
working on the development of machine learning models that dynamically adjust to
different scenarios in order to reduce energy consumption.

• Integration of the methodology proposed in this thesis in a tool that allows au-
tomating the execution of all or some of the proposed steps. In this case, tools
based on automatic code generation from high-level descriptions of both the algo-
rithm and the hardware could be considered as possible solutions. Such approaches
have proven to be very effective in reducing design time and providing the solution
with a high degree of modularity. However, they often have a negative impact on
the final performance of the application.

124 Conclusions and future work

125

Bibliography

[1] R.D. Caballar, "Battle of the Video Codecs: Coding-Efficient VVC
vs. Royalty-Free AV1," [Online]. Available:https://spectrum.ieee.org/
battle-video-codecs-hevc-coding-efficiency-vvc-royalty-free-av1.

[2] "Versatile Video Coding (VVC)," [Online]. Available:https://jvet.hhi.
fraunhofer.de/.

[3] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, "Overview of the High Effi-
ciency Video Coding (HEVC) Standard," in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012, doi:
10.1109/TCSVT.2012.2221191.

[4] C. Feldmann, "Versatile Video Coding hits major milestone," [Online]. Available:
https://bitmovin.com/compression-standards-vvc-2020.

[5] A. Wieckowski, G. Hege, C. Bartnik, C. Lehmann, C. Stoffers, B. Bross and D.
Marpe, "Towards A Live Software Decoder Implementation For The Upcoming Ver-
satile Video Coding (VVC) Codec," 2020 IEEE International Conference on Image
Processing (ICIP), 2020, pp. 3124-3128. doi: 10.1109/ICIP40778.2020.9191199.

[6] T. Amestoy, P. Cabarat, G. Gautier, W. Hamidouche, and D. Menard, "OpenVVC:
a Lightweight Software Decoder for the Versatile Video Coding Standard." publisher
arXiv, 2022 [Online]. Available: https://doi.org/10.48550/arXiv.2205.12217.

[7] B. Zhu, S. Liu, Y. Liu, Y. Luo, J. Ye, H. Xu, Y. Huang, H. Jiao, X. Xu, X.
Zhang and C. Gu, "A Real-Time H.266/VVC Software Decoder," 2021 IEEE
International Conference on Multimedia and Expo (ICME), 2021, pp. 1-6, doi:
10.1109/ICME51207.2021.9428470.

[8] Y. Serpa, "Why are GPUs So Powerful?" [On-
line]. Available: https://towardsdatascience.com/

https://spectrum.ieee.org/battle-video-codecs-hevc-coding-efficiency-vvc-royalty-free-av1
https://spectrum.ieee.org/battle-video-codecs-hevc-coding-efficiency-vvc-royalty-free-av1
https://jvet.hhi.fraunhofer.de/
https://jvet.hhi.fraunhofer.de/
https://bitmovin.com/compression-standards-vvc-2020
https://doi.org/10.48550/arXiv.2205.12217
https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car
https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car
https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car

126 Bibliography

the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:
~:text=This%20is%20throughput.,traveling%20by%20car.

[9] M. Chavarrías, 2017. "Aportaciones metodológicas para el diseño de descodificadores
de vídeo de última generación sobre plataformas Multi-DSP," E.T.S.I. y Sistemas
de Telecomunicación, Universidad Politécnica de Madrid, PhD thesis. Available:
https://oa.upm.es/47193/.

[10] M. J. Garrido, F. Pescador, M. Chavarrías, P. J. Lobo, C. Sanz and P. Paz, "An
FPGA-Based Architecture for the Versatile Video Coding Multiple Transform Se-
lection Core," in IEEE Access, vol. 8, pp. 81887-81903, 2020, doi: 10.1109/AC-
CESS.2020.2991299.

[11] "Project IVME: Immersive Visual Media Environments", Jan. 2017 - Dec.
2019, [Online]. Available:https://www.citsem.upm.es/en/research/projects?
view=projects&task=show&id=62.

[12] "Project MR-UHDTV: Mixed Reality over Ultra High Definition Television", Du-
ration Jan. 2014 - Dec. 2017, [Online]. Available:https://www.citsem.upm.es/en/
research/projects?view=projects&task=show&id=54.

[13] "Project H2B2VS: HEVC - Hybrid Broadcast Video Services", Duration Sep.
2012 - Apr. 2015, [Online]. Available:https://www.citsem.upm.es/en/research/
projects?view=projects&task=show&id=13.

[14] "VTM VVC reference software" [Online]. Available:https://vcgit.hhi.
fraunhofer.de/jvet/VVCSoftware_VTM.

[15] "Fraunhofer HHI VVdeC software repository," [Online]. Available: https://
github.com/fraunhoferhhi/vvdec.

[16] A. Saha, M. Chavarrías, F. Pescador, Á.M. Groba, K. Chassaigne and P.L.
Cebrián, "Complexity Analysis of a Versatile Video Coding Decoder over Em-
bedded Systems and General Purpose Processors," Sensors 2021, 21, 3320.
https://doi.org/10.3390/s21103320.

[17] A. Saha, M. Chavarrías, V. Aranda, M. J. Garrido and F. Pescador, "Implemen-
tation of a Real-time Versatile Video Coding Decoder based on VVdeC over an
Embedded Multi-core Platform," in IEEE Transactions on Consumer Electronics,
2022, doi: 10.1109/TCE.2022.3202512.

https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car
https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car
https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car
https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car
https://towardsdatascience.com/the-ai-illustrated-guide-why-are-gpus-so-powerful-99f4ae85a5c3#:~:text=This%20is%20throughput.,traveling%20by%20car
https://oa.upm.es/47193/
https://www.citsem.upm.es/en/research/projects?view=projects&task=show&id=62
https://www.citsem.upm.es/en/research/projects?view=projects&task=show&id=62
https://www.citsem.upm.es/en/research/projects?view=projects&task=show&id=54
https://www.citsem.upm.es/en/research/projects?view=projects&task=show&id=54
https://www.citsem.upm.es/en/research/projects?view=projects&task=show&id=13
https://www.citsem.upm.es/en/research/projects?view=projects&task=show&id=13
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
https://github.com/fraunhoferhhi/vvdec
https://github.com/fraunhoferhhi/vvdec

127

[18] A. Saha, W. Hamidouche, M. Chavarrías, G. Gautier, F. Pescador, and I. Farhat,
"Performance Analysis of Optimized Versatile Video Coding Software Decoders on
Embedded Platforms" [Online]. Available:https://arxiv.org/abs/2206.15311.

[19] A. Saha, N. Roma, M. Chavarrías, T. Dias, F. Pescador and V. Aranda, "GPU-
based Parallelisation of a Versatile Video Coding Adaptive Loop Filter in Resource-
Constrained Heterogeneous Embedded Platform," (submitted)

[20] "OpenHEVC," [Online]. Available:https://github.com/OpenHEVC/openHEVC.

[21] R. Medina, A. Saha, M. Floriano, M. Chavarrías and F. Pescador, "Porting Adaptive
Multiple Transforms of a Versatile Video Coding decoder using OpenMP," 2019
IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), 2019,
pp. 138-139, doi: 10.1109/ICCE-Berlin47944.2019.8966176.

[22] M. F. Vázquez, A. Saha, R. M. Morillas, M. C. Lapastora and F. P. d. Oso, "Work-
in-Progress: Porting new Versatile Video Coding transforms to a heterogeneous
GPU-based technology," 2019 International Conference on Compliers, Architectures
and Synthesis for Embedded Systems (CASES), 2019, pp. 1-2.

[23] Dr. T. Hussain, “Multimedia Computing.” Google Books, Booksclinic Publishing, 21
Oct. 2020, https://books.google.com/books/about/MULTIMEDIA_COMPUTING.
html?id=pk4EEAAAQBAJ.

[24] "Image Processing 101 Chapter 1.2: Color Models" [Online]. Avail-
able:https://www.dynamsoft.com/blog/insights/image-processing/
image-processing-101-color-models/#:~:text=A%20color%20space%
20identifies%20a,on%20the%20RGB%20color%20model.

[25] D. Brunner, “Frame Rate: A Beginner’s Guide”, [Online]. Available: https://www.
techsmith.com/blog/frame-rate-beginners-guide/.

[26] F. Romano, “Frame Rate History — Why Speeds Vary”, [Online]. Available: https:
//vanillavideo.com/articles/history-frame-rates-why-speeds-vary/.

[27] N. Surana, “Video Resolutions: What they are, Different Types, and their Pixel
Size”, [Online]. Available: https://typito.com/blog/video-resolutions/.

[28] A.S. NAGARAGHATTA, 2019. "Algorithms and methods for video transcod-
ing," Robert Gordon University [online], PhD thesis. Available: https://
rgu-repository.worktribe.com/output/842023.

https://arxiv.org/abs/2206.15311
https://github.com/OpenHEVC/openHEVC
https://books.google.com/books/about/MULTIMEDIA_COMPUTING.html?id=pk4EEAAAQBAJ
https://books.google.com/books/about/MULTIMEDIA_COMPUTING.html?id=pk4EEAAAQBAJ
https://www.dynamsoft.com/blog/insights/image-processing/image-processing-101-color-models/#:~:text=A%20color%20space%20identifies%20a,on%20the%20RGB%20color%20model
https://www.dynamsoft.com/blog/insights/image-processing/image-processing-101-color-models/#:~:text=A%20color%20space%20identifies%20a,on%20the%20RGB%20color%20model
https://www.dynamsoft.com/blog/insights/image-processing/image-processing-101-color-models/#:~:text=A%20color%20space%20identifies%20a,on%20the%20RGB%20color%20model
 https://www.techsmith.com/blog/frame-rate-beginners-guide/
 https://www.techsmith.com/blog/frame-rate-beginners-guide/
 https://vanillavideo.com/articles/history-frame-rates-why-speeds-vary/
 https://vanillavideo.com/articles/history-frame-rates-why-speeds-vary/
 https://typito.com/blog/video-resolutions/
https://rgu-repository.worktribe.com/output/842023
https://rgu-repository.worktribe.com/output/842023

128 Bibliography

[29] ITU-T, “Recommendation H.120 : Codecs for Videoconferencing Using Primary
Digital Group Transmission,” pp. 7–9, 1988.

[30] ITU-T, “Recommendation H.261: Video Codec for Audiovisual Services at p64
kbits,” 1993.

[31] ISO/IEC JTC 1/SC 29. "Programme of Work — Allocated to SC 29/WG 11,
MPEG-1 (Coding of moving pictures and associated audio for digital storage media
at up to about 1,5 Mbit/s)," 2009.

[32] ITU-T, “Recommendation H.262: Transmission of Non-Telephone Signals,” 1994.

[33] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[34] Microsoft Corp. (April 28, 1997) Microsoft Licenses Duck Corp.’s TrueMotion 2.0
To Bring Television-Quality Video to the PC Archived 2008-04-30 at the Wayback
Machine, Retrieved on 2009-08-11

[35] "On2’s VP3 Codec Available Via QuickTime 5’s Component Download Fea-
ture" [Online]. Available:https://web.archive.org/web/20071203061516/http:
//www.on2.com/index.php?id=486&news_id=397.

[36] G. Bjøntegaard, T. Davies, A. Fuldseth and S. Midtskogen, "The Thor Video
Codec," 2016 Data Compression Conference (DCC), 2016, pp. 476-485, doi:
10.1109/DCC.2016.74.

[37] Y. Chen, D. Murherjee, J. Han, A. Grange, Y. Xu, Z. Liu, S. Parker, C. Chen, H.
Su, U. Joshi, C. -H. Chiang, Y. Wang, P. Wilkins, J. Bankoski, L. Trudeau, N. Egge,
J. -M. Valin, T. Davies, S. Midtskogen, A. Norkin and P. de Rivaz, "An Overview
of Core Coding Tools in the AV1 Video Codec," 2018 Picture Coding Symposium
(PCS), 2018, pp. 41-45, doi: 10.1109/PCS.2018.8456249.

[38] L. Guo, O. C. Au, M. Ma, Z. Liang and P. H. W. Wong, "A Novel Analytic
Quantization-Distortion Model for Hybrid Video Coding," in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 19, no. 5, pp. 627-641, May
2009, doi: 10.1109/TCSVT.2009.2017403.

[39] D. Karwowski, ”Precise Probability Estimation of Symbols in VVC CABAC En-
tropy Encoder,” in IEEE Access, vol. 9, pp. 65361-65368, 2021. doi: 10.1109/AC-
CESS.2021.3075875.

https://web.archive.org/web/20071203061516/http://www.on2.com/index.php?id=486&news_id=397
https://web.archive.org/web/20071203061516/http://www.on2.com/index.php?id=486&news_id=397

129

[40] J. Chen, Y. Ye and S. Kim, "JVET-Q2002-v3: Algorithm description for Versatile
Video Coding and Test Model 8 (VTM 8)." Jvet 17th Meeting: Brussels, BE, 7–17
January 2020.

[41] X. Zhao, S. -H. Kim, Y. Zhao, H. E. Egilmez, M. Koo, S. Liu, J. Lainema and
M. Karczewicz, "Transform Coding in the VVC Standard," in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3878-3890, Oct.
2021, doi: 10.1109/TCSVT.2021.3087706.

[42] M. Koo, M. Salehifar, J. Lim and S. -H. Kim, "Low Frequency Non-Separable
Transform (LFNST)," 2019 Picture Coding Symposium (PCS), 2019, pp. 1-5, doi:
10.1109/PCS48520.2019.8954507.

[43] R. Ghaznavi-Youvalari and J. Lainema, "Joint Cross-Component Linear Model For
Chroma Intra Prediction," 2020 IEEE 22nd International Workshop on Multimedia
Signal Processing (MMSP), 2020, pp. 1-5. doi: 10.1109/MMSP48831.2020.9287167.

[44] Y. -J. Cho, J. -H. Ko, H. -G. Yu, J. -H. Lee, D. -J. Park and S. -H. Jun, "Adaptive
motion vector resolution based on the rate-distortion cost and coding unit depth,"
2014 IEEE International Advance Computing Conference (IACC), 2014, pp. 1000-
1003, doi: 10.1109/IAdCC.2014.6779460.

[45] F. Bossen, K. Sühring, A. Wieckowski and S. Liu, "VVC Complexity and
Software Implementation Analysis," in IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 31, no. 10, pp. 3765-3778, Oct. 2021. doi:
10.1109/TCSVT.2021.3072204.

[46] H. Liu, L. Zhang, K. Zhang, H. C. Chuang, Y. Wang and J. Xu, "Two-Pass
Bi-Directional Optical Flow Via Motion Vector Refinement," 2019 IEEE In-
ternational Conference on Image Processing (ICIP), 2019, pp. 1208-1211, doi:
10.1109/ICIP.2019.8803763.

[47] M. Aklouf, M. Leny, F. Dufaux, and M. Kieffer, "Low Complexity Versatile Video
Coding (VVC) for Low Bitrate Applications," 2019 8th European Workshop on
Visual Information Processing (EUVIP), Roma, Italy, Oct. 2019; pp. 22-27, doi:
10.1109/EUVIP47703.2019.8946261.

[48] H. Gao, X. Chen, S. Esenlik, J. Chen and E. Steinbach, "Decoder-Side Motion Vec-
tor Refinement in VVC: Algorithm and Hardware Implementation Considerations,"
in IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 8,
pp. 3197-3211, Aug. 2021, doi: 10.1109/TCSVT.2020.3037024.

130 Bibliography

[49] T. Lu, F. Pu, P. Yin, S. McCarthy, W. Husak, T. Chen, E. Francois, C. Chevance,
F. Hiron, J. Chen, R. -L. Liao, Y. Ye and J. Luo, "Luma Mapping with Chroma
Scaling in Versatile Video Coding," 2020 Data Compression Conference (DCC),
2020, pp. 193-202, doi: 10.1109/DCC47342.2020.00027.

[50] M. Karczewicz, N. Hu, J. Taquet, C. -Y. Chen, K. Misra, K. Andersson, P. Yin,
T. Lu, E. François and J. Chen, "VVC In-Loop Filters," in IEEE Transactions on
Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3907-3925, Oct.
2021, doi: 10.1109/TCSVT.2021.3072297.

[51] K. Andersson, K. Misra, M. Ikeda, D. Rusanovskyy and S. Iwamura, "Deblock-
ing filtering in VVC," 2021 Picture Coding Symposium (PCS), 2021, pp. 1-5, doi:
10.1109/PCS50896.2021.9477477.

[52] J. Yang, B. Du and T. Tang, "Improved method of deblocking filter based
on convolutional neural network in VVC," 2020 IEEE/CIC International
Conference on Communications in China (ICCC), 2020, pp. 764-769, doi:
10.1109/ICCC49849.2020.9238791.

[53] C. -M. Fu, C. -Y. Chen, Y. -W. Huang and S. Lei, "Sample adaptive offset for
HEVC," 2011 IEEE 13th International Workshop on Multimedia Signal Processing,
2011, pp. 1-5, doi: 10.1109/MMSP.2011.6093807.

[54] P. Lakshmi Amruthavalli and P. Nalluri, "A Review on In-Loop Filters for HEVC
and VVC Video Coding Standards," 2022 8th International Conference on Ad-
vanced Computing and Communication Systems (ICACCS), 2022, pp. 997-1001,
doi: 10.1109/ICACCS54159.2022.9784992.

[55] P. Bordes, F. Galpin, T. Dumas and P. Nikitin, "Revisiting the Sample Adaptive
Offset post-filter of VVC with Neural-Networks," 2021 Picture Coding Symposium
(PCS), 2021, pp. 1-5, doi: 10.1109/PCS50896.2021.9477457.

[56] C. -Y. Tsai, C. -Y. Chen, T. Yamakage, I. S. Chong, Y. -W. Huang, C. -M. Fu,
T. Itoh, T. Watanabe, T. Chujoh, M. Karczewicz and S. -M. Lei, "Adaptive Loop
Filtering for Video Coding," in IEEE Journal of Selected Topics in Signal Processing,
vol. 7, no. 6, pp. 934-945, Dec. 2013, doi: 10.1109/JSTSP.2013.2271974.

[57] J. Erfurt, W. Lim, H. Schwarz, D. Marpe, and T. Wiegand, "Extended multiple
feature-based classifications for adaptive loop filtering," in APSIPA Transactions on
Signal and Information Processing, vol. 8, E28, 2019, doi:10.1017/ATSIP.2019.19.

131

[58] X. Wang, H. Sun, J. Katto and Y. Fan, "A Hardware Architecture for Adaptive
Loop Filter in VVC Decoder," 2021 IEEE 14th International Conference on ASIC
(ASICON), 2021, pp. 1-4, doi: 10.1109/ASICON52560.2021.9620332.

[59] "HM HEVC reference software" [Online]. Available:https://vcgit.hhi.
fraunhofer.de/jct-vc/HM.

[60] "Ffmpeg: A complete, cross-platform solution to record, convert and stream audio
and video," [Online]. Available: https://ffmpeg.org/.

[61] "GPAC: Multimedia Open Source Project," [Online]. Available: https://gpac.wp.
imt.fr/.

[62] A. Wieckowski, C. Lehmann, B. Bross, D. Marpe, T. Biatek, M. Raulet, and J. Le
Feuvre, "A Complete End to End Open Source Toolchain for the Versatile Video
Coding (VVC) Standard," 2021 Proceedings of the 29th ACM International Confer-
ence on Multimedia, Association for Computing Machinery, New York, NY, USA,
3795–3798.

[63] "OpenVVC software repository," [Online]. Available:https://github.com/
OpenVVC/OpenVVC.

[64] "VLC media player: VideoLAN, a project and a non-profit organization," [Online].
Available: https://www.videolan.org/.

[65] T. Amestoy, P. Cabarat, G. Gautier, W. Hamidouche and D. Menard, "OpenVVC:
a Lightweight Software Decoder for the Versatile Video Coding Standard," arXiv
preprint arXiv:2205.12217, 2022.

[66] “Tencent O266dec decoder library,” [Online]. Available: https://github.com/
TencentCloud/O266player.

[67] D. Vandevoorde and N. M. Josuttis, "C++ Templates", The Complete Guide.
Addison-Wesley, 2003.

[68] B. Zhu, S. Liu, Y. Liu, Y. Luo, J. Ye, H. Xu, Y. Huang, H. Jiao, X. Xu, X.
Zhang and C. Gu., "A Real-Time H.266/VVC Software Decoder," 2021 IEEE
International Conference on Multimedia and Expo (ICME), 2021, pp. 1-6, doi:
10.1109/ICME51207.2021.9428470.

[69] "Intel® Instruction Set Extensions Technology," [Online]. Available:
https://www.intel.com/content/www/us/en/support/articles/000005779/
processors.html.

https://vcgit.hhi.fraunhofer.de/jct-vc/HM
https://vcgit.hhi.fraunhofer.de/jct-vc/HM
https://ffmpeg.org/
https://gpac.wp.imt.fr/
https://gpac.wp.imt.fr/
https://github.com/OpenVVC/OpenVVC
https://github.com/OpenVVC/OpenVVC
https://www.videolan.org/
https://github.com/TencentCloud/O266player
https://github.com/TencentCloud/O266player
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html

132 Bibliography

[70] "Neon", [Online]. Available: https://developer.arm.com/architectures/
instruction-sets/simd-isas/neon.

[71] "ARM Advanced SIMD (NEON) Intrinsics and Types in
LLVM", [Online]. Available: https://blog.llvm.org/2010/04/
arm-advanced-simd-neon-intrinsics-and.html.

[72] "Learn the architecture - Optimizing C code with Neon intrinsics", [On-
line]. Available: https://developer.arm.com/documentation/102467/0100/
Check-your-knowledge.

[73] S. Gudumasu, S. Bandyopadhyay, and Y. He, "Software-based versatile video cod-
ing decoder parallelization," in Proceedings of the 11th ACM Multimedia Systems
Conference (MMSys ’20), Association for Computing Machinery, New York, NY,
USA, 202–212, 2020. doi: 10.1145/3339825.3391871.

[74] M. Koziri, P. K. Papadopoulos, N. Tziritas, N. Giachoudis, T. Loukopoulos, S.
U. Khan and G. I. Stamoulis, "Heuristics for tile parallelism in HEVC," 2017
25th European Signal Processing Conference (EUSIPCO), 2017, pp. 1514-1518, doi:
10.23919/EUSIPCO.2017.8081462.

[75] T. Amestoy, W. Hamidouche, C. Bergeron and D. Menard, "Quality-Driven Dy-
namic VVC Frame Partitioning for Efficient Parallel Processing," arXiv preprint:
https://doi.org/10.48550/arXiv.2012.14792.

[76] J. Wang and X. Zhou, "Wavefront parallel processing based on POSIX threads,"
2016 IEEE International Conference on Consumer Electronics-China (ICCE-China),
2016, pp. 1-5, doi: 10.1109/ICCE-China.2016.7849744.

[77] J. Sancho, P. Sutradhar, G. Rosa, M. Chavarrías, A. Perez-Nuñez, R. Salvador, A.
Lagares, E. Juárez and C. Sanz, "GoRG: Towards a GPU-Accelerated Multiview
Hyperspectral Depth Estimation Tool for Medical Applications," Sensors 2021, 21,
4091. https://doi.org/10.3390/s21124091

[78] K. Punithakumar, P. Boulanger and M. Noga, "A GPU-Accelerated Deformable Im-
age Registration Algorithm With Applications to Right Ventricular Segmentation,"
in IEEE Access, vol. 5, pp. 20374-20382, 2017, doi: 10.1109/ACCESS.2017.2755863.

[79] "CUDA TOOLKIT," [Online]. Available: https://developer.nvidia.com/
cuda-toolkit.

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://blog.llvm.org/2010/04/arm-advanced-simd-neon-intrinsics-and.html
https://blog.llvm.org/2010/04/arm-advanced-simd-neon-intrinsics-and.html
https://developer.arm.com/documentation/102467/0100/Check-your-knowledge
https://developer.arm.com/documentation/102467/0100/Check-your-knowledge
https://doi.org/10.48550/arXiv.2012.14792
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

133

[80] P. Gupta, "CUDA Refresher: The CUDA Programming Model,"
[Online]. Available: https://developer.nvidia.com/blog/
cuda-refresher-cuda-programming-model/.

[81] "IEEE Standard Verilog Hardware Description Language," in IEEE Std 1364-2001
, vol., no., pp.1-792, 28 Sept. 2001, doi: 10.1109/IEEESTD.2001.93352.

[82] "FPGA vs GPU, What to Choose?," [Online]. Available: https://hardwarebee.
com/fpga-vs-gpu-choose/.

[83] A. Kammoun, W. Hamidouche, P. Philippe, O. Déforges, F. Belghith, N. Mas-
moudi and J. -F. Nezan, "Forward-Inverse 2D Hardware Implementation of Approx-
imate Transform Core for the VVC Standard," in IEEE Transactions on Circuits
and Systems for Video Technology, vol. 30, no. 11, pp. 4340-4354, Nov. 2020, doi:
10.1109/TCSVT.2019.2954749.

[84] H. M. Waidyasooriya, M. Hariyama, H. Iwasaki, D. Kobayashi, Y. Omori, K.
Nakamura, K. Nitta and K. Sano, "OpenCL-Based Design of an FPGA Acceler-
ator for H.266/VVC Transform and Quantization," 2022 IEEE 65th International
Midwest Symposium on Circuits and Systems (MWSCAS), 2022, pp. 1-4, doi:
10.1109/MWSCAS54063.2022.9859281.

[85] H. Azgin, E. Kalali and I. Hamzaoglu, "An Efficient FPGA Implementation of Ver-
satile Video Coding Intra Prediction," 2019 22nd Euromicro Conference on Digital
System Design (DSD), 2019, pp. 194-199, doi: 10.1109/DSD.2019.00037.

[86] S. Abdellah, S. Youcef and D. Lamine, "Implementation of HEVC intra 4×4 pre-
diction on FPGA," 2015 Science and Information Conference (SAI), 2015, pp. 1160-
1164, doi: 10.1109/SAI.2015.7237291.

[87] H. Azgin, A. C. Mert, E. Kalali and I. Hamzaoglu, "An efficient FPGA implementa-
tion of HEVC intra prediction," 2018 IEEE International Conference on Consumer
Electronics (ICCE), 2018, pp. 1-5, doi: 10.1109/ICCE.2018.8326332.

[88] E. Kalali and I. Hamzaoglu, "FPGA implementations of HEVC Inverse DCT using
high-level synthesis," 2015 Conference on Design and Architectures for Signal and
Image Processing (DASIP), 2015, pp. 1-6, doi: 10.1109/DASIP.2015.7367262.

[89] V. Viitamäki, P. Sjövall, J. Vanne and T. D. Hämäläinen, "High-level synthesized
2-D IDCT/IDST implementation for HEVC codecs on FPGA," 2017 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2017, pp. 1-4, doi: 10.1109/IS-
CAS.2017.8050323.

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://hardwarebee.com/fpga-vs-gpu-choose/
https://hardwarebee.com/fpga-vs-gpu-choose/

134 Bibliography

[90] X. Han, S. Wang, S. Ma and W. Gao, "Optimization Of Motion Compen-
sation Based On GPU And CPU For VVC Decoding," 2020 IEEE Inter-
national Conference on Image Processing (ICIP), 2020, pp. 1196-1200, doi:
10.1109/ICIP40778.2020.9190708.

[91] J. Ma, F. Luo, S. Wang and S. Ma, "Flexible CTU-level parallel motion estimation
by CPU and GPU pipeline for HEVC," 2014 IEEE Visual Communications and
Image Processing Conference, 2014, pp. 282-285, doi: 10.1109/VCIP.2014.7051559.

[92] H. Igarashi, F. Takano and T. Moriyoshi, "Highly parallel transformation and quan-
tization for HEVC encoder on GPUs," 2016 Visual Communications and Image
Processing (VCIP), 2016, pp. 1-4, doi: 10.1109/VCIP.2016.7805520.

[93] L. -p. He and S. Goto, "A high parallel way for processing IQ/IT part of HEVC
decoder based on GPU," 2014 International Symposium on Intelligent Signal Pro-
cessing and Communication Systems (ISPACS), 2014, pp. 211-215, doi: 10.1109/IS-
PACS.2014.7024454.

[94] S. Radicke, J. -U. Hahn, Q. Wang and C. Grecos, "A Parallel HEVC In-
tra Prediction Algorithm for Heterogeneous CPU+GPU Platforms," in IEEE
Transactions on Broadcasting, vol. 62, no. 1, pp. 103-119, March 2016, doi:
10.1109/TBC.2015.2505401.

[95] Y. Wang, X. Guo, X. Fan, Y. Lu, D. Zhao and W. Gao, "Parallel In-Loop Filtering
in HEVC Encoder on GPU," in IEEE Transactions on Consumer Electronics, vol.
64, no. 3, pp. 276-284, Aug. 2018, doi: 10.1109/TCE.2018.2867812.

[96] D. F. de Souza, A. Ilic, N. Roma and L. Sousa, "HEVC in-loop filters GPU par-
allelization in embedded systems," 2015 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015, pp.
123-130, doi: 10.1109/SAMOS.2015.7363667.

[97] D. F. de Souza, N. Roma and L. Sousa, "Cooperative CPU+GPU deblocking filter
parallelization for high performance HEVC video codecs," 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 4993-
4997, doi: 10.1109/ICASSP.2014.6854552.

[98] S. Lee, J. Song, W. Lee, D. Kim, J. Kim and S. Lee, "DSP based programmable
FHD HEVC decoder," 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015, pp. 972-973.

135

[99] P. Rodriguez, F. Balseiro, M. Chavarrías, F. Pescador and M. Garrido, "A DSP-
based HEVC decoder implementation using RVC-CAL and native OpenHEVC
code," 2015 International Symposium on Consumer Electronics (ISCE), 2015, pp.
1-2, doi: 10.1109/ISCE.2015.7177782.

[100] Y. Zhang, R. Fan, C. Zhang, G. Wang and Z. Li, "SIMD acceleration for HEVC
encoding on DSP," 2017 Asia-Pacific Signal and Information Processing Associa-
tion Annual Summit and Conference (APSIPA ASC), 2017, pp. 1719-1725, doi:
10.1109/APSIPA.2017.8282310.

[101] M. Chavarrías, F. Pescador, M. J. Garrido, E. Juárez and C. Sanz, "A multi-
core DSP HEVC decoder using an actor-based dataflow model," 2015 IEEE In-
ternational Conference on Consumer Electronics (ICCE), 2015, pp. 370-371, doi:
10.1109/ICCE.2015.7066449.

[102] "FPGA vs. GPU vs. CPU: Which Is the Best Choice for Your Application?," [On-
line]. Available: https://www.raypcb.com/fpga-vs-gpu-vs-cpu/#:~:text=A%
20GPU%20can%20perform%20general,right%20choice%20for%20your%20needs.

[103] R. Rachita, "Graphics processing unit (GPU) Market," [Online]. Available: https:
//www.alliedmarketresearch.com/graphic-processing-unit-market.

[104] I. Cutress, "AMD Zen Microarchiture Part 2: Extracting Instruction-Level
Parallelism," [Online]. Available: https://www.anandtech.com/show/10591/
amd-zen-microarchiture-part-2-extracting-instructionlevel-parallelism/
5.

[105] "AMD Ryzen™ Threadripper™ Processors," [Online]. Available: https://www.amd.
com/en/products/ryzen-threadripper.

[106] "Intel Core i9," [Online]. Available: https://www.profesionalreview.com/
intel/intel-core-i9/.

[107] "Intel® Core™ i9-10900X X-series Processor," [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/198019/
intel-core-i910900x-xseries-processor-19-25m-cache-3-70-ghz.html.

[108] "NVIDIA Jetson AGX Xavier Developer Kit, User Guide," DA_09403_003,
December 17, 2019, [Online]. Available: https://developer.nvidia.com/
jetson-agx-xavier-developer-kit-user-guide.

https://www.raypcb.com/fpga-vs-gpu-vs-cpu/#:~:text=A%20GPU%20can%20perform%20general,right%20choice%20for%20your%20needs.
https://www.raypcb.com/fpga-vs-gpu-vs-cpu/#:~:text=A%20GPU%20can%20perform%20general,right%20choice%20for%20your%20needs.
https://www.alliedmarketresearch.com/graphic-processing-unit-market
https://www.alliedmarketresearch.com/graphic-processing-unit-market
https://www.anandtech.com/show/10591/amd-zen-microarchiture-part-2-extracting-instructionlevel-parallelism/5
https://www.anandtech.com/show/10591/amd-zen-microarchiture-part-2-extracting-instructionlevel-parallelism/5
https://www.anandtech.com/show/10591/amd-zen-microarchiture-part-2-extracting-instructionlevel-parallelism/5
https://www.amd.com/en/products/ryzen-threadripper
https://www.amd.com/en/products/ryzen-threadripper
https://www.profesionalreview.com/intel/intel-core-i9/
https://www.profesionalreview.com/intel/intel-core-i9/
https://ark.intel.com/content/www/us/en/ark/products/198019/intel-core-i910900x-xseries-processor-19-25m-cache-3-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/198019/intel-core-i910900x-xseries-processor-19-25m-cache-3-70-ghz.html
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide

136 Bibliography

[109] "NVIDIA Jetson Nano Developer Kit, User Guide," DA_09402_004, January
15, 2020, [Online]. Available: https://developer.nvidia.com/embedded/dlc/
Jetson_Nano_Developer_Kit_User_Guide.

[110] "JETSON STORE," [Online]. Available: https://store.nvidia.com/en-us/
jetson/store/?page=1&limit=9&locale=en-us.

[111] "Valgrind’s Tool Suite," [Online]. Available: https://www.valgrind.org/info/
tools.html.

[112] "Callgrind: a call-graph generating cache and branch prediction profiler," [Online].
Available: https://valgrind.org/docs/manual/cl-manual.html.

[113] SSE for NEON library, "sse2neon", [Online]. Available: https://github.com/
DLTcollab/sse2neon.

[114] E. Nemerson, "Transitioning SSE/AVX code to NEON with SIMDe,"
[Online]. Available: https://simd-everywhere.github.io/blog/2020/06/22/
transitioning-to-arm-with-simde.html.

[115] "ARM Compiler armasm User Guide Version 5.06," [Online]. Available:
https://developer.arm.com/documentation/dui0473/m/vfp-instructions/
vadd--floating-point-.

[116] S. J. Kim, W. Joo and D. H. Kim, "Raster scan waveform compensation control for
enhancing the orthogonality of images in SEM," in Microscopy, vol. 62, no. 4, pp.
475-484, Aug. 2013, doi: 10.1093/jmicro/dft024.

[117] N. V. Sunitha, K. Raju and N. N. Chiplunkar, "Performance improvement of
CUDA applications by reducing CPU-GPU data transfer overhead," 2017 Inter-
national Conference on Inventive Communication and Computational Technologies
(ICICCT), 2017, pp. 211-215, doi: 10.1109/ICICCT.2017.7975190.

[118] M. Bayati, M. Leeser and N. Mi, "Exploiting GPU Direct Access to Non-
Volatile Memory to Accelerate Big Data Processing," 2020 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), 2020, pp. 1-6, doi: 10.1109/H-
PEC43674.2020.9286174.

[119] "C++ API Routines: cudaMallocHost", [Online]. Available:
http://horacio9573.no-ip.org/cuda/group__CUDART__HIGHLEVEL_
ge439496de696b166ba457dab5dd4f356.html.

https://developer.nvidia.com/embedded/dlc/Jetson_Nano_Developer_Kit_User_Guide
https://developer.nvidia.com/embedded/dlc/Jetson_Nano_Developer_Kit_User_Guide
https://store.nvidia.com/en-us/jetson/store/?page=1&limit=9&locale=en-us
https://store.nvidia.com/en-us/jetson/store/?page=1&limit=9&locale=en-us
https://www.valgrind.org/info/tools.html
https://www.valgrind.org/info/tools.html
https://valgrind.org/docs/manual/cl-manual.html
https://github.com/DLTcollab/sse2neon
https://github.com/DLTcollab/sse2neon
https://simd-everywhere.github.io/blog/2020/06/22/transitioning-to-arm-with-simde.html
https://simd-everywhere.github.io/blog/2020/06/22/transitioning-to-arm-with-simde.html
https://developer.arm.com/documentation/dui0473/m/vfp-instructions/vadd--floating-point-
https://developer.arm.com/documentation/dui0473/m/vfp-instructions/vadd--floating-point-
http://horacio9573.no-ip.org/cuda/group__CUDART__HIGHLEVEL_ge439496de696b166ba457dab5dd4f356.html
http://horacio9573.no-ip.org/cuda/group__CUDART__HIGHLEVEL_ge439496de696b166ba457dab5dd4f356.html

137

[120] R. P. Ponnuraj, "CUDA — Memory Model," [Online]. Available: https://medium.
com/analytics-vidhya/cuda-memory-model-823f02cef0bf.

[121] K. Desnos, 2014. "Memory Study and Dataflow Representations for Rapid Prototyp-
ing of Signal Processing Applications on MPSoCs," IETR - Institut d’Électronique
et des Technologies du numéRique, INSA de Rennes, 〈NNT : 2014ISAR0004〉. 〈tel-
01127297〉, PhD thesis. Available: https://theses.hal.science/tel-01127297.

[122] "vooya :: raw Video Sequence Player," [Online]. Available: https://www.
offminor.de/.

[123] "function md5," [Online]. Available: https://www.md5.cz/.

[124] "time(1) — Linux manual page," [Online]. Available: https://man7.org/linux/
man-pages/man1/time.1.html.

[125] "Software-Based Power Consumption Modeling" [Online]. Available:
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-325/index.
html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/
power_management_jetson_xavier.html#wwpID0E0AG0HA.

[126] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring, "JVET Common Test Con-
ditions and Software Reference Configurations for SDR Video," Document JVET-
N1010, JVET of ITU-T, Geneva, Mar 2019.

[127] "CMake - Cross Platform Makefile Generator," 2000-2021 Kitware, Inc. and Con-
tributors [Online]. Available: https://cmake.org/.

[128] "Auto-vectorization in GCC" [Online]. Available: https://gcc.gnu.org/
projects/tree-ssa/vectorization.html.

[129] "Automatic Vectorization, GCC Autovectorization flags" [Online]. Avail-
able: https://www.codingame.com/playgrounds/283/sse-avx-vectorization/
autovectorization.

[130] "ARM NEON for C++ Developers" [Online]. Available: http://const.me/
articles/simd/NEON.pdf.

[131] "OpenMP - The OpenMP API specification for parallel programming" [Online].
Available: https://www.openmp.org/

[132] "IBM POSIX threads explained - A simple and nimble tool for memory shar-
ing," [Online]. Available: http://lsi.vc.ehu.es/pablogn/docencia/ISO/Act7%
20Hilos/IBM%20posix%20threads.pdf.

https://medium.com/analytics-vidhya/cuda-memory-model-823f02cef0bf
https://medium.com/analytics-vidhya/cuda-memory-model-823f02cef0bf
https://theses.hal.science/tel-01127297
https://www.offminor.de/
https://www.offminor.de/
https://www.md5.cz/
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-325/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-325/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-325/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA
https://cmake.org/
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://www.codingame.com/playgrounds/283/sse-avx-vectorization/autovectorization
https://www.codingame.com/playgrounds/283/sse-avx-vectorization/autovectorization
http://const.me/articles/simd/NEON.pdf
http://const.me/articles/simd/NEON.pdf
https://www.openmp.org/
http://lsi.vc.ehu.es/pablogn/docencia/ISO/Act7%20Hilos/IBM%20posix%20threads.pdf
http://lsi.vc.ehu.es/pablogn/docencia/ISO/Act7%20Hilos/IBM%20posix%20threads.pdf

138 Bibliography

[133] M. Chavarrías, F. Pescador, M. J. Garrido, M. Pelcat and E. Juárez, "Design of
multicore HEVC decoders using actor-based dataflow models and OpenMP," 2016
IEEE International Conference on Consumer Electronics (ICCE), 2016, pp. 287-288,
doi: 10.1109/ICCE.2016.7430616.

[134] F. Pescador, M. Chavarrías, M. Garrido, J. Malagón and C. Sanz, "Real-time HEVC
decoding with OpenHEVC and OpenMP," 2017 IEEE International Conference on
Consumer Electronics (ICCE), 2017, pp. 370-371, doi: 10.1109/ICCE.2017.7889358.

[135] M. Chavarrías, F. Pescador, M. J. Garrido, E. Juárez and C. Sanz, "A multicore
DSP HEVC decoder using an actorbased dataflow model and OpenMP," in IEEE
Transactions on Consumer Electronics, vol. 61, no. 2, pp. 236-244, May 2015, doi:
10.1109/TCE.2015.7150599.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research objectives
	Work methodology
	Main contributions
	Thesis outline

	Background
	Digital video concepts
	Colour spaces
	RGB colour space
	YCbCr colour space
	RGB – YCbCr colour conversion
	Frame rate
	Video resolution

	Video coding standards
	Brief historical review of video coding standards

	Overview of Versatile Video Coding standard encoder
	Overview of Versatile Video Coding standard decoder
	Entropy decoder
	Inverse quantization and inverse transform
	Intra Prediction
	Inter prediction
	Luma mapping with chroma scaling
	Deblocking filter
	Sample adaptative offset
	Adaptive loop filter

	Open source VVC decoders
	VVC test model
	Versatile video decoder
	OpenVVC
	O266dec

	State-of-the-art on the implementation of video decoders
	Parallelism in video codecs
	Fine-grain parallelism: Single Instruction Multiple Data
	Coarse-grain parallelism

	Hardware accelerators for video coding tools
	Graphics Processing Unit
	Field Programmable Gate Arrays

	Related work on different hardware
	Conclusion

	Implementation of video decoders over heterogeneous platforms
	Working methodology
	Validation

	Platform selection
	Test platforms
	Summary

	Selection of video algorithm
	Profiling video algorithm and decoder block selection for acceleration
	Profiling of VTM v8.0
	Generalization

	Open source decoder optimisation for ARM-based platforms
	Configuration of the VVdeC v0.2 decoder for ARM-based platforms
	Fine-grain optimising the VVdeC v0.2 decoder for ARM-based platforms
	Profile of the VVdeC v0.2 decoder with and without SIMD
	Optimising the OpenVVC v1.0 decoder for ARM-based platforms
	Generalization

	Algorithm redesign for parallelising the VVdeC decoder using CPU+GPU
	Algorithm redesign
	Parallelise the VVdeC ALF filtering in GPU
	Generalization

	Memory management
	Memory usage

	Energy consumption
	Summary of the proposed methodology

	Experimental Results
	Test bench description and platform setup
	Test bench description
	Platform setup

	Performance analysis of the native GCC auto vectorizer
	Performance and speedup analysis of VVdeC v0.2 decoder
	Preliminary analysis of VVdeC v0.2
	Performance analysis of VVdeC v0.2 with SIMD activated
	Speedup analysis

	Performance and speedup analysis of VVdeC v1.3 decoder for embedded platforms
	Performance and speedup analysis of OpenVVC v1.0 decoder
	Decoding performance analysis of OpenVVC v1.0 decoder for different frame-tile configurations
	Performance comparison between VVdeC v1.3 and OpenVVC v1.0 decoder
	Experimental results of the CPU+GPU implementation of VVdeC v1.3 decoder
	Comparison performance of VVdeC v1.3 decoder for different implementations
	Comparison study of memory usage for VVdeC v1.3 and OpenVVC v1.0 decoder
	Energy consumption analysis
	Comparison study of energy consumption for VVdeC v1.3 and OpenVVC v1.0 decoder
	Comparison study of energy consumption for CPU and CPU+GPU implementation of VVdeC v1.3 decoder

	Summary and discussion

	Proposed methodology
	Methodology specification
	Selection of the target platform
	Selection of the reference software
	Analysis of the computational performance of the algorithm
	Evaluation and adaptation to the most suitable techniques for parallel processing
	Algorithm acceleration on heterogeneous platform
	Validation

	Results and contributions of the Thesis
	Objectives of the Thesis
	Contributions of the Thesis
	Works published related with the Thesis
	Other results related to the Thesis
	Research projects
	Collaboration during the Thesis with the INSA in Rennes
	Collaboration and stay during the Thesis at the INESC-ID in IST
	Supervision of Final Degree Projects
	Scholarships and awards obtained

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

