

DEPARTAMENTO DE INGENIERÍA TELEMÁTICA Y ELECTRÓNICA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA
Y SISTEMAS DE TELECOMUNICACIÓN

Energy Management and Optimization for
Video Decoders based on Functional-oriented

Reconfiguration

TESIS DOCTORAL

Rong Ren
Master Universitario en Ingeniería de Sistemas y Servicios para la Sociedad de la

Información

DIRECTOR

Eduardo Juárez Martínez
Docteur ès Sciences Techniques por el École Polytechnique Fédéral de Lausanne

César Sanz Álvaro
Doctor Ing.de Telecomunicación por la Universidad Politécnica de Madrid

2015

“世界不会在意你的自尊，人们看的只是你的成就。

在你没有成就以前，切勿过分强调自尊。”

——比尔盖茨

The world won’t care about your self-esteem.

The world will expect you to accomplish something BEFORE you feel good

about yourself.

——Bill Gates

Acknowledgements

Time flies!

Countless fleeting images during the past four years are shining in my
mind. There were joys, there were sorrows; there were tears, there were
sweats. During the four years, I often felt perplexed to the thousands paper
which have the same key words; I often felt disappointed to my practice results;
I often felt doubtful to my decision of continuing study. However, now, the time
I am writing this thesis, my four-year is coming to be finished, my heart is filled
with appreciations. Ups and downs were not the pursuit of life, but must be full
of life.

Foremost, I would like to thank my family. They brought me to this world,
and are supporting me on everything, in every minute. No matter how I exactly
am, they always give me the confidence. My father is a serious guy. Before, I
really disliked that his “heavy” topics such as what I had learned from the
activities I participated, I should not only have a long-term goal but also several
simple short-term goals, and his experience during his forty-year engineer
career. But as I grew up, I have realized that his “lessons” are his expectations
on me. He has never directly required me to do what he arranged for me, but he
gives me the chance to try, to fight and to decide by myself. His words
imperceptibly impact on me during my growth. I am quite lucky to have a sweet
home. My mother, my grand-parents, I am so appreciate what you have done for
me!

I am especially grateful to thank my supervisor, Eduardo Juárez Martínez
for providing me with an opportunity to carry out my doctorate thesis project. I
thank him for his support and encouragement. He guides me throughout the
project and cleared all my doubts and questions patiently. His sincerity,
meticulousness and diligence have influenced me a lot.

I would like to thank all the professors in the research group: César Sanz
Álvaro, Matías Javier Garrido González, Fernando Pescador del Oso and Pedro
José Lobo Perea for their help and support all the way through my study. They
have been very inspiring in my research and thoughtful in every aspects of my
life.

I would like to thank all my colleagues at the research group for their
valuable suggestions throughout the project.

I would like to thank all my friends: 魏建国, 黄姗, 美娟, 柴亮, 王宪, 汤

琼, 土豆, 温馨, 钟如意, either in china or here, for their love and concern. I
like every time stay with them, no matter face-to-face or through the internet.
I am really appreciating that they can bear my bad temper, my carelessness, and
give me help without hesitation. A good friend is like a cup of wine which become
more and more fragrant over time.

Is this true that a person who has many thank to say is a happy guy? I
think so, because now I do am. Anyway, this is just a small step in my life, but
the sunflower told me that as long as to endeavor forward the sunshine, every
day would become pure and beautiful.

Content

Content .. I
Figure List... V

Table List ... IX

Resumen .. I
Abstract .. III
PART A .. 1

1. Introduction ... 3

1.1. Challenges ... 3

1.2. Motivations ... 5

1.3. Objectives .. 6

1.3.1. Brief Description of the Proposal .. 6
1.3.2. Objectives .. 8

1.4. Outline ... 9

PART B .. 11

2. Energy Estimation: Research and Problems ... 13

2.1. Energy Estimation Models .. 13

2.1.1. General Models .. 13
2.1.2. Video-Coding-focused Models .. 19
2.1.3. Discussion .. 20

2.2. Introduction of PMC-Based Methodology .. 21

2.2.1. PMC Introduction .. 21
2.2.2. Correlation Coefficient .. 22
2.2.3. Fitting Methods .. 23
2.2.4. Discussion .. 29

2.3. Conclusion .. 30

3. Generalization and Accuracy Improvements of the Energy Estimation Model 31

3.1. Problem Statement .. 31

3.1.1. Generalization Problem ... 31
3.1.2. Multi-collinearity Problem .. 36

3.2. Problem Solutions ... 38

3.2.1. PMC Event Selection ... 38
3.2.2. Multi-collinearity Suppression .. 40
3.2.3. Design Flow of an Energy Estimation Model.. 43

3.3. Conclusion .. 44
I

PART C .. 45

4. Energy Optimization and Reconfiguration Techniques .. 47

4.1. Energy Optimization Techniques .. 47

4.1.1. Power Impact Issues .. 47
4.1.2. General Low-Power/Energy Optimization Techniques ... 49
4.1.3. Video Coding Specific Power Optimization Techniques .. 53

4.2. Reconfiguration on Video Coding .. 58

4.2.1. Implementation Complexity on Video Coding .. 58
4.2.2. Reconfiguration Techniques .. 59
4.2.3. Functional-Oriented Reconfiguration on Video Coding .. 64

4.3. Conclusion .. 72

5. Energy Optimization based on Functional-oriented Reconfiguration .. 73

5.1. Problems and Objectives of Video Energy Optimization ... 73

5.1.1. Problem Statement ... 74
5.1.2. Objectives .. 76

5.2. Feasibility of Energy Control of Video Coding .. 76

5.2.1. Features of Video Streaming Computing .. 77
5.2.2. Feasibility of Energy Control of Video Coding ... 79

5.3. Proposal ... 80

5.3.1. Energy-aware Framework of Reconfigurable Video Coding .. 80
5.3.2. Energy-aware Management ... 81

5.4. Conclusion .. 83

PART D .. 85

6. Experimental Study-case Infrastructure .. 87

6.1. Reconfiguration Engine and Development Environment of RVC Framework................................. 87

6.1.1. Reconfiguration Engine ... 88
6.1.2. Development Environment .. 90
6.1.3. Building Procedure of an Energy-aware Decoder ... 94

6.2. PMC Programming Tool ... 95

6.3. Modeling Assistant Tool ... 97

6.4. Platforms ... 100

6.4.1. Description of the Platforms .. 100
6.4.2. PMCs on ARM Platforms .. 101
6.4.3. Component Classification and Energy-related Events .. 103

6.5. Benchmarks ... 105

6.5.1. MPEG-4 ... 105

II

6.5.2. HEVC .. 106
6.6. Conclusion .. 107

7. Implementation ... 109

7.1. PAPI Integration.. 109

7.1.1. Integration .. 110
7.1.2. The Dependence of PAPI and OS.. 115

7.2. Implementation of the Energy-aware Manager ... 117

7.2.1. Implementation of Energy-aware Events in Jade .. 117
7.2.2. Implementation of Energy-aware Management Metric ... 119
7.2.3. Implementation of the Energy-aware Manager ... 119

7.3. Conclusion .. 125

PART E .. 127

8. Results ... 129

8.1. Model Validation and Evaluation ... 129

8.1.1. Common Explanations of the Experiments ... 130
8.1.2. PMC Events Selection ... 131
8.1.3. Modeling Techniques Analysis and Comparison for the PHP Decoder Use-case 134
8.1.4. Modeling techniques Extension ... 141
8.1.5. Model Computation Speed .. 145

8.2. Verification of the Energy-aware Manager Implementation .. 147

8.3. Battery life Extension .. 152

8.3.1. Experiment on Decoder Reconfiguration .. 152
8.3.2. Experiment on Coding Parameter Change ... 153

8.4. Conclusion .. 155

PART F .. 157

9. Conclusion and Future Work .. 159

9.1. Conclusion .. 159

9.1.1. Motivation and Results of the Proposed Energy Optimization and Management
Mechanism .. 159
9.1.2. Exploitation of Implementing the Modeling Method on FPGA Systems 162
9.1.3. Publications.. 162

9.2. Future Work .. 163

Appendix A: Introduction of Battery Emulator Usage ... 167

References ... 171

III

Figure List

Figure 1-1 Example of Different Users with Different Remaining Battery over Wireless Networks 7

Figure 1-2 Example of Battery Capacity Level and Video Image Quality ... 8

Figure 1-3 Outline of the Framework that Serves the Proposed Energy Management and Optimization

Mechanism .. 9

Figure 2-1 Principle Instruction-level Power Estimation.. 14

Figure 2-2 Processor Modeling Methodology .. 15

Figure 2-3 Models Based on Datasheet .. 17

Figure 2-4 A General Structure of PMC-based Modeling Methodology.. 18

Figure 2-5 Linear and Cubic Basis Function .. 29

Figure 3-1 General Processor and Memory Architecture .. 32

Figure 3-2 PMC Overhead .. 34

Figure 3-3 A Comparison on Model Performances in Two Platforms ... 35

Figure 3-4 Pseudo Code for Eliminating Weakly Energy-related PMC Events ... 38

Figure 3-5 Relationship between PMC Event and Energy Consumption ... 39

Figure 3-6 Shared Variance .. 40

Figure 3-7 Pseudo Code of Multi-collinearity Suppression .. 42

Figure 3-8 Design Flow of an Energy Estimation Model .. 43

Figure 4-1 Power Consumption Trend [49] .. 48

Figure 4-2 User Perception VS. Power Consumption [119] ... 57

Figure 4-3 Relationship among Different Levels of Reconfigurable Systems ... 60

Figure 4-4 Functional Reconfiguration Framework ... 61

Figure 4-5 Video Sequence hierarchy ... 64

Figure 4-6 Hybrid Decoder Framework .. 65

Figure 4-7 Simplified Block Diagram of an H.264/AVC Video Decoder .. 65

Figure 4-8 RVC Framework ... 67

Figure 4-9 MPEG RVC Configuration of Decoders ... 68

Figure 4-10 FNL Description of the Network in Figure 4-9 ... 69

Figure 4-11 Two Solutions to Manage Multiple Bitstreams ... 70

Figure 4-12 An Abstraction of RVC Framework for a New Standard Development 70

Figure 5-1 Instruction Variation of Different Contents Encoded with Different QP 77

Figure 5-2 Instruction Variation of Different Contents Encoded with Different Frame Types 78

Figure 5-3 Energy Consumption Comparison on Two Decoders ... 79
V

Figure 5-4 Proposed Energy-aware RVC Framework ... 81

Figure 5-5 An example of the Usage of ESL Information .. 83

Figure 6-1 Experimental Study-case Infrastructure .. 87

Figure 6-2 LLVM Framework [148] .. 89

Figure 6-3 ORCC Framework... 91

Figure 6-4 The Graphical FU Network Editors in Eclipse IDE .. 92

Figure 6-5 General Working Procedure .. 94

Figure 6-6 PAPI Architecture ... 95

Figure 6-7 Block Diagram of the Measurement System ... 98

Figure 6-8 Measurement System Layers [157] ... 99

Figure 6-9 GUI of the Battery Emulator and Simulator [157] .. 99

Figure 6-10 High-Level Overview of the Embedded System Architecture ... 103

Figure 7-1 PAPI Tool Integration ... 110

Figure 7-2 Native Function Mechanism ... 111

Figure 7-3 PAPI Interface for an RVC-CAL Actor ... 113

Figure 7-4 PAPI Interface for an RVC-CAL Decoder in DisplayYUV Actor ... 114

Figure 7-5 Block Diagram of the Cortex-A9 CTI Connections .. 116

Figure 7-6 Block Diagram of the Cortex-A8 CTI Connections .. 117

Figure 7-7 Scenario Specification for JADE with the Event Extension Proposal 119

Figure 7-8 LLVM Interaction with JIT and GCC Compilers ... 120

Figure 7-9 RVC Specification Implementation Process ... 120

Figure 7-10 Relationship between Jade and Decoder in Energy-aware Disable Mode 121

Figure 7-11 Relationship between Jade and the Decoder in Energy-aware Enable Mode with Pause-

wake Mechanism .. 122

Figure 7-12 Relationship between Jade and Decoder in Energy-aware Enable Mode with while (1)

mechanism .. 123

Figure 8-1 Pseudocode to Calculate MAPE Distribution ... 131

Figure 8-2 Average Error .. 135

Figure 8-3 PMC Value Sequence Histogram .. 136

Figure 8-4 Comparison of the Linear Model and the MARS Model .. 137

Figure 8-5 Estimation Error of Each Group .. 139

Figure 8-6 Average Error for Model Based on Combined Training Sequences 140

Figure 8-7 LR and MARS Comparison based on One Combined Training Sequence 141

Figure 8-8 Decoder Partition .. 143
VI

Figure 8-9 Modeling Overhead .. 146

Figure 8-10 Model Computing Time Percentage ... 147

Figure 8-11Verification on Mode primitive .. 148

Figure 8-12 Verification on Energy Disable primitive ... 149

Figure 8-13 Verification on Energy Enable primitive .. 149

Figure 8-14 Verification on Reconfiguration Control Part 1 .. 150

Figure 8-15 Verification on Reconfiguration Control Part 2 .. 151

Figure 8-16 Energy Efficiency Improvement by Reconfiguration ... 153

Figure 8-17 MPEG Codec Algorithm ... 153

Figure 8-18 Energy Efficiency Improvement by Changing the QP .. 155

VII

Table List

Table 2-1 Correlation Coefficients Between PMC Events and Energy .. 25

Table 3-1 Correlation Coefficient vs Correlation Degree ... 36

Table 3-2 An Example of Internal Correlation of PMC Events .. 36

Table 6-1 Summary of Tools and Packages .. 90

Table 6-2 RVC Specifications on ORCC Backend [146] ... 91

Table 6-3 Platform Features of PandaBoard and BeagleBoard [159] ... 101

Table 6-4 Introduction of the Common Preset Events .. 102

Table 7-1 List of Jade Events in Scenario Mode .. 118

Table 8-1 Average Error Distribution of Models Based on TOT_INS ... 132

Table 8-2 Selected Events and functionality ... 133

Table 8-3 Basis Function Knots .. 137

Table 8-4 Error Distribution of Models Based on Combined Training Sequences 140

Table 8-5 Average Error Distribution of Models Based on Combined Training Sequence of SP

Decoder ... 142

Table 8-6 Average Error Distribution of Models Based on Combined Training Sequences of CBP

decoder .. 142

Table 8-7 Average Error Distribution of Models Based on Combined Training Sequences of MP

decoder .. 143

Table 8-8 Average Error Distribution of Models Based on Combined Training Sequences in Two

Cores ... 144

Table 8-9 Energy Estimation Impact on FPS (%) ... 145

IX

Resumen

En los últimos años, la sofisticación creciente de los sistemas empotrados y las tecnologías de

comunicación inalámbrica ha promovido la utilización cada vez más importante de las aplicaciones de

vídeo streaming. Tal y como se ha publicado en el año 2013, la generación de jóvenes con edades

comprendidas entre 13 y 24 años emplea, aproximadamente, 16.7 horas a la semana viendo vídeos en

línea a través de las redes sociales, sitios web de negocio o de vídeo streaming. Se puede decir, por

tanto, que el vídeo forma parte ya de la vida de las personas. Hasta ahora, la investigación en estos

asuntos se ha centrado en la mejora del rendimiento, es decir, el incremento de la tasa binaria y la

reducción del tiempo de respuesta. Sin embargo, la mayoría de dispositivos móviles están alimentados

por baterías. Esta tecnología, es bien sabido, que avanza a una menor velocidad que los desarrollos

multimedia o hardware. Debido a que la investigación en baterías no satisface la creciente demanda

de energía de los dispositivos móviles, la investigación en aplicaciones de vídeo se centra más y más

en la eficiencia energética. Cómo utilizar eficientemente el presupuesto escaso de energía disponible

se ha convertido en uno de los principales retos de la investigación. Además, los estándares de vídeo

de última generación tienden hacia la diversificación y personalización. Por tanto, es también deseable

disponer de mecanismos para optimizar la energía con mayor flexibilidad y escalabilidad.

En este contexto, el objetivo principal de esta tesis es encontrar un mecanismo de gestión y

optimización que reduzca el consumo de energía de los descodificadores de vídeo aplicando la idea de

reconfiguración funcional. El tiempo de uso de la batería del sistema se extiende como resultado de un

compromiso entre energía consumida y calidad de vídeo. La reconfiguración funcional aprovecha las

similitudes entre estándares para construir descodificadores de vídeo mediante la interconexión de

unidades funcionales existentes. En el caso de que se disponga de un canal de retorno entre el

descodificador y el codificador, el primero puede señalar al segundo cambios en los parámetros de

codificación o en los algoritmos para adaptarse con el fin de ahorrar energía.

El mecanismo propuesto de optimización y gestión de energía se materializa en el descodificador.

Este mecanismo está formado por un gestor de reconfiguración basado en criterios energéticos,

implementado como bloque adicional del motor genérico de reconfiguración, un estimador del

consumo de energía, incorporado al descodificador, y, si está disponible, un canal de retorno

conectado al codificador. El gestor de reconfiguración verifica el nivel de la batería, selecciona la

descripción del nuevo descodificador e informa al motor de reconfiguración de la recomposición de

un nuevo descodificador. Nótese que el análisis del consumo de energía es fundamental para el

I

funcionamiento correcto del mecanismo de gestión y optimización de energía. En esta tesis se

propone un método de estimación de energía basado en la observación de eventos del sistema.

También se propone un filtro de estos eventos para automatizar la selección de los más relacionados

con el consumo de energía. Por último, se incluye un estudio detallado de la influencia de las

secuencias de aprendizaje en la precisión del modelo.

La metodología de modelado del estimador de energía se ha evaluado en diferentes plataformas,

mono- y multinúcleo con bancos de prueba de características diferentes. Los resultados confirman que

la precisión del modelo es buena y su carga computacional baja. Las modificaciones realizadas en el

motor de reconfiguración para implementar el gestor basado en criterios energéticos se han verificado

en diversos escenarios. Los resultados indican la posibilidad de alargar el tiempo de vida de la batería

del sistema en dos casos de uso diferentes.

II

Abstract

In recent years, the increasing sophistication of embedded multimedia systems and wireless

communication technologies has promoted a widespread utilization of video streaming applications. It

has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week

watching online video through social media, business websites, and video streaming sites. Video

applications have already been blended into people daily life. Traditionally, video streaming research

has focused on performance improvement, namely throughput increase and response time reduction.

However, most mobile devices are battery-powered, a technology that grows at a much slower pace

than either multimedia or hardware developments. Since battery developments cannot satisfy

expanding power demand of mobile devices, research interests on video applications technology has

attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery

energy budget becomes a major research challenge. In addition, next generation video standards impel

to diversification and personalization. Therefore, it is desirable to have mechanisms to implement

energy optimizations with greater flexibility and scalability.

In this context, the main goal of this dissertation is to find an energy management and

optimization mechanism to reduce the energy consumption of video decoders based on the idea of

functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off

between energy consumption and video quality. Functional-oriented reconfiguration takes advantage

of the similarities among standards to build video decoders reconnecting existing functional units. If a

feedback channel from the decoder to the encoder is available, the former can signal the latter changes

in either the encoding parameters or the encoding algorithms for energy-saving adaption.

The proposed energy optimization and management mechanism is carried out at the decoder end.

This mechanism consists of an energy-aware manager, implemented as an additional block of the

reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback

channel connected to the encoder end. The energy-aware manager checks the battery level, selects the

new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth

noting that the analysis of the energy consumption is fundamental for the success of the energy

management and optimization mechanism. In this thesis, an energy estimation method driven by

platform event monitoring is proposed. In addition, an event filter is suggested to automate the

selection of the most appropriate events that affect the energy consumption. At last, a detailed study

on the influence of the training data on the model accuracy is presented.

III

The modeling methodology of the energy estimator has been evaluated on different underlying

platforms, single-core and multi-core, with different characteristics of workload. All the results show

a good accuracy and low on-line computation overhead. The required modifications on the

reconfiguration engine to implement the energy-aware manager have been assessed under different

scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two

different use-cases.

IV

PART A

PART A

Chapter 1: Introduction

Introduction

1. Introduction
When using computer equipment to process data, it is always desirable to employ natural

methods to obtain more intuitive results. The word "natural" means that the processing method can

obtain the results directly through sensorial organs rather than using the brain to reprocess or

recalculate them. Multimedia information which includes audio, images, video, and text is exactly in

the line with this demand and thus is increasingly being favored. Currently, the computing capabilities

of mobile devices have been rapidly improved and lead to a boost development of multimedia

applications. However, most of the mobile devices are powered by batteries, which, unfortunately, are

experiencing a relatively slow development. The battery lifetime of many mobile devices, especially

Smartphones and tablets, easily fails to guarantee the user-desired lifetime. Energy constraint has

become the major limitation on the developments of computation intensive applications. This chapter

will present an introduction of the battery-limited problem. It is organized as follows: section 1.1

discusses energy constraint challenges, experienced in multimedia applications, especially, video

coding applications; section 1.2 presents the research motivations of low-power design; section 1.3

introduces the objectives and methodologies of the thesis work. Briefly speaking, this thesis proposes

a mechanism of energy optimization and management for video coding, especially for video decoding,

based on functional-oriented reconfiguration. The goal is to extend the battery lifetime of mobile

devices through the energy consumption control of video decoding; finally in section 1.4, the contents

of this dissertation are outlined.

1.1. Challenges

Vision is the most direct approach for understanding this world. Approximate 70% of the outside

accepted information comes from the visual sense. This information presents a colorful world in the

form of images. With the social progress and technology development, people demand of image

information is gradually increasing. The demand promotes flourish improvements on the related

technologies. Forming as dynamic images, video information is featured by a huge quantity of data

which introduce great difficulties on expression, organization, storage, and transmission. It is

fundamental to compress the original video data for practical demands. Video coding has thus

gradually become a hot topic in research communities.

Since 1980s, video coding standardization has been progressing. A series of international

standards of digital video coding were established for different network bandwidth and quality

requirements. At the same time, the implementation of digital video coding technologies has been

astoundingly advancing. One trend of video applications is the real-time data processing accompanied

3

Introduction

by a new computing load, named as streaming computing. The so-called streaming is an

uninterrupted, continuous, and moving data queue. The application which can organize data into a

video streaming and operate on it is called streaming application. The embedded multimedia systems

which support streaming applications are increasingly widely used in communication, networking,

consumer electronics, and other fields. Streaming applications represented by video and audio serve

as an important role in multimedia. Millions of Internet users enjoy video streaming every single day.

For instance, video streaming has constituted the largest part of the multimedia applications in

Facebook, Google+ and other social media [1]. Whitepapers from comScore [3] [4] reported that

Smartphone users in Europe had passed 50% in December 2012 and Spanish users showed the highest

adoption (66%. 75%) of Smartphones in five European countries (EU5: France, Germany, Italy, Spain

and UK). In addition, over 23 million people in the EU5 countries had both Smartphones and tablets

which had increased 94% than 2011. The total number of online video viewers had increased to 162%

compared to the past year. In USA, the online video market had attracted 75 million audiences every

day and nearly 40 billion videos per month in average. Smartphone market penetrated 50% at the end

of third quarter in 2012 and 25% Smartphone owners also had a tablet which had emerged as a critical

piece of mobile device landscape. Half of the tablet owners had reported that they used their tablets to

watch video and TV programming. Both in Europe and USA, nearly 33% digital media minutes were

spent on Smartphones and tablets. In addition, the Cisco Visual Networking Index forecast report also

indicated that all forms of video content would continue to occupy approximately 90% of the global

consumer internet traffic by 2015 [2]. Besides the daily normal utilizations, video coding and

streaming are envisioned in numerous using areas including such as battlefield intelligence and

reconnaissance, public security and surveillance, emergency response and disaster rescue, and

telemedicine.

Digital video has rapidly migrated across platforms and application contexts with the increase in

user requests and demands. The demand for high-definition video was predicted to surpass standard

definition format by the end of the year 2011 [2]. Higher quality video requires higher bit rates and

thus requires greater performance and energy consumption. In recent years, with the increasing

sophistication of the manufacture processing, the size of integrated circuits has been scaling down.

Then, hardware technology prompts users to have greater demands of video quality. Meanwhile, the

coding algorithms have also been improved. For example, the video coding standard H.264/AVC is

able to provide half or even less the bit rate of previous standards while maintain the video quality [5].

The next generation video standard puts forward requirements of codec performance, compression

efficiency, and other key technologies, towards a development on diversification and personalization.

4

Introduction

However, energy consumption of mobile devices such as Smartphones and tablets is becoming

increasingly serious with the development of video coding technologies. Mobile device itself is facing

several energy challenges; video application makes the energy problem particularly obvious. In video

application, video coding is considered as the most computation and energy intensive part. In

particular, the stream computing is also bandwidth and delay intensive. These features lead to a great

demand on system capacities for communication and computing, and consequently, a very high

demand on energy support. Unfortunately, most mobile devices are designed as battery-powered and

the development of battery technology falls far behind than that of either video applications or

hardware, which doubles the processing power in every two years through Moore's law; Batteries do

not event offer capacities twice larger over the last decade. Currently, most mobile devices are

powered by lithium-ion batteries which offer more energy than other types of batteries [7]. Even this,

it is not sufficient to increase the amount of energy created by chemical reactions. Some research

groups have analyzed the nonlinear characteristics of different types of battery to achieve battery

utilization. Other researchers try to exploit user movements to recharge batteries, but this is an initial

research field [11]. Relying solely on battery performance improvement is difficult to solve the

problem fundamentally. The only way to produce more powerful batteries seems to increase their size.

However, this goes against to the lighter-and-thinner design trend of mobile devices which would

offer more space for additional components rather than battery. The slow development of battery

technology cannot provide sufficient energy, which makes critical difficulties to provide an as-long-

as-possible battery life with a limited energy budget. The battery depletion becomes the major

drawback of the electronic field to constraint video coding developments. As a consequence, more

researches shift into energy-efficient designs.

1.2. Motivations

As discussed above, excessive energy demand and consumption are critical limitations on the

evolution of mobile hardware and services due to the quite moderate battery capacity developments

[7]. The operational time within one charging cycle is limited to the fixed amount of energy stored in

batteries. As the operational time is one of the most important factor for user satisfaction assessment

on mobile consumer electronic devices [8][9], a failure to guarantee the user-expected lifetime will

significantly decrease user desirableness. Therefore, the consumer electronics industry is motivated to

find solutions for operation time extension.

Research results indicated that processor intensive applications such as video playback can

consume over 60% of the energy budget [6]. Thus, in this context, energy management and

optimization on video application has become an attractive research topic to extend the battery

5

Introduction

lifetime. How to build a framework which is able to adaptively optimize the energy consumption

catches many research interests. In general, two kinds of method have engaged researches on this

issue:

 The first method provides the energy efficiency optimization achieved by improvements on new

techniques of micro-electronics. As known that the power consumption is proportional to the

load capacitance, circuit switching activities, and operating voltage, current and frequencies,

these technologies aim to reduce the power-impact factors by improving circuit layouts, circuit

logic designs, register transfer level designs, and advanced architecture designs with lower

operating voltage supply. In this area, there have been many researchers and large teams working

for a long time and it is difficult to make new contributions.

 The second direction investigates how applications can deal with power management. As the

temporal efficiency and spatial resource conflict in computer science, it is also difficult to

simultaneously achieve low energy consumption and high QoS (Quality of Service) in video

applications. Various approaches in this direction conducted adaption based on workloads. For

instance, dynamic voltage and frequency scaling (DVFS) is able to dynamically adjust the supply

voltage and frequency according to the workload, which, in the video application field, is the

amount of computational complexity related to the quality of the rendered video images and data

compression ratio. Although DVFS has achieved positive results of management and reduction

of energy consumption, this approach does not change the workload (computational complexity);

if there would be a method which could tradeoff power consumption and the workload by

adapting the computational complexity, it would potentially provide further battery life extension.

This thesis will follow the second research line. It proposes an energy management and

optimization mechanism which can wisely switch among decoders with different computational

complexities to adapt the energy consumption of the decoding process based on energy awareness.

1.3. Objectives

1.3.1. Brief Description of the Proposal

Figure 1-1 depicts a scenario in which users with different remaining battery over diverse

wireless networks accesses connect to a video server. In this context, two fundamental issues need to

be considered during the playback of a video stream. The former one is how to deliver the same video

content over different access networks. The latter one is how to deal with the video playback time

over devices with different remaining battery capacities. In other words, the problem could be restated

asking how to deliver the same video content to various mobile devices under the network bandwidth

6

Introduction

and battery energy constraints, while satisfying a user-desired operational time and video quality.

Mathematically, the problem can be expressed as equation 1-1:

 𝑀𝑎𝑥 𝑇, 𝐵 ≤ 𝐵0,𝐸 ≤ 𝐸0 , 𝑎𝑛𝑑 𝑄 ≥ 𝑄0 1-1

where 𝑇 is the operational time, 𝑄0 is the dissatisfactory video quality, 𝐵0 and 𝐸0 are sustainable

requirements of network bandwidth and remaining battery capacity, respectively. Note that the value

of 𝑄0 could be different to each single user.

Figure 1-1 Example of Different Users with Different Remaining Battery over Wireless Networks

This problem statement encompasses three different issues:

 To deliver the same video content with different performance and capacity via different networks;

 To ensure a quality level above user expectations;

 To prolong the battery life of devices.

The main goal of this thesis focuses on the third issue mentioned above, i.e. to prolong the

battery life as a trade-off between energy consumption and video quality. An example of this trade-off

is shown in Figure 1-2. A video sequence is presented with different qualities according to different

battery levels. Figure 1-2 (a) shows the scenario in which a device with a full battery presents a high

image quality sequence. On the other hand, Figure 1-2 (b) illustrates a scenario in which the same

device with a lower battery level presents a lower video quality sequence. Video quality can be

adjusted by either configuring encoding parameters, such as bit-rate, or changing the encoding

algorithms, such as the entropy coding.

7

Introduction

Figure 1-2 (a) Full Battery Case

Figure 1-2 (b) Low Battery Case

Figure 1-2 Example of Battery Capacity Level and Video Image Quality

In video coding, decoding operations are the inverse of the encoding operations. Thus, decoders

are restricted by the encoders. Video coding standards ensure the compliant compressed video data

can be recognized and decoded. Thus, to keep the compatibility, a change in any encoding tool

employed in the encoder side implies a change in the decoding procedure. Along with video coding

technologies, user demand for video application exhibits an increasing diversification, i.e. higher

quality requirements in addition of flexibility and scalability preferences [10]. Therefore, to fulfill

these requirements, a variety of video standards have been developed. However, among the plethora

of standards, some coding tools, namely functional unit (FU), are reutilized from one to the other.

In this thesis, a technique known as functional-oriented reconfiguration is employed. The

functional-oriented reconfiguration takes advantage of the shared functionalities among standards to

build a decoder by selecting and connecting FUs from an FU pool. To direct this process, a decoder

description, i.e. a list of FUs and their interconnection, can be conveyed into the encoded bitstream. In

case different decoder descriptions are received at the decoder end, depending on its current battery

level, the decoder might dynamically adapt the quality of the decoded images to extend the battery

lifetime. This technique might offer a large potential for energy savings.

1.3.2. Objectives

The main goal of this thesis is to find an energy management and optimization mechanism to

reduce the energy consumption of video decoders based on the idea of functional-oriented

reconfiguration. The framework that describes this mechanism is outlined in Figure 1-3.

8

Introduction

Figure 1-3 Outline of the Framework that Serves the Proposed Energy Management and Optimization Mechanism

The previous objective can be decomposed into the following two objectives:

 Objective1: to propose and implement an energy-aware manager to drive the functional-oriented

reconfiguration;

 Objective 2: to propose and implement an energy estimator for a video decoder.

As can be seen in Figure 1-3, to optimize and manage the energy consumption of a video

decoder, an energy-aware manager needs to be implemented as an additional unit of the original

engine. The energy-aware manager checks the battery level and once the remnant energy is not

enough to maintain the user-defined lifetime (a user preference), the energy-aware manager selects a

new decoder description with different decoding features based on a set of criteria. Afterwards, the

energy-aware manager informs the engine to reconfigure the decoder to build a new one. In is worth

noting that the manager should ensure that the new selected decoder description is compatible with

the received encoded video stream. In case it is required, the energy-aware manager might also inform

the encoder to adapt its encoding algorithms based on the actual decoder reconfiguration.

The analysis of the energy consumed by a decoder is fundamental for the success of the energy

management and optimization mechanism. In this thesis, en estimation method driven by the platform

performance monitoring counters (PMCs) which record several performance events (e.g., number of

executed instructions) that reflect the energy consumption in real-time is proposed.

1.4. Outline

The thesis is organized as following:

9

Introduction

PART A (Chapter 1). This introduction has stated the energy challenges in multimedia

applications, especially in the field of video decoding. To extend the battery life time, this thesis

proposes a new energy optimization and management mechanism for video decoding based on the

ideal of functional-oriented reconfiguration, which can provide flexible energy saving solutions.

PART B (Chapter 2 and 3) mainly discusses about energy estimation. Wherein, Chapter 2

introduces the state-of-the-art of energy models, from general to coding-focused models, and

discusses the merits and demerits of each type. An estimation methodology is introduced next in

Chapter 3 including its basic mechanism, fitting methods, and model accuracy. Chapter 3 proposes a

modeling method which fits into the reconfigurable framework. In particular, the method is designed

to improve the model generalization and accuracy.

PART C (Chapter 4 and 5) discusses energy optimization. Specifically, Chapter 4 first introduces

different optimization techniques and then analyzes the main features of the current reconfiguration

technologies. Before introducing the functional-oriented reconfiguration technique and its framework,

an introduction is followed to discuss the computational characteristics of video decoding tasks, i.e.

the fundamental factors for implementing the reconfiguration of video coding. Chapter 5 conducts a

research on the energy optimization and management mechanism based on the functional-oriented

reconfiguration. It proposes the energy-aware manager and a management and optimization metric for

video decoding, giving a design example at the end.

PART D (Chapter 6 and 7) introduces the implementations of the proposed management and

optimization mechanism. Chapter 6 first introduces the infrastructure of the implementation.

Development environments, reconfiguration engine, hardware platforms, bench marks and modeling

assistant tools are presented. Chapter 7 introduces the integration of the energy estimation model into

the reconfiguration framework and extend the reconfiguration engine with the energy-aware manager

to achieve the implementation of the energy optimization and management mechanism.

PART E (Chapter 8) draws the experimental results. Firstly, it gives the validation and evaluation

of the models, including their estimation results, a guideline to choose the training sequences to

improve model accuracy, extensions of the application range of the model, and the computation

overhead. Second, the functionality of the energy-aware manager is tested and verified and, at last, the

energy optimization potentialities are illustrated.

PART F (Chapter 9) summarizes the thesis and describes some problems needed to explore in the

future.

10

PART B

PART B

Chapter 2: Energy Estimation: Research

and Problems

Chapter 3: Generalization and Accuracy

Improvements of the Energy Estimation

Model

Energy Estimation: Research and Problems

2. Energy Estimation: Research and Problems
With the gradually increased gap between battery capacity and energy demand of multimedia

applications, efficient utilization of the limited energy has become one of the most attractive research

topics in mobile multimedia systems design. Many dramatic optimization techniques for battery life

extension have been proposed by research communities. In general, the optimization/reduction

decisions are determined based on the energy awareness, which is usually obtained from estimation.

This chapter starts with a brief introduction of energy estimation models in two kinds: general models

and coding-focused models. After a discussion about advantages and disadvantages of each kind, the

related techniques of the most suitable model for energy estimation on video streaming, especially for

reconfigurable coding, are introduced, and finally, problems of this candidate model are presented.

2.1. Energy Estimation Models

An energy estimation model is the basis of adjustment of power consumption. A detailed survey

of different energy modeling techniques will be described in following.

2.1.1. General Models

Although video coding is a class of application with its own characteristics independent to

operating systems, it is bound to have common features as all computer applications, i.e., it is a

collection of instructions and parameters, and the set of instructions controls computer running based

on the established logics. Therefore, the general estimation models could be applied to video coding.

General models can be abstracted into low and high levels. Low-level models estimate energy

consumption by extracting information from circuits, gates, register transfers, and architectures.

Avoiding hardware details, high-level models process with instructions, functional units, and device

components to profile system energy consumption from a software point of view. Usually, low-level

models provide more accurate results but involve more complex design details and require long time

estimation. These physical-level models are more proper used for power analysis during the design

stage rather than power estimation during runtime. Considering the quick response and easy usage, it

is more suitable to employ the high-level estimation models into the coding field, which has more

strict time constrains. A brief overview of different high-level models is introduced below.

2.1.1.1. Instruction-Level Estimation Models

The power model based on instruction level for individual processors was firstly proposed by

Tiwari et al [12]. Figure 2-1 shows how this model works. The power consumption of each instruction

13

Energy Estimation: Research and Problems

is measured when a sequence of instructions is executed, for example, on a processor instantiated

FPGA board. For each individual instruction, its power consumption is defined to include a base cost

and an additional overhead. Then, the model is drawn from the measurements. At last, the model is

employed to estimate the power consumption of a different piece of code. Tiwari et al continuously

proposed experimental approaches to empirically determine the base cost and the inter-instructions

overhead cost [13]. Their subsequent researches showed that for both the complex General Purpose

Processors (GPPs) and Digital Signal Processors (DSPs) the base cost could be reduced to as an

averaged constant because of the dominance of the overhead costs.

Figure 2-1 Principle Instruction-level Power Estimation

The different combinations of instructions cause a vast number of inter-instruction effects, which

is the main disadvantage of this approach. A simple solution proposed by Lee et al. [14] was to

classify instructions into four categories based on their functionalities and addressing modes: loading

immediate data to a register, transferring memory data to registers, moving data between registers,

and operating in ALU. However, this simply method encountered difficulties when the instruction set

had various addressing modes and high parallelism. Klass et al. [15] proposed an approach to reduce

the complexity by observing the inter-instruction effects when a generic instruction was executed after

a no-operation instruction. They assumed that the inter-instruction overhead mainly depended on

instruction changes. Thus they inserted an NOP instruction before changing any instruction to

quantify the transition overhead. As a result, they did not need to enumerate each pair of instructions

to build the instruction model. In other work, Sama et al. [16] attempted to provide substantial

improvements based on Tiwari's work [13]. The base energy cost was measured by individually

repeating executing each instruction and the overhead energy consumption came from the changes of

opcodes and control states between the subsequent instruction, and the data passing was also added

into their model. To reduce the complexity of instruction pairs, this method classified instructions on
14

Energy Estimation: Research and Problems

the basis of the functionalities and base costs. Therefore, the instruction overheads were only needed

to be measured for the intergroup pairs. For those instructions in the same group, this approach

assumed the same instruction overhead because the similar functionality and base costs usually

indicated similar control states and opcode values.

2.1.1.2. Function-Level Estimation Models

Function-level power analysis (FLPA) is applicable to all types of processor architecture without

taking into account the details of the system circuits. Instead of classical energy characterization

abstracted from the instructions, the basic idea of FLPA is to obtain the distinct energy consumption

from system activities of different processor functional units. Thus, a FLPA model usually divides the

target device into several functional units and relates the processor operations to the power activities.

Each functional unit is a cluster of components which are concurrently activated when a task is

running. The FLPA modeling procedure is abstracted in Figure 2-2.

Figure 2-2 Processor Modeling Methodology

In this figure, the target processor is divided into 3 units. The first step of modeling is to

characterize the system energy consumption of each unit. The proper parameters are selected from the

executed algorithms (typically, the cache miss rate) and the processor configuration (typically, the

clock frequency). For example, Nathalie et al. [17] divided a DSP processor into four units:

instructions management unit (IMU), processing unit (PU), memory management unit (MMU), and

control unit (CU). Similarly, Laurent et al. [18] abstracted complex DSPs into IMU, PU, and MMU

units including parallelism/processing rate, cache miss rate and external data memory access rate as

modeling parameters obtained by simulating each functional unit with small programs written in

15

Energy Estimation: Research and Problems

assembly language. Then, in the second step, various scenarios, 𝛼𝑖, are executed. Each scenario has

different system configuration 𝐹 = 𝑓(𝛼𝑖). The consumed energy (e) and the values of modeling

parameters (𝑃1,𝑃2) of each unit are recorded. Finally, the relationship between the consumed energy

and the selected parameters is decided and modeled for each unit. The whole energy consumption of

this processor is the summation of the energy consumption of each unit.

Based on FLPA methodology, the SoftExplor [19], a tool which automatically performs power

and energy consumption estimations, has been widely used by lots of researches. SoftExplor

facilitates the modeling process. It only requires coarse-grain knowledge on processor architectures

and it achieves a good tradeoff between estimation accuracy and model complexity. More

specifically, E. Senn et al. in their work Open-PEOPLE [20] presented a platform dedicated to

provide a set of power analysis tools as a library of power models to develop power modeling

methodologies with the considerations from entire embedded system including applications, hardware

components, operating system (OS), and the associated services.

2.1.1.3. Component-Level Power Estimation Models

For better generalization, models abstracted in higher component-level have been proposed.

Component-level models consider main system components (e.g., processor, memory, and

coprocessor) and lead to more intuitive and feasible models.

High-level abstraction models can obtain the static pre-characterized energy consumption from

spreadsheets provided by manufacturers. These spreadsheets are very useful in the early stage of the

design process to achieve initial decisions with power issues [21]. Spreadsheets provide a capability to

quickly estimate the current and power consumption of each intellectual property (IP) core or library

cell. Developers can configure the operating frequency, temperature, and other parameters to estimate

the power consumption of his design by using spreadsheets (Figure 2-3). An example of using a

spreadsheet to estimate the power consumption of processes and multimedia applications was

developed for the BeagleBoard, a commercial prototyping board based on the OMAP processor, by

González et al. [22]. However, this approach is valid only when the hardware exhibits regular activity

patterns. It might not be able to provide guidance for block-level hardware power estimation due to its

lack of flexibility when the hardware has different work modes workloads. With the increasing

importance of power management techniques, they are limited in accuracy.

16

Energy Estimation: Research and Problems

Figure 2-3 Models Based on Datasheet

Several more general component-level energy estimation models were introduced in works [23]-

[26]. In a broad sense, a component can be an individual functional unit or a block with several

similar functional units. The key idea of this method is to profile the energy insights of each

component. Generally speaking, those devices of an embedded system can be divided into four main

categories: computation, storage, communication, and I/Os. Each of these categories has its own

unique objective functionality and thus cannot be replaced by another one. The energy consumption

issues of each category can be independently analyzed and thus a component-level model can be

easily extended by adding new components.

Power behavior of components is driven by specific events. Devices requests and occurrences

of hardware events such as cache misses, retired instructions, and memory accesses can be considered

as influence factors of energy consumption. In some complex systems, each component can be

described by a simple state machine containing information relevant to its power behavior. At

different execution moments, each component is in a specific power state, which consumes a discrete

amount of power. Average or peak power dissipation can be easily determined by looking at the

power usage over time for a given set of environmental conditions.

A new methodology is to relate energy consumption to software behaviors. In essence, all the

hardware activities are driven by a series of software operations, i.e., a sequence of instructions. Any

instruction in its execution stage will activate some modules in the processors and contribute to the

energy consumption. In modern microprocessors, a set of special-purpose registers, named as

performance monitoring counters (PMCs), is employed to record the number of hardware-related

activities occurring during program execution. The original purpose of PMC design is to provide a

practical method for developers to supervise and adjust system performance through the information

17

Energy Estimation: Research and Problems

provided by those counters. Since PMCs provide a deeper insight into functional units of processor,

cache, main memory, as well as some peripherals with low-overhead to represent the performance

characteristics of applications at their runtime, a new direction for energy estimation has been

introduced by PMCs. Figure 2-4 shows the general structure of a PMC-based modeling methodology.

This structure is usually divided into software, middleware and hardware levels. Applications and

estimation models run at the software level while the operating system runs at middleware level. The

latter controls the PMCs configuration and provides an interface for applications to set the

configuration. The components under-test components and the PMCs are implemented at the

hardware level. The energy estimation is profiled by mathematical fitting based on real measurements

of current and voltage, either from the entire platform or for each component, and PMC samples.

Figure 2-4 A General Structure of PMC-based Modeling Methodology

After Bellosa in work [27] correlated PMC-monitored events (PMC events) with energy

consumption to obtain a good estimation, many studies have been continued in this direction [28]-

[33]. The work of Li et al [29] exploited the high-correlation between the number of instructions per

cycle (IPC) and power consumption to estimate the energy dissipation. The main challenge of this

approach is how to choose the best set of PMC events. Most researchers identified PMC events on the

basis of the platform architecture analysis [28]-[33]. For example, Goel et al. [31] proposed an

approach for choosing PMC events. Their first step was to identify the candidates by manually

separating available PMC events into several categories that impacted dynamic power through

different issues. Their work could effectively reduce the number of PMC events. However, a priori

selection might encounter difficulties due to the limitation of events that could be monitored by PMCs

and the limitation of the number of PMCs that could be used simultaneously. More specifically,

Lively et al. [32] introduced how to choose suitable PMC events. They used different PMC events to

build models for each application to ensure that the energy behavior trends were correctly represented.

In contrary, X. Yu et al. [34] built a sub-model of a processor without any selection but repeated the

same test case several times with two different PMC events each time to obtain all the information

provided by the entire set of PMC events. This method was quite time-consuming, and it was not
18

Energy Estimation: Research and Problems

suitable for the power management policy since it would entail a long delay to get a full estimation of

one application.

PMC-based methods for energy estimation are getting promising results in different fields, and

thus the energy consumption modeling combined with PMC events and mathematical fitting are been

widely used.

2.1.2. Video-Coding-focused Models

Video streaming includes images, audio and data. Large amounts of data are required to

accurately represent video information. Video coding is significantly more complex than other

applications due to the high complexity of the video compression algorithms. As an individual

application, there have been researches on energy estimation models specifically focus on video

coding fields.

X. Lu et al [35] proposed a model for an H.263 encoder based on the bit rate and parameters from

functional units such as DCT computation, quantization, and motion estimation. A similar model for

an MPEG-4 simple profile encoder, based on the quantization parameters and the INTRA fresh rate,

was proposed in work [36]. X. Li et al [37] proposed a model for an H.264/AVC decoder in which the

consumption was estimated with the product of multiplying the video spatial resolution, temporal

resolution, and quantization. Yahia Benmoussa et al [38] introduced an energy model of H.264/AVC

decoder based on a set of hardware and video stream parameters such as bit-rate, clock frequency, and

quantization parameters (QP). The entire energy model included four sub-models: QP-rate model,

dynamic power model, static power model, and time model. The coefficients of those parameters were

obtained by consumption measurements and regression analysis. This methodology was featured to

achieve a good tradeoff between prediction property and lower-level model details. In work from Z.

Ma et al. [39], they did not directly implement an energy/power model but proposed a model for an

H.264/AVC decoder complexity estimation. The infrastructure of this complexity model was the

complexity unit (CU) which was the fundamental operations of each decoding module (DM) over a

time interval, such as one frame. The complexity of one DM was the product of the average

complexity of one CU and the required number of CUs. Among several possible ways of defining the

CU for a DM, they determined the final choice by considering if it was fairly constant for a given

decoder and if it was able to be accurately predicted by a simple linear function. The entire decoder

could be decomposed as several DMs, and then the decoder complexity would be easily obtained by

summing up all the complexities of each DM. Since the decoder complexity is a direct representation

of the energy consumption, then its exploration could become a tool to predict energy consumption.

19

Energy Estimation: Research and Problems

2.1.3. Discussion

As introduced above, each method has its advantages and disadvantages. There is no perfect one

but with the comprehensive consideration of their features, some of them could be more proper for

video coding modeling.

Modeling approach at instruction-level mainly faces three problems:

 The number of measured instructions needs to be quantified. This number has a direct

relationship with the size of the instruction set architecture (ISA).

 Modern architectures of processors have been implemented to use pipelines, which allow

the execution of several instructions at the same time to improve the processing speed. Thus,

the number of parallel instructions needs to be taken into consideration.

 Drawing the whole picture of the full-system power consumption is difficult because that

this approach cannot provide insight on the other isolated components, especially

peripherals.

The first two problems cause the model to be non-generalizable. They are needed to deeply

understand design details of hardware, especially the supported ISA because the base cost of

instruction may vary within the number of operands and the accessing methods. The last one leads to

the difficulty for a model, at a specific time, to distinguish out what the issued part/component on the

system in relation to the currently executed instructions is. Thus the developers cannot know which

part/component consumes the greatest percentage of energy.

The mandatory requirement of FLPA methodology is to decompose the whole system into several

functional blocks with the consideration of their impacts on the power consumption. The point is to

balance between accuracy, estimation cost, and decomposition granularity. The main disadvantages of

FLPA are the complexity of the components determination, the coverage of all significantly

influencing parameters, and the dependency among power consumption and performed instructions.

Energy estimation models give a possibility to understand and analyze power behavior on real

systems. Instruction-level or function-level models are usually drawn by detailed analysis on system

architecture, i.e, the instruction set or the functional blocks, which limits the quick adaption of these

models for various platforms. More specific models are those designed for video coding. They are

abstracted from coding algorithm without hardware information during model building. This liberates

video coding designers from their unfamiliar fields. However, it is not possible to detect the

distribution of power consumption of different components from those video-coding-focused models.

As a consequence, it is difficult to determine the bottlenecks of the design. In addition, the complexity

20

Energy Estimation: Research and Problems

parameters may need to be redesigned for each codec standard, which is also a limitation on

generalization.

A more suitable energy estimation model for video coding should take consideration on both

model abstract level and information provided by platform behavior observation. Modeling in a high

abstract level means that most of the hardware details are hidden and models can be employed to

model the energy consumption on different platforms with little modification. In addition, the

modeling parameters can be easily determined. For platform behavior observation, the model should

represent how the power is consumed within components. For example, for a processor model, the

model could demonstrate the power distribution on ALU unit, memory unit or other accelerator

modules such as branch prediction or pipeline. A PMC-based mechanism can better fit the two

requirements mentioned above. PMCs are widely available in most of the modern processors and they

can be accessed by the same pattern of interfaces provided by high level tools. In addition, PMCs

translate hardware details to occurrences of different events. Different components can use different

events as their way to represent energy. Therefore, the PMC-based estimation can be a good candidate

for energy modeling of video coding.

2.2. Introduction of PMC-Based Methodology

2.2.1. PMC Introduction

PMCs have been briefly introduced in the component-level estimation models. In modern

processors, they are provided within a Performance Monitoring Unit (PMU) to gather statistics on the

operation of the processor and memory system. Each PMC can count any of the available events in

the target processor.

Implementation of PMCs in different processors could differ from the quantity and the types of

monitored events. Each processor has its specific events for monitoring. In order to achieve a better

generalization, platform specific events should not be included into estimation models as candidates.

In a broad sense, PMCs consist of the following three kinds of counters:

 A cycle counter: This counter can be programmed to increase every main system clock

cycle. It is only used to count the cycle numbers. Attention must be paid to the cycle counter.

In some platforms, it may need to be enabled independently to the event counters.

 Event counters: The concept of event counter and event need to be distinguished. An event

is a special occurrence caused by computing operations. An event counter can be configured

to select one specific event among all the platform-available events and increase its value

once this event occurs. Thus, the behavior of an event counter can be defined by users
21

Energy Estimation: Research and Problems

according to their individual requirements. Usually, the number of the available events is

much more than the number of PMCs. For example, the PMU of cortex-A9 processor

provides 6 PMCs and each one can count any of the 58 available events. Also note that the

number of PMCs may be greater than the number of PMCs that can be used simultaneously.

In this dissertation, PMC is referred as the event counter if there is no particular emphasis.

 Controlling counters: There are some counters used to control other PMCs to complete

various operations. The operation of these counters includes: enable, reset, start, stop,

overflow flag set, and interrupts enable.

There are many methods to access PMCs. For example, PMCs can be accessed via special file

descriptors. In windows 2000 operating system and later ones, users are provided with graphical view

of how well the system performs by counting the data consumed by applications. The Linux PMC

subsystem also provides an abstraction of the hardware capabilities, such as perf_event [40] which is

an application programming interface (API) of the Linux kernel and perfmonX [41] which is a

hardware-based performance monitoring interface for reading the PMCs from user space.

2.2.2. Correlation Coefficient

The basic principle of PMC-based energy estimation model is to use different system events to

represent energy consumption. The model accuracy highly depends on the selection of PMC events.

Whether or not an event should be used for modeling is determined by its relatedness to energy

consumption. Usually, the correlation coefficient (𝑟) is used to express the strength of relatedness

between two variables. The value of 𝑟 is between -1 and +1. 𝑟 greater than zero indicates a positive

correlation, i.e., if the value of one variable increases, the value of the other one will also increases.

Similarly, 𝑟 lower than zero shows that two variables are negatively correlated. The larger the

absolute value of 𝑟 , the stronger they correlate to each other. Please note that the correlation

coefficient does not reflect a causal relationship, i.e., one variable is not the incentive of another one.

For example, in summer, the beer sales and the ice-cream sales rates both increase, which somehow

indicates a kind of “common increase” relationship, and they both reflect the phenomenon of

temperature increase. But selling a beer is substantially independent to an ice-cream sale; the real

cause of increments of these two rates is the high temperature.

 Correlation coefficient was firstly proposed by the statistician Karl Pearson [42]. It is also named

as Pearson correlation. A Pearson correlation coefficient can be applied to the following cases:

 Two variables are continuous and linearly related to each other.

 The overall population of two variables is normally distributed, or is closed to a unimodal

distribution.
22

Energy Estimation: Research and Problems

 Observations of two variables are paired; each pair of observations is independent.

Pearson correlation coefficient has strict preconditions for model establishment. If the previous

conditions are not satisfied, it is possible to use Spearman’s rank correlation as a substitution.

Spearman’s rank correlation coefficient is a non-parameter rank statistic, which was proposed by

Charles Spearman in 1904 [43]. The requirements on sample data to use Spearman’s rank correlation

coefficient are less strict than those required to use Pearson correlation coefficient. As long as the

ranks of observed values are paired. Spearman’s rank correlation coefficient can be employed

regardless of the overall distribution and sample size. One variable is a strictly monotone function of

the other if the Spearman’s correlation coefficient is +1 or -1 when there are no repeated values of the

sampling data. These two values, +1 and -1, are called perfect Spearman correlation. The spearman's

rank correlation coefficient is defined as the Pearson correlation coefficient between the ranked

variables. In the actual computation, the original variables 𝑋𝑖 and 𝑌𝑖 are converted to ranks 𝑥𝑖,𝑦𝑖 , i.e.,

the positions of original variables after sorting. If there is no repeated ranks, Spearman’s rank

correlation coefficient uses the monotonic function (equation 2-1) to describe the statistical

dependence, where 𝑑𝑖 is the difference between the ranks of each observation of the two variables and

𝑛, the simple size. If there are repeated values, 𝑟 is need to be calculated by equation 2-2 as the

Pearson correlation coefficient of ranks.

 𝑟𝑠 = 1 −
6∑𝑑𝑖2

𝑛(𝑛2 − 1)
 2-1

 𝑟𝜌 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − 𝑦�)𝑖

�∑ (𝑥𝑖 − �̅�)2(𝑦𝑖 − 𝑦�)2𝑖
 2-2

2.2.3. Fitting Methods

There are many fitting methods can be used for model building. Linear regression is the most

commonly used one. However, in some complex cases, in different intervals, power consumption and

events may variously related, thus, in these cases, piecewise fitting methods like Multivariate

Adaptive Regression Spline (MARS), are recommended to obtain better accuracy in complex

situations.

2.2.3.1. Linear Regression Methods

Linear regression is an important branch of mathematical statistics [44]. Multiple linear

regression is the study to research if there is a linear relationship among a number of independent

variables (or predictors) and a dependent variable (or a response), and to use a multiple linear

regression equation to express this relationship. It can also be used to quantitatively characterize the

linear relationship among a dependent variable and several independent variables. Multiple linear
23

Energy Estimation: Research and Problems

regression modeling is an effective tool for model predicting. For a practical problem, the linear

regression model of the obtained n sets of data (𝑥𝑖1,𝑥𝑖2, … , 𝑥𝑖𝑛;𝑦𝑖| 𝑖 = 1,2, . . . ,𝑛) can be expressed

as equation 2-3:

𝑦1 = 𝛽0 + 𝛽1𝑥11 + 𝛽2𝑥12 + ⋯+ 𝛽𝑝𝑥1𝑝 + 𝜀1
𝑦2 = 𝛽0 + 𝛽1𝑥21 + 𝛽2𝑥22 + ⋯+ 𝛽𝑝𝑥2𝑝 + 𝜀2

… …
𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛1 + 𝛽2𝑥𝑛2 + ⋯+ 𝛽𝑝𝑥𝑛𝑝 + 𝜀𝑛

 2-3

and can be written in matrix form as equation 2-4:

 𝑦 = 𝑋𝛽 + 𝜀 2-4

where,

𝑦 = �

𝑦1
𝑦2
⋮
𝑦𝑛

� , 𝑋 = �

1
1
⋮
1

𝑥11
𝑥21
⋮
𝑥𝑛1

𝑥12
𝑥22
⋮
𝑥𝑛2

…
…
⋱
…

𝑥1𝑝
𝑥2𝑝
⋮
𝑥𝑛𝑝

� , 𝛽 = �

𝛽1
𝛽2
⋮
𝑦𝑛

� ,

𝜀 = �

𝜀1
𝜀2
⋮
𝜀𝑛

�

2-5

According to the least squares method, the obtained regression coefficients are cast as equation

2-6:

 �̂� = (𝑋′𝑋)−1𝑋′𝑦 2-6

then, vector 𝑦� = 𝑋𝛽 = (𝑦1,� 𝑦2,� … ,𝑦𝑛�)′ is the return value of the dependent variable vector

𝑦 = (𝑦1,𝑦2, … ,𝑦𝑛)′. For the model parameter estimation, regression equation 2-3 has the following

basic assumptions [44]:

 Independent variables 𝑥1,𝑥2, … , 𝑥𝑝 are deterministic variables, not random ones, and it is

required that 𝑅𝐴𝑁𝐾(𝑋) = 𝑃 + 1 < 𝑛. This is to say, there is no perfect correlation among

independent variables and the sample size should be larger than the number of explanatory

variables.

 The random error term has homoscedasticity which indicates that error term and

independent variables are independent.

 The random error term is normally distributed.

2.2.3.2. MARS

Table 2-1 shows the correlation coefficients between PMC events and energy consumption for

one of the experiments described more in detailed in chapter 8. Correlation coefficients lower than 0.7
24

Energy Estimation: Research and Problems

indicate that no absolute linear relationship exists between the concerned events and the energy. In

this case, the trend line to fit PMC events to energy consumption is likely to exhibit various slopes

depending on the range of the independent variables. Therefore, a piecewise method (which is

proposed for building a model with different slopes in each interval), MARS, is recommended to

achieve more accurate results.

Table 2-1 Correlation Coefficients Between PMC Events and Energy

Data
Cache
Access

Instruction
Cache
Misses

Data Translation
Lookaside Buffer

Misses

Instruction
Translation

Lookaside Buffer
Misses

Hardware
Interrupts

Conditional Branch
Instructions

Mispredicted

Instructions
Issued

0.51 0.68 0.52 0.38 0.74 0.63 0.79

Multivariate Adaptive Regression Spline (MARS) was proposed by Jerome H. Friedman in 1991

[45] and has been widely used in many complex fitting problems. “Multivariate” shows its ability to

generate models in high dimensional problems. “Adaptive” refers to its flexibility and adaptability to

adjust the model. “Regression” indicates its functionality to estimate the relationship among

independent and dependent variables. And “Spline” is a special function that is piecewise-defined by

polynomial functions. Spline interpolation is widely used due to its simplicity of construction,

accuracy of evaluation, and capacity to approximate complex curve fitting and interactive curve

design. MARS defines the tensor product of spline functions as the basis functions. The process of the

generation of basis functions has strong adaptability, which can be completed without manual

operations. In a multidimensional situation, due to the expansion of the sample space, how to divide

the space has become a critical issue. MARS method does not require a space-disjointed partition as

long as all sub-spaces can cover the entire sampling space. Each divided space corresponds to a

coefficient and an input variable 𝑥𝑖. MARS model obtains its prediction value by combining all basis

functions.

For a system, the output set, which is the dependent variables set 𝑦 = (𝑦1, … ,𝑦𝑞), and the input

set, which is the independent variables set 𝑥 = ((𝑥11, … , 𝑥1𝑝), … , (𝑥𝑞1, … , 𝑥𝑞𝑝), have the relationship

shown in equation 2-7:

 𝑦𝑗 = 𝑓𝑗�𝑥𝑗1, … , 𝑥𝑗𝑝� + 𝜀𝑗 2-7

where 𝑞 is the number of observations and 𝑝 is the number of independent variables, {𝑓𝑗} is a set

of deterministic functions, and {𝜀𝑗} is a set of random variables, which reflect the random disturbance

of the system. By convention, the expectations of 𝜀𝑖 are set to zero, i.e., 𝐸(𝜀𝑖) = 0. The objective of

MARS is to obtain an approximated function 𝑓𝑗 instead of fj to analyze and calculate the system

25

Energy Estimation: Research and Problems

response through a series of training data �yi1, … , yiq; (x11, … , x1p), … , (xq1, … , xqp)�
i=1
q . A MARS

model can be represented by summing up a set of basis functions as indicated in equation 2-8:

 𝑓�𝑥1, … , 𝑥𝑝� = �𝑐𝑚𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚) 2-8

where 𝑐𝑚 is the coefficient of each basis function 𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚). The forms of basis functions in

MARS method are expressed in equation 2-9:

 𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚) = �𝑏𝑘𝑚(𝑥𝑣(𝑘,𝑚)|𝑃(𝑘,𝑚))
𝐾𝑚

𝑘=1

2-9

𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚) is obtained by multiplying 𝐾𝑚 (at least one) basis functions 𝑏𝑘𝑚 , which are

specified by the input variables 𝑥𝑖𝑚,…,𝑥𝑗𝑚, a subset of independent variables denoted as 𝑥𝑣(𝑘,𝑚), and a

set of functional parameters𝑃(𝑘,𝑖𝑗); 𝑏𝑘𝑚 is a constant or a hinge function expressed in equation 2-10:

 𝑏𝑘𝑚(𝑥|𝑠, 𝑡) = [𝑠(𝑥 − 𝑡)]+ (−∞ ≤ 𝑡 ≤ +∞) 2-10

The subscript "+" of equation 2-10 indicates a positive part, i.e.,

 [𝑧]+ = � 𝑧 𝑧 > 0
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 2-11

In the equation 2-10, the parameters 𝑠 and 𝑡 are the truncated direction (𝑠 = ±1) and the knot

position of the basis function, respectively, i.e., the item 𝑃(𝑘,𝑚) = (𝑠𝑘𝑚, 𝑡𝑘𝑚) of equation 2-9.

The procedure of MARS algorithm is to obtain a set of basis functions 𝑐𝑚𝐵𝑚(𝑥𝑣(𝑘,𝑚)) through a

forward iterative process and a backward iterative pass to make the objective function 𝑓 approximate

the expected accuracy. Forward pass iteratively divides the training data and fits the estimation

models. It will produce a large number of basis functions. The backward pass will selectively remove

some basis functions with the premise to ensure the highest goodness of fit of the final model.

During the forward pass, appropriate knot selection at each iteration is crucial for the model

accuracy. To maximize estimation accuracy and to save computing time, there is no need to test each

point to determine if it is appropriate for a new basis function. A minimum step size 𝐿 for variable

selection is introduced, which results in less selection from a large amount of data for knot

calculation. The step 𝐿 is calculated as equation 2-12:

𝐿(𝑎) =

− 𝑙𝑜𝑔2[− 1
𝑝𝑁 𝑙𝑛(1 − 𝑎)]

2.5

2-12

26

Energy Estimation: Research and Problems

where 𝑎 locates in a closed interval [0.01, 0.05], which is a reasonable range of narrowing the

selection of candidate nodes. The quantity 𝑁 is the number of observations and 𝑝 is the number of

predictors or input variables. With this selection step, the estimation accuracy is almost unchanged,

while the approach speed is significantly improved. The entire iterative process will continue until the

number of basis functions reaches the user-defined maximum number or the minimal lack of fit

(LoF), which is the different between the real function 𝑓 and the model function 𝑓, is achieved.

The forward pass usually leads to the over-fitting because MARS algorithm only allows building

new basis functions based on previously generated basis functions. Thus, forward iteration will

construct a large number of basis functions. The originally generated functions may have little or no

contribution to the final model. Their function is to produce subsequent basis functions. To improve

the generalization ability, the model will be pruned by MARS backward pass. It deletes the least

effective basis function at each loop until it finds the best sub-model. The estimation performance is

evaluated with new data rather than with training data. However, new data are always not available at

the time of modeling building. Thus, the sub-model performances are evaluated by using the

generalized cross validation (GCV) criterion. GVC is computed as in equation 2-13; the lower the

value, the better the performance. It takes the trade-off between goodness-of-fit and model

complexity.

 𝐺𝐶𝑉(𝑀) = 𝑅𝑆𝑆

𝑁∗(1−𝐶(𝑀)
𝑁)2

=
1
𝑁
∑ [𝑦𝑖−�̂�𝑀(𝑥𝑖)]2𝑁
𝑖=1

[1−𝐶(𝑀)
𝑁]2

 2-13

where RSS is the residual sum-of-squares on the training data and 𝑁 is the number of

observations; 𝐶(𝑀) is the effective number of parameters, which is defined as

𝑡𝑟𝑎𝑐𝑒(𝐵(𝐵𝑇𝐵)−1𝐵𝑇) + 1 + 𝑑 ∗ 𝑀; 𝑡𝑟𝑎𝑐𝑒(𝐵(𝐵𝑇𝐵)−1𝐵𝑇) + 1 is the number of MARS terms, i.e.,

the number of included basis functions; d is the penalty factor whose value is between 2 and 4, and M

is the number of hinge-function knots. RSS always decreases as MARS terms increases. This is to

say, the backward pass will always choose the model with largest terms if and only if the RSS is used

to evaluate the model performance. Including too many items typically causes a model to have low

generalization. Therefore, the GCV criterion takes into account the model generalization to adjust the

training RSS and penalizes the addition of knots.

The final model obtained by MARS algorithm is expressed in equation 2-14:

 𝑓(𝑥) = 𝑐0 + � 𝑐𝑚�[𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]+

𝐾𝑚

𝑘=1𝑚=1

 2-14

27

Energy Estimation: Research and Problems

where 𝑐0 is a constant basis function, each addend term is a basis function 𝑐𝑚𝐵𝑚, and 𝑠𝑘𝑚 =

±1. When MARS algorithm is used in this dissertation, to simplify the model, 𝐾𝑚 is set to 1 and only

the basis function with one variable is employed, i.e, 𝑐𝑚𝐵𝑚 = 𝑐𝑚[𝑠𝑚(𝑥𝑖 − 𝑡𝑚)]+.

As explained before, the hinge function is defined as 𝑏(𝑥|𝑠, 𝑡) = [𝑠(𝑥 − 𝑡)]+ . To make the

model be continuous and have continuous first derivative, the hinge function can be replaced by its

corresponding cubic truncated form as equation 2-15 to 2-20:

C(x|s = +1, t−, t, t+) = �

0 x ≤ t−,
P+(x − t−)2 + r+(x − t−)3 t− < 𝑥 < t+,

x − t x ≥ t+

�

2-15

C(x|s = −1, t−, t, t+) = �

−(x − t) x ≤ t−,
P−(x − t+)2 + r−(x − t+)3 t− < 𝑥 < t+,

0 x ≥ t+

�

2-16

 𝑃+ =
(2t+ + t− − 3t)

(t+ − t−)2
 2-17

 𝑟+ =
(2t − t+ − t−)

(t+ − t−)3
 2-18

 𝑃− =
(3t − 2t− − t+)

(t− − t+)2
 2-19

 𝑟− =
(t− + t+ − 2t)

(t− − t+)3
 2-20

𝐶(𝑥|𝑠, 𝑡−, 𝑡, 𝑡+) is first order differentiable, but its second derivative is not continues at 𝑥 = 𝑡±.

Each knot t can define a linear truncated function, while a cubic function needs three knots: 𝑡，𝑡+，

𝑡−. Figure 2-5 shows an example of linear and cubic hinge functions.

Figure 2-5 (a) Linear and Cubic Basis Function when S=1

t

0

20

40

60

t- t t+

0

20

40

60

28

Energy Estimation: Research and Problems

Figure 2-5 (b) Linear and Cubic Basis Function when S=-1

Figure 2-5 Linear and Cubic Basis Function

This post pass ensures that the model is everywhere differentiable in the variable space.

Therefore, the model is smoother and the fitting accuracy is improved without introducing heavy

computable complexities.

2.2.4. Discussion

There is no doubt that a PMC-based model combined with linear regression or MARS method can

achieve very accurate predictions. However, this method has a weakness when a model obtained for

one system wants to be applied to other systems with the condition that the appropriate PMC events

for each system could be unique. There are reasons of this uniqueness. One reason is that the type of

observable events and the number of hardware counters vary from one kind of architecture to another

due to the variation in the hardware organization. Therefore, the exact model will be different to each

platform depending on the availability of native PMC events. Another reason is that the number of

available hardware counters in a processor is limited while each model might have a lot of different

PMC events that a developer might like to measure. Each counter can be programmed with the

indexes to monitor various types of PMC events. In other words, although CPUs typically have

multiple counters, each of them can only monitor one PMC event at one time, and some counters can

only monitor specific PMC events, such as the PMC used to count clock cycles. Therefore,

architectures cannot concurrently monitor in general the interesting combinations of PMC events. A

challenge on the development of PMC-driven component-level models is how to select, using

efficiency and accuracy trade-offs, the most suitable PMC events for each component.

Besides selection on PMC events, in practical problems, regression analysts usually tend to

thoughtfully select the relevant indicators to avoid missing important system characteristics. However,

these indicators are often highly correlated, which is the multi-collinearity phenomenon of multi-

variable system [46]. Multi-collinearity occurs when two or more predictors in the model are

correlated and provide redundant information about the system response. Thus, it becomes difficult or

impossible to distinguish individual effects on the dependent variables. Essentially, collinearity makes

t

0

20

40

60

t- t t+

0

20

40

60

29

Energy Estimation: Research and Problems

the same variable enter into a model twice, which results in an extreme case of confounding. In

general, it is not necessary to have “perfect” collinearity to cause problems; as long as two variables

are highly correlated, they will cause a “near-collinearity” problem. In multiple linear regression

analysis, the multi-collinearity often seriously affects the parameter estimation, enlarges the standard

modeling error, introduces the model distortion and decreases the model robustness. Because of its

serious harm and widespread presence, it is needed to eliminate its adverse effects.

2.3. Conclusion

In this chapter, general and video-coding-focused energy estimation modeling methodologies are

introduced. Comparing their different features, PMC-based estimation leads a promising mean to

balance modeling generalization and accuracy. Thus, it is recommended for energy estimation on

video coding. In order to use this mechanism, knowledge of PMC is introduced. The key point to

obtain an accuracy model is how to define a proper set of PMC events for energy prediction.

Correlation coefficient is a common method to evaluate the degree of relationship of two variables.

Therefore, it can be employed to choose the energy-correlated PMC events. The correlation

coefficients that can be used depend on the characteristics of sampling data. Pearson correlation

coefficients and Spearman’s rank correlation coefficients are two of the most widely used approaches.

With the selected PMC event set, fitting methods are employed next to obtain the final energy

functions. Linear regression is a common method for data fitting and has shown its accuracy on PMC-

based models. With the consideration of nonlinear factors, it could be more optimistically to use a

piecewise method, MARS, to obtain higher accuracy. Furthermore, with a discussion about PMC-

based methods, two problems have emerged: difficulties on PMC events selection and harms from

multi-collinearity phenomenon. Next chapter proposes a more general methodology to solve these two

problems.

30

Generalization and Accuracy Improvements of the Energy Estimation Model

3. Generalization and Accuracy Improvements of the
Energy Estimation Model
To achieve the support on multiple hardware platforms and various coding standards, the

estimation model should meet two requirements: one is to involve not too many details of the

hardware platforms, and the other one is to avoid including knowledge from specific coding

standards. That is to say, the model should have a high generalization and can be employed to any

platform and coding standard with little modification. In this context, a PMC mechanism, which has

been widely used due to its simplicity and high efficiency, is suggested combining into the

optimization module. Although a PMC-based model is not a new idea, model generalization and

multi-collinearity of model predictor (independent variables) are still two issues with impact on the

accuracy of models and are worthy of improvement. In this chapter, section 3.1 will first state the two

problems and then the solutions are proposed in section 3.2. The conclusion will be drawn in the final

section 3.3.

3.1. Problem Statement

3.1.1. Generalization Problem

Before going into any further step, it is worth noting that this thesis will focus on modeling the

energy consumption of computing processor and memory units. Other peripheral activities are

estimated by the number of interrupts and each interrupt is assumed to consume the same energy. For

these two focused components, models usually consider the number of executed instructions, or

simply, the number of instructions, as the most intuitive renderer of energy consumption. However, in

modern processors, additional units responsible for branch predictions and cache memory and

techniques such as pipelining are implemented to accelerate the processing speed. These elements are

factors that greatly impact on the energy consumption.

Figure 3-1 is a general block diagram of the architecture of a processor including the memory.

The processor is divided into 4 parts corresponding to the 4 stages of an instruction process. The

instruction fetch unit fetches instructions from the L1 instruction cache memory based on a prediction

over the instruction streams. Then, it places the fetched instructions into the input buffer of the

pipelined instruction decoder. After the instruction decode unit decodes and sequences instructions,

the execution unit starts to execute the decoded instructions. This unit may consist of several identical

pipelined Arithmetic Logical Units (ALUs), pipelined multipliers and an address generator for loading

and storing instructions. It also performs register write-back operations, processes branch estimations,

and other changes on the instruction stream such as instruction condition code evaluations. The

31

Generalization and Accuracy Improvements of the Energy Estimation Model

load/store unit includes the entire L1 data cache memory system and the integer load/store pipeline.

The L2 cache unit services L2 cache misses from both the instruction fetch unit and the load/store

unit. With this complex structure of processor, only the number of executed instructions cannot

completely represent the processor functionality. Note that several processor units will introduce

additional energy consumption. For example, pipeline blocking, cache miss, and prediction failure

will cause the processor to stall and decrease the number of issued instructions, but at the same time,

other units will be active to prepare actions such as pipeline discard (due to wrong branch predictions)

or memory access (due to cache misses). The activity of these additional units impacts on the total

energy consumption and thus brings difficulties for estimating energy using the number of executed

instruction, i.e. only by relating energy consumption to arithmetic unit activities. The unsatisfactory

results from the only-instruction-based model will be shown in the results chapter.

Figure 3-1 General Processor and Memory Architecture

To improve the estimation accuracy of PMC-based models, the principle is to increase the

information about energy-related activities obtained from predictors. Briefly speaking, the idea is to

avoid biases due to predictor selection. One simple solution is to include all the platform available

PMC events. However, with a large number of events, there will be an increased overhead for PMC

configuration and control, especially caused by multiplexing of PMCs. An experimental result of this

overhead is shown in Figure 3-2 (a) to (d). In this experiment, an embedded platform is configured to

decode four different frames, (a) to (d), of a video stream with several PMCs monitoring up to 15

events during the decoding process. Each plot on the left in Figure 3-2 (a) to (d) shows the time to

decode one frame of the cideo stream (y-axis) when the platform is configured to monitor different

number of PMCs (x-axis). In addition, the CPU time plot only considers the processor time to decode

while the total time plot includes, on top of that, any other activities of the CPU and its idle time.

32

Generalization and Accuracy Improvements of the Energy Estimation Model

Figure 3-2-(a)

Figure 3-2-(b)

Figure 3-2-(c)

2 4 6 8 10 12 14
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Number of PMCs

Ti
m

e(
s)

Total Time
CPU Time

2 4 6 8 10 12 14
80

81

82

83

84

85

86

87

88

89

90

Number of PMCs

C
P

U
 P

ro
ce

ss
in

g
(%

)

2 4 6 8 10 12 14
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Number of PMCs

Ti
m

e(
s)

Total Time
CPU Time

2 4 6 8 10 12 14
85

86

87

88

89

90

91

92

93

94

95

Number of PMCs

C
P

U
 P

ro
ce

ss
in

g
(%

)

2 4 6 8 10 12 14
1.9

2

2.1

2.2

2.3

2.4

2.5

Number of PMCs

Ti
m

e(
s)

Total Time
CPU Time

2 4 6 8 10 12 14
82

83

84

85

86

87

88

89

90

91

92

Number of PMCs

C
P

U
 P

ro
ce

ss
in

g
(%

)

33

Generalization and Accuracy Improvements of the Energy Estimation Model

Figure 3-2-(d)

Figure 3-2 PMC Overhead

As can be noticed, the CPU time to decode a frame is almost constant while the total time

increases with the number of PMCs. Plots on the right in Figure 3-2 (a) to (d) show the percentage of

CPU time employed in PMC management. As can be seen, the decoding rate decreases by 4% when

using 15 PMCs instead of using just one. This result suggests the need of limiting the number of PMC

events taken into account. Since the size of the PMC event set needs to be reduced, the selection of

PMC events is a problem that is worth to study.

The core concept of a PMC-driven model is to relate the energy behavior to the occurrence of

several events, which are closely dependent on the architecture features and the platform monitoring

capabilities. Model accuracy is strictly dependent on an elaborated selection of PMC-events, which

may differ from platform to platform due to the uniqueness of each platform. Thus, a proper set of

PMC events may not achieve the same accuracy when applied to a new platform. Formally, this

problem is considered as a generalization problem.

Figure 3-3 shows an accuracy comparison on three models for two embedded platforms: P board

(PB) and B board (BB).

2 4 6 8 10 12 14
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

Number of PMCs

Ti
m

e(
s)

Total Time
CPU Time

2 4 6 8 10 12 14
82

83

84

85

86

87

88

89

90

91

92

Number of PMCs

C
P

U
 P

ro
ce

ss
in

g
(%

)

34

Generalization and Accuracy Improvements of the Energy Estimation Model

Figure 3-3 A Comparison on Model Performances in Two Platforms

In this example, 30 simple programs, such as a video decoder and encoder and an audio decoder

and encoder, are used as benchmarks. 10 of them are employed as training data, namely 𝐵𝑇 and other

20 ones are used to evaluate model accuracies, namely 𝐵𝑉. The embedded system BB is configured to

monitor all the board-available events. During the executions of programs from the 𝐵𝑇 group, both the

measured energy consumptions and events samples are obtained. Four PMC events whose correlation

coefficients of energy consumption are larger than 0.8 are selected as the model predictors, i.e.,

Instruction translation look-aside buffer misses (TLB_IM), conditional branch instructions taken

(BR_TKN), store instructions (SR_INS), and total cycles (TOT_CYC). With these four PMC events,

a model to estimate the energy consumption of the BB embedded system is built. When building the

estimation models for the PB platform, the 𝐵𝑇 group is also employed as the training data and the

procedure of selecting PMC events is not repeated. This set of predictors on BB is used as a referrence

to build the energy estimation models for PB. The difference is that in the PB platform, the BR_TKN

event is not available. This event has been replaced with the number of branch instructions

(BRN_INS). Then, with this change, the PB-model 1 is built. Also, a second model, the PB-Model2,

is built with only the TLB_IM, SR_INS, and TOT_CYC events. The performances of these three

models are evaluated with the programs from the 𝐵𝑉 group. The relative errors between the estimated

and the measured energy consumptions are calculated. As can be seen in Figure 3-3, no PB models

achieves good performance compared with that of the BB model. In the latter case all the estimation

0 2 4 6 8 10 12 14 16 18 20
0.5

1

2

4

8

16

32

Model Input

R
el

at
iv

e
Er

ro
r(%

)

PB-Model1
PB-Model2
BB-Model

35

Generalization and Accuracy Improvements of the Energy Estimation Model

errors are maintained below 10%. Note the log scale in the Y axis for relative errors presentation has

because of the large differences.

This comparison shows that an elaborated set of PMC events on one platform may not be

practical on another one. Thus, model generalization needs to be solved. Modern processors have

been implemented with different hardware architectures, instruction sets, pipeline depths, specific

acceleration circuits and different instruction cycles. These variances indicate different data flows

during the processing which will cause different contributions to the whole energy consumption.

Therefore, more typical events need to be distinguished for each processor to achieve higher

estimation accuracy.

3.1.2. Multi-collinearity Problem

In addition to the overhead introduced when dealing with a large number of PMC events, their

correlations also need to be considered. In fact, there is no absolute definition of the correlation

degree, which is a concept somehow based on the experimental experience. Table 3-1 lists a

correlation degree scale as a function of the value of correlation coefficients [43].

Table 3-1 Correlation Coefficient vs Correlation Degree

Value of Correlation Coefficients Correlations Degree

0.8~1.0 Very Strong Related

0.6~0.8 Strong Related

0.4~0.6 Moderately Related

0.2~0.4 Weak Related

0.0~0.2 Very Weak or No Related

Table 3-2 An Example of Internal Correlation of PMC Events

 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

E1 1.00 0.1307 0.6990 0.5694 0.7044 0.5326 0.7260 0.4800 0.5079 0.4732 0.7718

E2 1.00 -0.2145 0.2953 -0.0894 0.1237 0.2082 -0.3449 -0.5140 -0.4640 -0.1763

E3 1.00 0.6043 0.8902 0.5442 0.5815 0.5226 0.7020 0.6323 0.7131

E4 1.00 0.7042 0.6788 0.6788 0.3285 0.3431 0.2667 0.3037

E5 1.00 0.5453 0.8221 0.3182 0.5319 0.7161 0.7183

E6 1.00 0.5110 0.4928 0.4734 0.2937 0.3810

E7 1.00 0.1657 0.2802 0.5749 0.6828

E8 1.00 0.9053 0.4093 0.5058

E9 1.00 0.6847 0.6212

E10 1.00 0.7513

E11 1.00

36

Generalization and Accuracy Improvements of the Energy Estimation Model

Table 3-2 shows an example of the internal correlation among 11 PMC events. The values in

Table 3-2 are obtained from the selection process of PMC events for the BB platform mentioned

above. As can be seen, several events are strongly correlated to each other, e.g., 𝑟(E3, E5), 𝑟(E1, E7),

𝑟(E5, E7) , 𝑟(E1, E11) , 𝑟(E3, E11) , and 𝑟(E5, E11) are over 0.7, which represents a strong

relationship. This indicates a possible multi-collinearity phenomenon in PMC events. Multi-

collinearity has two main harms on estimation accuracy [44][46][47]:

 Multi-collinearity can lead to unstable solutions. When the training values of independent

variables have slight changes, the coefficients of the built models may drastically change in

magnitude and sign. This brings potential risks in applying the models in practical cases.

 Multi-collinearity can cause regression coefficients not to appear significant. As a

consequence, important variables may be dropped.

A potential risk of multi-collinearity is the accuracy and the stability degradation with regard to

the regression coefficient technique, which means that the presence of multi-collinearity produces bad

estimates on model parameters but this fact does not imply that the fitted model always produces

unsatisfactory predictions. How well a model performs depends on the purpose of the model. Usually,

a model could be employed:

 To illustrate the relationship between the predictors (independent variables) and the

response (dependent variable);

 To predict the response of future observations.

If the primary purpose of a model is for prediction, the relationship between predictors and

response is not strictly required as long as the model is able to accurately represent the outcome

trends. Thus, multi-collinearity is less harmful for a predictive model. It will be a problem if the

modeling purpose is interested in both the prediction and how the individual predictor influences the

response. Because it is inherently difficult to tease apart the individual impacts if two or more

predictors are correlated. A regression model uses the information from variation between predictors

and their corresponding variation in the response to make the estimations. Each predictor may

contribute with less information for estimating its individual impact if multi-collinearity exists and

therefore the effective amount of information to assess the predictor’s effect is reduced.

To develop an energy-aware management and optimization, it is mandatory first, to understand

how energy is impacted by different events and next, to make energy-efficient decisions. This is to

say that the energy estimation model should clearly represent the relationship between predictors and

response, i.e., the system activities and the energy consumption, to avoid misleading the

internalization of the energy cost of different operations. In particular, the model should locate the

37

Generalization and Accuracy Improvements of the Energy Estimation Model

energy hot spots which are quite useful to determine how to optimize the limited energy budget.

Therefore, there is a need to suppress the redundant PMC events to release the multi-collinear

influence in order to build models which distinguish the impacts of each PMC event on the energy

consumption. As a consequence, the information provided by the estimation model can be used by the

energy-aware manager to wisely guide the application execution for energy saving.

3.2. Problem Solutions

As stated in the previous section, how to select the PMC events to be used in the energy

estimation model among the different candidates is an important research point. If an energy

estimation model includes all the available PMC events in the platform, most of the details of the

application will be covered. However, a large number of PMC events, on the one hand, increases the

complexity of on-line modeling and sampling time, on the other, introduces serious multi-collinearity

problems. Thus, it is necessary to have a methodology to suppress the multi-collinearity problems by

reducing the number of PMC events without losing the captured application behavior features.

Identifying the PMC events which are strong related to energy consumption is the primary

requirement of the energy estimation modeling process. In this context, a PMC-filter is proposed in

this dissertation. It includes two parts, one is to identify the most appropriate PMC events and another

one is to suppress the multi-collinearity problem.

3.2.1. PMC Event Selection

PMC event selection is a step to eliminate those events with a weaker contribution to energy

consumption. In this step, the Spearman's rank correlation, 𝑟𝑆𝑖, has been employed because the overall

distribution of the sample data is unknown. A threshold, α, of 𝑟𝑆𝑖 is set to identify the PMC events

with large energy correlation and to eliminate, from the initial set of PMC events, those whose

coefficients are below α. This step can be simply described as the following pseudo code in Figure

3-4.

Figure 3-4 Pseudo Code for Eliminating Weakly Energy-related PMC Events

Set threshold α for energy correlation detecting;
for ∀ event ∈ {Eventoriginal}
 if 𝑟𝑆𝑖(eventi, energy) > α
 eventi → {Eevente1}
 end
end

38

Generalization and Accuracy Improvements of the Energy Estimation Model

In this step, how to judge the variable dependence with the correlation coefficient is the main

concern. Figure 3-5 shows how two PMC events, issued instructions (TOT-IIS) and L1 data cache

accesses (L1-DCA), relate to energy consumption.

Figure 3-5 Relationship between PMC Event and Energy Consumption

In this example, 15 different video sequences are decoded on the PB platform, which is the same

commercial embedded board used for the experiments discussed before in section 3.1.1. During the

decoding processes, two events, TOT-IIS and L1-DCA, are monitored by the PMCs and the real

energy consumptions are measured. Generally speaking, each event contributes to the energy

consumption, thus an accurate model should capture all their impacts. However, as can be seen in

Figure 3-5, the relationship varies from one video sequence to another. In some cases, these two

events both are highly correlated to the energy while in some others, the correlations decrease to a

middle level, and in some extremely cases, they have weak relationships. Therefore, a quite high

event selection threshold may likely drop from the models those events that are highly related to the

energy consumption. Similarly, a too low threshold will add to the model many events and will

introduce a high overhead due to PMC sampling. Thus, the event selection threshold is recommended

to be set at the middle level, i.e., the threshold could be set in a range from 0.4 to 0.6. This is to say

that the events which have moderate relationship with energy should be maintained.

0 5 10 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sequences

Co
rre

la
tio

n
co

ef
fic

ie
nt

 b
et

we
en

 e
ve

nt
 a

nd
 e

ne
rg

y

Event: TOT-IIS
Event: L1-DCA

39

Generalization and Accuracy Improvements of the Energy Estimation Model

3.2.2. Multi-collinearity Suppression

As far as the system integrity and continuity concern, there are dependencies among PMC events,

which are known as multi-collinearity. Figure 3-5 shows a potential collinearity between TOT-IIS and

L1-DCA because the relationships between their energy consumptions has a quite similar pattern.

Several PMC events can be highly correlated, i.e. the information provided by one of them can be

predicated or explained by the others. In the previous section, it has been explained that the

correlation coefficient shows the relationship between two variables. In other words, if two variables

are perfectly correlated, they provide the same information to build an estimation model. Multi-

collinearity makes more difficult to distinguish the PMC events that are relevant for the energy

consumption because of the redundant information among variables.

A method to better interpret the correlation of two variables is to calculate their coefficient of

determination (𝑅2), which is the square of their correlation coefficient. 𝑅2 reflects the percentage of

the variance of one variable that can be explained by the variance of another one. For example, if the

correlation coefficient between variable 𝑋 and variable 𝑌 is 0.7, namely, 𝑟𝑌𝑋 = 0.7 , then the

coefficient of determination, 𝑅𝑌𝑋2 , equals to 0.49. This means that 49% of the variance of variable 𝑌

can be explained by variable 𝑋 [43]. The stronger the correlation of two variables, the more variance

of one variable can be explained by another and the more information of one variable can be

represented by another one. However, 𝑅𝑌𝑋2 = 0.49 also means that 51% of the information cannot be

replaced. This is because even these two variables have a strong correlation (𝑟𝑌𝑋 = 0.7), there are still

reasons that cause the differences between them. The idea of the shared variance can be intuitively

shown in Figure 3-6. The gray area stands for the shared variances of two variables. The larger it is,

the stronger they are related.

Figure 3-6 Shared Variance

In the first case, there is no overlap of the two circles because there is no relationship between

them. In the second case, the two circles begin to overlap because they share 25% information. While

the third situation shows that one circle almost perfectly covers the other one due to the quite high

Correlation Coefficient Coefficient
Determination Variable X Variable Y

0 Share 0%

Share 25%

Share 81%

0.5

0.9

0

0.25

0.81

40

Generalization and Accuracy Improvements of the Energy Estimation Model

correlation between them. During the model fitting, the correlation information among PMC events is

targeted to reflect more energy variation features within fewer PMC events. A simple example below

will give a better explain on this goal:

Considering an accurate energy estimation model with two independent variables, 𝑌 and 𝑋 ,

namely 𝐸 = 𝑎𝑌 + 𝑏𝑋 + 𝜀. Assuming that 75% of the features in 𝑌 can be explained by variable 𝑋,

thus the variable 𝑌 can be estimated by variable 𝑋 expressed in equation 3-1:

 𝑌 = 𝑐𝑋 + 𝜀𝑥→𝑦 3-1

Where ε is the estimation error due to the 25% of unexplained features of 𝑌. Thus the energy

model can be rewritten as equation 3-2:

 𝐸 = 𝑎�𝑐𝑋 + 𝜀𝑥→𝑦� + 𝑏𝑋 + 𝜀 = (𝑎𝑐 + 𝑏)𝑋 + (𝑎𝜀𝑥→𝑦 + 𝜀) 3-2

If the relationship between 𝑋 and 𝑌 is stronger, the value of item 𝑎𝜀𝑥→𝑦 will be smaller, which

means the error caused by using X to represent Y is smaller, and thus the whole error aεx→y + ε will be

smaller. A high correlated case also indicates a reduction of the effective sample size. Since 𝑋 and 𝑌

share 75% of their variance, thus only 25% of the information (i.e., a fourth) provided by the samples

can be used to model the impact of each variable. As a consequence, 75% of the redundant

information could be dropped and the effective sample size could be reduced.

There is no absolute threshold to distinguish if multi-collinearity causes harmful influences. The

variance inflation factor (VIF), a widely used multi-collinear indicator [47], is going to be employed

in this thesis. It provides a reference to evaluate how much variance of the coefficient estimation is

being inflated by multi-collinearity. The VIF can be expressed as 𝑉𝐼𝐹𝑖 = 1
1−𝑅𝑖

2. Assuming that there

are 𝑃 independent variables, 𝑅𝑖2 is the coefficient of determination of the regressing variable 𝑥𝑖 on the

other 𝑃 -1 independent variables. VIF is able to identify and separate the influences of distinct factors

on the variance of the coefficient estimation. A large value of 𝑉𝐼𝐹𝑖 indicates a serious multi-

collinearity among independent variables. In this thesis, the following steps have been designed to

iteratively refine the PMC set, namely, 𝑃𝑒1, using the VIF values as a reference:

 Calculate the VIF values of all PMC events in 𝑃𝑒1.

 Set a certain threshold, 𝛽, to be used to find out those PMC events whose 𝑉𝐼𝐹𝑠 exceed this

threshold. And, from them, find out one event, 𝑃𝐸𝑎, which has the largest 𝑉𝐼𝐹. If there are

several PMC events with the same largest 𝑉𝐼𝐹, the one with the smallest energy correlation

41

Generalization and Accuracy Improvements of the Energy Estimation Model

coefficient will be chosen.

 Determine one PMC event, 𝑃𝐸𝑏, who has the closest correlation with 𝑃𝐸𝑎.

 Eliminate one PMC event between 𝑃𝐸𝑏 and 𝑃𝐸𝑎 from 𝑃𝑒1 , the one which has smaller

energy correlation coefficient.

 Recalculate the 𝑉𝐼𝐹 values of remaining PMC events and repeat the process from step 2

until all the 𝑉𝐼𝐹 values are below threshold 𝛽 . The resulting PMC events, as a new set

of 𝑃𝑒2, are the most important ones as far as the energy correlation concerns.

This procedure can be outlined in the following pseudocode:

Figure 3-7 Pseudo Code of Multi-collinearity Suppression

Set threshold β for VIF;
do{
 for ∀ eventi ∈ Ee1
 get VIF(eventi);
 if (VIF(eventi) > 𝛽)
 eventi → Etmp;
 end
 end
 Find eventi ∈ Etmp have largest VIF
 eventi → EL;
 Find eventa ∈ EL has smallest 𝑟𝑆𝑎(eventa, energy)
 ∀ eventi ∈ �Ee1 − {eventa}�, ∃ eventb has largest 𝑟𝑆𝑎(eventa, eventb)
 eventdel = 𝑟𝑆𝑎(eventa, energy)>𝑟𝑆𝑏(eventb, energy)? eventa: eventb;
 Ee1=Ee1-{eventdel};
} while(∃ evnet ∈ Ee1: VIF(eventi) > 𝛽)
End

42

Generalization and Accuracy Improvements of the Energy Estimation Model

3.2.3. Design Flow of an Energy Estimation Model

Figure 3-8 Design Flow of an Energy Estimation Model

A full energy estimation model is based on the power measurement. It provides correlations

between system activities and energy consumption. Generally, to build a high-level energy estimator,

two main steps are needed: parameters determination and model construction. Figure 3-8 shows the

design flow of an energy estimation model. Note that the device whose energy wants to be estimated

is called device under test (DUT). To estimate the energy, the parameters of the model, which are the

samples of a set of PMC events, are obtained during the executions of different benchmarks. The

selections of model parameters have been explained in detail in the previous two subsections. Then, in

order to fit the energy model, the current of the whole system or the current of specific components

together with the supplied voltage have to be measured and considered as model response. The energy

estimation model is constructed by a proper fitting method. As it has been mentioned in section 2.2.3,

the linear regression and the MARS methods are two candidates to process the fitting procedure. Once

the coefficient of each independent variable is set, the model is able to estimate the energy from

model inputs. In addition, the real measurements are also used to assess the model accuracy. Some

adjustments would happen if the estimation results have unacceptable errors, which means the

estimation of correlations between system typical activities and system energy consumption are not

well presented. Once a model is set with the adequate accuracy, it can be used within the energy

manager to provide information needed by the energy-optimizing strategies.

43

Generalization and Accuracy Improvements of the Energy Estimation Model

3.3. Conclusion

The accuracy of a PMC-driven model is highly related to the selected PMC events which reflect

the application behavior features. Reduced modeling bias and accurate approximations are achieved

when a greater number of counters are involved. However, a large number of PMC events also

increases the model complexity and sampling time. An accurate PMC-driven model needs an

elaborated selection of PMC events service as the explanatory variables (independent variables), thus

this method faces a generalization problem. In addition, several PMC events can be highly correlated,

i.e. the information provided by one of them can be predicted or explained by the others. This

correlation, also known as multi-collinearity, makes more difficult the selection of the PMC events

that are actually involved in the consumption of energy. A potential risk of multi-collinearity is the

accuracy and the stability decrease with regard to the regression coefficients. In this chapter, a PMC-

filter is proposed to solve these two problems. It includes two steps; the first step automatically

identifies the most appropriate PMCs with no requirement on any specific detailed knowledge of the

employed platform and the second step uses variance inflation factor (VIF) to suppress the redundant

PMC events to release the multi-collinear influence.

44

PART C

PART C

Chapter 4: Energy Optimization and

Reconfiguration Techniques

Chapter 5: Energy Optimization based on

Functional-oriented Reconfiguration

Energy Optimization and Reconfiguration Techniques

4. Energy Optimization and Reconfiguration
Techniques
As discussed in chapter 1, multimedia applications have become widespread with the advent of

wireless communications. Its development presents two big challenges. One is the energy issue.

Unlike the traditional multimedia applications, electronic mobile devices in the wireless environments

are usually powered by battery and exhibit their energy-intensive features. Their functions are

restricted by the limited amount of energy. Energy issue has been a critical point which strongly

affects computation capability and video compression quality of mobile devices. The other challenge

is the implementation complexity. The continuous evolution of more complex and advanced video

coding standards has greatly impeded their efficient specification and implementation, and delayed

the time to market. Reconfigurable design has been proposed to address these design expectations:

deployment time reduction of new standards, implementation flexibility, dataflow programming, and

platform generalization. In this chapter, existing research work on energy optimization and

reconfigurable design will be presented.

4.1. Energy Optimization Techniques

Despite the continuous advances in chip technology, CPU clock rates have reached to an upper

limit and the new architecture designs change to increasing the computational performance by

increasing the number of cores. Nevertheless, CPU clocks are high and the power consumption

problem is still serious in multicore based systems. Low-power research has attracted significant

attentions on embedded multimedia application in electronic mobile devices, especially on wireless

video streaming and playback applications due to their high energy-consuming characteristics.

4.1.1. Power Impact Issues

The power consumption on digital ICs is generally divided into two categories: static and

dynamic power. The main source of static power is the leakage power which is not related with the IC

switching activity. Static power is the power required to maintain the circuit in the same logic state.

The total static power can be directly obtained by measuring the voltage dropping across a small

calibrated resister located in the supply path. Dynamic power is the internal power generated by

transitions of chip signals during system operations. The power consumption of a single circuit cell

[48] is expressed in equation 4-1:

 𝑃𝑎𝑙𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑉 ∙ 𝐼 + 𝛼 ∙ 𝐶𝐿 ∙ 𝑉2 ∙ 𝑓𝑐𝑙𝑘 4-1

47

Energy Optimization and Reconfiguration Techniques

Where, 𝑉 stands for the supply voltage, 𝐼 is the static current, 𝛼 is the factor of node switching

activity which is defined between 0 and 1, 𝐶𝐿 is the load capacitance, and 𝑓𝑐𝑙𝑘 is the clock frequency.

Figure 4-1 Power Consumption Trend [49]

Figure 4-1 shows the plot of three power consumption trends with regard to the progress of

technology density, i.e., computing, leakage, and active power. These three power consumptions

increase at a rate of 𝑘3, 𝑘2.7, and 𝑘1.9, respectively, where 𝑘 represents the scaling factor. In this case,

it is set to 1.4. The computing power is related to the computing density which is defined as the

maximum possible number of computations per area and time unit. Note that this trend is based on the

assumption of a continuous increasing of clock frequency and voltage supply. With this in mind,

many low-power design methods have been proposed to suppress this increase. Despite the fact that

the growth of clock frequency has been limited lately, the excessive power consumption is still a

bottleneck in IT industry.

Static power is the unavoidable power consumed by semiconductors. It is independent of the

workloads, but is determined by the threshold voltage and transistor size. General approaches have

difficulties to reduce the static power. On the other hand, dynamic power is proportional to the charge

and discharge frequency of stray capacitances of logic units, which is usually optimized by each

specific design. From equation 4-1, power impact issues can be summarized into four areas: operating

voltage, load capacitance, switching activity, and operating frequency. Reduction of these four factors

is the general objective of energy consumption reduction techniques. Note that there is a certain limit

on voltage reduction because voltage will inevitably impact the speed and stability of any circuit. For

example, when the voltage is reduced, the circuit delay increases and, as a consequence, the system

Technology

Po
we

r

Computing Power
Leakage Power
Active Power

48

javascript:void(0);
javascript:void(0);

Energy Optimization and Reconfiguration Techniques

clock frequency must be reduced. Low clock frequency causes a system to run too slowly and

therefore, to miss the predetermined deadlines. As a consequence, the performance of the system will

be unacceptable compromised. Voltage reduction is always combined with other methods to optimize

energy efficiency.

4.1.2. General Low-Power/Energy Optimization Techniques

Low-Power/Energy optimization techniques can be classified into different levels in the basis of

their action objects. From low to high, the optimization levels are: technology level, gate level, circuit

level, register-transfer level (RTL), architecture level, and system level. In this thesis, the system level

is defined as high-level optimization while the others are classified as low-level approaches.

4.1.2.1. Low-level Optimization Techniques

Low-level approaches are investigated to directly solve the problem from the hardware point of

view. In the following, typical techniques of each level are introduced.

Basic technology-level low-power designs techniques are the reductions of supply voltage and

transistor size. In addition, the technological progress makes multilevel circuit layout possible. A

scaled-down technology achieves the power reduction by increasing system integration degree to

reduce circuit delay, inter-chip communication, and device capacitance [50] [51]. With the rapid

development of technology, the ratio of chip area to package area is closed to 1:1 which dramatically

shortens circuit delays and improves system reliability.

Regarding gate-level optimization techniques, logic gates are designed with low-power

characteristics and structures [55] [56]. Professional development tools and software are employed to

facilitate power optimization design. For example, a design tool [57] [58] can convert several two-

input gates to three-input or more-input gates if the optimization configuration is enabled. A gate with

more inputs can effectively reduce power consumption by reducing the number of logic gates and

layout complexity. Another common used approach is to optimize pin permutation [59]. Pin

permutation achieves low-power design by connecting the high transition-rate signal to a pin with less

work load, or connecting a high-load pin with a low transition-rate signal to reduce switching activity.

Circuit-level low-power designs techniques focus on dynamic power. They typically consider

physical capacitances and circuit switching frequencies. At this level, power optimization techniques

include dynamic CMOS and asynchronous circuits [52] [53]. Dynamic CMOS logic gates memorize

data by maintaining CMOS transistors in the state of high resistance. They can effectively reduce the

number of device components and thus reduce the load capacitance. The advantages of asynchronous

49

Energy Optimization and Reconfiguration Techniques

circuits are modularity and combinability. Unlike synchronous circuits，they do not require global

clock, but only need to use handshaking signals and FIFOs to interconnect different modules. Thus,

the power consumption caused by the clock jitters of high frequency signals can be reduced.

Comparing to synchronous circuits, the asynchronous circuits have greater potentials to reduce the

power consumption [54].

Low-power technologies at the register transfer level (RTL) mainly reduce the power

consumption by decreasing the glitch-spurious switches of registers. At this level, optimization is

mainly achieved through clock gating, memory access, and operand isolation [60]-[62]:

 Clock gating is a commonly used method to decrease dynamic power. For sequential logic

circuits, the main source of system dynamic power is due to their frequent clock transitions

combined with the large parasitic capacitances of their outputs. Clock gating uses AND/OR

gates to control the switch of the system clock. Its main idea is to switch off the clock

source of idle modules in order to avoid unnecessary transitions caused by pending signals.

In actual circuits, when the input clock of an idle module is disabled, data access of its

subsequent modules is also turned off, e.g., if the clock of a register is disabled, the

combinational logic connected to the outputs of this register will be in the quiescent state.

Thus, the overall power consumption of the circuit will be significantly reduced.

 Memory is an indispensable component in almost any system. It also consumes a large share

of the whole energy budget. A method based on block-memory-access divides the available

memories into a plurality of parts and a selection signal will be decoded to access the

targeted block. A reasonable design of address buses and chip selection signal will only

select the required memory block to avoid energy consumption from un-selected blocks.

 Operand isolation technique is a method which makes the module input to be zero and

maintains the output unchanged when the system is waiting. Outside stimulus will not act on

system until the system is reactivated. In this way, unnecessary switching activities are

avoided.

Architecture-level methodologies are considered when circuits are implemented [63]-[68]. At

this level, IC designers focus more on the resource allocation and scheduling and balance among chip

size, speed, reliability, and power consumption. It is well known that voltage reduction is one method

to reduce power consumption. Its disadvantage is that circuit delay is significantly increased. A

conclusive low-power design techniques should meet circuit efficiency while reducing voltage. To

achieve this objective, the two most popular techniques, parallel structure and pipeline, are applied

[65]. Parallel structure decomposes workloads to different processing units, e.g., datapaths or

50

Energy Optimization and Reconfiguration Techniques

mutlicores. In a two-core or two-datapath system, the operation frequency can be half of the original

one. In addition, the circuit can use a lower operating voltage. The advantage of parallel structures is

that they can increase system performance without increasing voltage and frequency [66]. This brings

opportunities for energy-efficient design in energy constrained devices [67]. In embedded systems, it

has become very popular to integrate multi-core SoCs into the system architecture [68]. This design,

on the positive side, increases hardware utilization and leads to higher energy efficiency and

performance. On the negative side, the leakage power influence must be considered. Since the leakage

power is proportional to the silicon die area, parallel structures increase the circuit size and thus may

incur in more leakage power consumption. Pipeline structures are essentially a parallel structure. It

divides an instruction cycle into different steps in such a way that different steps can be executed

concurrently. However, pipeline design has high complexity, it inserts additional registers among each

step and thus increases the area and load capacitances, resulting in additional power consumption.

Another important component presents on architectures is system bus which may also contribute to

energy reduction. There have been many bus coding algorithms for different bus structures.

4.1.2.2. High-Level Optimization Techniques

Low-level approaches can achieve positive results. But these methods have large design costs

and are usually implemented at the design stage. Therefore, they cannot be continuously improved

after the device implementation. This lack of flexibility makes difficult to further optimize the energy

consumption. Different research works have reported potential gains on energy efficiency by using

work load adaption techniques at high level. At this level, efficient methods are employed to manage

either task states or hardware components to reduce the energy consumption. These methods will be

described in the following.

A. Power Management

Power management aims to effectively allocating and managing power resources to avoid excess

consumption. This method has a significantly positive impact on systems, especially on battery-

powered handheld devices. According to different principles and objectives, power management can

be divided into two groups: state-based and performance-based power management. State-based

methods take the advantages of the low-power states supported by devices to achieve power reduction

[69] [70]. The main idea is to use the system idle state to save power and to quickly wake up the

system when it is needed. Under the precondition to satisfy user requirements, performance-based

algorithms decrease power consumption by dynamically adjusting system parameters such as voltage

and frequency [71].

Early research mainly focuses on state-based algorithms for low-power design. As chip

technology advances, especially when the frequency and voltage of processors become scalable,
51

Energy Optimization and Reconfiguration Techniques

performance-based research is gradually becoming a hotspot. Besides the feasibility of frequency and

voltage scalability, the main reason to promote the progress of performance-based algorithms is the

broader scope of applications regarding those of the state-based methods. Essentially, state-based

methods are one of the extreme cases of performance-based methods [72]. For the more complex

applications, their characteristic of long-term continuous computing leads to an inapplicability of

state-based algorithms. This is because the high complexity and high calculation amount determine

that the processing unit cannot maintain in a long period of idle state and more important, a frequent

switching itself leads to an increase of energy consumption.

DVFS (Dynamic Voltage and Frequency Scale) is one of the most successful approaches of

performance-based optimizations. Experiments were shown that most of the time, programs are

running without fully utilizing the processing ability of processors [73]. Regarding to electronic

mobile devices, they rarely demand high-performance for basic applications, even for applications

such as high-resolution video playback and video call, the system only need to be changed to a high-

performance state for a limited amount of time. It is not necessary to always use the highest voltage

and frequency in the systems. In order to significantly reduce system power consumption, the DVFS

technique dynamically scales the voltage and frequency of processors based on the demand

computation of tasks. DVFS must satisfy the time deadline constraint when scales the voltage and

frequency levels. Many researches [75]-[79] have conducted their researches to focus on accurate

prediction of workload to improve the effectiveness. Common methods are based on algorithm-

specific information, compiler analysis, and runtime prediction. However, two characteristics of

applications, i.e., the non-stationary behavior and runtime distribution, make it impossible to perfectly

predict workload even with the most complex predictors. In work [80], they tried to solve this

problem by using a runtime distribution-ware workload prediction. They partitioned the software

program into program regions and profiled runtime information, i.e., computational cycle and

memory stall time, and updated the statistical parameters of the runtime distributions. Then, they set

the voltage and frequency while satisfying the hard real-time constraints.

B. Energy-aware Operating Systems

One possibility to optimize energy is through the management of individual components. In any

advanced computing device, the operating system (OS) fully controls the device including the work

mode, hardware states, and running applications. The concept of energy-aware OS was proposed in

the late 90s with two Linux-based OSs for laptops: Odyssey [81] and ECOSystem [82]. Odyssey

estimates future demands of resources and energy to adapt the quality of service delivered to users.

Similarly, ECOSytem focuses on the balancing between performance and energy consumption to save

energy. It consideres the battery discharge rate as an indication of energy consumption. A share policy

52

Energy Optimization and Reconfiguration Techniques

related to tasks’ currencies was used to schedule tasks and to preserve energy for more important

tasks. In energy-aware OSs, energy is considered as the first-class resource [83]. Recently, battery

faces more serious insufficiency to support energy-hungry applications due to the energy limitations

of smart mobile devices. Energy-aware OSs, such as Cinder [84] and ErdOS [85], have again been

proposed for mobile devices. Cinder achieves energy efficiency by application of isolation,

subdivision, and delegation based on the energy accounting and power modeling. Different from other

energy saving philosophies, ErdOS includes resources states, usage patterns, and user habits into

management policies to achieve more flexible and efficient results [86]. It is worth mentioning

Nemesis OS, which was an OS designed for multimedia applications [87]. According to application

costs and utilities, as well as the congestion of system resources, this OS builds an energy allocation

model and assignes credit to each application when accessing resources. By these means, applications

can adapt their energy consumption to save energy.

In conclusion, energy-aware operating systems provide benefits for energy saving by managing

the available resources rather than allowing applications to manage these resources.

4.1.3. Video Coding Specific Power Optimization Techniques

General low-power design techniques can be applied to the design of video codecs. In addition to

those general ones, video specific features and considerations can provide more possibilities for low

power design. Note that in most video coding standards, the encoding process is not specifically

standardized. It is free to design an encoder as long as the generated encoded stream can be decoded

as it is described in the standard. The decoding process is an inversion of the encoding process. The

optimization at the encoder end can also impact the energy consumption of the decoding processes. In

this chapter, no matter the optimization is for encoder or decoder, it is uniformed as the video coding

optimization. Note that one stage that cannot be exactly inverted is the quantization stage because it is

a non-invertible process which loses information. The following discusses low-level and high-level

optimization techniques in video coding.

4.1.3.1. Low-Level Optimization Techniques

At the integrated circuit level, Liu et al. [88] have optimized algorithms in IDCT, deblocking

filter, and prediction units to reduce processing cycles, memory size, and access frequency. Other

low-power designs have included the use of constant multipliers [89], reduced transitions in datapath

[90], and self-adaptive techniques [91]. These approaches were mostly applied to RTL level.

At architecture-level, different impacts on energy consumption of video coding have been deeply

investigated. The reason why pipelines and parallel architecture enhanced the energy efficiency was

53

Energy Optimization and Reconfiguration Techniques

studied with performance and energy considerations in mind [92]. This study has provided a good

guide for energy optimization design. A power-aware motion estimation design was presented in

work [93]. The motion estimation (ME) has multiple modes and was supported by a specific VLSI

architecture which reduced external accesses caused by video content and thus further reduced the

power consumption. An energy-aware processor architecture design methodology within the balance

of power, throughput, and area was specified for a H.264/AVC codec [94]. The design guidelines

included pipeline organization and granularities, parallelism, and memory architecture. Parallel

architectures of integer ME and fractional ME was proposed for memory access reduction [95]. It also

achieved power scalability and hardware efficiency.

An interesting result of digital signal processor (DSP) usage was shown in paper [96] to guide the

processing element selection for video decoding applications on embedded heterogeneous platforms.

These platforms usually contain several General purpose processors (GPPs) and DSPs. GPP is a

processor that is not implemented to particular languages or programs while DSP processor, is

specialized to process particular types of operations to provide better performance-energy properties.

In the previous mentioned work, they indicated that the required video bit-rate and resolution greatly

impacted on the tradeoff of performance and energy. GPP could be a best choice in many cases,

especially for those cases of low video bit-rate and resolution because of a considerable processing

overhead in the case of DSP decoding, which might lead to degradation in performance and energy

efficiency.

Furthermore, compared to other applications, video codecs process larger amount and more

various types of data. Cache optimizations for multimedia applications have been proposed by many

researchers. Z.Y. Xu el. al. [97] indicated that multimedia applications typically had a data block

strategy which had good reusability. Thus, the structures and rules of traditional cache were still valid

for multimedia. S. H. Wen et. al. [98] divided cache memories into three parts: instruction loop buffer,

instruction cache, and scratchpad memory data buffer. In addition, they utilized the multi-bus mode

which included one instruction bus and several data buses. Data were directly passed to scratchpad

memory for processing usage through DMA in order to reduce the system energy on data searching

and loading. J. H. Kim [99] proposed two new cache structures for optimizing data access of motion

compensation in an H.264/AVC decoder. One structure was called index-separate-direct-mapping

cache which mapped one page of the main memory into two continuous lines of cache. Another was

called circular cache which only stored the necessary part of data instead of using the full cache line.

Both structures could reduce the demand of memory bandwidth and improve the system performance

and thus the system power consumption was decreased.

54

Energy Optimization and Reconfiguration Techniques

4.1.3.2. High-Level Optimization Techniques

A. Complexity-Based Methods

Different from other applications, video processing is usually modularized and standardized. This

uniformity makes the low-power design on video start to reduce the computational complexities of

algorithms to decrease power consumption.

Chu-Hsing Lin at el. [100] observed several energy issues. They observed that the fast scene

changes resulted in consumption increase. They proposed that videos could be encoded with higher

bit-rate to have better video quality because by doing this, it paid a lower penalty in power

consumption than increasing the video quality by increasing the resolution.

Landge et al. [101] proposed a wavelet-based video decoder using hardware independent

complexity metrics. The metrics were derived from the frequency of basic blocks executions and

captured video content features and encoding parameters. They could be translated into platform-

specific metrics to determine for the optimal voltage and frequency configuration for energy

optimization.

Work [102] analyzed computational complexity of main functional blocks in an H.264/AVC

encoder. They stated that ME occupied around 98% of the total computational complexity of the

encoding process. A large reduction of power consumption could be achieved by reducing ME the

complexity. In [103], a multi-mode content-dependent ME algorithm was proposed for power-aware

video coding. Based on the predictions and judgments of motion complexity, the ME execution was

switched among one of the four searching modes: full search, adaptive search range, adaptive

enhanced four-step search, and three-step search. Those modes with lower search range decreased the

computational complexity, while the image quality in terms of PSNR (Peak Signal to Noise Ratio)

was dropped a little accordingly.

Wang et al. [104] improved the Sum of Absolute Transformed Differences (SATD) algorithm by

using the linear transform and the fixed-spatial relationship of predicted pixels in intra mode. This fast

SATD could be applied after Sum of Absolute Differences (SAD), eliminating unwanted intra

prediction modes to significantly reduce computational burden. Another intra prediction improvement

was proposed by Hsia et al.[105]. In this work, the prediction of the 4x4 intra blocks in improved

based on partial sampling prediction and symmetry of adjacent angle modes.

The analysis in [106] showed that the entire computation for prediction mode selection could be

reduced if those less probable modes were skipped for computation. In this analysis, a fast coding

mode selection in H.264/AVC encoders was proposed. Similarly, Grecos et al. [107] showed that a

55

Energy Optimization and Reconfiguration Techniques

high speed-up could be achieved if the computationally intensive prediction modes were not

performed. They proposed an inter-mode decision scheme for P slices in an H.264/AVC codec by

using smoothness constraints, neighborhood information, and a set of skip mode conditions. Also,

Kim et al. [108] proposed an algorithm for inter-model determination based on the rate-distortion cost

of the tracked MB for the current MB.

B. DVFS-Based Methods

DVFS methods are also wildly used on video coding energy optimization. W. H. Yuan et.al

proposed a GRACE-OS [109], an OS which implemented a low-power scheduler. This algorithm

reduced the processor energy consumption while guaranteed the performance. It dynamically

predicted the work load of tasks based on real-time statistics to achieve internal-task DVFS. Although

this method obtained good results of energy consumption reduction and deadline guarantee, it

increased the frequency of scale and did not consider the variation of task arriving time due to

network transmission. Subsequent researches continuously developed this idea and included energy-

efficient scheduling [110]-[113] to achieve better results.

Several parameters represent coding features. Thus, they can be used to predict the workload.

Soner.Y et. al [114] proposed a stochastic modeling and optimization framework to perform dynamic

voltage scaling in multicore systems by capturing the spatial and temporal variability of tasks such as

frame type, compressed frame data size, and the computational workload to decode a frame. In the

previously mentioned work, four models to capture the task statistical characteristics were introduced.

Different tasks could be mapped into different cores with various voltages. This scheme minimized

the average energy consumption while guaranteed the time constraints. Similarly, in [115], three

efficient DVS techniques were presented for an MPEG decoder. A simulator was developed to take

workload predictions based on the number of IDCT computations required by each frame.

Conventional DVFS methods used the expression WCET/D as the metric to set the frequency to

meet the deadline constraints, where WCET is the worst case execution time and D is the time to

deadline. Research works showed that these pessimistic methods could lose opportunities to further

reduce energy consumption. WCET rarely occurs in reality because the execution time may present

different kinds of statistical distributions. Work in [116] indicated that more energy reduction was

obtained by setting the frequency as the ratio of average execution time to the time to deadline as long

as the deadline condition was guaranteed.

From the architecture point of view, the voltage and frequency adjustments should avoid the

cyclic nature of dependencies in executing tasks to lose the throughput constraints. In work [117], a

methodology was proposed for such cyclic dependent tasks. This methodology assumed WCET to

56

Energy Optimization and Reconfiguration Techniques

identify the executions that could be slowed down at an off-line step and utilized the slacks arising

from tasks that finish their executions before the WCET to execute new tasks. Thus, the energy

consumption was reduced while the throughput constraints were satisfied. Similarly, in work [118],

they focused on energy optimization with the consideration on transition overhead, inter-core

communication, and discrete voltage levels. They proposed a two-phase approach. In the first phase,

they proposed a coarse-grained parallelization algorithm which utilized a set of independent sub-tasks

instead of the original periodic dependent tasks. In the second phase, a genetic scheduling algorithm

was proposed to search and find the best schedule to optimize energy consumption.

C. Scale-based Optimization Techniques

More recent researches showed that video quality and performance did not increase linearly as the

computational complexity increases. As shown in Figure 4-2, user perceptions of video quality and

performance always meet a saturation point and little improvement is achieved beyond this point

[119].

Figure 4-2 User Perception VS. Power Consumption [119]

This conclusion has attracted researchers to focus more on rate-distortion-complexity

optimization rather than ceaselessly persist in computational complexity to achieve better user

perception. The goal of rate-distortion-complexity optimization is to, heuristically, select power-aware

algorithms to adaptively tradeoff between user satisfaction and power consumption based on video

content features and battery states. For example, a configurable video coding system [120] was

proposed to use dynamic parameterization in ME based on the tradeoffs derived from input and output

signal statistics. In [119]- [122], the proposed system could dynamically configure it based on battery

status, content complexity, user preference, and operating environment to prolong the battery lifetime

and meet resource constraints of target platforms.

Low Power Consumption High

Ba
d

 U

se
r P

er
ce

pti
on

 E

xc
ell

en
t

Quality Loss
Configuration

saturation point

Quality
Lossless
Configuration

57

Energy Optimization and Reconfiguration Techniques

This adaptive idea has been standardized as Scalability Video Coding (SVC) as an extension of

the H.264/AVC codec. It can efficiently encode video streaming to fit various bandwidths of

transmission channels and computational resource constraints of decoding devices. SVC structures

video bit streams into different layers corresponding to different qualities, frame rates, and

resolutions. Thus it can provide flexible encoding solution for temporal, spatial, and quality

scalability. Proper layer design can provide a power-aware feature for codec design [123]-[125].

Some new optimization schemes including user experience has been studied for on-line

streaming. In[126], they managed the downloading cache based on the user view history and the

network condition to minimize unnecessary active periods to save energy. In addition, video codec

optimization can integrate various techniques. In[126], they presented a scalable H.264 Ultra-HD

video codec engine that used various low power optimization techniques across architecture, design,

circuit, software and system. A special custom buffer was designed to enable accessing up to 36x4

pixel aligned at any vertical pixel position to simultaneously reduce the shared level-2 memory

accesses. Meanwhile, a task management scheme dynamically switches among the used hardware

accelerators.

4.2. Reconfiguration on Video Coding

4.2.1. Implementation Complexity on Video Coding

Along with the significant development of video codec, user demands of video are increasing in

diverse directions. Users have higher requirements on video quality, as well as flexibility and

scalability of the video products. Therefore, the implementation of the new video coding generation

has reached a consensus on higher coding performance and greater flexibility from both theoretical

and practical points of view.

In conventional video coding, each standard defines a different format. A standard is the only

bridge to achieve communication among codecs. That is to say, a codec can only be implemented to

encode/decode video streams in accordance with the provisions of standards. This greatly reduces the

adaptive capacity of codecs. Some standards define different profiles and levels with sectional

differences to satisfy more user requirements. As a consequence, a decoder which is satisfied to

particular profiles or levels only supports particular categories of applications [128]. This increases

the burden of network transmission. Standards were implemented in the past as a monolithic

specification with predefined functionalities, applications, and platforms [10]. Although coding

designers have considered the overlap among encoder tools, however, since codec systems have been

frequently implemented in highly parallel computing platforms, it is inevitably to introduce additional

58

Energy Optimization and Reconfiguration Techniques

complexities during the implementation processes, such as global variables, non-optimal process

arrangements, and inefficient data structures. Continuous evolutions of more complex and advanced

standards have seriously impeded their efficient specifications and implementations. To meet various

demands for multimedia communication, traditional video codec standards are facing difficulties such

as longer time to market, difficult to quickly implement, and lack of flexibility. With the consideration

of these difficulties, the concept of reconfiguration was proposed to improve the reusability and

flexibility of codecs.

4.2.2. Reconfiguration Techniques

4.2.2.1. Definition of Reconfiguration Techniques and their Hierarchy

Reconfigurable techniques were derived from reconfigurable computing, which was first

proposed by Professor Gerald Estrin in 1960 [129]. Reconfigurable computing is a computing mode

between software and hardware computing. It achieves the approximated performance to hardware

while maintains implement flexibilities as software implementations. The main technical basis of

reconfigurable computing is reconfigurable devices. The internal hardware circuits of reconfigurable

devices are determined by configuration information, thus, the hardware resources can be

programmed by dynamically calling or modifying the configuration.

From another perspective, reconfigurable techniques have the capability to change or improve

system functionalities or produce new functionalities by re-connecting the existing functional units.

To emphasize this purpose, this capability is stated as functional reconfiguration, or functional-

oriented reconfiguration. In this case, the reconfiguration process does not focus on the physical

implementation details (e.g., implemented platform, software or hardware computing, how to

configure the reconfigurable devices). In fact, functional-oriented reconfiguration pays more attention

on how to change system functionalities. It performs in an earlier stage than the physical

implementation stage. It is like a conceptual tool to provide functionally correct designs at a higher

level. A functional-oriented process is independent of its implementation platform.

Figure 4-3 summarizes the relationship among different levels of reconfigurable systems. A

reconfigurable implementation can be divided into physical, rule, and system layers. The physical

layer consists of processing devices such as the configurable processor, e.g., DSP or FPGA. It is the

infrastructure for a reconfigurable platform. The rule layer defines the methodologies and techniques

to achieve a reconfigurable system, such as task scheduling, software and hardware division as well as

communication system. System layer is higher than physical and rule layers. It is based on user-

oriented requirements to provide system-level reconfiguration schemes. Functional-oriented

reconfiguration is implemented at this level. It aims to optimize applications to satisfy performance
59

Energy Optimization and Reconfiguration Techniques

requirements or to change the connection of functional units to implement new functionalities. This

process is platform-independent. Any updated or new functionality will then be converted to the

specifically concrete implementation on any hardware platform by automatic conversion tools.

Figure 4-3 Relationship among Different Levels of Reconfigurable Systems

4.2.2.2. Implementation Techniques of Reconfigurable Computing

Reconfigurable computing can be implemented by a variety of methods, which can be included in

any of the following categories: software reconfiguration, programmable hardware reconfiguration,

and logic structure that is dedicated to the execution phase.

Software reconfiguration, which can significantly reduce the utilization of hardware, is the most

commonly used method. A software reconfiguration may achieve running time reduction and

flexibilities when the design is changed. An inappropriate software reconfiguration may increase the

power consumption and become an unpractical scheme. With regard to the performance, most

designers prefer to implement all the performance-constrained functions by hardware. Hardware

reconfiguration techniques can be divided into static and dynamic ones. Static reconfiguration

techniques refer to the static overloading of logic functions, i.e., to change the logic functions by

simultaneously downloading the configuration files and information to the programmable devices in

addition to the external control flow. When the system is running, reconfiguration is not allowed and

the process of reconfiguration cannot be interrupted. Static techniques are not competent for

applications whose circuit may often need to be changed, such as a video streaming computing. On

the other hand, dynamic reconfiguration techniques have a caching logic, which can quickly modify

the global or local circuit logic by means of an external logic which controls the layout, routing, and

resource allocation. Dynamic reconfiguration can be processed in clock cycles, not affecting the

overall system operation. Although compared to static techniques, dynamic ones have already

improved in efficiency and flexibility, they still have a potential risk to cause a performance decrease

and the power consumption increase if the reconfiguration lasts a long time for implementing

complex logic functions.

60

Energy Optimization and Reconfiguration Techniques

Reconfigurable computing approximately achieves the design flexibility of software designs

implemented on GPPs and the performance efficiency of designs implemented on application specific

integrated circuits (ASICs). Since Xilinx Company introduced its first Field Programmable Gate

Array (FPGA) in mid-1980s [130], reconfigurable technology has been rapidly developed and

promoted. FPGA is an integrated circuit designed to be able to make substantial changes after

manufacturing at run time. Currently, researches in reconfigurable computing involve many aspects

such as software and hardware platforms, operating systems, programming languages, compiler tools,

and implementation algorithms. These issues will not be extended since they are out of the scope of

this thesis.

4.2.2.3. Implementation Techniques of Functional-oriented Reconfiguration

A reconfigurable computing device can implement and modify a specific functionality.

Functional-oriented reconfiguration is an abstract model independent of the platform details. The

purpose of functional reconfiguration is to reduce the complexity of an initial design, improve the

code quality, optimize the structure, and facilitate the modification and extension of functionalities.

The core idea of functional reconfiguration is to take into account of new environments, requirements,

and functionalities of software systems in advance and, as a consequence, to improve the flexibility,

reliability, and development efficiency of a design to avoid the redesign of the whole system.

A functional-oriented scheme aims to provide a portable solution for any platform. Thus, its

implementation should be portably translated from the high-level representation to native machine

code suited to the architecture of the underlying platform. Figure 4-4 shows an example of functional-

oriented implementation. A virtual machine (VM) is employed to provide the independence of

platform. Meanwhile, to shorten the time of translation from high-level presentation to machine code,

quick compiler techniques, especially JIT technique, is employed to obtain this speedup.

Figure 4-4 Functional Reconfiguration Framework

Functional reconfiguration techniques are briefly introduced in what follows.

61

Energy Optimization and Reconfiguration Techniques

A. Virtualization

Generally speaking, a compilation process is an inevitable step from source code writing to

application binary generation. Compilation is actually processed by either a compiler or an interpreter.

The former converts the human readable programs to the executable machine codes, the so-called

binary or backend codes, which can be directly executed on a particular hardware.

The whole compilation procedure is separated into four stages: high-level source code,

intermediate representation (IR) (e.g., object files or bytecode), sequence of operation, and final

execution. The difference to use a compiler or an interpreter is the moment to trigger the execution

procedure. After translating the source code into IR form, compiled languages (such as C, C++ and

FORTRAN) use a linker to generate the complete machine code, which is a series of basic operations

to control the target processor to execute its corresponding work. Interpreted languages (such as Java,

Python and Ruby) also experience these steps. The difference is the following. A compiled language

first saves those basic operation sequences generated from the source code, and then, executes them

together by one single command; an interpreted language “throws” these basic sequences to an

execution unit and immediately produces the actions. The observed phenomenon is that a compiled

language needs firstly compilation and then execution, while an interpreted language can be directly

“executed” from the source codes.

In addition, for those compiled languages, the generated object files are specified for one

particular processor architecture. For example, the files for the ARM architecture cannot be used for a

MIPS processor. Source files are translated into the target processor instructions during the

compilation. Thus, the same source code needs to be re-compiled to be executed on another processor.

For any interpreted language, a compilation procedure is also needed. But the generated IR files are

platform independent, and they can be translated into specific processor instructions during the

execution processing. Therefore, the source code can execute on various platforms without

intermediate conversion. The process of translating IR files to target processor instructions is

completed by a virtual machine (VM).

Although interpretation and compilation are the two main methods by which applications are

implemented, they are not mutually exclusive, especially for modern languages. The terms of

“interpreted language” or “compiled language” only mean that the canonical implementation of that

language is an interpreter or a compiler, respectively. Currently, the virtualization-oriented technology

further eliminates their boundary. A high level language is ideally an abstraction independent of

particular implementations. Virtualization technology includes an application, the VM, and additional

software responsible for implementing the program execution. A VM is an abstract layer outside the

hardware layer to achieve the cross-platform or cross-instruction-set implementations as long as the
62

Energy Optimization and Reconfiguration Techniques

compiler translates the program codes into the IRs of the VM. It brings more flexible practices on

code optimization. Essentially, the JVM (Java Virtual Machine) of Java and the CLI (Common

Language Infrastructure) of C# are VMs rather than simple programming languages. They have an

stack-based instruction set architecture, which is hardware independent. Applications based on VMs

are run on a computer using an interpreter or a Just-In-Time (JIT) compiler or both. Details of JIT

compilers will be described later. By using a VM and a very-high-level input program representation,

these systems are able to provide platform portability and security services in addition to reasonable

performance.

B. Just-in-Time Compilers

As mentioned before, to achieve real-time reconfiguration, fast compilation and execution are

required. This is to say, an application will not be compiled and translated into native instructions like

classical compilers do. Instead, the compiler should recompile the functional units as less as possible.

To achieve this goal, target application is first translated into an IR format. Then, IR files will be read

line by line and executed by an intermediate engine from a VM. As discussed in the previous section,

an interpreter saves the compilation time, but its execution efficiency is much lower than a compiled

binary program. Thanks to the JIT technique, the execution time has been much better improved.

The JIT compilation is a combination of interpretation and compilation, having the advantages

and drawbacks of both. JIT compilation interprets instructions one by one, but it will cache the

translated codes to reduce recompilation overhead. JIT compilation is a form of dynamic compilation

and it is particularly suited to dynamic programming languages. A JIT engine takes IRs from a

compiler front-end and produces machine code to execute it on-the-fly. Note that JIT does not target

to parse the syntax neither to provide a runtime library support. It typically takes the conjunction with

front-end engines and a suite of libraries to generate IRs and to provide the environment for code

execution.

JIT has two features that help it to achieve the reconfiguration goal: (1) efficient, especially

during the run-time; (2) easy extension. Compilers use abstract syntax trees (ASTs) to translate and

compile source codes. In computer science, an AST is a tree structure to represent the abstract

syntactic structure of source codes. The word abstract means that not every detail of the real syntax

will be represented in the AST. Modifying ASTs requires updating existing modules, which makes

difficult to support older codes when new features are added. JIT can add new frontends without

adding new node types to the AST. This feature provides to JIT an, easy extension as far as the

implementation concerns. Although JIT engines have essentially identical goals, they may implement

different approaches for processes such as IR optimization, machine code emission, and code

63

Energy Optimization and Reconfiguration Techniques

rewriting on different architectures. And the cost of expensive processes should be controlled in order

to maintain performance benefits from native code creations.

4.2.3. Functional-Oriented Reconfiguration on Video Coding

4.2.3.1. Video Decoding Process Framework

Different video standards vary in their algorithms, but their similarities can be summarized as the

following three aspects:

 Video algorithm operations are based on MBs. The structure of MBs is shown in Figure 4-5

as an example. The pixel size of a MB may be different but MB operations are all designed

with parallelism in mind.

Figure 4-5 Video Sequence hierarchy

 Video data are processed by structured operations. Each pixel within the block has the same

dependencies and relationships to other pixels.

 Each conventional codec system of the MPEG series is based on the same processing

procedure, which can be structured into several main functional blocks as shown in Figure

4-6. This framework consists of a syntax parser, a residual decoding module, a motion

compensation module, and a frame buffer module for prediction. The syntax parser extracts

the syntax structure of the input streaming to obtain the control information and residual

data. The residual module completes the inverse quantization and inverse transformation of

the residual data. The motion compensation module and the buffer module will implement

the picture prediction.

Video Sequence

Group of Pictures (GoP)

Picture (Frame)
Slice

Macroblock

Block (8 x 8 pixels)

64

Energy Optimization and Reconfiguration Techniques

Figure 4-6 Hybrid Decoder Framework

A simplified block diagram of an H.264/AVC video decoder is shown in Figure 4-7.

Figure 4-7 Simplified Block Diagram of an H.264/AVC Video Decoder

The encoded stream comes in the form of Network Abstraction Layer (NAL) packets. To decode

the contents of a video NAL packet, the decoder first performs the entropy decoding and then reorders

the decoded data to obtain the quantized coefficient array X. The residual difference 𝐷𝑛′ is obtained

after inverse quantization (Q') and transform (T') of X. The decoder parsers the header information of

the streaming data to determine if intra or inter decoding process must be carried out, at a macroblock

(MB) basis. For inter predicted MBs, a predicted macroblock (MB) is obtained by the Motion

Compensation engine (MC) based on information on one or more previously decoded frames

(𝐹′𝑛 − 1). For intra MBs, a predicted MB is obtained based on the information on previously

decoded MBs from the same frame. After adding this MB to the residual to obtain picture 𝜇𝐹′𝑛, then

the decoder carries out a loop filter (Deblocking) to complete the decoding and, at last, outputs the

decoded video in YUV format. The reconstructed picture will be stored in a frame buffer and may be

used as one of the reference pictures for next frames.

4.2.3.2. Reconfigurable Video Coding Standard

As it has been introduced above, video processing can be divided into different procedures. Thus,

it is possible to implement new coding functionalities just changing any of the procedures without

modifying the whole decoding framework. In this context, the Reconfigurable Video Coding (RVC)

Syntax
Parser

Residual
module

+

Eecoded
Streaming

Motion
Compensation

Frame Buffer

+

Decoded
Streaming

65

Energy Optimization and Reconfiguration Techniques

standard has been proposed by MPEG [131]. MPEG RVC has proposed the creation of a flexible and

configurable video coding framework. RVC defines each coding procedure as a coding tool. It builds

a sharing mechanism on these coding tools based on either non-compliant or compliant MPEG

standards to promote the development of multimedia middleware. RVC has introduced the idea of

functional-oriented reconfiguration to video fields. It aims to dynamically reconfigure decoders

according to different requirements and specific applications with high flexibility and scalability

[131]-[133].

A. RVC Implementation

Unlike other standards which have been developed case-by-case in monolithic textual

descriptions (e.g, C/C++ reference software), RVC is based on the concept of Abstract Decoder

Models (ADMs), which takes advantage of reusable and restructurable coding tools to implement

multiple decoders or even a new decoding scheme different from any existed coding standard. The

use of ADM allows a generic representation on multiple coding specifications. It supports the

dynamic combination of different coding tools with a high flexibility, reusability, and scalability.

Traditional MPEG standards provide different profiles to balance between decoder compression

performance and its implementation complexity. To enable an appropriate profile selection, a

normative description has been included into the media syntax (bitstream). RVC has further extended

the profile-based formalism. The decoder fundamental algorithms can be combined in an arbitrary

way in the RVC standard by adding side-information into the encoded bitstream. Two MPEG

standards are applied in this context [131]: 1) MPEG-B part 4, which generally defines the framework

and the standard languages used to describe the components of the framework and 2) MPEG-C part 4,

which defines the video tool libraries (VTLs) employed in existing MPEG standards. These two

standards are continuously evolving with new amendments for upcoming or future decoder

descriptions.

66

Energy Optimization and Reconfiguration Techniques

Figure 4-8 RVC Framework

As shown in Figure 4-8, RVC framework aims to produce an ADM that represents the

specification of a decoder profile. The ADM allows passing the reconfiguration information, referred

to a decoder description, from encoder to decoder. An RVC bitstream includes two parts: the original

encoded media content and the decoder description. The decoder description includes two kinds of

information: Bitstream Syntax Description (BSD) and Functional Unit Network Description (FND).

BSD information describes the syntax structure of the encoded bitstream. For example, the syntax

elements, and the attributes of syntax elements such as length, number and the occurrence order of

these elements. FND information describes the employed codec tools and their inter-connections.

RVC framework has standardized VTLs to represent each functional unit (FU) as a coding tool.

Currently, all the FUs are drawn from existing MPEG standards but the VTLs can be updated with

any new coding tool. When a decoder description is received, a decoder parser will first analyze this

information to know the structure of encoded bitstream by parsing the BSD and to know the

connection of employed FUs by parsing the FND. According to the result of this analysis, the decoder

will be implemented by selecting and connecting the corresponding FUs from VTLs.

Each FU has a textual specification that defines its purpose and a reference implementation

expressed in a standardized language called RVC-CAL Actor Language (RVC-CAL) [134]. In this

language, an FU is defined as an actor, which is an encapsulated entity including input and output

interfaces, parameters, and an internal finite state machine. One actor cannot modify the internal state

of another one. The only form of interaction among actors is to send tokens through connection

67

Energy Optimization and Reconfiguration Techniques

channels. An actor may have several actions. An action is a computation process which may consume

the input tokens and may produce output tokens. Each action has its own enable condition, input

tokens, and current actor state. After an action executing, the actor internal state may be changed. The

name of the FUs is normative to distinguish two kinds of usage in the VTL:

 The algorithmic (ALGO) coding tools, such as the Inverse Discrete Cosine Transform

(IDCT) and the Inverse Quantifier (IQ);

 The data management (MGNT) tools, such as data multiplexers or demultiplexers.

RVC-CAL is trying to express the parallelism and modularity of decoder algorithms, which is a

suitable attribute to implement RVC technique on a wide variety of platforms, from multi-core GPPs

to FPGAs. ADMs are built as block diagrams with an XML dialect, the so-called XML Dataflow

Format (XDF). FUs are processing entities and their connections represent the data flow. With the

normative standard libraries of FUs and decoder descriptions, an ADM is able to define a new

decoder or a decoder based on existing standards. It expresses a configuration to form a decoder. This

configuration corresponds to an oriented graph in which vertices are the required FUs and edges are

the communication dependencies between FUs. Figure 4-9 gives an example of a decoder

configuration. An instance of FU is defined by its identifier and its name attribute. It can optionally

assign values to the parameters of an actor.

Figure 4-9 MPEG RVC Configuration of Decoders

The FNL expresses the network for one decoder configuration. An FNL defines 3 types of edges:

(1) between an input port of a network and an instance (input); (2) between an output port of an

instance and an input port of another instance (Connection); (3) between an output port of an instance

and the output port of a network (Output). As an example, Figure 4-10 illustrates the FNL description

of network in Figure 4-9.

68

Energy Optimization and Reconfiguration Techniques

Figure 4-10 FNL Description of the Network in Figure 4-9

B. Advantages of RVC

RVC has been introduced mainly on the basis of the following aspects:

 To support diverse video content and formats. A variety of video standards have been

widely used in different situations. Since media materials are in varied formats, applications

require a device that can dynamically change its operating mode to adapt to media contents

without restarting. For example, IPTV was clearly defined in its design requirements to

allow the use of bitstreams of several standard types (Figure 4-11-a) in the transmission end.

To be able to decode all the bitstreams, currently, there are two main solutions at the

receiver end: one is to use the transcoding technique, and another is to use multiple decoders.

Transcoding increases the decoding time and causes a progressive loss of quality for each

successive generation due to the cumulative compression degradations. While using

multiple decoders, on one hand, the system complexity is greatly increased especially when

it needs to switch among a variety of codecs; On the other hand, it is necessary to pre-

specify the bitstream transmission order because the hardware devices can not dynamically

adapt their functional units to decode the different bitstreams. How to enhance the flexibility

of the receiver end and to dynamically adapt to different user demands have become

meaningful research issues. RVC framework solves this problem through reconfiguration.

As shown in Figure 4-11 (b), the transmission channel allows transferring the bitstream with

various standards. All decoders are constructed to be conformed to the MPEG-B standard.

Depending on the decoder description, a decoder can be constructed by selecting FUs within

only one MPEG standard VTL, by using FUs from several MPEG standard VTLs, or by

combining MPEG VTLs and non-MPEG VTLs together. RVC provides a unified platform

for video codec technology to relieve the incompatibility of different standards.

69

Energy Optimization and Reconfiguration Techniques

Figure 4-11 (a) Traditional Solution

Figure 4-11 (b) RVC Solution

Figure 4-11 Two Solutions to Manage Multiple Bitstreams

 To shorten the design period and to avoid repeating designs. As mentioned before, current

mainstream video standards have many coding tools in common (e.g., transformation, quantization

and intra-prediction). The successful video standards have presented common design methodologies

and functionality partitions. This similarity demonstrates a possibility of FU reutilization. It is also

possible to introduce new tools with similar structures.

Figure 4-12 An Abstraction of RVC Framework for a New Standard Development

Figure 4-12 illustrates how a new video coding standard, MPEG-new, can be designed

based on an existing one, MPEG-a. The necessary modifications are to re-encapsulate the

70

Energy Optimization and Reconfiguration Techniques

FU-B and to design new FU-D while the FU-A and FU-C can be reused without any change.

RVC scheme significantly facilitates a new standard implementation. It provides a platform

which defines standards from the perspective of coding tools to improve the reusability and

introduces new features and technologies to systems. MPEG RVC aims to reduce the

technical barriers among video coding standards by unifying and combining different

functional units of various coding toolsets.

In addition, with the fast technology developments, video coding will move towards a new

stage. MPEG and VCEG have launched a new standard for a new generation coding

research [135]. Comparing to the current algorithms, new standards will provide higher

resolutions and significant improvement in compression efficiency while increasing the

coding complexity [136]. Larger data and faster processing speed are big challenges of

existing video equipment and implemented technologies. It has become worthy of studying

on how to quickly adapt the codecs themselves to new coding technologies and the inclusion

of new coding tools.

 To facilitate the demand-oriented designs. With the continuously increasing demands for

products, personalized design is becoming more attractive. Traditional video codec design

defines a number of standards for choice, which limits users’ preferences within the range of

defined standards. In some situations, users would rather define their own decoders to avoid

unnecessary complexities. For example, H.264/AVC standard defines the syntax elements

and various coding tools. In a certain application, only part of these elements or tools needs

to be used. However, all of them have to be supported by the decoder to meet an

H.264/AVC standard. In addition, with the development of video codec technologies, many

new encoding tools with high performance or low complexity have attracted the vendors.

But they have not been included into the existing standards, thus they cannot be correctly

decoded by the existing devices, unless a new standard is developed. One feature of RVC is

to quickly implement and include new coding tools. The only thing to pay attention is to

ensure that the input and output interfaces of new coding tools can be correctly connected to

the decoding network without influencing the data flow.

Along these lines, the development of MPEG RVC codec standard has gradually become a hot

topic in the video coding field. MPEG RVC framework will provide a unified platform for video

codec technology. The aim is to reduce cost of the new technology development, relieve the

incompatibility of different standards and enhance the promotion of the new video standards.

71

Energy Optimization and Reconfiguration Techniques

4.3. Conclusion

Motivated by the pervasive use of multimedia applications on battery-powered portable devices,

the latest video coding standards have been developed to enable higher data compression rates and

decoding efficiency. This continuous evolution towards more complex and advanced standards has

greatly impeded their efficient specification and implementation from both energy-constraint and

design standardization points of view. This chapter includes two parts. They present a detailed

introduction on the related work on two topics: energy optimization and reconfigurable design. In the

first part, energy optimization techniques have been first introduced at different levels, including low-

power designs for the special case of video coding. The second part is related to reconfigurable

design, which is a new philosophy motivated by the requirements of high flexibility and scalability.

Many implementation techniques have been studied for reconfigurable design. In particular,

reconfigurable design on video coding is defined in this thesis as functional-oriented reconfiguration.

The MPEG reconfigurable video coding standard is described and its advantages are described.

72

Energy Optimization based on Functional-oriented Reconfiguration

5. Energy Optimization based on Functional-
oriented Reconfiguration
Chapter 1 has addressed the motivation to optimize the energy consumption of streaming

applications running on battery-powered mobile devices. Video codec design no longer only focuses

on performance improvement and response time reduction but gradually more attention is being

shifted to energy efficiency designs. Chapter 4 has discussed various low-power design techniques

proposed by the research community, ranging from low to high level and from general to video

focused purposes. This chapter will address an energy optimization methodology on video

applications with the goal of balancing energy consumption and quality of service based on the

functional-oriented reconfiguration, which, as an available mechanism, has shown its simplicity and

flexibility on video codec design. On top of that, functional-oriented reconfiguration provides a new

notion of energy optimization. Effectively, it can quickly assimilate different new FU-based low-

power designs, and adjust a decoding scheme to adapt it to different battery conditions and user

preferences. In this chapter, an energy-aware codec manager, independent to platforms and codec

standards, is proposed. Besides, problems and objectives of energy optimization and management are

first stated in section 5.1. Afterwards, the feasibility of energy control using reconfigurable video

coding is discussed in section 5.2. Then, the energy-aware manager will be introduced in section 5.3,

and, finally, in section 5.4, the conclusion will be drawn.

5.1. Problems and Objectives of Video Energy Optimization

New trends on video coding design focus on energy efficiency and optimization for longer battery

lifetime. The reason for this tendency is that the gradually growing demands for data rates and

enhanced functionalities result in much more complex coding algorithms which consume a significant

part of the battery energy. Dynamic adaption, either on computing resource allocation or video

quality, has become an attractive topic. A considerable amount of research works have shown positive

and practical solutions. Recently, MPEG proposed a new ad hoc group known as Green MPEG to

address energy issues in decoder standardization [137]. Green MPEG proposes a concept referred to

as Green metadata, which could be extracted from either the video encoder or the pre-processor and

used at the receive end to reduce the power consumption. The green metadata can be used at the

decoding end. An additional power optimization module processes the green metadata information

and applies the appropriate operations for power-consumption control. If a feedback channel is

available, the metadata could be sent back to adapt the encoder operations [138].

73

Energy Optimization based on Functional-oriented Reconfiguration

For energy-efficient decoding, Green MPEG distinguishes two sets of Green metadata:

Complexity Metrics (CM) metadata and Decoding Operation Reduction Request (DOR-REQ) [138].

A decoder may use CM metadata combined with DVFS technique to scale the voltage and operating

frequency for power savings. For example, the CM metadata is embedded into the bitstream and is

extracted at the receiver to indicate frame-decoding complexity. According to this indicator, the

power optimizer module will set the correct operating voltage and frequency of the CPU, which could

reduce the power consumption while guaranteeing the decoding deadline. In a point-to-point

application, the remote encoder may use the DOR-REQ metadata to modify the encoding complexity

of the encoded bitstream and thus, the decoder can reduce its local power consumption due to the

decoding complexity reduction. The proposal of this thesis is similar to the metadata idea. An energy-

aware manager detects the remaining energy and takes into account the energy estimation from an

energy estimator as a signal to switch from the current configuration to another one. At the same time,

the energy-aware manager will ask the encoder to adapt and produce compliant bitstreams.

Green metadata is the additional information that enables energy reduction on the basis of four

aspects: decoder power consumption, display power consumption, media selection for joint decoder

as well as display power reduction and quality recovery after low-power encoding. In past MPEG

meetings, a research group from Samsung proposed a display adaptation for power reduction [139].

Their methodology achieved power saving by scaling the backlight to reduce display power

consumption while still producing the same perceived quality. In this section, the problems of the

adaptive low-power design will be discussed and according objectives are proposed.

5.1.1. Problem Statement

The processing and transmission of video data occupy a dominant position in multimedia

communications research. The intrinsic large amount of information of video data challenges storage,

processing and transmission technologies. Video coding technologies focus on how to improve the

coding efficiency to reduce the binary rate and, as a consequence, to meet the channel bandwidth. For

video compression, its main objective is to approach efficiencies close to the Shannon distortion limit

by means of advanced complex algorithms and coding techniques. In addition, with the development

of wireless communication technologies, especially the third/four-generation of mobile

communication systems, the channel bandwidth has significantly increased. This improvement has

made possible to process and transmit multimedia data over wireless channels in real time [140]

[141]. However, the high computational complexity involved leads to high energy consumption,

which is unacceptable for energy-constrained mobile devices. Limited by energy and bandwidth, real-

time video data processing and transmission have three requirements:

74

Energy Optimization based on Functional-oriented Reconfiguration

 Video data compression ratio need to meet bandwidth limitations.

 Reconstructed video should maintain a certain quality after decompression.

 The energy consumed by video data decoding should be maintained within a certain range

to guarantee the battery life time, especially for handheld terminals.

Obviously, these three requirements are mutually restrained. For example, blind compression to

meet the channel bandwidth requirement may cause an unsatisfactory distortion. Conversely, too

much attention on quality will make the process not to comply with the bandwidth requirement. In

addition, although efficient video compression strongly reduces the amount of data transmitted to

reduce the transferring energy consumption, on the other hand, decoding highly-compressed encoded

bitstreams requires higher computational complexity and more energy supply. Therefore, video

coding design for mobile devices aims to overall consider the relationship among bandwidth (binary

rate), video quality (distortion) and energy consumption. In this context, energy awareness can be

added to a configurable codec. A configurable codec can adaptively evolve its energy consumption

state as a tradeoff between video quality and energy.

As introduced in chapter 4, many system level energy solutions have been proposed for energy-

aware behavioral adaption and resource control. The core idea of these solutions can be considered to

exploit a system “slack” [49]. For example, adaptive voltage scaling is a process variation slack and

clock gating is a temporal slack. Discovering new types of slack can introduce new possibilities for

energy efficiency improvement. For example, low-power designs that offer execution alternatives can

be considered as user experience or execution slacks. Scalable algorithm design can be considered as

an example of this kind of slack.

Investigations of energy optimization suffer from two limitations:

 One is that these existing approaches have been designed for specific codec standards or

implemented on particular platforms. These methodologies depend too closely on human

intuition and specific codec knowledge. They take advantage of the features of their target

application, but, at the same time, they are limited in terms of the capacity to develop and

extend to new standards. Flourishing markets of mobile devices and video applications may

introduce new coding tools with higher complexities when implementing a specific

optimization approach. Reconfigurable coding techniques provide a unified methodology

for video coding design. They can adjusts different operations modes based on the condition

and environment changes.

 Another one is that they are typically restricted to either encoders or decoders. In the

literature [142], there are two design paradigms: either to assume the encoder has enough

75

Energy Optimization based on Functional-oriented Reconfiguration

energy and computing resources or to shift the majority of the workload to the decoder.

With the advanced wireless networks, a growing number of applications could be benefited

from the use of energy management concurrently in both the encoder and decoder sides. For

example, both encoder and decoder are energy constrained when running a video chat

application on Smartphones. One difficulty to apply this control globally is that there is

always a predefined consistency between the compressed video data to be recognized by

decoders. This limit could also be overcome using functional-oriented reconfigurable

frameworks. Effectively, new decoders can be built from the decoder description

encapsulated into the encoded data.

In different situations, users may have different definitions of optimization. For example, with a

fully charged battery and WLAN connection, users may prefer to pursue streaming with high quality.

On the contrary, limited by battery capacity or network transmission bandwidth, users are more likely

to accept encoded streaming with low quality when the emphasis is put more on the information

transmitted. In this context, a flexible solution would be more attractive for users. Combing

functional-oriented reconfiguration techniques and energy optimization could be a new direction to

achieve flexible and universal solutions on energy efficiency.

5.1.2. Objectives

Wireless communication promotes on-line video watching and thus, to achieve a satisfactory

user experience, both video content and network transmission adaptation are needed. This fact

indicates that video application design has been shifting lately to systematically consider the energy

allocation between computation and communication. This is to say, an ideal design will be able to

jointly control the computational complexity parameters during video coding and transmission

according to real-time conditions and constraints, such as video content characteristics, network

constraints, battery capacity, and distortion requirements. Then, the objective is to implement a

framework to manage video energy consumption by means of reconfigurable decoders and adapting

encoder parameters and algorithms to extend the battery life time. During execution time, the

framework monitors the running conditions to provide online information to conduct a proper energy

management.

5.2. Feasibility of Energy Control of Video Coding

The basis of video reconfiguration is the scalability and substitutability of each functional unit.

76

Energy Optimization based on Functional-oriented Reconfiguration

5.2.1. Features of Video Streaming Computing

Video decoding is a complex application which demands high amount of calculation. Each

functional unit requires a certain calculation amount. Moreover, their calculation amounts present big

differences according to streaming content, frame type, code rate, quantization parameter (QP),

texture complexity, and motion variation.

To show the differences, the HEVC decoder is executed on the PB board, which is one of the two

embedded boards used in the previous discussed experiments. The detailed description about this

board will be given later in Chapter 7. Figure 5-1 (a) to (d) present the average, variance, maximum,

and minimum numbers of computing instructions sampled by a PMC during the decoding of 100

frames for four video contents, namely ducks, harbor, mobile, and, hall encoded at different QPs

while keeping other parameters the same for the same content. QP with smaller value indicates finer

quantization and higher computing complexity. The number of instructions is employed as an

indicator of computing complexity.

 Figure 5-1-(a) Average Number of Instructions Figure 5-1-(b) Variance Number of Instructions

 Figure 5-1-(c) Maximum Number of Instructions Figure 5-1-(d) Minimum Number of Instructions

Figure 5-1 Instruction Variation of Different Contents Encoded with Different QP

33 36 39 42 46
0

0.5

1

1.5

2

2.5

3
x 10

8

QP

M
ea

n

Ducks
Harbor
mobile
hall

33 36 39 42 46
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

17

QP

V
A

R

Ducks
Harbor
mobile
hall

33 36 39 42 46
2

4

6

8

10

12

14

16
x 10

8

QP

M
ax

Ducks
Harbor
mobile
hall

33 36 39 42 46
0

2

4

6

8

10

12

14

16
x 10

7

QP

M
in

Ducks
Harbor
mobile
hall

77

Energy Optimization based on Functional-oriented Reconfiguration

The same as in Figure 5-1, Figure 5-2 (a) to (d) show the instruction variations when the same

four video contents are encoded by different frame type combinations, i.e., only I frame, one I frame

followed by all P frames, alternant I and P frames, and alternant I, P, and B frames. An I frame is

intra-coded, that is, no other frames will be needed as a reference to decode it. P frame stands for

predicted picture which refers to previous frame to avoid storing unchanging image information.

Likewise, B frame is Bi-predictive picture which obtains data reference from both previous and

following frames to further compress data. I frames are less compressible and typically requires

higher amount of calculation for encoding and decoding.

 Figure 5-2-(a) Average Number of Instructions Figure 5-2-(b) Variance Value of Instructions

 Figure 5-2-(c) Maximum number of Instructions Figure 5-2-(d) Minimum Number of Instruction

Figure 5-2 Instruction Variation of Different Contents Encoded with Different Frame Types

As can be seen from these figures:

 Video decoding is a task which demands great computational complexity. To decode a

frame, eight orders of magnitude, i.e., hundreds millions, of instructions are executed.

 Computation complexity varies among different encoding parameters. For example, with the

I IPP IPPBB P
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Frame Type

M
ea

n

Ducks
Harbor
mobile
hall

I IPP IPPBB P
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

17

Frame Type

V
A

R

Ducks
Harbor
mobile
hall

I IPP IPPBB P
0

0.5

1

1.5

2

2.5
x 10

9

Frame Type

M
ax

Ducks
Harbor
mobile
hall

I IPP IPPBB P
0

0.5

1

1.5

2

2.5
x 10

8

Frame Type

M
in

Ducks
Harbor
mobile
hall

78

Energy Optimization based on Functional-oriented Reconfiguration

same content encoded by different QPs, the average, maximum, or minimum values of the

number of executed instructions decrease along QP increases. This pattern can also be

observed in the case of frame type changes. It is worth mentioning that for a piece of

encoded sequence, the QP may be fixed while it can include several frame types.

 Computation complexity varies in the overall decoding process. Comparing the maximum

and minimum number of instructions obtained during the decoding of the same sequence,

the difference can reach to 17.8 times. In addition, the variance locates in high orders of

magnitude indicating a great difference among sampled data. There are several reasons for

this variation. First, the different types of frame lead to a great difference on processing

modes. Secondly, the complexity of texture and the intensity of motion compensation

impact on computation complexity. Generally speaking, more complex texture and more

intensive motion lead to more residual and motion information. During the decoding process,

more data need to be processed which addresses more amount of computation.

5.2.2. Feasibility of Energy Control of Video Coding

Video streaming with different encoding computation complexities always lead to different

energy consumption. Two decoders from MPEG-4 Part 10, namely CBP and PHP are executed to

decode four video sequences on the same platform, the one mentioned in subsection 5.2.1. The CBP

decoder implements the constrained based profile and the PHP decoder implements the progressive

high profile. Each sub-figure in Figure 5-3 stands for the energy consumption of a different video

content. As can be seen, there are obvious differences of energy consumption between the two

decoders when they are decoding streams encoded with the same sequence.

Figure 5-3 Energy Consumption Comparison on Two Decoders

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

Frame

En
er

gy
 (J

)

1 2 3
0

10

20

Frame

En
er

gy
 (J

)

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

Frame

En
er

gy
 (J

)

1 2 3 4 5 6 7 8 9 10
0

100

200

Frame

En
er

gy
 (J

)

CBP Profile
PHP Profile

CBP Profile
PHP Profile

CBP Profile
PHP Profile

CBP Profile
PHP Profile

79

Energy Optimization based on Functional-oriented Reconfiguration

The largest difference between CBP and PHP is the algorithm of entropy coding, which follows

the transformation and quantization processing to remove statistical redundancy [143]. The CBP

decoder only supports context-adaptive variable-length coding (CAVLC) while PHP decoder supports

both CAVLC and context-based adaptive binary arithmetic coding (CABAC). One main idea of

entropy coding is to relate the length of codeword to symbol frequency by using variable length

coding (VLC). CAVLC [144] uses many VLC tables and selects proper tables according to the

context that has been transmitted. CABAC [145] combines an adaptive binary arithmetic coding

technique and a well-designed context model with full consideration of statistical characteristics of

video streaming to flexibly complete lossless coding under the condition of knowing the model

probability distribution of existing syntax elements. Compared to CAVLC, CABAC achieves better

compression ratio but introduces more computational complexity.

The aforementioned results suggest that there is a potential space to adjust video coding energy

consumption by changing the coding complexity. The amount of energy required in video processing

should be properly used rather than be assigned indiscriminately. With the information provided from

energy awareness, a decoder can be configured with less complexity or at appropriate spatial and

temporal resolutions to yield the best perceptual quality. In this situation, RVC framework shows

benefits from its high flexibility. All encoding details are passed to the decoder as side information.

By parsing this information, a decoder can replace different FUs, thus, changing the decoding

algorithms and energy consumptions.

5.3. Proposal

5.3.1. Energy-aware Framework of Reconfigurable Video Coding

The proposed energy optimization module currently focuses on the decoder end based on the

conceptual view of the original RVC framework. It includes two additional units, namely energy-

aware manager and PMC-based energy estimator. The whole framework of energy-aware RVC is

shown in Figure 5-4. The energy-aware manager provides decisions on how to switch among different

decoder descriptions to reduce the energy consumption during the decoding process. And the energy

estimator estimates the energy consumption during a certain time interval. The estimation results are

passed to the energy-aware manager together with the battery state-of-charge to provide a metric that

is used to reconfigure a decoder.

80

Energy Optimization based on Functional-oriented Reconfiguration

Figure 5-4 Proposed Energy-aware RVC Framework

To complete a reconfiguration, a reconfiguration engine is needed. It has two inputs, a decoder

description, which is also known as decoder configuration, and VTLs. Usually, VTLs can be

represented in different forms according with the kind of engine that has been employed. The engine

interconnects the necessary functional units to form a complete decoder and translate this decoder

network to byte code format. Again, this format depends also on the engine type but it is platform

independent.

5.3.2. Energy-aware Management

The core question of energy-aware management is how to choose the proper functional units.

This problem can be mathematically described as following:

The energy-aware manager assumes a decoder can be structured with a set of FUs, 𝐷 =

{𝑓𝑢1,𝑓𝑢2, … , 𝑓𝑢𝑝} chosen from a finite set, 𝐹𝑈 = {𝑓𝑢1,𝑓𝑢2, … ,𝑓𝑢𝑞}. The manager operates the

reconfiguration with an operation mode 𝑘, selected from a set 𝒦 = {𝑘1,𝑘2, … ,𝑘𝑚}, which is featured

by a tuple (𝜔1 ,𝜔2 , …𝜔𝑛 |∑𝜔𝑖 = 1) defining the user preference. The operation mode can be

extended by including additional dimensions to the given parameters. For example, it can be restricted

to the computation complexity, bitrate, and quality. How to choose the operation mode depends on

81

Energy Optimization based on Functional-oriented Reconfiguration

maximizing the overall system gain, 𝐺 , and battery life time, 𝑇, while ensuring decoder function

validity, i.e.,

max 𝐺 = 𝑔𝑖
𝑘,𝑗�𝐷𝑗, 𝑙� and max 𝑇 = �𝑡𝑖

𝑠. 𝑡. �𝑒𝑖
𝑗(𝐷𝑗) ≤ αE

5-1

Where,

 𝑔𝑖𝑘 is a model of system gain under the preference mode 𝑘 ∈ 𝒦𝑖, being defined as equation

5-2:

 𝑔𝑘,𝑗�𝐷𝑗 , 𝑙� =
𝜔𝑐 × 𝑙
𝐶�𝐷𝑗�

+
𝜔𝑏 × 𝑙
𝐵(𝐷𝑗)

+
𝜔𝑞 × 𝑄(𝐷𝑗)

𝑙
 5-2

 𝑙 presents the level of energy-saving and larger value means that greater efforts should be

carried out to optimize energy unitization on battery life extension;

 𝐶�𝐷𝑗�, 𝐵�𝐷𝑗�, and 𝑄�𝐷𝑗� stand for decoder computing complexity, bitrate, and image quality,

respectively; 𝐶�𝐷𝑗� and 𝐵�𝐷𝑗� are inverse proportional to system gain which means a

decoder is more expectedly designed with less computational complexities and bit rate but a

higher image quality is always targeted, as shown in the proportional relationship 𝑄�𝐷𝑗�

item;

 𝑡𝑖 is the time to decode one frame;

 𝑒𝑖
𝑗 is the energy consumption of decoding one frame;

 𝐸 is the total battery capacity;

 𝛼 ∈ (0,1] is a user-defined parameter establishing the limit of the energy budget for video

applications.

The model of system gain can be applied to both native-stored bitstreams and on-line streams

because the energy optimization module will automatically choose a compatible decoder description

to reconfigure the decoder according to the computed system gain. One difference for these two

decoding situations is that native decoding does not need to consider the energy impact from data

receiving and network condition. However, currently, the system gain is facilitated by only

considering computational complexity, i.e., 𝜔𝑐 = 1,𝑎𝑛𝑑 𝜔𝑏 = 𝜔𝑞 = 0 for both cases. In addition, the

on-line streaming case has a possibility to gain further energy saving by communication with the

encoder side. This idea follows the idea of Green Metadata. Figure 5-5 shows an example of this

concept for a point-to-point application (e.g., a video conference). In this situation, each terminal

device contains a receiver for decoding and has a feedback channel. The receiver sends an energy-
82

Energy Optimization based on Functional-oriented Reconfiguration

aware message from its local decoder to the remote encoder. This message will inform the remote

encoder to adjust its encoding parameters with the concern of the battery life of its client, i.e., the

device for decoding the bitstream. The remaining battery life is determined by the client based on the

energy consumption of the current representation it is using, which can be estimated by an energy

model. Periodically, the energy optimization model computes the energy saving level (ESL) (Step 1 in

Figure 5-5). In this thesis, ESL is defined as 1
 𝐵𝑟

𝐸𝑟�
, where 𝐵𝑟 denotes the remaining battery budget for

video applications and 𝐸𝑟 is the current energy-consuming rate which is estimated by the energy

estimation model. The expression 𝐵𝑟
𝐸𝑟

 shows the time it takes the whole energy budget to be consumed

at the current rate, and thus a smaller value suggests a more pressing necessity of energy reduction.

That is why ESL is defined as a reciprocal. The ESL is sent by the client to the encoder through the

feedback path between the transmitter and receiver (Step 2 in Figure 5-5). The ESL is extracted at the

encoding end (step 3 in Figure 5-5) to translate the energy saving request into a new configuration of

the encoder (Step 4 in Figure 5-5), so that it can produce a streaming which complies to the ESL (Step

5 in Figure 5-5). In this way, each encoder can adapt the complexity of the encoded stream as a

function of the battery level of the other device communicating with it (Step 6 in Figure 5-5).

Figure 5-5 An example of the Usage of ESL Information

5.4. Conclusion

Rather than keeping improving the compress ratio and processing ability of video coding,

dynamic adaption has been newly considered to meet the requirements of longer battery lifetime. An

ideal design will be able to jointly control the computational complexity parameters during video

83

Energy Optimization based on Functional-oriented Reconfiguration

coding and transmission according to real-time conditions and constraints. This chapter has proposed

an energy-aware optimization model to manage and optimize the energy consumption based on the

RVC specification. This idea is follow up of the conceptual framework of Green MPEG. The

optimization module performs as an energy-aware manager of energy consumption and services at the

decoder end. It takes into account the energy consumption ratio to determine how to reconfigure the

decoder while providing the largest system gain, i.e., lower computational complexity and bit rate,

and higher image quality. In this thesis, the system gain is only determined as computational

complexity.

84

PART D

PART D

Chapter 6: Experimental Study-case

Infrastructure

Chapter 7: Implementation

Experimental Study-case Infrastructure

6. Experimental Study-case Infrastructure
This thesis focuses on an energy optimization method based on functional-oriented

reconfiguration. To evaluate its capacity on energy saving, RVC specifications running on embedded

platforms are chosen as the experimental study case. Figure 6-1 shows the infrastructure of the study-

case. The aim of this chapter is to introduce each element of Figure 6-1: the reconfiguration engine

and development environment of the RVC framework, the PMC tool, the modeling assistant tool, the

hardware platforms, and the benchmarks.

Figure 6-1 Experimental Study-case Infrastructure

6.1. Reconfiguration Engine and Development Environment of

RVC Framework

The principles and advantages of the RVC framework have been introduced in previous chapters.

In summary, along with the coding development process, the video coding standard has a constant

goal: to achieve a bit-rate as low as possible while maintaining the best possible quality. The

performance improvements on video coding have been achieved at the expense of additional

computational complexity. The continuous evolution of more complex and advanced standards has

greatly impeded their efficient specification and implementation. In attempt to facilitate innovation in

video coding design and to quickly integrate successful algorithms into existing standards, the

reconfiguration mechanism has been introduced into the video field and already shown its features of

87

Experimental Study-case Infrastructure

flexibility and scalability. It is believed that these features can help to save energy with awareness of

energy consumption. In the following, the reconfiguration engine and the development environment

used in this thesis are introduced.

6.1.1. Reconfiguration Engine

6.1.1.1. Low Level Virtual Machine

Targeting for code portability, a virtual machine (VM) infrastructure is mandatory for the

reconfiguration engine. Performance and portability is a crucial point for VM choice. VMs such as

Java and Python have high portability because they are written in standard C and rely a lot on their

own libraries. However, at the same time, the VMs for high-level languages, such as JVM for Java or

CLR for C#, are more than twice slower than the equivalent C compilation [147]. LLVM is another

choice with the efficiency consideration in mind. LLVM was originally developed by Chris Lattner at

the University of Illinois, Urbana-Champaign, as a register-based compiler framework [148]. It is

implemented in a level lower than typical VMs. Thus, it could provide an infrastructure to easily port

any VM to a platform that already supports LLVM.

Essentially, LLVM is a compiler architecture rather than a compiler. It can be considered as a

library to help designer to build compilers. The LLVM compilation procedure consists of three stages:

high-level language frontend interpretation, intermediate optimization and backend code generation.

The frontend converts high-level languages, e.g., the RVC-CAL language in RVC framework, to

LLVM intermediate representation (LLVM IR). A frontend only needs to be responsible for syntax

analysis, validation, and error diagnosis for the source code. After the fronted translates the source

code into LLVM IR, the intermediate optimizer is responsible for LLVM IR optimization. The

optimizer is based on the LLVM virtual instruction set and is independent of the compiler frontend

and backend. It provides the language-independent optimization and CPU-aimed codes generation.

The backend code generator converts optimized LLVM IR into machine codes corresponding to the

specified target processor.

LLVM has its own format of IR. All the LLVM IRs are finally compiled to assembly language

of the specific platform. Then these assembly codes are executed by the native assembler and linker to

generate executable shared libraries. The whole LLVM architecture is shown in Figure 6-2.

88

Experimental Study-case Infrastructure

Figure 6-2 LLVM Framework [148]

LLVM IR is the key point for LLVM optimization and native code generation. The LLVM

virtual instruction set is close to an assembly language. The abstract mechanism of LLVM IR is an

infinite set of virtual registers. They are coded in a Three Address Code (3AC) form and a Static

Single Assignment (SSA) form. A 3AC code is an intermediate code which has at most three

operands and is typically decomposed into a four-tuple: (Operator, Operand1, Operand 2, result). SSA

is a refinement of the 3AC form. SSA form ensures each variable is assigned exactly once. Note that

existing variables have different copies. A new assigned variable is indicated by the original name and

a subscript, so that every definition gets its own version. The SSA form is independent of high-level

programming languages and the target architecture syntaxes. Based on 3AC and SSA forms, LLVM

can simplify the value transfer through virtual registers and memory by only using load and store

operations. As a consequence, LLVM can produce much faster and more efficient executions.

In addition, due to the standardized LLVM IR, the LLVM optimizer can be reused for any new

programming language or device. This is a general procedure without any modification. LLVM

optimization is achieved through various passes. In LLVM framework, a pass is an operation on a unit

of IR. Each pass is a node to perform a part of the transformations and optimizations work. All the

passes make up the compiler. Passes can be classified into analysis, transform, and utility passes.

LLVM optimization and conversion work is done by a number of passes. Each pass is a node which is

responsible for the optimization or transform. Pass framework has a very good reusability. Developers

can choose from existing passes to build their own optimization and transformation. They can also

rewrite new passes to implement their solutions. The reason is that each pass is independent, so a new

pass does not need to take consideration on the implementation of previous passes. Thus, developers

can easily achieve their desired effects. Then, LLVM, being a lower level VM, is easier to port to

different OS and hardware architectures.

As discussed above, LLVM fits all the expectations of the RVC framework implementation:

high portability and efficiency. Thus, it has been chosen to be employed into the RVC framework to

support reconfigurable decoding. Note that in RVC specifications, the coding algorithms are

89

Experimental Study-case Infrastructure

implemented by the RVC-CAL programming language. The LLVM compiler does not provide the

corresponding frontend for the CAL language. Therefore, the LLVM IR is generated by an open

RVC-CAL compiler which will be introduced in the next section.

6.1.1.2. Just-in-time (JIT) Adaptive Decoder Engine

Two RVC-specific components support RVC ADMs. The first component consists of VTLs

described as an LLVM representation. The second component works as a layer of the LLVM

compiler. Ideally, this compiler should be a JIT-implemented compiler. Besides these two

components, an LLVM-based Just-in-time adaptive decoder engine (Jade) is developed to manage the

description of ADMs and the connection of VTLs to produce decoders. On top of that, a configuration

engine in Jade works to select the required coding tools from the VTLs based on the network

description of an RVC specification. Then, Jade produces an implementation of the corresponding

decoder and a model of execution in an imperative bytecode form according to the LLVM

environment. Finally, the LLVM compiler gets and translates the produced bytecode into native code

for its execution on the platform. As such, Jade is responsible to dynamically load and execute ADMs,

to schedule among different decoder descriptions, and to manage the execution of the final decoder.

Therefore, it the proposed energy-aware manager can be implemented as an additional unit to

determine when and how to select the different FUs with regard to the current energy awareness.

6.1.2. Development Environment

Table 6-1 lists the necessary tools and libraries of RVC-CAL development environment.
Table 6-1 Summary of Tools and Packages

Tools and Libararies Functionalities
ORCC A plugin for Programming languages translation

Graphiti A graphical tool to build the XDF network
Xtext A tool for development of programming languages
SDL An open source library to facilitate multimedia implementation

Cmake
An advanced platform-crossed compilation tool for source code

management and compilation
Eclipse IDE An integrated development environment for RVC-CAL developing

Java-JRE and Java-JDK Supports for Java running environment and development environment
SVN Application and projects version control and source codes management

The recommended operating system is the Ubuntu series due to its abundant third-part
libraries.

6.1.2.1. Open RVC-CAL Compiler

The RVC-CAL reference language, used for MPEG RVC specification, has been designed as a

subset of the CAL language. Compared to CAL, RVC-CAL retains a high level of abstraction to
90

Experimental Study-case Infrastructure

describe actors, but reduces its expressivity on types, operators, and functionalities that cannot be

easily integrated into hardware platforms. Open RVC-CAL Compiler (ORCC) [146] is an open source

compiler that can be loaded as an Eclipse plugin to provide a complete Integrated Development

Environment (IDE) dedicated for designing, analyzing, and transforming RVC specifications. The

most important feature of ORCC is to convert CAL codes to any other programming languages, such

as Verilog, VHDL, C/C++, Java, and LLVM IR. This makes that the high-level CAL language can be

easily adapted to any platform (Figure 6-3). Note that ORCC is only employed to generate the source

code. The assembly or executable code for the target platform are obtained by other tools.

Figure 6-3 ORCC Framework

The converters of ORCC are called backends. In Table 6-2, the existing ORCC backends and

their implementation status against the video decoders are summed up.

Table 6-2 RVC Specifications on ORCC Backend [146]

 MPEG-4 Part 2 SP MPEG-4 Part 10 MPEG-H Part 2 JPEG

C √ √ √ √
HLS √ × × -
Jade √ √ √ -

LLVM √ √ √ -
Promela √ - - -

Simulator √ √ × √
TTA √ × √ -

Xronos √ × - √

To generate LLVM IRs for RVC-CAL specifications, ORCC provides its embedded specific

converter for the RVC-CAL language. This IR converter permits that the body of actions is

decomposed in the form of load and store instructions as Static Single Assignment (SSA) form. In

addition, the represented actor structure is still equivalent as the original one which contains its name,

pattern, a list of actions and the Finite State Machine (FSM). This is to say, at the moment of

performing a translation from an RVC-CAL FU into LLVM IR, the original high-level information

must be kept. The full translation has two steps: one is a specific ORCC frontend that parses a chosen

network and translates it to an ORCC specific IR. The second is a dedicated ORCC backend to
91

Experimental Study-case Infrastructure

generate the targeted language based on the representation generated from the previous step. For the

requirements of Jade, a new LLVM-based backend, named Jade backend, has been developed to

produce LLVM IR of the VTLs.

6.1.2.2. Graphiti

Graphiti is a graphical tool infrastructure which provides the graphical representations and

editing possibilities [149] [150]. An example of an RVC specification based on Graphiti of Eclipse

IDE is presented in Figure 6-4. Graphiti provides a fast and easy network building through visual

programming. The decoder description can be hierarchically defined by Graphiti as an XDF network.

The vertices of the XDF network have three forms: input port, instance and output port. The instance

can be assigned to a sub-network or an actor, which is the minimal unit in RVC framework. The

edges between two vertices represent the data flow. They will be instantiated as virtual FIFOs.

Graphiti allows a very easy and clear method to view the whole project.

Figure 6-4 The Graphical FU Network Editors in Eclipse IDE

6.1.2.3. Xtext Tool

The Xtext tool is a text editor employed as an advanced RVC-CAL editor [149] [151]. It

provides features such as syntax coloring, content assist and code correction for increasing the

92

Experimental Study-case Infrastructure

efficiency of actor development. Moreover, with ORCC plug-in, the development environment is able

to parse all actors and build their interior dependence on-the-fly, which facilities the error detection.

6.1.2.4. Simple DirectMedia Layer

Simple DirectMedia Layer (SDL) is an open source cross-platform library designed to provide a

common abstract layer to hardware components via OpenGL and Direct3D [152]. SDL is designed in

C language and provides several low level controls on images, audio, and I/O peripherals. It allows

developers use the same or similar codes to develop any application on multiple platforms (e.g.,

Linux, Windows and Mac OS). SDL is currently widely used for developing games, simulators,

media player, and other multimedia applications.

6.1.2.5. Cross Platform Make

Cross Platform Make (Cmake) is an advanced platform-crossed compilation tool for C/C++

projects [153]. Cmake uses a simple syntax to describe the compilation process of multiple platforms

and can output a variety of forms of make files or project files. The configuration file of Cmake is

named as CmakeLists.txt, which is a set of Cmake scripts to manage all the components of the project.

Cmake does not directly build the final executable file, but it generates the standard build files (such

as the Makefile for Unix or projects/workspaces for Windows), and then it executes the application in

accordance with general compilation approaches. Another feature of Cmake is to support directory

hierarchies and applications that depend on multiple libraries.

The main goal to use Cmake in this thesis is to compile and install Jade in the target

environment. In addition, it is also used to compile the codes that converted by C/C++ backend. Note

that Cmake is more like a tool to facilitate source code management and completion rather than a

compiler. Cmake is OS-dependent and the calling of a real compiler is embedded into the

configuration file of Cmake. For a Windows-based platform, the Visual Studio compiler could be

employed as the tool to compile and debug the code, while for Linux-based platforms, GCC-based

method is the most widely used tool to obtain the executable files.

6.1.2.6. Eclipse

Eclipse is a free integrated development environment with the original design for java software

development. ORCC is implemented in Java as an Eclipse plugin. In this project, depending on user

needs, either Eclipse IDE packages for C/C++ developers or for Java developers can be employed.

Meanwhile, ORCC requires a Java environment. The Java Runtime Environment (JRE) is required

with at least the version 1.6. of Sun's JRE. OpenJDK is recommended on Linux [154].

93

Experimental Study-case Infrastructure

6.1.2.7. Apache Subversion

Apache Subversion (SVN) is a version control system for open-source projects under the Apache

license. It can be used to maintain the RVC-based applications and Jade project [155].

6.1.3. Building Procedure of an Energy-aware Decoder

Figure 6-5 illustrates the building procedure of an energy-aware decoder with the ORCC

infrastructure in the context of this thesis.

Figure 6-5 General Working Procedure

The ORCC plugin in Eclipse IDE works as the frontend to generate source codes in format of

different backends. To use Jade, ORCC provides a specific frontend to generate the LLVM IR. Then,

Jade is needed to achieve the on-line reconfiguration. The energy estimation model is included into

the original RVC framework, so the converted code does not need to be modified and can be directly

used as the input of Jade. Finally, the converted code with the network description will form the

executable decoding process to decode the encoded video sequences. Along the decoder execution,

the energy information will be provided to Jade to dynamically switch to a new decoder description,

and if the feedback channel is available, Jade will pass the energy metadata to the encoder side to

adapt the encoding parameters.

Framework
Design

Eclipse Procedure

Graphiti

Algorithm
Design

RVC-CAL

Estimation
Design

PAPI Function
Interfaces

Estimation

Target Code
Converter

Linux-based Platform

Reconfiguration
Implementation

Software
Implementation

Decoder
Description

Jade

CMake

Gcc

Thesis Target Backend
and Implementation

Backend

Executable
Decoder

Energy
Information

Video
Sequence

Decoded
Sequence

LLVM Others C XCF File

94

Experimental Study-case Infrastructure

6.2. PMC Programming Tool

Performance Application Programming (PAPI) is a third-party tool that provides a methodology

to use PMCs for most major microprocessors. PAPI can be divided into two layers as shown in Figure

6-6:

 Framework Layer. The framework layer consists of APIs in low and high levels and

machine independent support functions. This abstraction layer provides portability across

different platforms. It uses the same routines with similar argument lists to control and

access PMCs.

 Component Layer. The component layer defines and exports a machine independent

interface to machine dependent functions and data structures. These functions are defined in

the components, which may use kernel extensions, operating system calls, or assembly

language to access the hardware performance counters on a variety of subsystems. PAPI

uses the most efficient and flexible of the three, depending on what is available on the

platform.

Figure 6-6 PAPI Architecture

PAPI provides two interfaces to the underlying counter hardware: a simple, high-level interface

for the acquisition of simple measurements and a fully programmable, low-level interface for user

with more sophisticated needs. The high-level interface simply provides the ability to start, stop and

read specific events, one at a time. The low-level API of PAPI is employed to manage hardware

events for fine-grained measurement and control of the PAPI interface. Using low-level API rather

than high-level one benefits from efficiency and functionality. Low-level API is also featured with the

ability to obtain executable and hardware information and to set options for multiplexing and

overflow handling. The advanced features beyond simple event counting from low-level APIs are:

 Multiplexing. PMCs are generally a scarce resource. There are often much more events of

interest than counters to count them on. Multiplexing is one way to relieve this dilemma.

When a microprocessor has a limited number of hardware counters, multiplexing overcomes

User API

PAPI
Framework

Low-Level

High-Level

Developer API

PAPI Component

Network

CPU
OS Hardware

Memory

95

Experimental Study-case Infrastructure

this limitation by subdividing the usage of counter hardware over time (timesharing) among

a large number of performance events. Multiplexing allows more events to be counted than

there are limited physical counters. However, when timesharing is employed, the

measurement of the existing counters results in some loss in precision [156]. Note that in

this case no single event is measured for the full analysis time. When a physical counter is

switched to monitor another event, the counting report of the previous event mapped on this

counter is estimated by its history information. And, unavoidably, multiplexing incurs a

small amount of overhead when switching events. In other words, the more events are

multiplexed, the more likely is that the results will be statistically skewed. The amount of

time spent in the measured regions should be greater than the multiplexing time slice times

the number of events measured in order to get acceptable results. The default time slice for

multiplexing is currently set at 100000 microseconds.

 Parallel Programming. PAPI can be used with parallel as well as serial programs. The

parallel usage is based on threads. A thread is an independent flow of instructions that can

be scheduled to run by the operating system. Multi-threaded programming is one form of

parallel programming where several controlled threads are executed concurrently in the

program. All threads execute in the same memory space, and can therefore work

concurrently on shared data. Threads can run in parallel on several processors, allowing a

single program to divide its work among several processors, thus running faster than a

single-threaded program, which runs on only one processor at a time. In PAPI, each thread

is responsible for the creation, start, stop, and read of its own counters. When a thread is

created, it inherits PAPI information or state from the calling thread unless PAPI usage is

explicitly specified. PAPI supports threading agnostically by allowing the user to specify the

function that returns the current thread ID.

 Overflow. Most processor can generate an interrupt when a PMC exceeds a threshold. PAPI

provides the overflow handler to allow the user to take periodic measurements. If a sample

value exceeds the predefined threshold, then the interrupt handler will be called by the

current context with additional arguments. These arguments will help the user to determine

which event causes the overflow and at what location in the source code the overflow

occurred.

PAPI only tracks “hardware events”, the occurrence of signals onboard the microprocessor. It

does not count system calls, software interrupts or other software events. Currently, PAPI only

supports thread level measurements with kernel or bound threads. There are two kinds of events

defined in PAPI:

 Preset Events. As a part of PAPI, there is a predefined set of events, namely preset events,
96

Experimental Study-case Infrastructure

which represent a common implementation. Preset events are a common set of CPU events

which are more general, relevant and useful for application performance tuning. These

events are typically found in many CPUs that provide performance counters and give access

to the memory hierarchy, cache coherence protocol events, cycle and instruction counts,

functional unit, and pipeline status. A preset can be either directly available as a single

counter or derived using a combination of counters. PAPI defined a set of about 100 preset

events for CPUs. However, some ones may be unavailable on any particular platform. A

given CPU will implement a subset of those, often no more than a few dozens. PAPI

provides interfaces to determine exactly which preset events are available on a target

platform. With this predefined set, same source code will count similar and possibly

comparable events when running on different platforms. If a programmer chooses to use this

set of standardized events, then the source code of PAPI does not need to be changed and

only a fresh compilation and link is necessary.

 Native Events. Each processor has a number of events that are native to its specific

architecture. There are generally more native events available than the number of them that

are mapped onto the PAPI preset events. For some specific components, native events are

generally the only available option. PAPI provides access to native events on all supported

platforms through the low-level interface. Even if no preset event is available that exposes a

given native event, native events can still be accessed directly.

Native events have the advantages that they are comprehensive and cover all the platform

available events. To use native events effectively, one should be very familiar with the particular

platform in use. In addition, the native event codes and names are platform dependent, so native codes

for one platform are not likely to work for other platforms. Although the modification for using native

events is easy, in order to make the model be more general, this thesis has chosen to use the preset

events. A number of PAPI functions are employed to automatically detect existing events on the

target platform from the predefined event list.

6.3. Modeling Assistant Tool

To show the performance of the proposed energy-aware manager, experiments on real platforms

with a modeling assistant tool are necessary. This assistant tool includes a measurement system and a

battery emulator. A measurement system is needed to carry out the voltage and current measurements

for the estimation modeling. Instead of a time-consuming battery charging procedure, a battery

emulator is employed [157]. As shown in Figure 6-7, the measurement system consists of a PC-

controlled battery emulator connected to a programmable power supply. The chosen power supply is

97

Experimental Study-case Infrastructure

the Agilent 66321D Mobile Communications DC Source [158], which includes a digital voltmeter to

take measurements. The adjusted voltage output is plugged into a DC/DC converter module to raise

the regular voltage of the battery to the operating voltage of the embedded platform.

Figure 6-7 Block Diagram of the Measurement System

The battery emulator is a PC-based controller. It must be able to control the power supply to

simulate the voltage drop of a battery based on the measurements of the current consumed by the

platform. To achieve this, an accuracy battery model must be previously specified.

For any battery, during discharge, current within the battery is carried on by ions moving from

negative to positive electrodes through the non-aqueous electrolyte and separator diaphragm. To

simulate the battery, a polynomial regression model is chosen. This model in equation 6-1 describes

its role as a sum of polynomials, which are dependent on the state of discharge (SoD) of the battery

[157]. Q is the battery capacity and i(t) is the current delivered by the battery. V is the output voltage

of battery, Rint is the internal resistance of battery and ck are the regression coefficients. Finally, n is

the order of the equation. To build the model, only the characteristic parameters of the battery are

needed. By using this model, the discharging curve of any battery can be emulated with averaged

errors below 2% [157].

𝑆𝑜𝐷 =
1
𝑄
� 𝑖(𝑡)𝑑𝑡
𝑡

0
+ 𝑆𝑜𝐷0

𝑉(𝑆𝑜𝐷) = �𝑐𝑘𝑆𝑜𝐷𝑘 − 𝑅𝑖𝑛𝑡𝑖(𝑡)
𝑘=𝑛

𝑘=0

6-1

98

Experimental Study-case Infrastructure

As shown in Figure 6-8, a battery simulator based on the Labview software, from National

Instrument, has been developed to implement the battery emulator. The estimated voltage is passed to

an Agilent power supply via IVI drivers and VISA drivers to simulate the battery.

Figure 6-8 Measurement System Layers [157]

The usage of this emulator is quite simple. Figure 6-9 shows the Graphical User Interface (GUI)

of the battery emulator. Its usage is described following in detail in Appendix A.

Figure 6-9 GUI of the Battery Emulator and Simulator [157]

PC+ LabView LabView

LabView Software

Vi Library

Drivers

IVI Drivers

VISA Drivers

Interface Hardware Link

USB-GPIB

Controlled
Instrument Agilent 66321D

99

Experimental Study-case Infrastructure

6.4. Platforms

In order to get a comprehensive analysis of the energy consumption behavior in CPU and

memory components in a controlled environment, two embedded platforms are considered instead of

a real mobile device. These platforms have been selected because they both have ARM processors,

which come from the same processor architecture family as those processors presented in actual

mobile devices. In addition, they are open development platforms with detailed technical information

on the chips and a large open-source support community, which facilitates the embedded software

development.

6.4.1. Description of the Platforms

In this project, two embedded systems, PandaBoard [159] and BeagleBoard [160], are employed

targeting the evaluation of the proposed energy-aware manager. According to their manufacturer, both

boards are designed as a prototyping vehicle for mobile application developments. In particular, they

are aimed at projects targeting battery-powered mobile devices.

These two boards consist of a rich set of resources to run a wide range of applications. The

PandaBoard has been implemented in various versions. The focus of this project is PandaBoard ES

which is built with a TI OMAP4460 processor containing two ARM Cortex-A9 cores running at up to

1.2 GHz. Other onboard devices are a C64x DSP, a PowerVR SGX540 GPU, and a DDR2 SDRAM

with size of 1 GB. In addition, PandaBoard ES is rich in peripherals: 10/100 Ethernet, 802.11 b/g/n

wireless module, Bluetooth, USB 2.0, stereo audio in and out, dual-display output, and expansion

headers for I2C, LCD, and camera. Persistent storage is via an SD card cage. BeagleBoard has a

similar architecture but is a weaker version of PandaBoard. The employed version is BeagleBoard

XM which is based on a TI OMAP3530 application processor consisting of an ARM Cortex-A8 core

clocked up to 720 MHz, a 2D/3D graphic engine featured to a SGX510 GPU, a TMS320C64x+DSP

processor core, and 512 MB low-power LPDDR RAM memory. The connectivity and peripherals are

similar to those of the PandaBoard except the supports of wireless and Bluetooth modules and an

HDMI interface.

Table 6-3 describes the main features of them.

100

Experimental Study-case Infrastructure

Table 6-3 Platform Features of PandaBoard and BeagleBoard [159]

Component Features

Processor

PandaBoard ES (OMAP 4460) BeagleBoard XM (OMAP 3530)

Two ARM Cortex-A9 cores

Two ARM Cortex-M3 microprocessor

One ARM Cortex-A8 core

Digital Signal Processor (DSP)

Image and Video accelerator

Image Signal Processor (ISP)

2D/3D graphic accelerator

Memory

PandaBoard ES BeagleBoard XM

1 GB DDR2 SDRAM 512 MB LPDDR RAM

SD/MMC Card Cage

Connector

Video Audio

PandaBoard BeagleBoard

3.5mm, L+R Out

3.5mm, Stereo In

High-Definition

Multimedia

Interface (HDMI),

Type A

DVI-D

S-Video Connector

LCD Expansion Connector

Communication

Interface

PandaBoard BeagleBoard

2.4 GHz 802.11 b/g/n WIFI

Bluetooth V2.1

10/100 Ethernet

USB Port
USB 2.0 OTG Port

USB Host Ports

Expansion
General Purpose Expansion (I2C, USB, MMC,DSS...)

Camera Expansion Connector

Debug
14 Pin JTAG

UART/RS-232 Port

GPIO Pins

User Interface
Switches

Reset Button

6.4.2. PMCs on ARM Platforms

The Performance Monitoring Unit (PMU) of Cortex-A9 processor provides six PMCs to monitor

the events of processor and memory components, 2 of them can be used simultaneously. In Cortex-A8

processor, there are 4 PMCs and 2 of them can be simultaneously used. Both processors provide a

coprocessor (CP15) to manage PMCs and their control registers [175][177]. The purpose of CP15 is
101

Experimental Study-case Infrastructure

to control and provide status information for functions implemented in the processor. Its main

functions of the system include the controls and configurations of the overall system, the

configurations and managements of the cache and memory units, the preloading engine for L2 cache,

and the system performance monitoring, which is the function used in this thesis. Unfortunately, on

ARM/Linux platforms, these PMCs are restricted to access from the user-space by default. Trying to

access PMCs from the user space will cause an exception of illegal instruction violation. This problem

can be easily solved with a user-written driver to connect the user-space functions to PMC operations.

Moreover, it is necessary to bind the monitored PMC events to one thread to evaluate its performance

without the interference from other threads. If PMCs are configured directly through the configuration

register, they will monitor all the occurrences of the interested events but not distinguish which thread

operations triggers them. Thanks to the PAPI tool, the PMC usage has been facilitated. PAPI tool and

its features have been introduced in section 6.2 in detail. The Table 6-4 (a) to (c) below list all the

available preset events on PandaBoard and BeagleBoard.

Table 6-4 Introduction of the Common Preset Events

Table 6-4 (a) On Both Prototype Boards

Events Events Description

Cache

Access

PAPI_L1_DCA L1 data cache accesses

PAPI_L1_DCM L1 data cache misses

PAPI_L1_ICM L1 instruction cache misses

Conditional

Branching

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_BR_INS Branch instructions

Instruction
Counting

PAPI_TOT_INS Instructions completed

PAPI_TOT_CYC Total cycles

Data Access
PAPI_SR_INS Store instructions

PAPI_LD_INS Load instructions

TLB

Operations

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_TLB_IM Instruction translation lookaside butter misses

Table 6-4 (b) On PandaBoard

Events Events Description

Floating

Point
Operations

PAPI_FP_INS Floating point instructions

Instruction

Counting

PAPI_HW_INT Hardware Interrupts

PAPI_TOT_IIS Instructions issued

PAPI_VEC_INS Vector/SIMD instructions

102

Experimental Study-case Infrastructure

 Table 6-4(c) On BeagleBoard

Events Events Description

Cache

Access

PAPI_L1_ICA L1 instruction cache accesses

PAPI_L2_TCM L2 total cache accesses

PAPI_L2_TCM L2 total cache misses

Conditional

Branching
PAPI_BR_TKN Conditional branch instructions taken

Instruction
Counting

PAPI_STL_ICY Cycles with no instruction issued

6.4.3. Component Classification and Energy-related Events

Most embedded systems are single-board computers (SBCs) which are complete computers built

on a single circuit board. There are no exact design standards for an embedded system. An embedded

system consists of various physical components and can be easily extended. General speaking, those

devices of an embedded system can be divided into five main categories: computation, storage,

communication, buses and I/O (as shown in Figure 6-10).

Figure 6-10 High-Level Overview of the Embedded System Architecture

Each of these categories has its unique functionality that cannot be replaced by another one.

Therefore, each category can be considered as an independent component which deserves a specific

analysis of its energy consumption. The energy consumption of each component can be obtained by

observing the representative events. Note that the representative events differ from each category in

the embedded system.

6.4.3.1. Computation

As the most complex component, there are many details need to be considered for the

computation unit. Processors have been implemented with various hardware architectures, instruction

set, pipeline depth, specific acceleration circuits, and instruction cycles. These variances have

103

Experimental Study-case Infrastructure

different contributions to the whole energy consumption. The execution of each instruction consumes

a baseline energy. Additional units such as branch prediction, cache, and pipelining are implemented

to accelerate the processing speed and they also contribute to the energy consumption. Usually, more

typical events need to be distinguished from each processor to make higher accurate energy

estimation.

6.4.3.2. Communication

A communication component may change among several states to complete a communication

operations. The transfer and traffic are the two most important states. The energy of the traffic state

can be estimated by counting the number of time intervals in which the component stays in this state

and the energy of the transfer state can be predicted by the number of transferred bytes.

6.4.3.3. Storage

The total energy can be predicted by the amount of transferred data. In other words, the prediction

is computed by directly multiplying the transferred size or the bandwidth and the access times.

Usually, a complex storage component may have several states that consume different amount of

energies. A more accurate model also considers the energy consumption during the state transitions.

In embedded systems, SD card or flash are usually used as the storage component which are not as

complicated as the hard disc. Thus it can be assumed that each access of the SD card or flash has the

same energy consumption, and their energy is mainly related with the access times, which can be

estimated through the number of L2 data cache misses.

6.4.3.4. Buses

Since embedded systems have a fixed bus frequency, the energy consumption of buses can be

estimated by the number of bus activities and the bus width.

6.4.3.5. I/O devices

Most of the I/O devices have several states which consume different amount of energy. Their

energy consumption mainly depends on the number of I/O requests and the according state.

To simplify the work, this dissertation mainly considers the computation, memory and main

peripheral units. All the units can be estimated through a PMC-based approach, which facilitates the

model implementation. Note that the energy consumption of the peripheral components is presented

by their interface operations, and each interface is assumed to consume the same amount of energy.

104

Experimental Study-case Infrastructure

6.5. Benchmarks

Four representations of decoders standardized by MPEG RVC are employed as the test bench:

the Simple profile (SP) from the MPEG-4 part 2 standard [161]-[163], the Constrained Baseline

Profile (CBP), the Progressive High Profile (PHP) from the MPEG-4 part 10, which is also named as

AVC/H.264 [164]-[166], and the HEVC Main Profile (MP)[167]. All the sequences come from the

JVC conformance sequences. They are widely used in research and display a wide variety as far as the

amount of spatial detail and movement concerns. The following is a brief introduction about these

four decoders. They belong to two video coding standards: MPEG 4 and HEVC.

6.5.1. MPEG-4

MPEG-4 is a video coding standard designed for rich multimedia. It provides various codec tools

with excellent compression capability. MPEG-4 uses a number of new technologies such as shape

encoding and adaptive discrete cosine transform (DCT) to greatly improve the coding efficiency.

MPEG-4 consists of several standards which are termed as different parts. Part 2 and Part 10 are

employed in this project.

6.5.1.1. MPEG-4 Part 2

MPEG-4 Part 2, also known as MPEG Visual, is a DCT based standard defined to provide higher

compression efficiency with new compression tools such as combination of motion-compensated

prediction and scalar-quantized DCT coefficient coding [162]. Video applications are ranged from

low-quality and low-resolution requirements to high definition preference, thus, video standards are

grouped with a set of capabilities in a manner appropriate for various applications. Each profile is

declared with different code in the encoder to allow a decoder to recognize the applied constraints and

requirements to correctly decode the stream. MPEG-4 Part 2 has 21 profiles ranging from simple one

to advanced one. Among them, the simple profile (SP) has been implemented in RVC framework. SP

is designed to applications that constrained by low bit rate and low resolution conditions.

6.5.1.2. MPEG-4 Part 10

MPEG-4 Part 10 was jointly developed by ITU-T and MPEG, and is commonly referred to

H.264 or advanced video codec (AVC). It is based on the advantages of the previous standards such

as H.263+, MPEG-4 Part 2, and integrates their successful experience. It still uses the traditional

hybrid coding framework but introduces new features, such as multiple reference frames, multi-block

types, integer transform, intra-prediction, and other new compression technologies, to achieve

significant improvement of coding efficiency. AVC offers the lowest bitrate for a given quality among

any previous codec. The performance improvement leads AVC to become the most widely used
105

Experimental Study-case Infrastructure

standard for video products and services where quality and compression efficiency are paramount. For

example, digital television broadcasting, video real-time communication, and network video

streaming transmission.

H.264/MPEG-4 AVC has been a promotional technology for digital video in almost every area

and has substantially displaced the older standards within their existing application domains.

However, the coding method of AVC relies on the fact that the computational power and memory

have much progressed on the latest generation of high-performance hardware. With the consideration

of hardware cost and power consumption, AVC also offers different profiles to control the degree of

sophistication in codec. Profiles of AVC can be generally divided into baseline, main, and high

groups. Each group includes several profiles sharing some common features. Two profiles have been

implemented in RVC framework:

A. Constrained Baseline Profile

Constrained Baseline Profile (CBP) shares the common features between baseline, main, and

high profiles. It is primarily designed for low-cost applications or additional fault-tolerant

applications, such as video conference, and mobile video.

B. Progressive High Profile

As a member of the high profile group, progressive high profile (PHP) supports all types of

frame and offers best compression ratio but without supporting the field coding features. It is typically

used for broadcast.

6.5.2. HEVC

With the increasing diversity of multimedia services, users have become more demanding with

regard to broadcast resolution and video experience. Moreover, with the growing popularity of

electronic mobile devices such as smart phones and tablets, the traffic and transmission needs are

giving rise to increasing challenges on the networks. H.264/AVC has been proved to be insufficient

for data compression of high definition sequences. The coding efficiency needs to be further

improved. Therefore, High Efficiency Video Coding (HEVC) was proposed essentially to address

these issues. HEVC is a successor of H.264/AVC and particularly focuses on two key points: one is to

provide higher compression quality and video resolution and another one is to facilitate the

parallelism for multi-core architectures. HEVC doubles the data compression ratio compared to

H.264/MPEG-4 AVC at the same level of video quality but the computational complexity increases

from two to ten times [167]. HEVC partitions picture into coding tree units (CTUs) to achieve a better

106

Experimental Study-case Infrastructure

parallel processing. The size of the CTU is selected by the encoder based on the sampling schema and

syntax elements.

The first version of HEVC standard was completed and published in early 2013. Its main profile of

HEVC has been implemented in RVC framework. In this work, it is employed as the benchmark for

HEVC standard.

6.6. Conclusion

This chapter describes the whole infrastructure of the study-case used in this thesis work. It firstly

introduces how the reconfiguration video coding engine works as well as the development

environment including the necessary tools, libraries and working procedures to implement an energy-

aware manager embedded in video decoders. Afterwards, energy modeling related tools, i.e., the PMC

programming tool and the modeling assistant tool are introduced. Then, a study on the experimental

platforms used in this thesis has been presented with descriptions of platform features, available

PMCs, and a simple component classification. Finally, four benchmarks are introduced. They are four

typically used video coding profiles specified by RVC, corresponding to the simple profile of MPEG-

4 part 2, the constrained baseline profile and the progressive high profile of AVC/H.264, and the main

profile of HEVC.

107

Implementation

7. Implementation
Chapter 6 has introduced the whole system structure of the study case. In this chapter, the

implementations related to energy optimization and management are described in detail. To enable the

management, an estimation model, which is based on the PMC mechanism, is needed to provide

energy awareness. Thus, the PMC control tool, PAPI, should be inserted into the original decoder.

The better solution is to integrate PAPI APIs into the ORCC framework. In this way, PAPI APIs can

be modularly operated and more importantly, PAPI APIs can be automatically included into the

generated backend code, keeping the platform independence of ADMs. Besides energy awareness, the

energy-aware manager, which takes charge of making reconfiguration decisions, is the core design of

this implementation. This manager accurately and efficiently makes decisions to reconfigure the

decoder and inform the encoder to adapt its encoding parameters. A accuracy means, on one hand,

that the current capacity of the battery and the rate of energy consumption are accurately predicted,

and, on the other hand, users’ preferences are accurately considered by the manager. Efficiency means

that the manager does not introduce an overhead spoils the decoder performance.

7.1. PAPI Integration

The predicted energy consumption is an important reference for the proposed energy-aware

manager to make the optimization decisions. As discussed in section 2.2.4, the modeling method

based on performance monitoring counters is chosen in this thesis work due to its simplicity and

generalization. To facilitate the configuration and usage of PMCs, PAPI is employed in this work.

Readers are kindly recommended to read section 6.2 to get more details of this tool. In this section,

the integration of PAPI APIs into the ORCC framework is described. In fact, since ORCC can convert

the RVC-CAL specifications into other backend formats, such as C/C++, VHDL and LLVM IR, these

PAPI APIs can be manually inserted into the generated code after converting. In doing so, all the

inconvenience will be brought to designers. First of all, not only those source files used by PAPI APIs

need to be modified, but also the configuration file needs to be modified in order to include the correct

PAPI library path. And more importantly, the modification procedure must be repeated any moment

the RVC-CAL representation requires any tiny adjustment, even if those ones independent from the

PAPI APIs. This procedure is time-consuming and loses the benefits of the abstraction provided by

ADMs. Therefore, it is worthy of considering to directly integrate PAPI APIs into the original RVC-

CAL framework.

109

Implementation

7.1.1. Integration

7.1.1.1. Framework with PAPI Integration

One of the most important features of the CAL language is the concept of Dataflow Process

Network (DPN) [173]. DPNs provide an efficient modular method to build systems using

unidirectional FIFOs instead of synchronization primitives such as mutex or semaphores [174]. An

actor of an RVC-CAL specifications can be considered as a particular case of a DPN. Based on the

concept of DPNs, it is easy to integrate PAPI functions into the RVC-CAL structure to take PMC

event samples during decoder execution. To do so, start and stop signals are needed to control PMCs

counting. Different actors can trigger and send these signals. Figure 7-1 shows an example of a

decoder network that has been modified to include PAPI function calls for a case in which the overall

decoder performance wants to be monitored using the PMCs. As can be seen, the start signal is sent at

the decoder initial state to enable the PMCs to take samples. A stop signal sent from the display actor

stops those PMCs. In this case, PMCs periodically (e.g., after decoding every 25 frames) sample

events occurred from all the fired actors during the period. Afterwards, PMC statistics are stored.

Figure 7-1 PAPI Tool Integration

110

Implementation

7.1.1.2. Integration Primitives

ORCC provides a mechanism to call native functions from a local library once those functions

are declared in ORCC code as native ones. Thus, instead of translating PAPI functions from C

language to RVC-CAL language, only the PAPI interfaces are needed to be inserted into the RVC

framework. As a consequence, the PAPI interfaces are automatically merged into any code generated

by various backends, such as C/C++ and LLVM IR.

Figure 7-2 Native Function Mechanism

This mechanism of native functions can be shown in Figure 7-2. At the RVC-CAL framework,

PAPI API functions are marked as native functions (with the label “@native”) in a single package.

This package can be imported into any actor where the PAPI API functions are called. Then, the

modified RVC-CAL representation will be translated into a target backend, e.g., C backend.

Automatically, actors are translated into “C” files. On the other hand, native function are associated to

actual C implements of the PAPI API functions. Header files of the PAPI function calls are included

into the automatically generated C files. All PAPI API functions are referenced as external functions

in each actor. In addition to translate the “C” files, ORCC also generates a configuration file which

indicates the structure of all the “C” files and, more importantly, configures the paths to all packages

and libraries.

The following primitives are PAPI API functions that have been integrated into the RVC-CAL

framework:

111

Implementation

@native procedure event_init() end

 A procedure to initialize the structures employed to monitor the performance counters. In

this procedure, the PAPI library will be first initialized. This initialization checks memory

states, hardware support, and system call status. It is known that there is a limitation of the

physical number of PMCs that can be simultaneously employed, thus, in order to monitor

more events, a multiplexing scheme will be enabled and initialized next. At last, the thread

support will be initialized, which will make PMCs to monitor and record only the events

caused by the function with specific thread ID.

int (size=32) eventCodeSize = *;

@native procedure event_create_eventList(int eventCodeSize,

 int(size=32) eventCode[eventCodeSize],

 int threadID) end

 A procedure to add a list of events defined in eventCode array to the PAPI event set. This

set will be used to configure PMCs control registers to make PMCs monitor and record

corresponding events. In this procedure, an empty event set will be first created. The size of

the PAPI event list is defined by the variable eventCodeSize, and note that the event set

should be assigned by the thread labeled as threadID. This event set can be bounded to a

component, which is set as CPU by default. Note that new components can be created. If the

multiplexing mode is initialized, the standard event set need to be converted to a

multiplexed one. After checking the availability and validness, each defined event will be

added into the event set.

@native procedure event_start(int threadID) end

 This procedure will start monitoring the previously created event set assigned to the thread

labeled as threadID.

int (size=32) eventCodeSize = *;

@native procedure event_stop (int eventCodeSize,

 int(size=64) PMC[eventCodeSize],

 int threadID) end

 This procedure will stop monitoring the previously created event set assigned to the thread

labeled as threadID and store the sample values of each PMC in an array named PMC.

These values indicate the numbers of occurrences of the monitored events and will be used

for energy estimation.

112

Implementation

@native procedure event_destroy_eventList(int threadID) end

 A procedure to delete the event set assigned to the thread labeled as threadID. In this

procedure, all the events are removed from the PAPI event set and their profiling is turned

off. The memory associated with the event set will also be de-allocated.

7.1.1.3. Integration Implementation

There are two ways to insert PAPI primitives. One is to take the PAPI primitives as a new action.

Another one is to insert those primitives into existing actions.

A. As New Actions

Figure 7-3 shows an example of integrating PAPI primitives into an RVC-CAL actor as new

actions.

init: action ==>

do

 event_init(THREAD_ID);

 event_create_eventList(eventCodeSetSize, eventCodeSet, THREAD_ID);

 event_start(THREAD_ID);

end

papi_done: action ==>

do

 event_stop(eventCodeSetSize, PMC, THREAD_ID, PAPI_TITLE);

 event_destroy_eventList(THREAD_ID);

 PAPI_LIST := 0;

end

schedule fsm INIT:

 INIT (init) --> start;

 start (read.avail) --> readpix0;

 readpix0 (readpix.l) --> readpix1;

 readpix1 (readpix.u) --> readpix2;

 readpix2 (readpix.ul) --> pixdone;

 pixdone (write) --> PAPI_DONE;

 PAPI_DONE (papi_done) --> INIT;

end

Figure 7-3 PAPI Interface for an RVC-CAL Actor

All the actions are constrained using an internal FSM to impose a partial order among action

tags. In this case, once the actor is scheduled (or fired), the init action is first enabled. The last action

of the actor (papi_done) is the one that stops the PMC sampling and reads the samples. However,
113

Implementation

these two PAPI actions, init and papi_done can be scheduled after any other actions as long as the init

action is executed before the papi_done action. In this way, PAPI can be integrated into any actor if

the developer wants to focus on any specific unit. In addition, more functionality can be added in

either the init or the papi_done action.

B. In Existing Actions

Similarly, those PAPI primitives can also be simply inserted within actions. Figure 7-4 shows

partially the code as of an example that monitors the display action in the displayYUV actor.

initialize ==>
 do
 if isEnergy_aware_src()=1 then
 event_init();
 event_create_eventList(eventCodeSetSize, eventCodeSet, thread_ID);
 event_start_src(thread_ID);
 end
 end
displayPicture: action ==>
 guard
 nbBlockGot >= pictureSizeInMb,
 (displayYUV_getFlags() & DISP_ENABLE) != 0
 do /* Display related Functions */
 nbFrameDecoded := nbFrameDecoded + 1;
 if isEnergy_aware()=1 then
 EstCounter := EstCounter +1;
 if EstCounter =25 then
 event_stop(eventCodeSetSize, PMC, thread_ID);
 IsEventStarted := false;
 EstCounter := 0;
 source_pause(PMC);
 event_start(thread_ID);
 IsEventStarted := true;
 end
 end
 end

Figure 7-4 PAPI Interface for an RVC-CAL Decoder in DisplayYUV Actor

In Figure 7-4, at the initialization phase, if the energy_aware mode is enabled, functions to

configure PMCs are called through PAPI primitives. The energy-aware mode is explained more in

detail, later, in the section 7.2. Note that the initialization action is only executed once the first time an

actor is fired. The decoded frame will be displayed when the corresponding action, displayPicture, is

scheduled. All the actions executed during the PMC-working period are monitored by PMCs. After

decoding a certain number of frames (e.g., 25 frames), the PMC sampling will be stopped.
114

Implementation

Afterwards, the statistic PMC data will be passed to the energy model to estimate the energy

consumption during this period. The estimation procedure will be completed in the source_pause

function. Then, PMCs will start sampling again for the next 25 frames.

Essentially, there is no large difference between these two methods. In the RVC-CAL

framework, each time one actor is fired, only one of the actions will be executed according to the

current state of the FSM. In other words, from the moment PMCs are started until they are stopped,

not only the actors where PAPI primitives are inserted are scheduled, but other actors may also be

fired. Thus, PAPI functions monitor in this way the behavior of several actors rather than only one. In

the case shown in Figure 7-3, after the papi_done action is accomplished, the corresponding actor is

scheduled out from the enable state. PAPI functions are then started again until this actor is re-fired to

trigger the init action. Unlike the case shown in Figure 7-4, PMC monitoring is achieved in a non-

continuous way.

7.1.2. The Dependence of PAPI and OS

The PAPI tool is used to facilitate the configuration and utilization of PMCs. It provides a

universal interface to hide the hardware details. However, there is still one tool layer which is not

independent of the operating system and hardware. In this case, to successfully use the PAPI tool on

embedded platforms, OSs patches or specific configurations are needed.

7.1.2.1. OS Patch on PandaBoard

Although PMCs are available in the PandaBoard, they cannot be directly used. The basic reason

is that on the PandaBoard, PMCs are not only enabled by the performance monitoring unit (PMU),

but are also determined by the PMU/CTI (Cross Trigger Interface) interrupt. Cortex-A9 processor has

a functionality called cross trigger, which uses the events of one module to trigger the behavior of

another module. CTI connects all the modules that generate trigger events to the Cross Trigger Matrix

(CTM) to achieve the cross trigger.

To better understand the kernel patch for PMC support, the concept of Linux interrupt is briefly

introduced at first. Linux interrupts can be divided into two types: soft interrupts and hard interrupts.

Soft interrupts are implemented by the signal mechanism. However, to support PMCs, hard interrupts

are needed. The interrupting device sends hard-level signal to the interrupt controller through the

interrupt bus to inform the OS that an interrupt has been generated. Then, the OS will detect the kind

of interrupt and the index of the interrupt bus by checking the state register and the status bit of the

interrupt controller. To use the interrupt bus, the device needs to send an interrupt requirement (IRQ).

Then, the OS will decide to response to the IRQs based on their priorities. Thus, the patch should be

able to let the OS to detect the PMU interrupts.
115

Implementation

Figure 7-5 Block Diagram of the Cortex-A9 CTI Connections

Figure 7-5 shows a simplified block diagram showing the interconnection between the PMU,

the CTI and the PTM [175][176]. PTM is the abbreviation of Program Trace Macrocell, a module that

performs real-time instruction flow tracing. Except cycle counters, the PTM can use all available

PMC events through its extended external inputs (PTMEXTIN). Among all the extended external

inputs, two of them are used to access PMCs and each one could independently select one of the PMU

events to monitor. Trace tools could use the information generated by the PTM to reconstruct the

execution of all or part of a program. Based on this connection, the main tasks of the patch are:

 To add PMU Support;

 To add power management (PM) support. Hooks to initialize the hardware at run-time are

available to support dynamic PM through the ARM PMU driver. Without having these

runtime PM hooks, the configuration of the PMU hardware would be lost when low power

states are entered and hence would prevent PMU from working;

 To implement the route from PMU IRQs to CTI IRQs. CTI enables the debug logic, the

embedded trace macrocell (ETM), and the PMU. The ETM is part of the PTM. It is a real-

time trace module and provides the instruction and data tracing of a processor. The CTI is

connected to a number of trigger inputs and trigger outputs. Each trigger input can be

connected to one or more trigger outputs. The base address of the CTI is not fixed and can

be different for specific system implementation. However, the offset of any particular

register from the base address is fixed.

7.1.2.2. OS Configuration on BeagleBoard

Unlike PandaBoard, BeagleBoard uses the Cortex-A8 processor. The Cortex-A8 processor

implements the ETM instead of the PTM. Similarly to the relationship of the PTM and the PMU,

116

Implementation

PMC events are all available for the ETM through the extended external inputs (EXTIN). Each PMC

event is mapped to one of the two extended external inputs.

Figure 7-6 Block Diagram of the Cortex-A8 CTI Connections

The interconnections between the PMU, the CTI, and the ETM are shown in Figure 7-6 [177].

Note that the difference between the Cortex-A9 and the Cortex-A8 is that, for the latter, the interrupt

of the PMC can be generated by the PMU itself without passing the CTI. The processor will assert the

pin nPMUIRQ if the PMU generates an interrupt. This pin can be routed to an external interrupt

controller for prioritization and masking. Since PMU IRQ can be directly detected by the OS as long

as the debugging unit is enabled, there is no need to patch the OS to support PMC events. Thus, to use

the PMC events on the BeagleBoard, the procedure would be as follows:

 Enable performance events and counters

 Enable OMAP 3 debugging peripherals to enable the according hardware.

7.2. Implementation of the Energy-aware Manager

7.2.1. Implementation of Energy-aware Events in Jade

As introduced in section 6.1.1.2, the Just-In-Time adaptive decoder engine (Jade) is responsible

for the decoder reconfiguration and scheduling. The proposed energy-aware manager is an additional

unit of Jade. Jade provides three operation modes to implement a decoder, namely command line,

console, and scenario. The scenario mode is the most powerful one to manage decoder configuration

and execution through a JSC (JavaScript configuration file)-formed file. To configure the initial

settings of decoders, this file specifies a list of pre-defined XML events. In this file, each line is an

XML event to be executed to perform different functions. Table 7-1 lists the most commonly used

XML events.

117

Implementation

Table 7-1 List of Jade Events in Scenario Mode

XML Events Functionality
Load Load and store a given decoder network with a specific identifier

Start Start the decoder. Parameter 'id' is the indicator of the employed decoder network to
configure the decoder

Pause Pause a given decoder
Set Reconfigure an existing decoder with a new decoder network

Wait Put Jade in wait mode for a given period (in second)
Remove Remove a given decoder network

Stop Stop and exit Jade

To implement the energy-aware management, three specific XML events should be added into

the original list.

1. <Mode />

This event allows users to set Jade to work in either energy-aware or non-energy-aware

(normal) mode. If Jade is set in energy-aware mode, all users’ preferences are recorded as the

guidelines to make reconfiguration decisions.

2. <Enable />, <Disable />

The energy-aware manager will be enabled if the energy-aware mode is set in the <Mode />

event procedure. It is disabled if the non-energy-aware mode is set. However, the energy management

might be enabled or disabled at any moment while Jade is running. These two events are used to

enable or disable the energy-aware mode after the <Mode /> event procedure.

Figure 7-7 shows an example of scenario configure file in which the proposed events have been

employed. In this example, first, Jade provides an interface to let users set the Jade work mode (Line

4) and corresponding parameters. Then Jade loads two different decoder descriptions and set the

identifier of each one with the parameter ‘id’ (Line 7 and 8). After the successful return of the Load

event, users can also disable the energy-aware mode if it has been enabled before (Line 11). Jade

executes then the decoder based on the corresponding decoder description with the parameter ‘id’

which is defined in the Load event (Line 14-17). The encoded sequence is defined by the parameter

‘input’ with the access path. Users can use the Enable event to run Jade in energy-aware mode (Line

20) again. If users do so, Jade will set the current total energy amount (it can be provided by the

battery monitor). During decoder execution, the energy estimation model periodically provides

estimated when a certain number of frames are decoded, and the energy-aware manager will compare

it with the low battery threshold. Once a low battery state is detected, although users have set the

same decoder to decode the two available sequences (Line 23 and 24), Jade will automatically load

118

Implementation

and reconfigure another decoder determined by the video manager to decrease the energy

consumption. After decoding all sequences, Jade will stop and exit (Line 27 and 28).

Figure 7-7 Scenario Specification for JADE with the Event Extension Proposal

7.2.2. Implementation of Energy-aware Management Metric

To optimize and manage the energy consumption, the management metric has been introduced

in section 5.3. The metric depends on the system gain related to the energy-saving level, computing

complexity, bitrate, and image quality. In this work, the system gain has been simplified as indicated

in equation 7-1, i.e., the system gain 𝑔�𝐷𝑗� is proportional to the inverse of the computing

complexity 𝐶(𝐷𝑗).

 𝑔�𝐷𝑗� =
1

𝐶�𝐷𝑗�
 7-1

This is to say, the energy-aware manager will always reconfigure the decoder with the lowest

complexity one once it detects the low-battery situation. The complexity can be indicated by the id of

the decoder description, e.g., a larger id indicates a less complex decoder.

7.2.3. Implementation of the Energy-aware Manager

Another challenge of this thesis is to efficiently control the decoder to reduce the overhead

introduced while decoding. The core of Jade is the Just-In-Time (JIT) compiler. JIT exploits the

LLVM IR to achieve real-time decoder reconfiguration.

119

Implementation

Figure 7-8 LLVM Interaction with JIT and GCC Compilers

Currently, JIT cannot perfectly support the ARM architecture and thus the JIT compiler cannot

correctly generate an executable binary. As an alternative, Jade uses GCC to generate the binary file

from the LLVM IRs. Figure 7-8 shows the relationship between LLVM, JIT and GCC. However,

using the GCC compiler, all the VTLs in the form of LLVM IRs are recompiled and every FU is

linked together as a monolithic file, even those FUs that have been already compiled in previous

decoders and reused in the current decoder. This seriously increases the reconfiguration time. The

whole process of reconfiguring a decoder is shown in Figure 7-9, including the backend translation

and executable binary file generation. Arm-fix is a parameter used to enable GCC instead of JIT to

complete the compilation.

Figure 7-9 RVC Specification Implementation Process

GCC is a static compiler. The decoding processing is executed by Jade after the source code is

compiled and linked to form a single binary file (tempDecoder). In this case, tempDecoder is a child

process forked by Jade. To communicate and synchronize Jade and tempDecoder, the inter-process

synchronization mechanism is used.

120

Implementation

7.2.3.1. Relationship and Communication Structure between Jade and the Decoder

As far as the communication concerns, Jade works as a parent process. After the preparatory

work to execute the decoder, Jade forks the child process. This child process will execute a system

call from the “exec” family to execute different programs from its parent process. In the case of Jade,

the child process is the decoder, named as tempDecoder. If the energy-aware mode is disabled, during

the execution of tempDecoder, Jade will change into the wait status and be woken up until

tempDecoder finishes. A simplified relationship between Jade and the decoder can be seen in Figure

7-10.

Figure 7-10 Relationship between Jade and Decoder in Energy-aware Disable Mode

However, the situation when the energy-aware mode is enabled is more complicate:

 First, as a parent process, Jade can only be woken up by the return or exit signal sent from

its child process, i.e., tempdecoder. In this way, the energy-aware manager, which is

implemented as a unit in Jade, cannot timely obtain energy update information from the

tempdecoder. An alternative solution is to change Jade to the pause status instead of wait.

This allows waking up Jade through various signals. Meanwhile, while the energy-aware

manager makes the management decision, tempdecoder is also in the pause status waiting

for the signal from Jade (to continue the decoding processing or to be killed due to the low-

battery situation). A simple way to change the process is to call the pause function, which

suspends the program execution until a signal arrives.

 Second, the energy estimation value needs to be shared between Jade and tempdecoder.

Unlike the shared data among threads that belong to the same process, there is no direct way

to pass parameters among different processes. Therefore, a shared memory mechanism is

employed to pass the data between Jade and its child process, tempdecoder.

Based on this pause-status mechanism, the decoder control of Jade based on the decisions from

the energy-aware manager is summarized in Figure 7-11.

121

Implementation

Figure 7-11 Relationship between Jade and the Decoder in Energy-aware Enable Mode with Pause-wake

Mechanism

However, experimental results show that this pause-wake mechanism introduces an

unacceptable performance decrease. The number of decoded frames per second decreases 70%. This

is because each time a process is waken up from its pause status, a sequence of steps is carried out,

including:

 To load this process from kernel space to put it to user space;

 To resume its last executed information to CPU and registers.

This is a quite time-consuming procedure. Therefore, to avoid the overhead of context switching,

a simple while (1) loop is employed instead of the pause status. And all the shared information, such

as energy estimation values and low battery flags, are passed through the shared memory. If the low

battery signal is true, the decoder calls the exit function and terminates. In this case, there are two

conditions to break the while (1) loop, one is the low battery state and another is the decoder finish

signal. The former one is controlled by the energy-aware manager and the latter one is sent by the

tempdecoder and automatically detected by Jade based on the signal mechanism. A low-battery break

will cause the energy-aware manager to inform Jade to reconfigure the decoder with a lower-power

decoder description while a finishing-break will make Jade to load a new sequence to decode. The

final communication scheme between Jade and the tempdecoder is shown in Figure 7-12.
122

Implementation

Figure 7-12 Relationship between Jade and Decoder in Energy-aware Enable Mode with while (1) mechanism

7.2.3.2. Implementation Details of the Communication Scheme

A. Signal Mechanism

The core of the communication between Jade and the tempdecoder is the signal mechanism

provided by the Linux OS. The mechanism is used for event notifications among asynchronous

processes. In Linux, a common way to communicate processes is the signal channel. A process can

send a signal to a different processes using the kill() system call with prototype:

int kill(pid_t pid, int sig)

This system call will send the signal with number sig to the process with process ID pid. Signal

numbers are small positive integers, which may vary from one platform architecture to another one.

There are a set of pre-defined signals and the corresponding default actions. In Linux, by default, a

SIGKILL signal kills a process, a SIGSTOP signal stops the process and a SIGCONT signal resumes

a stopped process. When a process receives a signal, a default action will occur, unless the process has

been arranged to handle this signal. A handler for a user-defined action can be set up with prototype:

123

Implementation

typedef void (*sighandler_t) (int);

 (sighandler_t) signal (int sig, sig_handler);

This prototype sets up the routine sig_handler as a handler for a signal with number sig. When a

signal arrives, the signal handler is invoked to interrupt the current program. When the signal handler

returns, the interrupted activity will be continued. In the proposed implementation, as shown in Figure

7-12, there are two signals used. Every time the tempdecoder finishes decoding a certain number of

images, the energy consumption of this period is estimated and stored into the shared memory.

Meanwhile, the decoder will send the SIGCONT signal. The handler of the SIGCONT signal is to

inform the manager to check the battery status with the estimated energy information. If the decoder

has finished its work and exits, a SIGCLD signal sends and its handler sets a child-finished flag as

true to break out Jade from the while(1) loop.

B. Shared Memory Mechanism

Signals are just employed to inform or notify a process about what has happened in another

process, but they are not used to pass data. Considering that parent and child processes have their own

data sections, the simple usage of global variables cannot be utilized to pass data among different

processes. Thus, a shared memory mechanism is employed to pass data between Jade and the

tempdecoder. Shared memory schemes are efficient methods to pass data between programs because

data do not need to be copied among communicating processes. One process creates a memory

portion and other processes (if they are allowed) access it.

In Linux, a process creates a shared memory segment using the function with prototype:

shmget(key_t key, int size, int flag):

This function returns the ID of the created shared memory if the creation is successful or -1 if an

error happens. Parameter key is a non-negative integer to identify each section of shared memory. It is

typically set as the constant 'IPC_PRIVATE', which lets the kernel choose a new key. The keys of

shared sections are system-wide, and their values continually increase to a maximum value and then

wrap around to zero. Parameter Size is the size of shared memory segment in bytes and the argument

flag specifies the initial access permissions and creates the control flags. This function call can also

get the ID of an existing shared segment when a process requests sharing an existing memory portion.

Once a shared memory segment has been created, a process can attach this segment to its address

space by calling the shmat() function. Once successfully attached, the process can read from or write

to the segment according to the permission configuration requested during the attach operation. A

124

Implementation

shared memory segment is described by a control structure with a unique ID that points to an area of

physical memory. The identifier of the segment is called shmid. The prototype of the shmat function

is:

 shmat(int shmid, void *addr, int flag).

It will return a pointer to the shared memory if the mapping is successful or -1 on error.

In addition, the shared memory can be controlled by a system call as:

shmctl(int shmid, int cmd, struct shmid_ds *buf)

The parameter cmd can be one of IPC_STAT, IPC_SET or IPC_RMID. IPC_STAT fills the buffer

with the structure of shared memory and obtained the status of the shared memory specified by shmid.

IPC_SET can change the status of the shared memory. IPC_RMID will remove the shared memory

segment from the system once the last process which has attached to this segment terminates or

detaches from it.

Jade and the tempdecoder use shared memory to pass information. Jade creates a piece of shared

memory with a particular key number and attach itself to this space. The decoder can then get the ID

of this shared segment with the same key and attach to it. Then, both of these two processes can

access the memory segment to share the energy related information and low battery flag. Finally, the

shared memory is removed by Jade and the decoder.

7.3. Conclusion

In this chapter, the proposed implementation of the energy optimization and management based

on the functional-oriented reconfiguration is described in detail. As far as Figure 5-4 concerns, the

complete implementation includes the energy estimation model and an energy-aware manager for

decoder reconfiguration. As thus the implementation consists of solutions for these two parts:

 Firstly, to estimate the energy consumption of various decoders, the PMCs need to be easily

configured and enabled. Two methods to integrate PAPI API functions into any actor of

ORCC framework are introduced. One is to create new actions to operate on PMCs and

another is to insert those API functions into the existing actions of the actors. Both methods

can avoid the modification of the generated target source code. A tiny difference is that with

the second method, continuous sampling of PMCs can be maintained. In addition, the

necessary OS patches and configuration operations to enable PMC usage are introduced.

 Next, the discussion focuses on how to implement the energy-aware manager. This manager
125

Implementation

is an additional unit of the tool Jade. To enable it, three additional events of Jade, namely

mode, enable, and disable events are implemented. The mode event selects the work mode

of Jade while the enable and disable events set Jade to work in energy-aware mode or

normal mode, respectively. In the energy-aware mode, the proposed energy-aware manager

is enabled. Besides work mode setting, the core operation of this manager is to decide when

to reconfigure once the low battery state is detected. In the implementation of this thesis, the

decision is simplified. The manager chooses the decoder with the lowest complexity to

reconfigure. Another part of the implementation in this chapter focuses on the

communication between Jade and the decoder. Jade controls the decoder execution and the

decoder passes energy information to the manager. A signal-based inter-process

communication scheme is employed for the communication. Data is passed between the two

processes through a shared-memory scheme. This implementation method achieves the

efficiency to make reconfiguration decisions.

126

PART E

PART E

Chapter 8: Results

Results

8. Results
The objective of this thesis work is to provide an energy optimization and management

mechanism on video coding applications to extend the battery life. This mechanism includes an

energy estimation model and an energy-aware manager based on the functional-oriented

reconfiguration engine. The functional-oriented reconfiguration, stated in this thesis, is one of the

reconfiguration techniques which is platform-independent and aims to improve system functionalities

or produce new functionalities by re-connecting the existing functional units. In this chapter, the

experimental results, including the validation and evaluation of the model, the verification of the

energy-aware manager implementation and the battery life time extension will be given in three parts:

for the first part, the results related with the selection of PMC events will be firstly presented. Then,

starting with the selected PMC event set, an analysis will be conducted to guide the training data

selection. This guideline will be treated by more tests to prove its capability of improving the model

accuracy. Finally, the overhead of the estimation model will be given to show its real performance;

for the second part, the modifications of the reconfiguration engine to implement the energy-aware

manager will be testes and verified; at last, the potential battery life extension by combining the

estimation model and the energy-aware manager will be shown.

All the experiments are carried out on two embedded platforms, the PandaBoard platform and

the BeagleBoard platform, running a Linux 3.8.0 kernel. In the following parts of the chapter, “PB”

and “BB” are used as the name of each platform. Note that the PB has been patched to add the

performance monitor unit interrupts to support PAPI. Four decoders, the simple profile of the MPEG4

Part 2 decoder, a progressive high profile decoder implementation and a constrained baseline profile

decoder implementation of the MPEG4 advanced video coding standard, and a main profile of the

high efficiency video coding decoder have been considered as the benchmarks. Seventy-eight, forty-

one and seventy-one conformance sequences have been applied to test each standard, respectively.

They are configured with the common test conditions such as different spatial resolutions, frame

combinations, slice types, quantization parameters, frame rates, and entropy coding methods. SP,

CBP, PHP and MP are defined as the short name of each decoder, respectively. More details of the

experiment infrastructure has been introduced in chapter 6.

8.1. Model Validation and Evaluation

To help the energy-aware manager makes the reliable determination on decoder reconfiguration,

an accurate estimation model is necessary. Followed by the methodology described in chapter 3, the

modeling procedure is:

129

Results

 PMC events selection, which uses a PMC-filter to select the more suitable set of events;

 Model fitting, which employs either linear regression or MARS regression to build the

energy estimation model.

Once a model is built, its validation and evaluation are conducted to demonstrate the model

performance. There are two aspects to assess:

 Accuracy assessment, which compares estimation results and measurement results to assess

the model accuracy.

 Efficiency assessment, which merges the estimation model into the decoder to test the

decoder performance decrease.

The results of these four steps will be described in detail in the next sub-sections.

8.1.1. Common Explanations of the Experiments

Before moving into the details about the experimental results, the common explanations will be

given in short.

8.1.1.1. Model Description

The energy estimation model proposed in this paper is expressed in equation 8-1.

 𝐸𝑀 = 𝑃� × 𝑇𝑖 + 𝑓(𝑃𝑀𝐶𝑠) 8-1

The first addend is the baseline energy. Given that either the OS running on the platform or any

of its idle devices always consume a certain amount of energy, it is necessary to set this bottom line as

the product of the system idle power (𝑃�) and the execution time (𝑇𝑖). The second addend in this

equation, the so-called incremental energy, denotes the energy consumption enforced by the system

activity. This term is the one estimated from the observation of the PMC events and its values are

usually much smaller than the ones of the baseline energy. Usually, the modeling procedure needs to

use external power measurement to profile coefficients for each event. Typically, these values are

directly obtained with the hardware measurements. The measurement system has been described in

section 6.3. This measurement system is also used to evaluate the accuracy of the estimation models.

8.1.1.2. Models Relative Errors

The mean absolute percentage error (MAPE), which is the percentage of the difference between

the estimated energy value and the measured value is calculated to visually show the modeling

accuracy as equation 8-2.

130

Results

 𝑀𝐴𝑃𝐸 =
1
𝑛
��

𝑦𝑡 − 𝑦𝑡�
𝑦𝑡

�× 100% =
𝑛

𝑡=1

1
𝑛
�|𝑎𝑡� |
𝑛

𝑡=1

× 100% 8-2

Where 𝑦𝑡 is the measured value, 𝑦𝑡� is the predicted value, and 𝑛 is the number of the fitted

points, i.e., the number of frames of this sequence.

To assess the overall accuracy of each model, the MAPE distribution will be used. It is

calculated as the pseudocode in Figure 8-1. Any test sequence (𝑠𝑒𝑞𝑗) from the benchmark set is

trained to build a model (𝑀𝑜𝑑𝑒𝑙𝑗). The MAPE error (𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗
𝑘), when this model (𝑀𝑜𝑑𝑒𝑙𝑗) is

employed to estimate the energy of each test sequence, will be calculated from the estimation energy

(𝑀𝑜𝑑𝑒𝑙𝑗(𝑠𝑒𝑞𝑘)) and the measured energy (𝑀𝑒𝑎𝑠(𝑠𝑒𝑞𝑘)). Then, all the MAPE errors of this model

will be averaged to present the accuracy of the model, where N is the number of benchmarks. Finally,

𝑁 averaged MAPE errors will be distributed into different error levels. For example, errors lower than

10% is an error level and errors ranging from 10% to 20% is another error level. In this thesis, an

estimation model, whose averaged MAPE error is less than 10%, will be considered to be an accurate

model.

Figure 8-1 Pseudocode to Calculate MAPE Distribution

8.1.2. PMC Events Selection

As discussed before, the set of PMC events is a key point to build a PMC-driven model from two

considerations: modeling overhead and captured application characteristics. Some works [26][27][29]

before used only total number of instructions (TOT_INS) as the only parameter to estimate the energy

consumption. However, this simple model does not show good accuracy when employed for complex

applications. In this subsection, the modeling results from a TOT_INS-based energy estimation model

for a video decoder model running on the PB platform will be shown. PMCs are set to monitor

TOT_INS with the period of decoding one frame. Both, linear and MARS regression methods

 For ∀ seq ∈ {benchmarks}
 𝑀𝑜𝑑𝑒𝑙𝑗 = 𝑓 �𝑃𝑀𝐶𝑠�𝑠𝑒𝑞𝑗��
 For ∀ seq ∈ benchmarks
 𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗

𝑘 = 𝑀𝐴𝑃𝐸(𝑀𝑜𝑑𝑒𝑙𝑗(𝑠𝑒𝑞𝑘),𝑀𝑒𝑎𝑠(𝑠𝑒𝑞𝑘))
 End
 𝐴𝑣𝑔𝐸𝑟𝑟𝑗 = 𝑎𝑣𝑔(∑ 𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗

𝑘𝑁
𝑘=1)

End
Distribution (𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗

𝑘)

131

Results

(described in section 2.2.3) are conducted and four decoders, SP, CBP, PHP, and MP (described in

section 6.5) are employed as the benchmarks. SP, CBP, PHP, and MP are used as their abbreviations,

respectively, for simplicity. Among the encoded sequences of each decoder standard, each one of

them is selected as training data to obtain the model parameters once and the model generated with

these parameters is evaluated by all sequences.

As can be seen in Table 8-1 (a) to (d), model accuracy decreases when the decoder complexity

increases. For the PHP and MP decoders, less than 15% models can achieve the accuracy lower than

10%, which is unacceptable in real applications.

Table 8-1 Average Error Distribution of Models Based on TOT_INS

Table 8-1(a) SP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 7.41 22.22 40.74 18.52 11.11
MARS 14.81 33.33 37.03 7.41 7.41

Table 8-1(b) CBP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 5.26 17.54 36.84 22.82 17.54
MARS 12.28 12.28 19.30 24.56 31.58

Table 8-1(c) PHP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 2.78 11.11 30.56 25.00 30.56
MARS 2.78 8.33 27.78 25.00 36.11

Table 8-1(d) MP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 3.03 6.07 39.39 12.12 39.39
MARS 1.56 6.25 34.38 10.94 46.87

These results are analyzed in the following discussion. In modern processor, the total number of

instructions includes both, issued and replayed instructions. Replaying is a technique which is

employed by multi-threaded processors to avoid stalling the pipeline when a long latency event

occurs. A pipelined processor will continue to issue instructions followed an issued instruction as long

as they do not depend, or their dependencies can be resolved by forwarding results. This mechanism

makes pipeline continuously process instructions, so the instructions will be executed quickly.

However, for complex algorithms, it is more frequent that instructions encounter long latency events,

such as a load operation that generates misses in the cache, a conflict with a shared port or

132

Results

communication among different functional units. In these cases, to allow independent instructions

executing immediately without waiting periods, instruction replay technique solves this problem by

squashing the instructions in the pipeline and beginning the execution of instructions from a different

thread. This will cause problems in the energy estimation. As discussed in section 6.2, PAPI binds its

observation on specific threads. This is to say, those instruction assigned to different threads will not

be counted by the PMC although they are caused by the same application. Thus, to use only the total

instruction count will hide the cases when the long latency occurs. Usually, long latency is always

accompanied by data missing, data unavailability or mis-prediction, which may result in more energy

consumed by this instruction than other immediately completed instructions. Therefore, a model must

be able to capture the energy consumption using the information of various types of events to give a

more accurate prediction. Otherwise the model will not be able to correctly compute the energy

estimation.

Before using the PMC-filter, the correlation threshold, α, to eliminate the weak energy-related

PMC events and the VIF threshold, 𝛽 , to filter the multi-collinear PMC events, need to be set.

Correlation coefficient values in the order of 0.1, 0.3 and 0.5 are experientially considered as weak,

medium and strong, respectively [44]. Similarly to the proposal in [32], the threshold α has been set to

0.5. As a common empirical rule, VIF values larger than 10, from 5 to 10 and less than 5 are usually

considered as belonging to sequences with high, medium and low multicollinearity, respectively. As

far as the energy characteristics concern, the threshold β has been experimentally set to 10. Both two

thresholds are set with the medium values in order to ensure that the retained PMC events capture

most of the energy characteristics of the applications running on the platform.

After the threshold setting, the proper PMC event set needs to be identified. All PMCs sample

the pre-defined events corresponding to the platform along the decoder execution. According to the

Cortex-A9 technical reference manual [177], there are only two PMCs that can be simultaneously

used. To relieve the limitation of the number of events that can be sampled, the multiplexing

technique provided by PAPI is employed. It is needed to point out that this timesharing method causes

a small loss in precision [40].

Table 8-2 Selected Events and functionality

PMC Events Monitor Events Description
TOT_INS Instructions completed
L1_DCM Level 1 Data Cache Miss
HW_INT Hardware interrupts

For the test-bench and video sequences previously described, three platform energy-related PMC

events (See Table 8-2) have been selected following the procedure detailed in section 3.2. The
133

Results

selected events reflect three important energy-consuming activities: processor activity, memory access

and peripheral operations. TOT_INS is proportional to the decoder execution time. It might be

interpreted as the average energy consumption of decoding a frame. A larger value means a longer run

time and a larger amount of required energy. Given the stream-like nature of a decoder, the selection

of the L1_DCM event reflects the fact that the L1 data cache is one of the most active units from the

energy consumption point of view. The selection of this event is reasonable because video decoders

always exert a particular burden on cache due to their high data rates and large sizes. Especially for

the streaming video, data cache performance decreases because the continuous video data obtained

from the network decreases the spatial locality. However, the L1_ICM is not selected because the

decoding algorithms usually consist of tight loops that are repeatedly used. HW_INT is proportional

to the activity of peripherals during the decoder execution. This event is used to capture the activities

outside the CPU and memory domain. It is worth to mention that these HW_INT-based events model

the peripherals activity in a coarse way because it is assumed that every peripheral activity consumes

the same energy. However, the models implemented in this work have an acceptable accuracy

because: 1) the PandaBoard platform is configured as the minimal system which only enables a

minimal set of devices to avoid introducing more complicated issues; 2) the architecture of the

embedded systems are not as complex as the one of the desktop systems, thus the energy consumption

of peripheral activities can be assumed to have the same value.

8.1.3. Modeling Techniques Analysis and Comparison for the PHP Decoder

Use-case

After PMC event selection, next step is to build models based on this PMC event set. Usually, a

modeling procedure is an iterative process which needs to be repeatedly adjusted to determine the

final parameters. Modeling validation and error analysis are the two major steps in the modeling

process. Modeling validation is the first step to assess model performance because the estimation

results will guide the underlying investigation and the prediction ability of a model is the precondition

to provide good answers. Error analysis on the estimation results is carried out to adjust the model

performance. An incisive analysis is the guide to modify modeling assumptions and to shorten the

repeating time of achieving the required accuracy. In the following, the first modeling validation

results, results analysis, and the validation results after model pruning will be orderly presented. All

the results are obtained by running the PHP decoder on the PB platform with the all the sequences

compatible with this decoder.

In general, it is impossible for any quantitative prediction to achieve hundred-percent accuracy.

The estimation error is the deviation from actual values, which determines the estimation accuracy.

To compare the accuracy of the estimation models obtained during the modeling process (potential
134

Results

estimation models), three colors (red, orange and green) are employed to visually represent the MAPE

of each model at three levels: greater than 20%, from 10% to 20%, and less than 10%, respectively.

Each row in Figure 8-2 represents the MAPE for all the sequences, including the training sequence

used to obtain the model parameters, when an estimation model is applied.

 Figure 8-2(a) LR Figure 8-2(b) MARS

Figure 8-2 Average Error

From Figure 8-2, it can be noticed the different accuracy achieved from the potential estimation

models. Surprisingly, as can be seen in Figure 8-2 (a) and Figure 8-2 (b), the more complex MARS

methodology behaves worse than a simple linear regression method. Unlike the previous work [179],

Figure 8-2 (b) indicates that increasing the model complexity does not necessarily imply a gain in

accuracy.

A good model should have similar estimation results on training data and test data. In these

figures, the diagonal line presents the estimation error of each model tested by its training data.

Obviously, the estimation results should be quite good. But not every row in which this point locates

is all in green. In some extreme cases, the rows are almost completely in red. This means that there

are several models that perform quite well during the model training while lost their prediction

abilities with other input sequences, especially for MARS models. This phenomenon is called over-

fitting. Over-fitting usually refers to a model becoming overly complex in order to get consistent

hypothesis while resulting in a poor generalization ability. Usually, there are some reasons to cause

over-fitting:

 Extraction errors of modeling samples (in this case, the PMC samples on the PMC events),

including (but not limited to) too few samples, sampling method errors, not enough

consideration of operational scenarios and characteristics, with the effects that the sample

data cannot effectively represent the behaviors of the response.

 Too large interference of noise data.

 Logical assumptions that made at the model training step are no longer appropriate for the

real practices. Any prediction model is build and applied based on several assumptions.

135

Results

Common assumptions include: historical data can be used to speculate future behavior;

application scenarios and context do not have significant changes, training data is similar to

the application data, and so on. If the above-mentioned assumptions are against to the

situations of the real practices, then, the model based on these assumptions cannot be

applied effectively.

 Too many explanatory variables.

In this experiment, the input data of linear fitting and MARS fitting are the same, and the linear

method shows a relative good predictive capacity, which excludes reasons of accuracy decreased due

to number of explanatory variables and noise interference. Meanwhile, the application scenarios and

context do not significantly change, the modeling data and application data share a certain similarity,

and therefore the third mentioned factor leading to over-fitting can also be excluded. Therefore, the

reason of over-fitting can be attributed to the first factor. Specifically, it is because the training data

cannot represent all the features of the prediction objects.

An example based on PB platform below compares the different estimation results of MARS and

linear regression when they are applied to the data outside the training interval in order to better

understand how the over-fitting phenomenon affects more on the accuracy of piecewise fitting

method. Figure 8-3 shows the histogram of the values of each PMC event for an individual training

sequence (also from the PHP test sequences). MARS method fits its basis functions based on the data

distribution of the training sequence. The two knots 𝑡− and 𝑡+ of the cubic function of each PMC

event are listed in Table 8-3 and marked as red lines in Figure 8-3. As can be seen in the figure, most

of the events belong to the intervals defined by their knots.

Figure 8-3 PMC Value Sequence Histogram

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
x 108

0
20
40
60
80

TOT-INS

0 1 2 3 4 5 6 7 8
x 106

0
20
40
60
80

L1-DCM

N
or

m
al

iz
ed

 C
ou

nt
 [%

]

200 400 600 800 1000 1200 1400
0

20
40
60
80

HW-INT

136

Results

Table 8-3 Basis Function Knots

PMC Events KNOT 𝐭− KNOT 𝒕+
TOT_INS 2.52× 108 4.42× 108
L1_DCM 1.51× 106 4.70 × 106
HW_INT 634.50 1182.50

Figure 8-4 shows the actual energy consumed and the estimated energies drawn from a linear

and a MARS model as a function of the TOT_INS value. As can be seen, when the values of the

TOT_INS event of the test data are located within the interval of the training data values (i.e.,

[2.52 ×108, 4.42 ×108]), the MARS method has a quite good estimation. Since the MARS method is

designed to employ local linear fits, it may adapt too close to its training data and, therefore, to lose its

predictive capabilities when a new data set is involved. Thus, the basis functions responsible of this

behavior produce uncontrolled estimation errors when applied to sequences whose PMC value range

is located far away from the basis function knots.

Figure 8-4 Comparison of the Linear Model and the MARS Model

In fact, over-fitting problem also exists when using the linear method, but is not as serious as in

the MARS method because these two methods are different in how to reflect data trends. Linear

method uses a straight line mapping of the independent variables to the dependent variable and tries to

fit a model based on the statistical properties of the training data to have an overall minimal mean

square error. While MARS introduces the idea of piece-wise accuracy which only considers accurate

if the data fall within the current range. Furthermore, although each basis function of MARS is linear,

0 0.5 1 1.5 2 2.5

x 10
9

-50

0

50

100

150

200

250

300

TOT-INS Events

En
er

gy
 (J

)

Measurement
Linear Estimation
MARS Estimation

Training Data Interval

137

Results

MARS permits one variable to be estimated with several basis functions and the superposition of all

the basis function may eventually present in the form of polynomial. It is not difficult to imagine that

when the actual observations fall outside of the prediction interval, the increase/decrease speed of the

polynomial response will be much greater than that of the linear response. If the current model cannot

correctly reflect the data trend, this will inevitably result in an inaccurate prediction. Therefore,

MARS presents a much worse performance than linear regression when over-fitting exists.

As discussed above, one solution to avoid serious over-fitting phenomena is to employ training

data with more varieties. In order to better understand how to select the training sequences to improve

the model predictability and stability, the conformance video sequences used in this work have been

classified into the following two criteria: the average energy consumption per frame and its

coefficient of variation. It has been shown in [37] that complexity parameters such as frame size and

rate are proportional to the average energy consumption of a sequence. The video decoder behavior is

related to the complexity of the input sequence which could be well reflected by the average

consumption per frame. Therefore, the better the matching between the frame average energy

consumption of the training and test sequences, the better the accuracy. The variation of the frame

energy consumption can be represented by its coefficient of variation (CV) [180], which is a statistical

normalized measure of dispersion. The CV is defined as the ratio of the standard deviation,𝜎 , to

the mean, 𝜇.

Based on the measurement of the energy consumption on the tests carried out using the PHP

decoder, the average frame energy and the CV values are experimentally divided into four groups. For

the former, the groups are the following: {<=0.7J}, {0.7J, 1J}, {1J, 3J} and {>3J} while for the latter,

they are {0, 10%}, {10%, 20%}, {20%, 80%} and {>80%}. Figure 8-5 (a) and (b) show the

maximum and average estimation errors of each of the 16 resulting groups for the linear and MARS

regression methods, respectively. The x and y axis reflect the CV and average frame energy partitions,

respectively. The blue color means that no sequence has been allocated into the partition while the

other three colors have the same meaning as in Figure 8-5 as far as the relative average energy

estimation error concerns.

Figure 8-5 (a) Maximum

138

Results

 Figure 8-5 Average

Figure 8-5 Estimation Error of Each Group

Although the linear regression and MARS regression methods have different performance, one

common observation from Figure 8-5 is that the best models are those whose training sequences have

frame average energy and CV values in the medium intervals. Effectively, the training data used by

both methods must be located in a sufficiently wide interval as not to provide a wrong tendency. For

instance, small CV values represent sequences with relatively stable energy consumption. In other

words, it is very likely that the concerned sequence consists of fewer types of frames. On the other

hand, high CV values represent sequences which include different types of frames. While the former

sequences provide a model that lacks the capacity of capturing the behavior of more complex

sequences, the latter sequences derive models which adapt too closely to the training data which lose

its generalization ability. For the frame average energy values, similar arguments can be reasoned.

The analysis above suggests that the combination of various conformance sequences can have a

better chance to achieve better model accuracy than a single conformance sequence. As a

consequence, new models have been built combining sequences which belong to each resolution

group (QCIF, CIF and HD) and have medium CV values. Models have been tested with all the

combined sequences and the results are shown in Figure 8-6. In this figure, three colors (red, orange

and green) are employed to represent the average relative energy estimation errors at three levels:

greater than 10%, from 10% to 5% and less than 5%, respectively. The maximum and average errors

are detailed in Table 8-4 (a) and Table 8-4 (b), respectively. In these tables, the columns show the

number of models (in percentage) distributed on each of the three level intervals defined above.

139

Results

.
Figure 8-6 (a) LR

Figure 8-6 (b) MARS Average

Figure 8-6 Average Error for Model Based on Combined Training Sequences

Table 8-4 (a) and (a) show clear performance improvements in both modeling methods when

combined training sequences are employed instead of the individual sequences. Besides, the resulting

MARS models are able to obtain more accurate results than those of linear models.

Table 8-4 Error Distribution of Models Based on Combined Training Sequences

Table 8-4 (a) Maximum

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 0.00% 38.75% 41.25% 18.12% 1.88%
MARS 0.00% 45.63% 45.62% 8.75% 0.00%

140

Results

Table 8-4 (b) Average

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 69.37% 26.87% 3.76% 0.00% 0.00%
MARS 83.13% 15.00% 1.87% 0.00% 0.00%

In Figure 8-7, the estimation errors of the linear and MARS regression models trained by the

same combined training sequence, which is one of the combined training sequences used in the

experiment whose results is shown in Figure 8-6, have been compared with more details. Note that the

x axis denotes all the frames of this combined sequence, and the y axis shows the relative estimation

error of each frame. As can be seen, the MARS method provides more accurate estimation than the

linear one. It is worth to point out that all average estimation errors from the MARS model are less

than 6.5%. This is because of the piecewise characteristic of MARS. Since a combined training

sequence captures more decoder behaviors than a single one, an accurate model better represents the

different relationships of the decoder complexities and their energy consumption. These relationships

are determined by the slope of each basis function. Therefore, the MARS model can better match

different decoder behaviors. On the contrary, the linear regression lacks of the predicted capability to

relate the non-linearity to the linearity.

Figure 8-7 LR and MARS Comparison based on One Combined Training Sequence

8.1.4. Modeling techniques Extension

For a deeper evaluation of the model accuracy, the energy consumptions of different decoders

have been estimated. Besides the previously employed PHP decoder, new experiments are conducted

with the SP decoder, the CBP decoder, and the MP decoder. Note that given the memory limitations

of the BeagleBoard, the platform fails to run the CBP, PHP, and MP decoders. Thus, only the

MPEG4Part2@SP decoder is tested on the BeagleBoard and to keep the accuracy analysis, the

PandaBoard has been employed with the SP decoder, the CBP decoder, and the MP decoder.

141

Results

Table 8-5 (a) shows the average distribution of the errors of the energy estimation model when

the SP decoder is used to decode the set the test sequences on the PandaBoard platform. Models that

utilized combined training sequences have good performance with both linear and MARS methods,

i.e., the 95% of the models have an average estimation error smaller than 10%. This SP decoder has

also been tested on the BeagleBoard platform. The test results are summarized in the Table 8-5 (b). In

this case, almost the totality of the models have an average estimation error smaller than 5%. This is

because on one hand, the PMC events available on each platform are different, which leads to the

model has different errors, and on the other hand, the platform with higher complexity (i.e., the

PandaBoard) could be more difficult to obtain its energy estimation model as accurate as the model

for the platform with lower complexity (i.e., the BeagleBoard).

Table 8-5 Average Error Distribution of Models Based on Combined Training Sequence of SP Decoder

Table 8-5 (a) On PandaBoard

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 76.00% 19.58% 4.42% 0.00% 0.00%
MARS 66.78% 28.99% 4.23% 0.00% 0.00%

Table 8-5 (b) On BeagleBoard

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 99.23% 0.77% 0% 0% 0%
MARS 100% 0% 0% 0% 0%

Table 8-6 shows the distribution of the average errors of the energy estimation models when the

CBP decoder is used to decoder the set of test sequences. The two fitting methods, linear and MARS,

can approximately achieve an amount of 90% and 94% of the models with an average relative

estimation error smaller than 10%.

Table 8-6 Average Error Distribution of Models Based on Combined Training Sequences of CBP decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 10.74% 78.52% 10.74% 0.00% 0.00%
MARS 14.05% 79.34% 6.61% 0.00% 0.00%

Most existing energy modeling methods assume a linear model. However, the relation between

power consumption and system statistics is essentially non-linear. The non-linearity introduces errors

when a linear model is used. With high-CV sequences, non-linearity is more serious than in the case

of low-CV sequences. As a piecewise method, the MARS method considers the linearity within each

data interval, therefore, averaging the global errors. For the CBP decoder, the CV values of the video

142

Results

sequences vary over a larger range than those of the PHP decoder (from 4% to 190% in PHP decoder

and from 4% to 310% in CBP decoder). Thus, the linear method almost double the number of models

with an estimation error larger than 10% compare to the MARS method.

Table 8-7 Average Error Distribution of Models Based on Combined Training Sequences of MP decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 39.39% 57.30% 3.31% 0.00% 0.00%
MARS 16.67% 77.78% 5.55% 0.00% 0.00%

Table 8-7 shows the distribution of the average errors of the energy estimation models when the

MP decoder is used. In this case, both linear and MARS methods have similar estimation accuracy.

That is, more than 95% of the models achieve an average error smaller than 10%. Again, this result

also shows the CV values of the video sequences impact the estimation accuracy. In this group, all the

sequences have a moderate variation of their CV values, ranging from 1% to 20%. Thus, although the

linear method has less flexibility than the MARS method, it is still able to capture the sequence

characteristics.

In addition, since the PandaBoard has a multi-core processor, the PMC-based energy estimation

models have also been verified when the decoder is executed using the two cores. Given that the RVC

framework divides the decoder algorithm into several FUs, a proper mapping of the FUs increases the

decoder performance. An example of partitions of the four tested decoders (SP decoder, CBP decoder,

PHP decoder, and MP decoder) is shown in Figure 8-8 (a)-(c), respectively.

Video
Source

Core 1

CavlcExpand
Decode_Residual_Y

Decode_Prediction_Y

Core 2 Decode_Prediction_U

Decode_Residual_U

Decode_Prediction_V

Decode_Residual_V

Merger

Display

Parser

 Figure 8-8 (a) MPEG4 Part 2 SP Figure 8-8(b) MPEG4 Part 10 CBP/PHP

Video
Source

Core 1

InterPrediction

Core 2

Inverse_Quantization

Inverse_Transform

InterPrediction

Merger

Display

Parser

IntraPrediction

SelectCU

CABAC

MVComponentPred

Figure 8-8 (c) MPEG MP

Figure 8-8 Decoder Partition

143

Results

The contribution to the whole energy consumption on each core is defined by the number of FUs

mapped to each core. Thus, to train the sub-model of each core, the dynamic energy model employed

is the one indicated in equation 8-3:

 𝐸𝑀 = 𝑃� × 𝑇𝑖 + 𝐸𝑐1 + 𝐸𝑐2 = 𝑃� × 𝑇𝑖 + 𝑓1(𝑃𝑀𝐶𝑐1) + 𝑓2(𝑃𝑀𝐶𝑐2) 8-3

As the same as equation 8-1, 𝑃� and 𝑇𝑖 denote the system average idle powers and 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑖

execution time, respectively. 𝐸𝑐𝑗 is the estimated incremental energy of 𝐶𝑜𝑟𝑒𝑗. Since the measurement

system takes the measurement for the whole platform, it is needed to divide the measured incremental

energy into two parts, and each core will use one part to train its own model. A share of the total

measured incremental energy is allocated to each core. After several experiments with the decoders,

the weights are experimentally set as 1:6 (C1:C2), i.e., 𝐶𝑜𝑟𝑒1 is assumed to consume one-seventh of

the total incremental energy and 𝐶𝑜𝑟𝑒2 consumes six times more energy. The estimation results are

shown in Table 8-8 (a) to (d).

Table 8-8 Average Error Distribution of Models Based on Combined Training Sequences in Two Cores

Table 8-8 (a) SP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 78.09% 18.43% 3.48% 0.00% 0.00%
MARS 56.37% 39.06% 7.53% 0.00% 0.00%

Table 8-8 (b) CBP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 14.17% 67.08% 18.75% 0.00% 0.00%
MARS 53.75% 37.50% 8.75% 0.00% 0.00%

Table 8-8 (c) PHP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 20.84% 63.78% 15.38% 0.00% 0.00%
MARS 26.68% 68.60% 4.72% 0.00% 0.00%

Table 8-8 (d) MP Decoder

Methods <5% 5%-10% 10%-20% 20%-30% >30%
Linear 92.05% 4.55% 3.40% 0.00% 0.00%
MARS 52.56% 39.10% 8.33% 0.00% 0.00%

As can be seen in these tables, when the complexity of the decoder architecture increases, the

estimation difficulty also increases. Comparing the percentage of the models which have errors less

than 10% in single-core and multi-core modes, the estimation accuracy slightly decreases for the

MARS method in the multi-core mode. However, MARS method can still keep this percentage larger

144

Results

than 90% in all estimation cases. Differently, the modeling performance of the linear method varies

from decoder to decoder. For the simple SP decoder, linear method can keep similar accuracy

compare to its predictive ability in single-core mode. With the increase of the decoder complexities,

the inter-core communication may result in a nonlinear relationship between PMCs and the energy

consumption. Thus, more than 15% of the models based on the linear method have an average error

larger than 10% for the CBP and PHP decoder. It is surprising that for the MP decoder, linear method

has a quite good performance in the multi-core case. One reasonable explanation is that, as an

embedded system, the processing capacity and speed of PandaBoard is limited. To decode a MP

sequence, which has high computational complexity, the system may be saturated what, in turn, could

be expressed as a linear relationship between PMCs and energy consumption.

8.1.5. Model Computation Speed

In this section, the impact of the implementation of the energy estimation model on the decoder

performance is analyzed. The number of decoded frames per second (FPS) is employed as the metric

to reflect the decoder performance. The FPS reduction rate obtained when the decoder implements the

energy estimation model on PB platform is listed in the Table 8-9. The testing video sequences

employed are: hit001 and jvc009 (CIF and QCIF, respectively) for the SP decoder; BA2_Sony_F

(QCIF) and HCBP1_HHI_A (CIF) for CBP and PHP decoders; BQSquare (416x240) and PartyScene

(832x480) for the MP decoder. As can be seen, PMC monitoring and energy estimation have slight

influence on the decoder performance. The largest decoder performance decrease for linear and

MARS are 3.87% and 3.91% when the decoders are executed using one core, and 3.99% and 4.04%

when two cores of PB processor are both enabled for decoding.
Table 8-9 Energy Estimation Impact on FPS (%)

Method
SP CBP PHP MP

QCIF CIF QCIF CIF QCIF CIF QCIF CIF
Linear

Estimation
Single-Core 3.87 2.38 2.58 1.94 1.92 1.83 1.55 1.17
Multi-Core 3.91 2.31 2.18 2.03 2.02 1.94 1.21 1.04

MARS
Estimation

Single-Core 3.99 2.40 2.84 1.98 1.96 1.75 1.60 1.19
Multi-Core 4.04 2.37 2.64 2.03 1.94 1.85 1.60 1.06

In addition, the ratio of the process processing time to the total execution time is used as an

indicator to intuitively show the PMC overhead. The processing time is the CPU time when the

processor executes the decoder thread, which does not count the occupation of the CPU by other

processes and the hardware interrupts. The total execution time is the duration from the decoder start

point to its end point. It includes the processing time, PMC operation time, and other operation time

during the decoder execution such as thread switch and OS system calls which are caused by

145

Results

introducing the PAPI functions. It does not distinguish which event or which process is running on the

CPU.

Figure 8-9 (a) PHP Decoder

Figure 8-9 (b) CBP Decoder

Figure 8-9 Modeling Overhead

In Figure 8-9, it can be seen that the PAPI functions cause extremely little influence on the

decoder performance. The x-axis is the estimation frequency, i.e., to estimate energy every certain

number of frames. And the y-axis is the time (total and processing). It is worth to point out that both

the processing time and the total time vary from one execution to another due to some un-

deterministic issues like operating system interaction, program layout, crossing page boundaries,

unaligned instruction fetches, and hardware interrupts, etc. However, this variation fluctuates within a

narrow range. The numbers shown in the above figures have been averaged by repeating the same

decoder and sequence for 10 times. As can be seen, the processing time concentrates around 132s and

11.4s in two profiles, respectively. The largest modeling overhead happens when the estimation is

carried out at a frame basis, which is 1.34% and 6.50%, respectively. When the estimation frequency

decrease, the overhead also decreases and in both decoders, in the other situations, all the modeling

overhead are lower than 1.50% of the total execution time.

1 5 1520253040 50 75 100 200 1
128

130

132

134

136

138

140

Estimation Frequency

Ti
m

e
(s

)

Total Time
Processing Time

1 5 1520253040 50 75 100 200 1
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

Estimation Frequency

Ti
m

e
(s

)

Total Time
Processing Time

146

Results

Figure 8-10 Model Computing Time Percentage

Above figures show the overall overhead caused by all the operations and interrupts related to

the activity of energy estimation, to evaluate the overhead of modeling computation, a simple method

by inserting time stamps can be used. The steps to do the energy estimation are: (1) Stop the PMCs

sampling; (2) Do the estimation; (3) Start again the PMCs to sample. The time stamp can help to

compute the execution time of these three steps. As shown in Figure 8-10, the computing time in less

than 0.6% even in the worst case, i.e., to do the estimation every frame. Thus, the PMC-based method

would be able to estimate the energy consumption on-line with a small performance cost.

8.2. Verification of the Energy-aware Manager Implementation

Before illustrating how well the energy-aware manager performs on battery life extension, the

implementation of new primitives and the modifications on Jade to implement the energy-aware

manager should be verified. Jade is the reconfiguration engine developed to manage both the

description of ADMs and the connection of VTLs to produce decoders. On-the-fly reconfiguration to

adapt the current energy constraint, ideally, needs a feedback path between the sender and receiver.

The energy-aware manager should extract the information from the bitstream to decide the

corresponding network connection. It has been introduced in chapter 7 that Jade can work at its

scenario mode to execute different events through JSC-formed configuration files. Thus, Jade will

pre-load all the decoder networks listed in the configuration file. Various encoded sequences are pre-

defined to be loaded accordingly to different battery levels to simulate the metadata-based adaption. It

is worth to note that the scenario mode is an emulation of a continuous video streaming decoding. The

following figures will show the event configurations and their execution results. Note that only

important information is captured to directly present the consequences.

1 5 1520253040 50 75 100 200 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimation Frequency

Pe
rc

en
ta

ge
 (%

)

147

Results

Figure 8-11(a) Normal Mode

Figure 8-11 (b) Energy-aware Mode

Figure 8-11Verification on Mode primitive

Figure 8-11 (a) and Figure 8-11(b) show how the “Mode” primitive works. Before loading the

decoder description and starting to decode a video sequence, the mode event is defined for the work

mode. As can be seen in Figure 8-11 (a), if the normal mode is selected, Jade will enable neither the

energy estimation nor the energy-aware manager and will not interfere on the decoding process once a

decoder is started. The decoder continuously decodes the video sequence until it is finished. Instead,

in the case shown in Figure 8-11(b), the energy-aware mode is enabled and the video manager

initiates the PMCs. As a result, an estimation of the consumption of each frame is obtained. The

remaining battery capacity is thus estimated.

Work Mode Selection

Load Decoder Description

Start Decoder

Work Mode Selection

Load Decoder Description

Start Decoder

Start PMC Events

148

Results

Figure 8-12 Verification on Energy Disable primitive

Figure 8-13 Verification on Energy Enable primitive

Figure 8-12 and Figure 8-13 show the proper results of the “EnegyDisable” and

“EnergyEnable” primitives, respectively. “EnegyDisable” is used to disable the energy-aware mode.

As can be seen in Figure 8-12, although the video manager is set to work at the energy-aware mode,

the “EnegyDisable” event can still configure it to work in normal mode. A similar result can also be

seen in Figure 8-13 to enable the energy-aware mode after executing the “Mode” event.

Figure 8-14 and Figure 8-15 will generally illustrate how the energy-aware manager controls

the decoding process. Note that in the JSC-formed configuration files, the parameter “id” of “Load”

Work Mode Selection

Load Decoder Description

Disable Energy-aware Mode

Start Decoder

Work Mode Selection

Load Decoder Description

Start Decoder

Start PMC Events

Enable Energy-aware Mode

149

Results

event is the identifier of the decoder description and it will be passed to the “Start” event to define

which decoder is executed.

Figure 8-14 Verification on Reconfiguration Control Part 1

Low-battery state is achieved after a long time decoding period. As can be seen in Figure 8-14,

the energy-aware mode is disabled, and thus the complete execution of the sequence decoding is

accorded to the JSC-formed configuration file, i.e., only the decoder with “id” 1 is executed.

Differently, Figure 8-15 shows the decoding control under the energy-aware mode.

Work Mode Selection

Load Decoder Description

Disenable Energy-aware Mode

Load Decoder Description

Start Decoder

Start Decoder

Start Decoder

Start Decoder

150

Results

Figure 8-15 Verification on Reconfiguration Control Part 2

In this case, as can be seen in Figure 8-15, the decoder has been reconfigured by Jade once the

battery capacity is detected lower than the current threshold. Four thresholds, 250J, 100J, 40J, and

0.2J, are pre-defined here as examples. Note that the total battery capacity can be set to any value

through the battery emulator. At the full battery stage, the configuration file specifies that the decoder

with id 1, i.e., the PHP decoder, is the one to be employed. As can be seen in Figure 8-15, the printed

message shows that this decoder is started. Once the remaining battery is lower than the first

threshold, the decoding process will stop and the energy-aware manager will inform Jade to

Start Decoder

Start PMC Events

Enable Energy-aware Mode

Start Decoder

Start PMC Events

NOTE

Start Decoder

Start PMC Events

Start Decoder

Start PMC Events

NOTE

NOTE

151

Results

reconfigure a new decoder with another id, which is calculated by the management metric. In this

example, the new decoder with id 2 is selected, i.e., the CBP decoder. Please note the blue arrows in

Figure 8-15. Here is the difference between the configuration file and a real execution. The

configuration file defines only to use the PHP decoder, while the energy-aware manager controls to

use the CBP decoder. Two more reconfigurations occur when it is detected that the battery level is

below the other two thresholds.

8.3. Battery life Extension

Since the energy estimation model has demonstrated its accuracy on different decoders and the

functionality of the energy-aware manager has been verified, to include them into the RVC

framework for energy saving appears feasible. Experiments to show the battery life extension have

been conducted on the PB.

8.3.1. Experiment on Decoder Reconfiguration

Previous analysis [178] has reported that the HEVC standard may increase the complexity by

up a factor of two compared with the AVC/H.264 standard. Thus, an AVC/H.264 decoder could be a

good candidate when the remaining battery level falls below a certain threshold. In the first

experiment, the PHP decoder and the CBP decoder are employed to test the energy improvement by

changing the decoder description. The MP, PHP and CBP decoders are switched between each other

based on an energy-aware management decision.

With the same energy budget (i.e., 3600 Joules, in this experiment) set by the battery emulator,

a clear playback extension is shown in Figure 8-16, when Jade runs in the energy-aware mode. The

black solid line denotes the pre-defined energy threshold, and in this case, it represents one third of

the total energy budget (i.e., 1200 Joules). The other three red-plus, green-point, and blue-diamond

lines illustrate how Jade operates in normal mode and two energy-aware modes, respectively. In all

cases, encoding parameters such as the quantization parameter (QP) and resolution have been adjusted

to run the test with similar quality. The turning point in the plot corresponds to the situation in which

the remaining battery level is detected at less than the predefined threshold. In all three test cases, the

energy is consumed at the same rate before the turning point. Without any energy considerations, Jade

continues running the same decoder (MP), and the battery runs out at 1448s. In the energy-aware

mode, two reconfiguration decisions were tested. The green-point line shows the battery life extension

created by switching from a MP decoder to a less energy-consuming decoder, i.e., the PHP profile of

H.264/AVC standard. In this situation, the battery lasts for 1656s, an increase of a 14.4% with respect

to the previous operational time. The blue-diamond line provides another energy-saving possibility by

152

Results

reconfiguring the decoder to the CBP profile. The battery runs out at 1764s, which achieves an

increase of a 21.8% in the operational time compared with that of the MP decoder. In the two energy-

aware cases, the potential for energy efficiency improvement has been achieved by reconfiguring the

HEVC decoder to become the H.264/AVC one. Additionally, the result also shows a 6.5% (from

1656s to 1764s) increase of the playback time when Jade uses the CBP profile instead of the PHP

profile during the reconfiguration. This is because the PHP decoder has relatively high compression

ability and supports higher quality applications than the CBP decoder, at the expense of a large

amount of energy consumption.

Figure 8-16 Energy Efficiency Improvement by Reconfiguration

8.3.2. Experiment on Coding Parameter Change

One of the goals of this work is to achieve energy efficiency improvement via decoder

reconfiguration. However, in point-to-point or broadcasting scenario, the energy-aware manager

might take the decision to choose a battery lifetime extension by informing the encoder to reconfigure

its encoding parameters. When the energy-aware manager detects a low-battery state, it will message

the encoder to encode the raw data with less complexity. The block diagram of a simplified diagram

of a video encoder/decoder is shown in Figure 8-17.

Figure 8-17 MPEG Codec Algorithm

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

3500

4000

Battery Lasting Time (s)

R
em

ai
ni

ng
 E

ne
rg

y
(J

)

Battery Threshold
Normal Mode
Energy-aware Mode1
Energy-aware Mode2

Low Battery Point

Encoder

Raw data
from Device

Motion
Estimation DCT Q Variable

Length Coding

DeQIDCTMotion
Compensation

Decoder

Write to
Device

Transmission

153

Results

As can be seen, decoding is a reverse processing of encoding, thus, the energy consumption of

the decoder is affected by the way the encoder performs on video data compression. An example of

influence on computational complexity by encoding with different algorithms has been partly shown

in section 5.2.2. More details about factors that impact on the sequence quality and encode/decode

efficiency are listed below:

 The period of the I frames, i.e. the distance between the two I frames. Decreasing the period

of I frames will improve the objective video quality, but it will also increase the network

load.

 Number of P and B frames. The encoding/decoding of P and B frames introduces more

computational load, regarding to the encoding/decoding of I frames. As an example, if the P

to I frame ratio is increased, more energy will be consumed in both, the encoding and the

decoding process, because I frames do not require motion estimation and compensation as P

frames do.

 Data Rate. It is one of the most important elements to control the image quality. Generally

speaking, with the same resolution, the larger data rate, the lower compression rate.

 Resolution. Both, spatial and temporal resolutions are primary factors in determining data

rate. General speaking, a higher resolution requires a higher encoding/decoding workload as

well as more energy.

 Quantization Parameter (QP). QP is one of the most important encoding parameters. QP has

very much influence on the image quality. As an example, in work [132], a decrement on

the QP from 32 to 27 produces a 3dB increment on the PSNR (Peak Signal to Noise Ratio),

approximately. In addition, the lower QP value also results in higher energy consumption.

 Entropy Coding. Different entropy encoding/decoding schemes will introduce different

computational complexity and energy consumption. As an example, the H.264/AVC

standard defines two kinds of entropy coding: CABAC and CAVLC. CABAC is a lossless

encoding which provides good quality. CAVLC uses less CPU resources, but it affects the

image quality. Note that if the entropy coding is changed, the decoder needs to be

reconfigured.

Note that factors listed above include two kinds of impact issues. One is the encoding algorithm

(entropy coding) and the other one is the coding parameters (all the factors except entropy coding). In

this case, the energy-aware manager could inform the encoder when and how to adjust and optimize

the parameters or encoding tools to meet the energy constraints. Note that if the encoder changes the

coding parameters, the decoder does not need to be reconfigured. The following two experiments are

conducted by changing the coding algorithm and coding parameter, respectively, when the energy-

aware manager detects the low battery states.
154

Results

Figure 8-18 shows the energy savings created by changing the QP parameters of a PHP-

supported sequence under the same experimental environment as the previous one in section 8.3.1.

The red-plus and green-point lines show how energy is consumed when the video stream is encoded

with two different QP parameters, respectively. By increasing the QP value from 27 to 32, the

playback time is extended from 1426s to 1623s, i.e., a 12.1% improvement.

Figure 8-18 Energy Efficiency Improvement by Changing the QP

A proper selection and adaption of encoding parameters may have a moderate influence on

energy consumption. Since a decoder is a connection of various functional units, both a combination

of FUs replacing and parameter adaption could achieve more efficiency on battery lifetime extension.

8.4. Conclusion

This chapter assesses the thesis proposal, which is an energy management and optimization

mechanism including an energy estimation model and an energy-aware manager based on a

functional-oriented reconfiguration engine, namely jade.

The energy estimation model for decoders has been first validated and evaluated with a set of

selected PMC events on the PB platform. Conducting an analysis on this result, a suggestion to select

training data to achieve more accurate models is introduced. This suggested method is repeated on the

PB and BB platforms. All the results show good accuracy following the guide of training data

selection, i.e., more than 90% of the models achieve an average error smaller than 10%, especially

when using the MARS fitting method. In addition, the overhead of PMC monitoring and energy

estimation is proven to have slight influence on the decoder performance. Based on the accurate

energy estimation model, the energy-aware manager is able to potentially save energy consumption

during the decoder execution. The modifications of Jade to include the energy-aware manager are first

tested and verified. Results show that Jade can correctly respond under the different test cases. As a

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

3500

4000

Battery Lasting Time (s)

R
em

ai
ni

ng
 E

ne
rg

y
(J

)

Battery Threshold
QP=27
QP=37

Low Battery Point

155

Results

consequence, by combining the estimation model and the energy-aware manager into the RVC

framework, the experimental results show a good potential of energy efficiency improvement with

increases of about 14.4%, 21.8%, and 12.1%, respectively in three different test cases.

156

PART F

PART F

Chapter 9: Conclusion and Future Work

Conclusion and Future Work

9. Conclusion and Future Work
The capabilities of wireless mobile devices have been growing on full-scale except for their

energy source, the battery, which has experienced a relatively slow development. Therefore, it has

been a critical issue to optimally use the limited battery energy under certain performance

requirements and quality of service. This thesis work has focused on the energy optimization and

management mechanism for video decoding applications based on functional-oriented reconfiguration

to reduce their energy consumption, and thus, to extend the battery lifetime. The functional-oriented

reconfiguration is one of the reconfiguration techniques which is platform-independent and aims to

improve system functionalities or produce new functionalities by re-connecting the existing functional

units. An energy estimation model and an energy-aware manager have been implemented to support

the energy consumption control. The obtained results show a good potential to increase the battery life

time. In this chapter, a conclusion of the thesis work and future research direction will be drawn.

9.1. Conclusion

9.1.1. Motivation and Results of the Proposed Energy Optimization and

Management Mechanism

Along with the great developments of semiconductor and wireless communication technologies,

mobile devices such as Smartphones and tablets have been blended into people's daily life and

promote a great progress on multimedia utilization. Video streaming playback decoders, which

occupy a large percentage of multimedia applications, have been mainly designed to optimize the

decoding speed during a long time. However, the usefulness of mobile devices is severely limited by

the battery capacity which is far behind of the devices demands. Battery lifetime is an important factor

to assess user's satisfaction on a mobile device. A failure to guarantee the user desired lifetime can

significantly degrade the user experience on a product, and make it unacceptable.

Motivated by the energy constraints, the research interests have been shifted from pursuing

maximum performance to tradeoff between energy and performance for energy saving. For the

streaming applications which usually execute for long periods, energy-saving is especially important.

This thesis has addressed this problem with the goal of reducing the energy consumption. A technique

for energy optimization and management through the functional-oriented reconfiguration of video

decoders has been proposed. Reconfigurable video is a new design philosophy based on data flow and

parallelism. It aims to provide a uniform framework to facilitate the design of next generation video

codecs and the consistency of encoders and decoders among various coding standards. Unlike

traditional monolithic designs, reconfigurable video designs are able to replace or add functional units
159

Conclusion and Future Work

without disorganizing the whole decoder network and thus it is proved to be a flexible technique to

satisfy various user demands. Reconfigurable video design leads to a new direction for energy

optimization on video streaming applications. One of the contributions of this dissertation to the state-

of-the-art in energy-aware design on video coding is to introduce reconfiguration to the energy saving

field to provide a flexible solution without specific details from either the hardware platform or the

used coding standards. In this work, video decoders are implemented through the reconfigurable video

coding (RVC) standard which allows connecting functional units from video tool libraries (VTLs) to

form a complete video decoder. This framework allows a high degree of flexibility and scalability as

the encoders and decoders can dynamically adapt themselves based on both the current battery

capacity and user preferences to achieve a better utilization of the limited energy in multimedia

applications.

The proposed energy optimization and management mechanism is implemented at the decoder

end. It consists of an energy-aware manager implemented as an additional unit of the reconfiguration

engine, an energy estimation model, and if available, a feedback channel connected to the encoder

end. The reconfiguration engine is a tool to reconfigure the decoders. During video streaming

playback, the energy-aware manager estimates the battery lasting time based on the monitored battery

level and the predicted energy-consuming rate from the energy estimation model. Once it is detected

that the remaining battery is not sufficient for user desirable lasting time, it will inform the

reconfiguration engine to reconfigure the decoder for consuming less energy. If the feedback channel

from the decoder to the encoder is available, the manager can inform the encoder unit to change either

the encoding parameters or the encoding algorithms for energy-saving adaption.

Although the ultimate objective of energy saving is achieved by efficiently switching the decoder

implementation, how and when to reconfigure the decoder for energy consumption adaption is

extremely important. Considering that a model to estimate the energy consumption is very helpful to

lead to elegant and correct energy management decisions, this work has launched an accurate and

practical energy estimation model for the CPU, memory, and basic processor peripherals based on the

use of PMCs. In most modern processors, PMCs are implemented as special-purpose registers to

monitor the occurrences of several events such as the cache miss and hardware interrupt and can be

managed by high-level tools. Although the PMC-based modeling technique has been widely used in

many research works, a departure from previous researches in this thesis work is to propose a

methodology for PMC events selection without manual intervention, which supports multiple

hardware platforms and video coding standards. In particular, a PMC-filter is implemented to

automate the selection of the most appropriate PMC events that affect energy consumption and reflect

the energy behavior of applications. Furthermore, a detailed study on the influence of the training data

160

Conclusion and Future Work

on model accuracy has been presented for better model building. The modeling methodology has been

evaluated on different underlying platforms, single-core and multi-core, and different characteristics

of workload, including the use of MPEG4 Part2 SP, MPEG4 Part10 CBP, MPEG4 Part10 PHP and

MPEG HEVC decoders. All the results show a good accuracy and low on-line computation overhead.

Besides the energy estimation model, an energy-aware manager has been implemented to take

the charge of the energy consumption control. How to choose the proper decoder for reconfiguration

when the low battery situation occurs is the main challenge to design the management metrics of the

energy-aware manager. A good decision should comprehensively consider the decoder computational

complexity, the image quality, and the desirable battery lasting time. In this work, this decision has

been simplified. To choose a new decoder, only the computational complexity has been considered. In

addition, both new events of the reconfiguration engine and the required modifications on the engine

to implement the energy-aware manager have been implemented. The reconfiguration engine provides

three usage modes to implement a decoder, namely command line, console, and scenario mode. The

scenario mode is the most powerful one to manage decoder configuration and execution. In this mode,

the engine uses pre-defined XML events to manage the decoder configuration and execution. Three

events, namely "Mode", "Enable", and "Disable", have been added to enable the energy-aware

manager for energy optimization and management. The modifications on the reconfiguration engine

focus on the communication between the engine and the decoder. A signal-based inter-process

communication scheme and a shared-memory scheme have been implemented to communicate and

pass data between them, respectively. These implementations have been verified to test the engine

correctly responds to the reconfiguration decisions made by the energy-aware manager under the

different test cases.

Integration of the energy estimation model into the RVC framework along with the energy-aware

manager included in the reconfiguration engine achieves easy and flexible reconfiguration

management for the energy saving criteria. The experimental results indicate a possibility to lengthen

the battery lifetime in three energy-aware test cases: reconfiguring the HEVC decoder to a PHP or a

CBP H.264/AVC decoder, and adjusting the QP coding parameters. The experimental results carried

out on different test cases show a good performance of the proposed energy-aware optimization

mechanism, which allows significant increases in the battery lifetime by functional reconfiguring the

decoders.

161

Conclusion and Future Work

9.1.2. Exploitation of Implementing the Modeling Method on FPGA

Systems

On the GPP-based embedded systems, the information provided by PMC events works as a

profiler of the system behavior. However, FPGA systems may require a more hardware-aware

profiler. Some contributions have been achieved in works [169] [170]. The University of Toronto has

implemented a snooping software profiler to count the total number of cycles during an application

execution [169]. In this work, they have developed an on-chip, real time, FPGA-based profiler,

Airwolf, for the Nios II processor to be synthesized on Altera FPGAs. Airwolf works similarly as

PAPI. It inserts software drivers around the software functional blocks to enable or disable particular

counters implemented in Airwolf. These FPGA-based profiling tools have similar functionalities as

PMCs embedded processors or general purpose processors. They can be considered as a proxy of the

system behavior and used to estimate the system energy consumption. Therefore, the PMC-based

modeling methodology is also applicable to the FPGA systems with their profiler tools.

In addition, in spite of the fact that the PAPI-based implementation of the proposed methodology

addresses software solutions, the scope of the PMC-based energy estimation methodology could be

enlarged to drive hardware-based RVC tools and methodologies such as the dynamic partial

reconfiguration (DPR) of FPGA [181] or the multi-dataflow composer tool (MDC) [182]. Effectively,

to achieve run-time hardware reconfiguration, the MDC tool assembles several specifications and

inserts multiplexers to switch the data-flow through a shared set of actors, while the DPR permits the

reconfiguration of specific parts of an FPGA. To exploit the proposed methodology, tools to directly

insert specific PMCs into hardware description language (HDL) specifications exist [183]. Once

PMCs are inserted and the generated HDL code is synthesized, neither multiplexer selection nor

partial reconfiguration prevents the event count gathering to obtain the energy estimations.

9.1.3. Publications

Journals:
 R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “Energy-Aware decoder management:

a case study on RVC-CAL specification based on just-in-time adaptive decoder engine,” IEEE Trans.

on Consumer Electronics, vol. 60, no.3, pp. 499-507, Aug. 2014.

 J. Wei, R. Ren, E. Juarez and F. Pescador, “A Linux Implementation of the Energy-based

Fair Queuing Scheduling Algorithm for Battery-limited Mobile Systems,” IEEE Trans. on Consumer

Electronics, vol. 60, no.3, pp.267-275, May 2014.

 R. Ren, J. Wei, E. Juárez, M. Garrido, C. Sanz and F. Pescador, “A PMC-driven

methodology for energy estimation in RVC-CAL video codec specifications,” Signal Processing:
162

Conclusion and Future Work

Image Communication, vol. 28, no. 10, pp. 1303–1314, Nov. 2013.

Conferences:
 R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “Energy-Aware Decoders: a Case

Study Based on an RVC-CAL Specification,” Conf. on Design and Architectures for Signal and

Image Processing, Oct. 2014.

 R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “On-line Energy Estimation Model of

an RVC-CAL HEVC Decoder,” pp.63-64, Int. Conf. on Consumer Electronics, Jan.2014.

 R. Ren, E. Juárez, C. Sanz and F. Pescador, “On-line Energy Estimation Methodology for

RVC-CAL Video Codec Specifications,” Conf. on Design of Circuits and Integrated Systems,

Nov.2013.

 R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “System-Level PMC-driven Energy

Estimation Models in RVC-CAL Video Codec Specifications,” Conf. on Design and Architectures for

Signal and Image Processing , pp.55-62, Oct.2013.

 R. Ren, E. Juárez, F. Pescador and C. Sanz, “A Stable High-Level Energy Estimation

Methodology for Battery-Powered Embedded Systems,” IEEE Int. Symp. on Consumer Electronics ,

pp.1-3, Jun. 2012.

MPEG Meetings:
 R. Ren, E. Juárez, M. Raulet, J.G. Wei, M. Garrido et al, m33115: Energy-aware

Reconfiguration based on a Just-im-Time Adaptive Decoder Engine (JADE). ISO/IEC

JTC1/SC29/WG11, 108th MPEG Meeting Document Register, Mar.-Apr. 2014.

 E. Juárez, R. Ren, M. Raulet, J. G. Wei, M. Garrido et al, m31243: Performance Monitoring

for Energy Estimation in RVC-CAL Description. ISO/IEC JTC1/SC29/WG11, 106th MPEG Meeting

Document Register, Oct.-Nov. 2013.

 E. Juárez, R. Ren, J. G. Wei, M. Raulet, M. Garrido et al, m28171: Proposal of a Decoder

Energy Management Scheme with RVC. ISO/IEC JTC1/SC29/WG11, 103th MPEG Meeting

Document Register, Jan. 2013.

 E. Juárez, R. Ren, J. G. Wei, M. Raulet, M. Garrido et al, m25903: RVC Inverse Transform

FU for HEVC. ISO/IEC JTC1/SC29/WG11, 101st MPEG Meeting Document Register, Jul. 2012.

9.2. Future Work

As proposed in this thesis, to efficiently extend the battery lifetime through the energy

optimization and management, two aspects, first, the accurate estimations on energy consuming rates

and remain battery capacities and, second, the appropriate reconfiguration decisions are required. The

future work will be focused on these two aspects.
163

Conclusion and Future Work

From the accuracy point of view, first of all, a system-wide energy estimation model is needed.

The test cases considered in this thesis have been carried out using two embedded platforms without

the consideration on processer, memory and peripheral units. As discussed in the work [168], the

hardware performance information is not only available on processors, but also scattered at the whole

platform. For example, other important components such as the graphics processing unit, the memory

interface and the network interface also have hardware to monitor various events that can supply

information about the system performance. This kind of counters will provide additional information

to include into the energy model for a heterogeneous system. The third-party tool, PAPI, used in this

methodology, is able to extend the utilization of the modeling methodology. A branch of the PAPI

tool, named as the component branch (or PAPI-C), has been designed to count events beyond the

CPU. PAPI-C applies APIs to configure and count events related to other components such as

network or memory controllers, power or temperature monitors or even specific processing units. In

the energy estimation model introduced in this paper, an event which records the number of hardware

interrupts is employed to include the information related to with the energy consumption on the

peripherals. This event gives the model a general system-wide estimation not only limited to the CPU

and memory components. However, more specific models can be individually built with more

component details. Moreover, the battery discharging characteristics and a precise battery discharging

model under different thermal conditions still need an exhaustive investigation to give a more

accurate estimation on the remaining battery level.

From the management point of view, as a first step on battery life extension based on

reconfiguration, the energy-aware manager in this thesis only considers the reduction on the

computational complexity to save energy when it makes the reconfiguration decisions. However, the

problem can be extended in various directions. Image quality and network delay are two QoS

requirements for user satisfaction on streaming applications. To provide a low-distortion and high

compression ratio decoder, high computational complexities are needed. In turn, this leads to high

energy consumption, which is against the original intention of the energy-aware manager. These three

issues, the compression ratio of the video data, the video quality, and the battery life time are mutually

restrained. Thus, to achieve satisfactory battery life time both, video quality adaption and network

transmission adaption, should be taken into account. The energy-aware manager should

comprehensively consider how to balance the computational complexity, the network bit-rate

constraint, and the distortion of multimedia delivery. This tradeoff depends on the relationship and

interaction between computational and channel parameters, thus, it is worth to do research on

management metrics allowing to built a more complete management metric which jointly selects

video source parameters and channel parameters based on the video content characteristics, available

network resources, underlying network conditions and user preferences. In addition, the energy-aware

164

Conclusion and Future Work

manager can include other low-power design methods such as dynamic voltage and frequency scaling

for further energy reduction.

As described above, the management point will be the heart of the future research. It

comprehensively considers different elements to provide more efficient and practical energy

management strategies.

165

Appendix A: Introduction of Battery Emulator Usage

Appendix A: Introduction of Battery Emulator
Usage

Figure 6-9 Figure- 1, the Graphical User Interface (GUI) of the battery emulator and Figure-

2, the DLOG graph for current and voltage observations, are two mainly used interface used for

taking the measurements. The usage is described following:

Figure- 1 GUI of the Battery Emulator and Simulator [157]

 Icon 1: To load the reference curve. First, enter the period used to sample the reference

curve of the battery state of charge, e.g., 200ms, and then press the button 'LOAD' to load

the curve.

 Icon 2: To calculate the battery model. Enter the degree of the polynomial reference curve

and then press the button 'CALCULATE' to calculate the model. Depending on the

introduced degree, the model accuracy is visually shown and the higher the degree, the more

precise the model will be. The range of degree is set between 2 and 10 in this emulator.

 Icon 3: To introduce the battery parameters. This interface is used to set the battery internal

resistance (bottom), the initial state of the battery (middle) and the maximum current that

the battery can deliver (top). The capacity of the battery is not introduced because it has

already been obtained from the reference curve.

 Icon 4: To choose the usage mode. If the simulation mode is enable, the program will

emulate the behavior of the battery according to the values of the current that is introduced

through controlling the 'discharge current' slider (bottom). If the simulation is disable, the

167

Appendix A: Introduction of Battery Emulator Usage
program will emulate the behavior of the battery according to samples of the actual current

measured by the power supply.

 Icon 5: Graphical preview. The reference graph appears in blue in this chart and the battery

model is shown in red.

 Icon 6: Battery charge indicator. Indicates the charge status of the battery and the remaining

lifetime according to the current consumed at this moment.

 Icon 7: Emulation control buttons. Press 'PLAY' to start the battery emulator, press 'PAUSE'

to temporarily stop it and press this button again to continue, press 'STOP' to stop the

simulation.

 Icon 8: Function buttons. Press 'EXIT' to close the program, press 'DLOG' to switch the

window of the graph of current and voltage evolution and press 'CCDF' to show the

cumulative distribution of the current.

 Icon 9: Power supply control. Choose from the pull-down list the connect port of the power

supply. Make sure that the power supply is switched on and the driver of National

Instruments is enable. Enter the current sample period for current and voltage sampling.

Figure- 2 Graph of the Current and Voltage Evolution [157]

 Icon 1: Graphical representation. There are three axes in this graph: voltage axis (left), time

axis (bottom) and current axis (right). Three different curves are presented in the graph. The

“Active curve” (voltage is shown in blue and current is in red) is the one being measured. In

addition, two reference curves can be loaded trough the “Open curve” button located at the

top-right corner in this window. Current sampling curve can also be saved into a text file
168

Appendix A: Introduction of Battery Emulator Usage
trough the “Save curve” button.

 Icon 2: Curve information indicator. These tables indicate the minimum, average, and

maximum of current, voltage and power of the active curve and the two reference curves,

respectively.

 Icon 3: Graph control. Three pull-down lists can control the scale of the axes of voltage

(mV/div), time (HMS/vid) and current (mA/div), respectively. The “Markers” button opens

a pop-up window with additional information between two markers (X1 and X2). There is

also an indicator of the mouse position which is given by the coordinate of three axes.

 Icon 4: Curve button. Three buttons are used to load two reference curves button and to save

the current curve.

 Icon 5: Pop-up window shows the battery capacity, energy consumption and remain battery

between X1 and X2 markers for each curve.

 Icon 6: Button to return the initial window.

169

javascript:void(0);

References

References
[1]. D.D. Sheldon, “How the Internet Has Revolutionized Video Marketing,” A Senior Thesis Submitted in
Partial Fulfillment of the Requirements for Graduation in the Honors Program Liberty University, Fall 2013.
[2]. Cisco report, “Cisco Visual Networking Index: Forecast and Methodology 2010-2015.”
[3]. ComScore whitepaper, “The 2013 Europe Digital Year in Review”.
[4]. ComScore whitepaper, “The 2013 US Digital Year in Review”.
[5]. R. B. Mamatha and N. Keshaveni, “Comparative Study of Video Compression Techniques-H.264/AVC,”
Int. Journal of Advanced Research in Computer Science and Software Engineering, vol.4, no.11, pp. 874-877,
2014.
[6]. A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” Proc. of the 2010
USENIX Conf.on USENIX annual technical Conf, 2010.
[7]. G. P. Perrucci, F. H. P Fitzek, and J. Widmer, “Survey on Energy Consumption Entities on the
Smartphone Plarform,” IEEE 73rd Vehicular Technology Conf, pp.1-6, May 15-18, 2011.
[8]. S. Kim, H. Kim, J. Hwang, J. Lee, and E. Seo, “An event-driven power management scheme for mobile
consumer electronics,” IEEE Trans. Consumer Electron., vol. 59, no.1, pp. 259-266, Feb. 2013.
[9]. B. Li, and S. Park, “Energy efficient burst scheduling in mobile TV services,” IEEE Trans. Consumer
Electron., vol. 59, no.1, pp. 24-30, Feb. 2013.
[10]. I. Richardson, M. Bystrom, S. Kannangara and M.F. Lopez, “Dynamic Configuration: Beyond Video
Coding Standards”, in Proc. IEEE Int. Conf.on System n Chip, Sept, 2008.
[11]. J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D. Kuo, “Biomechanical Energy
Harvesting: Generating Electricity During Walking with Minimal User Effort,” Journal of Science, vol.319,
no.5864, pp. 807-810, 2008.
[12]. V. Tiwari, S. Malik and A. Wolfe, “Power Analysis of Embedded Software: A First Step Towards
Software Power Minimization”, IEEE Trans on VLSI Systems, vol.2, no.4, pp. 437-445, Dec. 1994.
[13]. V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee, “Instruction Level Power Analysis and Optimization of
Software,” Journal of VLSI Signal Processing, vol.13, no.2, pp. 1-18, 1996.
[14]. M. T. C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and Minimization Techniques for
Embedded DSP Software”, IEEE Trans. on VLSI Systems, pp. 123-135, bol.5, no.1, 1997.
[15]. B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling inter-instruction energy effects in a
digital signal processor,” in Proc. of the Power Driven Microarchitecture Workshop in Conjunction with the 25th
Int. Symp. Computer Architecture, June 27-July 1, 1998.
[16]. A. Sama, J. F. M. Theeuwen, and M. Balakrishnan, “Speeding up power estimation of embedded
software,” in Proc. of the Int. Symp. on Low Power Electronics and Design, pp. 191–196, 2000.
[17]. N. Julien, J. Laurent, E. Senn and E Martin, “Power consumption modeling and characterization of the TI
C6201”, IEEE Micro, vol.23, no.5, pp.40-49, Sept-Oct, 2003.
[18]. J.Laurent, N.Julien, E. Senn, E. Martion, “Functional level power analysis: An efficient approach for
modeling the power consumption of complex processor”, Proc. of the Conf.on Design, automation and test in
Europe, vol.1, pp.10666, Feb.2004.
[19]. E. Senn, J.Laurent, N. Julien and E. Martin, “SoftExplorer: Estimation, characterization and optimization
of the Power and Energy Consumption at the Algorithmic Level”, IEEE power and timing modeling,
optimization and simulation, 2004.
[20]. E. Senn, D. Chillet, O. Zendra, C. Belleudy, S. Bilavarn and et al., “Open-People: Open Power and
Energy Optimization Platform and Estimator”, Euromicro Conf.on Digital System Design, pp.668-675, Sep.
2012.
[21]. T. Li, and L. K. John, “Run- time Modeling and Estimation of Operating System Power Consumption”,
In Proc. of the ACM SIGMETRICS Int. Conf.on Measurement and modeling of computer systems,pp160-171,
vol.31, no.1, June 2003.
[22]. G. González, E. Juárez, J. J. Castro and C. Sanz, “Energy Consumption Estimation of an OMAP-Based
Android Operating System”, VLSI Circuits and systems Conf, pp.18-20, Apr.2011.

171

References

[23]. L. Benini, R. Hodgson, and P. Siegel, “System-level Power Estimation and Optimization”, Proc. of the
1998 Int. Symp. on low power electronics and design, pp.173-178, Aug. 1998.
[24]. L. Benini, and G. Micheli, “System-Level Power Optimization: Techniques and Tools”, ACM Trans. on
design automation of electronic systems, vol.5, no.2, Apr.2000.
[25]. D. Sunwoo, H. Al-Sukhni, J. Holt and D. Chiou, “Early Models for System-level Power Estimation”, 8th
Int. Workshop on Microprocessor Test and Verification, 2007.
[26]. Y. Cho, Y. Kim, S. Park and N. Chang, “System-Level Power Estimation using an on-chip Bus
Performance Monitoring Unit ”, Proc. of the 2008 IEEE/ACM Int. Conf.on computer-aided design, pp.149-154,
2008.
[27]. F. Bellosa, “The benefits of event-driven energy accounting in power-sensitive systems”, Proc. of the 9th
ACM SIGOPS European Workshop, pp.37-42, Sep. 2000.
[28]. A. S. Dhodapkar and J. E. Smith, “Managing Multi-Configuration Hardware via Dynamic Working Set
Analysis”, Proc. of the 29th annual Int. Symp. on computer architecture, pp.233-244, May 2002.
[29]. T. Li, and L. K. John, “Run- time Modeling and Estimation of Operating System Power Consumption”,
In Proc. of the ACM SIGMETRICS Int. Conf.on Measurement and modeling of computer systems, vol.31, no.1,
pp160-171, June 2003.
[30]. G. Contreras and M. Martionosi, “Power Prediction for Intel XScale Processor Using Performance
Monitor Unit Events,” Proc. of the Int. Symp. on low power electronics and design, pp. 221-226, Aug. 2005.
[31]. B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati, “Portable, scalable, per-core
power estimation for intelligent resource management,” Proc. of the 2010 Int. Conf.on Green Computing, pp135
–146, Aug. 2010.
[32]. C. Lively, X. F. Wu, V. Taylor, S. Moore, H. Chang, and C. Su et al, “Power-Aware Predictive Models
of Hybird (MPI/OpenMP) Scientific Applications on Multicore Systems”, Int. Conf.on Energy-Aware High
Performance Computing, Sept. 2011.
[33]. V. Jimenez, F.J. Cazorla, R. Gioiosa, M. Valero, C. Boneti, and et al, “Characterizing Power and
Temperature Behavior of POWER6-Based System”, IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol.1, no.3, pp.228-24, Sept. 2011.
[34]. X. Yu, R. Bhaumik, Z.Y. Yang, M. Siekkinen, P. Savolainen, and A. Ylä-Jääski, “A System-level Model
for Runtime Power Estimation on Model Devices”, IEEE/ACM Int’l Conf.on & Int’l Conf.on Cyber, Physical
and Social Computing, pp.27-34, Dec.2010.
[35]. X. Lu, E. Erkip, Y. Wang and D. Goodman, “Power Efficient Multimedia Communication Over Wireless
Channels”, IEEE Journal on Selected Areas in Communications, Vol.21, No.19, pp. 1738-1751, Feb. 2004.
[36]. X. Lu, T. Fernaine and Y. Wang, “Modeling power consumption of a H.263 video encoder”, Proc. of
the Int. Symp. on Circuits and Systems, vol.2, pp. 77-80, May.2004.
[37]. X. Li , Z. Ma and F. C. A. Fernandes, “Modeling power consumption for video decoding on mobile
platform and its application to power-rate constrained streaming”, Visual Communications and Image
Processing, pp.1-6, Nov. 2012.
[38]. Y. Benmoussa, J. Boukhobza, E. Senn, and D. Benazzouz, “Energy Consumption Modeling of
H.264/AVC Video Decoding for GPP and DSP,” Euromicro Conf.on Digital System Design, pp. 890-897,
Sept.2013.
[39]. Z. Ma, H. Hu and Y. Wang, “On Complexity Modeling of H.264/AVC Video Decoding and Its
Application for Energy Efficient Decoding,” IEEE Trans. on Multimedia, vol.13, no.6, pp. 1240-1255, 2011.
[40]. V. Weaver, “perf_event programming guide”, http://web.eecs.utk.edu/~vweaver1/projects/perf-
events/programming.html.
[41]. perfmon2, http://perfmon2.sourceforge.net/docs_v4.html.
[42]. K. Pearson, “Notes on regression and inheritance in the case of two parents,” Proc. of the Royal Society
of London, vol.58, pp.240-242, 1895.
[43]. N. J. Salkind, “Statics for People Who (Think They) Hate Statistics”, SAGE Publications, Inc.
[44]. D. A. Freedman, “Statistical Models: Theory and Practice,” Cambridge University Press. p. 26, 2009
[45]. J. H. Friedman, “Multivariate Adaptive Regression Splines”, Journal of The Annals of Statistics, vol. 19,
no. 1, pp. 1-67, Mar. 1991.

172

References
[46]. P. G. Hoel, “Introduction to mathematical statistics,” Wiley Series in Probability and Statistics, 1984.
[47]. T. Baguley, “Serious Stats: A guide to advanced statistics for the behavioral sciences,” Palgrave
Macmillan, 2012.
[48]. F. N. Najm, “Transition density: A New Measure of Activity in Digital Circuits,” IEEE Trans. on
Computer-Aided Design, vol. 12, pp. 310–323, Feb. 1993.
[49]. C. M. Kyung and S. Yoo, “Energy-Aware System Design: Algorithms and Architectures,” Chapter
Introduction, pp.3, Springer, 2011
[50]. A. Baschirotto, V. Chironi, G. Cocciolo, S. D’Amico, M. De Matteis, and P. Delizia, “Low Power
Analog Design in Scaled Technologies,” in Topical Workshop on Electronics for Particle Physics, pp.103-110,
2009.
[51]. G. Aditya and R. Ramana, “Design and Analysis of Low Power Generic Circuits in Nano Scale
Technology”, Int. Journal of Electronics and Communication Engineering, vol.5, no.1, pp. 35-47, 2012.
[52]. R.Malathi and G.Prabhakaran, “A Low Power based Asynchronous Circuit Design using Power Gated
Logic,” Int. Journal of Scientific Research and Management Studies, vol.1, no.1, pp.11-18,
[53]. C.A. Fabian and M.D. Ercegovac, “Input Synchronization in Low Power CMOS Arithmetic Circuit
Design,” in Proc. of the Asilomar Conf.on Signals, Systems and Computers, pp.172-176, Nov. 1996.
[54]. S.Hauck, “Asynchronous Design Methodologies: An Overview,” Proc. of the IEEE, vol.83, no.1, pp.69-
93, 1995.
[55]. A.G.M. Strollo, E. Napoli, and D. De Caro, “New Clock-gating Techniques for Low-power Flip-flops,”
in Proc. of Int. Symp. on Low Power Electronics and Design, pp.114-119, 2000.
[56]. V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: pushing power management to logic
synthesis/design,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.17, no.10,
pp.1051-1060, Oct. 1998.
[57]. Power Compiler Reference Manual. Synopsys, Inc., Nov. 2000.
[58]. B. Chen and I. Nedelchev, “Power compiler: a gate-level power optimization and synthesis system,” in
Proc. of IEEE Int. Conf. on Computer Design, pp.74-79, Oct. 1997.
[59]. C. W. Kang and M. Pedram, “Technology Mapping for Low Leakage Power and High Speed with Hot
Carrier Effect Consideration”, Proc. of the Asia and South Pacific Design Automation Conf, pp.203-208,
Jan.2003.
[60]. S. P. Mai, C. Zhang, J. Chao, and Z.H.Wang, “Design and Implementation of a DSP with Multi-level
Low Power Strategies for Cochlear Implants,” High Technology Letters, vol.15, no.2, Jun. 2009, pp.141-146.
[61]. N. Banerjee, A. Raychowdhury, S. Bhunia, H. Mahmoodi, and K. Roy, “Novel Low-overhead Operand
Isolation Techniques for Low-power Datapath Synthesis, ” IEEE Trans. on Very Large Scale Integration
Systems, vol.14, no.9, pp.1034-1039, 2006.
[62]. H. Li, S. Bhunia, Y. Chen, K. Roy, and T. N. Vijaykumar, “DCG: Deterministic Clock-gating for Low-
power Microprocessor Design, ” IEEE Trans. on Very Large Scale Integration Systems, vol.12, no.3, pp. 245-
254, 2004.
[63]. P. Meier, R. Rutenbar, and L. Carley, “Exploring multiplier architecture and layout for low power,” in
Proc. of the IEEE Custom Integrated Circuits Conf, pp.513-516, May 1996.
[64]. D. Li, P. H. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-Aware Architecture Synthesis and
Optimization for Mission-Critical Embedded Systems”, Hardware/Software Codesign: specification languages,
interfaces and integration, partitioning, synthesis
[65]. D. Kirovski, M. Potkonjak, “System-level synthesis of low-power hard real-time systems”, Proc. of the
Conf. on Design Automation, pp.697-702, 1997.
[66]. D. Markovic, V. Stojanovic, B. Nikolic, M. Horowitz, and R. Brodersen, “Methods for true energy-
performance optimization,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1282–1293, 2004.
[67]. A. Wang and A. Chandrakasan, “Energy-efficient DSPs for wireless sensor networks,” IEEE Signal
Processing Magazine, vol. 19, no. 4, pp. 68–78, 2002.
[68]. C. H. van Berkel, “Multi-core for mobile phones,” Proc. of the Conf. on Design, Automation and Test in
Europe, pp. 1260–1265, Apr. 2009.
[69]. T. D. Burd, and R. W. Brodersen, “Energy Efficient CMOS Microprocessor design”, Proc. 28th. annual
HICSS Conf, vol. I, pp 288-297, Jan. 1995.

173

References

[70]. M. Weiser, B. Welch, and A. Demers, “Scheduling for Reduced CPU Energy”, Proc. of the 1st USENIX
Conf. on Operating Systems Design and Implementation, no.2, pp.68-74, 1994.
[71]. H. L. Chan, W. T. Chan, T. W. Lam, L. K. Lee, K. S. Mak. et al, “Energy Efficient Online Deadline
Scheduling”, Proc. of the 18th ACM-SIAM Symp. on Discrete Algorithms, pp.795-804, 2007.
[72]. Y. Zhu and F. Mueller, “Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling”, In Proc. IEEE
Real-Time and Embedded Technology and Applications Symp, pp.84-93, May 2004.
[73]. D. Kirovski and M. Potkonjak, “System-level synthesis of low-power hard real-time systems”,. In Proc.
Design Automation Conf., pp.697-702, 1997.
[74]. A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, and et al, “Profile-based dynamic voltage
scheduling using program checkpoints,” In Proc. of the Conf. on Design, Automation and Test, pp168, Mar.
2002
[75]. S. Bang, K. Bang, S. Yoon, and E. Y. Chung, “Run-time adaptive workload estimation for dynamic
voltage scaling,” IEEE Trans. on Computer-Aided Design of Integrated Circuits Systems, vol.28, no.9, pp.
1334-1347, 2009
[76]. W. Y. Liang, S. C. Chen, Y. L Chang, and J. P. Fang, “Memory-aware dynamic voltage and frequency
prediction for portable devices,” IEEE Int. Conf. on Embedded and Real-Time Computing Systems and
Applications, pp. 229-236, Aug. 2008.
[77]. G. Dhiman and T. S. Rosting, “System-level power management using online learning,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits Systems, vol.28, no.5, pp. 676-689, 2009.
[78]. Y. Gu and S. Chakraborty, “Control theory-based DVS for interactive 3D games,” IEEE Design
Automation Conference, pp. 740-745, Jun. 2008.
[79]. J. Kim, S. Oh, S. Yoo, and C. M. Kyung, “An analytical dynamic scaling of supply voltage and body bias
based on parallelism-aware workload and runtime distribution,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits Systems, vol. 28, no.4, pp.568-581, 2009.
[80]. J. Kim, S. Yoo, and C.M. Kyung, “Energy Awareness in Processor/Multi-Processor Design,” pp.47-69,
Springer Netherlands, 2011.
[81]. B. Noble, M. Satyanarayanan, and M. Price, “A Programming Interface for Application-Aware
Adaptation in Mobile Computing,” in Proc. of the 2nd Symp. on Mobile and Location-Independent Computing,
pp. 57–66, 1995.
[82]. C. S. Ellis, “The Case for Higher-Level Power Management,” in Proc. of the Seventh Workshop on Hot
Topics in Operating Systems, pp. 162–167, 1999.
[83]. A. Vahdat, A. Lebeck, and C. S. Ellis, “Every joule is precious: the case for revisiting operating system
design for energy efficiency,” in Proc. of the 9th workshop on ACM SIGOPS European workshop: beyond the
PC: new challenges for the operating system, pp. 31–36, 2000.
[84]. A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazieres, and et al, “Energy management in mobile
devices with the cinder operating system,” in Proc. of the sixth Conf. on Computer systems, pp. 139–152, 2011.
[85]. N. V. Rodriguez and J. Crowcroft, “ErdOS: achieving energy savings in mobile OS,” in Proc. of the sixth
Int. workshop on MobiArch, pp. 37–42, 2011.
[86]. N. V. Rodriguez, P. Hui, J. Crowcroft, and A. Rice, “Exhausting battery statistics: understanding the
energy demands on mobile handsets,” in Proc. of the second ACM SIGCOMM workshop on Networking,
systems, and applications on mobile handhelds, pp. 9–14, 2010.
[87]. R. Neugebauer and D. McAuley, “Energy Is Just Another Resource: Energy Accounting and Energy
Pricing in the Nemesis OS,” in Proc. of the Workshop on Hot Topics in Operating Systems, pp. 67-72, May
2001.
[88]. T. M. Liu, T. A. Lin, S. Z. Wang, and C. Y. Lee, “A Low-power dual-mode video decoder for mobile
applications,” IEEE Communications Magazine, vol.44, no.8, pp.119-126, 2006
[89]. N. J. August and D. S. Ha, “Low power design of DCT and IDCT for low bit rate video codecs,” IEEE
Trans. on Multimedia, vol. 6, no. 3, pp. 414–422, 2004.
[90]. T. H. Tsai and D. L. Fang, “A novel design of CAVLC decoder with low power consideration,” in Proc.
of the IEEE Asian Solid-State Circuits Conf., pp. 196–199, Nov. 2007.

174

References
[91]. K. Xu and C. S. Choy, “A power-efficient and self-adaptive prediction engine for H.264/AVC decoding,”
IEEE Trans. on Very Large Scale Integration Systems, vol.16, no.3, pp.302-313, 2008.
[92]. D. Markovic, V. Stojanovic, B. Nikolic, M. Horowitz, and R. Brodersen, “Methods for true energy-
performance optimization,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1282–1293, 2004
[93]. D. Kwon, P. Driessen, A. Basso, and P. Agathoklis, “Performance and computational complexity
optimization in configurable hybrid video coding system,” IEEE Trans. on Circuits and System for Video
Technology, vol.16, no.1, pp.31-42, 2006.
[94]. K. Xu, T. M. Liu, J. I. Guo, and C. S. Choy, “Methods for power/throughput/area optimization of
H.264/AVC decoding,” Journal of Signal Processing Systems, vol. 60, no. 1, pp. 131–145, 2010.
[95]. T. C. Chen, Y. H. Chen, S. F. Tsai, S. Y. Chien, and L. G. Chen, “Fast algorithm and architecture design
of low power integer motion estimation for H.264/AVC,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 17, no. 5, pp. 568–577, 2007.
[96]. Y. Benmoussa, J. Boukhobza, E. Senn, and D. Benazzouz, “GPP VS. DSP: A Performance/Energy
Characterization and Evaluation of Video Decoding,” IEEE Int. Symp. on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, pp. 273-282, Aug. 2013.
[97]. Z. Y. Xu, S. Sohoni, R. Min and Y.M. Hu, “an Analysis of Cache Performance of Multimedia
Applications,” IEEE Trans. on computers, vol. 53, no. 1, Jan. pp. 20-38, 2004.
[98]. S. H. Wen ,H. J. Cui and K. Tang, “Low Power Embedded Multimedia Processor Architecture,” Chinese
Journal of Electronics,vol.16 , no.1, Jan. 2007.
[99]. J. Y. Kim, G. H. Hyun, and H. J. Lee, “Cache Organizations for H.264/AVC Motion Compensation,”
13th IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications, pp. 534-541, 2007.
[100]. C. H. Lin, J. C. Liu, C. W. Liao, “ Energy analysis of multimedia video decoding on mobile handheld
devices ”, Int. Conf. on Multimedia and Ubiquitous Engineering, pp.120-125, 2007.
[101]. G. Landge, M. Van Der Schaar, and V. Akella, “Complexity metric driven energy optimization
framework for implementing MPEG-21 scalable video decoders,” In Proc. of the IEEE International Conf. on
Acoustics, Speech, and Signal Processing, vol.2, pp.1141-1144, Mar. 2005.
[102]. T. C. Chen, Y. W. Huang, and L. G. Chen, “Analysis and design of macroblock pipelining for
H.264/AVC VLSI architecture,” In Proc. IEEE Int. Symp. Circuits Systems, pp. 273-276, May 2004,
[103]. S. S. Lin, P. C. Tseng, C. P. Lin, and L. G. Chen, “Multi-mode content-aware motion estimation
algorithm for power-aware video coding systems, ” in Proc. IEEE Workshop on Signal Processing Systems, pp.
239-244, 2004.
[104]. H. M. Wang, C. H. Tseng, and J. F. Yang, “Computation reduction for intra 434 mode decision with
SATD criterion in H.264/AVC,” IET Signal Process, vol.1, no.3, pp.121-127, 2007.
[105]. C. H. Hsia, J.S Chiang, Y. H. Wang, and T. Yuan, “Fast Intra Prediction Mode Decision Algorithm for
H.264/AVC Video Coding Standard,” Third Int. Conf. in Intelligent Information Hiding and Multimedia Signal
Processing, vol.2, pp.535-538, Nov. 2007.
[106]. H. Kim and Y. Altunbasak, “Low-complexity macro block mode selection for H.264/AVC encoders,” in
Proc. Int. Conf. Image Process., Singapore, pp.765-768, 2004
[107]. C. Crecos and M. Y. Yang, “Fast inter mode prediction for P slices in the H.264 video coding standard.”
IEEE Trans. Broadcasting, vol.51, no.2, pp.256-263, June 2005.
[108]. B. G. Kim and C. S. Cho, “A fast inter-mode decision algorithm based on macro-block tracking for P
slices in the H.264/AVC video standard,” in Proc. Int. Conf. Image Process, pp.301-304, 2007.
[109]. Y. C. Wang, M. H. Lin, P. C Lin, “Energy Efficient Intra-Task Dynamic Voltage Scaling for Realistic
CPUs of Mobile Devices,” Journal of information science and engineering, vol.25, pp. 251-272, 2009.
[110]. W. Y. Lee, Y. W. Ko, H. Lee, and H. Kim, “Energy-efficient scheduling of a real-time task on DVFS-
enabled multi-cores,” Proc. of the 2009 Int. Conf. on Hybrid Information Technology, pp. 273-277, 2009.
[111]. Y. H. Wei, C. Y. Yang, T. W. Kuo, S. H. Hung, and Y. H. Chu, “Energy-efficient real-time scheduling of
multimedia tasks on multi-core processors,” Proc. of the 2010 ACM Symp. on Applied Computing, pp. 258-262,
2010.
[112]. R. Xu, R. Melhem, and D. Mosse, “Energy-Aware Scheduling for Streaming Applications on Chip
Multiprocessors,” Proc. of the 28th IEEE Int. Real-Time Systems Symp, pp. 25-38, 2007.

175

References

[113]. J. Cong and K. Gururaj, “Energy efficient multiprocessor task scheduling under input-dependent
variation,” Proc. of the Conf. on Design, Automation and Test, pp. 411-416, 2009.
[114]. S. Yaldiz, A. Demir and S. Tasiran, “Stochastic Modeling and Optimization for Energy Management in
Multi-Core Systems: A Video Decoding Case Study,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol, 27, no.7, pp.1264-1277, 2008.
[115]. Y. Tan, P. Malani, Q. Qiu and Q. Wu, “Workload prediction and dynamic voltage scaling for mpeg
decoding,” Proc. Asia and South Pacific Conf. on Design Automation, pp.911-916, 2006.
[116]. S. Hong, S. Yoo, H. Jin, K. M. Choi, and et al, “Runtime distribution-aware dynamic voltage scaling,” Int.
Conf. on Computer-Aided Design, pp. 587-594, Nov. 2006.
[117]. A. Kumar, A. Das, and A. Kumar, “Energy Optimization by Exploiting Execution Slacks in Streaming
Applications on Multiprocessor Systems,” In Proc. of the 50th Annual Design Automation Conf., 2013.
[118]. Y. Wang, H. Liu, D. Liu, Z. W. Qin, Z. L. Shao, and E. H. M. Sha, “Overhead-aware energy optimization
for real-time streaming applications on multiprocessor system-on-chip,” Journal of ACM Trans. on Design
Automation of Electronic Systems, vol.16, no.2, pp.1-32, Mar. 2011
[119]. C. J. Lian, S. Y. Chien, C. P. Lin, P. C. Tseng, and L. G. Chen, “Power-aware multimedia: Concepts and
design perspectives,” IEEE Circuits and Systems Magazine, vol.7, no.2, pp. 26–34, 2007.
[120]. P. Jain, A. Laffely, W. Burleson, R. Tessier, and D. Goeckel, “Dynamically parameterized algorithms and
architectures to exploit signal variations,” Journal of VLSI Signal Processing Systems, vol. 36, no. 1, pp. 27–40,
2004.
[121]. H. W. Cheng and L. R. Dung, “A content-based methodology for power-aware motion estimation
architecture,” IEEE Trans. on Circuits and Systems, vol. 52, no. 10, pp. 631–635, 2005.
[122]. S. W. Lee and C. C. J. Kuo, “Complexity modeling for motion compensation in H.264/AVC decoder,” in
Proc. of the 14th IEEE Int. Conf. on Image Processing , vol. 5, pp. 313–316, Sept. 2007.
[123]. H. H. Chun, P. W. Hsiao, C. Tihao, and H. M. Hang, “Advances in the scalable amendment of
H.264/AVC,” IEEE Communications Magazine, vol. 45, no. 1, pp. 68–76, 2007.
[124]. M. Paul, M. R. Frater, and J. F. Arnold, “An efficient mode selection prior to the actual encoding for
H.264/AVC encoder,” IEEE Trans. on Multimedia, vol. 11, no.4, pp. 581–588, 2009.
[125]. W. Ji, M. Chen, X.H. Ge, P. Li, and Y Q. Chen, “ESVD: An Integrated Energy Scalable Framework for
Low-Power Video Decoding Systems,” EURASIP Journal on Wireless Communications and Networking, pp.1-
13, 2010.
[126]. H. Sanghvi, M. Mody, N. Nandan, M. Mehendale, S. Das, and et al, “A 28nm Programmable and Low
Power Ultra-HD Video Codec Engine,” IEEE Int. Symp. on Circuits and Systems, pp.558-561, Jun. 2014.
[127]. X. Li, M. Dong, Z. Ma, and F. Fernandos, “GreenTube: Power Optimization for Mobile Video Streaming
via Dynamic Cache Management,” Proc. of the Int. Conf. on Multimedia, pp.279-288, 2012.
[128]. P. Antoniou, V.Vassiliou, A. Pitsillides, A. Panayides, A. Vlotomas, and et.al., “Final report of Adaptive
Methods for the Transmission of Video Streams in Wireless Networks,” University of Cyprus Department of
Computer Science Networks Research Laboratory.
[129]. G. Estrin, “Organization of Computer Systems-The Fixed Plus Variable Structure Computer,” Proc.
Western Joint IRE-AIEE-ACM Computer Conf., pp. 33-40, 1960.
[130]. Xilinx Company, http://www.xilinx.com
[131]. E. S. Jang, J. Ohm, and M. Mattavelli, “Whitepaper on reconfigurable video coding (RVC)”, ISO/IEC
JTC1/SC29/WG11 Document N9586, Antalya, Turkey.
[132]. S.S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and M. Raulet, “Overview of the
MPEG reconfigurable video coding framework”, Journal of Signal Processing Systems, pp. 251-263, 2009.
[133]. M. Mattavelli, I. Amer, and M.Raulet, “The reconfigurable video coding standard [Standards in a
Nutshell]”, IEEE Signal Processing Magazine, vol.27, no.3, pp. 159-167, 2010.
[134]. M. Wipliez, G. Roquier, and J. F. Nezan, “Software code generation for the RVC-CAL language,”
Journal of Signal Processing Systems, vol.63, no.2, pp.203-231, 2011.
[135]. J. R. Ohm and G. Sullivanm, “Vision, applications and requirements for high efficiency video coding
(HEVC),” document N11872, Daegu, South Korea, Jan. 2011.

176

References
[136]. M. Viitanen, J. Vanne, T.D. Hamalainen, M. Gabbouj and J. Lainema, “Complexity Analysis of Next-
Generation HEVC Decoder,” IEEE Int. Symp. on Circuits and Systems, pp. 882-885, May. 2012
[137]. F. Fernandes, A. Segall, and M.Zhou, “Draft Call for Proposals on Green MPEG”, MPEG document,
M28249, Geneva, Jan.2013
[138]. ISO/IEC JTC1/SC29/WG11/N13468, “Context, Objectives, Use Cases and Requirements for Green
MPEG,” Jan. 2013
[139]. Z. Ma, M. Dong, F. C. A. Fernandes, and S. Hwang, “Display Power Reduction Using Extended Nal Unit
Header Information, ” Patent Application number: 20130278834, Oct. 2013.
[140]. O. Oyman, J. Foerster, Y.J. Tcha, and S. C. Lee, “Toward enhanced mobile video services over WiMAX
and LTE Update,” IEEE Communications Magazine, vol.48, no.8, pp.68-76, Aug. 2010.
[141]. G. Y. Li, Z. K. Xu, C. Xiong, and C. Y . Yang, “Energy-efficient wireless communications: tutorial,
survey, and open issues,” IEEE Wireless Communications, vol.18, no. 8, pp.28-35, Dec. 2011.
[142]. D. Forte, A. Srivastava, “Energy and thermal-aware video coding via encoder/decoder workload
balancing, ” Proc. of the ACM/IEEE Int. Symp. on Low power electronics and design, Aug. 2010.
[143]. X. Tu. Tran and V. H. Tran. “An Efficient Architecture of Forward Transforms and Quantization for
H.264/AVC Codecs,” In REV Journal on Electronics and Communications, vol. 1, no. 2, pp. 122-129, 2011.
[144]. G. Bjontegaard and K. Lillevold, “Context-adaptive VLC (CVLC) Coding of Coefficients,” JVT
Document JVT-C028. Fairfax, VA, 2002.
[145]. D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based Adaptive Binary Arithmetic Coding in the
H.264/AVC Video Compression,” IEEE Trans. on Circuits and Systems for Video Technology, vol.13, no,7, pp.
621-636, 2003.
[146]. ORCC project. http://orcc.sourceforge.net/
[147]. J. Gorin, M. Wipliez, F. Preteux, and M. Raulet, “LLVM-based and scalable MPEG-RVC decoder,”
Journal of Real-Time Image Processing, vol.6, no.1, pp. 59-70, 2010.
[148]. C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong program analysis &
transformation,” In Proc. of the Int. Symp. on Code Generation and Optimization, pp.75, Mar. 2004.
[149]. J. Gorin, H. Yviquel, F. Preteux, and M. Raulet, “Just-in-time adaptive decoder engine: a universal video
decoder based on MPEG RVC,” Proc. of the ACM Int. Conf. on Multimedia, pp.711-714, 2011.
[150]. Grapgiti Tool. https://eclipse.org/graphiti/
[151]. Xtext Tool, https://eclipse.org/Xtext/documentation.html
[152]. Simple DirectMedia Layer, http://wiki.libsdl.org/FrontPage
[153]. Cross Platform Make, http://www.cmake.org/overview/
[154]. http://orcc.sourceforge.net/getting-started/install-orcc/
[155]. http://orcc.sourceforge.net/getting-started/get-applications/
[156]. V.M.Weaver, M.Johnson, K.Kasichayanula, J.Ralph, P. Luszcaek, and D. Terpstra el al., “Measuring
Energy and Power with PAPI”, in Proc. International Workshop on Power-Aware Systems and Architectures, pp.
262-268, Sept. 2012.
[157]. J. Herrera, Desarrollo de un Emulador de Baterías para el Estudio del Consumo de la Tarjeta
BeagleBoard, PFC EUITT-UPM, Jul. 2011.
[158]. User's Guide, Agilent Technologies Model 66319B/D, 66321B/D Mobile Communications DC Source,
2005.
[159]. OMAP4460 PandaBoard ES System Reference Manual, Revision 0.1, Sept. 2011.
[160]. BeagleBoard System Reference Manual Rev C4, Dec.2009
[161]. ISO/IEC 14496-2 (MPEG-4), “Information Technology-Coding of Audio-Visual Objects-Part 2: Visual,
2002
[162]. MPEG-4 Visual, http://mpeg.chiariglione.org/standards/mpeg-4/video
[163]. J. W. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet, “Synthesizing Hardware
from Dataflow Programs: An MPEG-4 Simple Profile Decoder Case Study”, Journal of Signal Processing
Systems, vol.63, no.2, pp. 241–249, May 2011.
[164]. ITU-T Recommendation H.264, ISO/IEC 14496-10, “Advanced Video Coding for generic audiovisual
services”, 2005.

177

References

[165]. J. Gorin, M. Raulet, Y. L. Cheng, H. Y. Lin, N. Siret, and et al, “An RVC Dataflow description of the
AVC Constrained Baseline Profile decoder,” IEEE Int. Conf on Image Processing, pp.753–756, 2010.
[166]. ITU-T,Recommendation T-REC, January 2012, “H.264.1 : Conformance specification for ITU-T H.264
Advanced Video Coding”.
[167]. M. T. Pourazad, C. Doute, M. Azimi, and P. Nasiopoulos, “HEVC: The New Cold Standard for Video
Compression: How does HEVC compare with T.264/AVC?,” IEEE Consumers Electronic Magazine, pp.36-46,
Jul. 2012.
[168]. S. Browne, J. Dongarra, N. Garner, K.London, and P. Mucci, “A Portable Programming Interface for
Performance Evaluation on Modern Processors,” International Journal of High Performance Computing
Applications, vol.14, no.3, pp. 189-204, Aug. 2000.
[169]. L. Shannon and P. Chow, “Maximizing System Performance: Using Reconfigurability to Monitor System
Communications,” In Proc. IEEE Int. Conf. on Field-Programmable technology, pp.231-238, Dec. 2004.
[170]. J. G. Tong and M. A. S. Khalid, “Profiling Tools for FPGA-Based Embedded Systems: Survey and
Quantitative Comparison,” Journal of Computers, vol.3, no.6, pp.1-14, Jun. 2008.
[171]. P. H. Chen, C. T. King, Y. Y. Chang, and S.Y. Tseng, “Multiprocessor System-on-Chip Profiling
Architecture: Design and Implementation,” Int. Conf. on Parallel and Distributed Systems, pp.519-526, Dec.
2009.
[172]. Yu Bai, Priya Vaidya, “Memory characterization to analyze and predict multimedia performance and
power in embedded systems, ”, ICASSP 2009
[173]. J. Eker and J.W. Janneck, “CAL language report,” ERL Technical Memo UCB/ERL M03/48, EECS
Department, University of California at Berkeley, Berkeley, California, USA, Dec. 2003.
[174]. E. A. Lee and T. M. Parks, “Dataflow Process Networks”, in Proc. of the IEEE, Vol.83, no.5, pp.773-799,
1995.
[175]. Cortex-A9 Technical Reference Manual, revision: r3p0
[176]. CoreSight PTM-A9 Technical Reference Manual, revision: r1p0
[177]. Cortex-A8 Technical Reference Manual, revision: r1p1
[178]. J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro, “Comparative Rate-Distortion-Complexity
Analysis of HEVC and AVC Video Codecs,” IEEE Trans. on Circuits Syst. Video Technology., vol. 22, no.12,
pp. 1885-1898, Dec. 2010.
[179]. J. D. Davis, S. Rivore, M. Goldszmidt, and E. K. Ardestani, “No Hardware Required: Building and
Validating Composable Highly Accurate OS-based Power Models”, Microsoft Technical Report, 2011.
[180]. A. G. Bedeian and K.W. Mossholder, “On the use of the coefficient of variation as a Measure of
Diversity”, Organizational Research Methods, vol.3, pp.285-297, 2000.
[181]. M. Hentati, Y. Aoudni, J.F.Nezan, M.Abid, O. Deforges, “FPGA dynamic reconfiguration using the RVC
technology: inverse quantization case stud ,” Proc. of the Conf. on Design and Architectures for Signal and
Image Processing, pp.108-114, Nov. 2011.
[182]. F. Palumbo, N. Carta, L. Raffo, “The Multi-dataflow Composer Tool: A Runtime Reconfigurable HDL
Platform Composer,” Proc. of the Conf. on Design and Architectures for Signal and Image Processing, pp. 178-
185, Nov. 2011.
[183]. A. G. Schmidt, N. Steiner, M. French, R. Sass, “HwPMI: An Extensible Performance Monitoring
Infrastructure for Improving Hardware Design and Productivity on FPGAs,” Int. Journal of Reconfigurable
Computing, 2012.

178

	Content
	Figure List
	Table List
	Resumen
	Abstract
	PART A
	1. Introduction
	1.1. Challenges
	1.2. Motivations
	1.3. Objectives
	1.3.1. Brief Description of the Proposal
	1.3.2. Objectives

	1.4. Outline

	PART B
	2. Energy Estimation: Research and Problems
	2.1. Energy Estimation Models
	2.1.1. General Models
	2.1.1.1. Instruction-Level Estimation Models
	2.1.1.2. Function-Level Estimation Models
	2.1.1.3. Component-Level Power Estimation Models

	2.1.2. Video-Coding-focused Models
	2.1.3. Discussion

	2.2. Introduction of PMC-Based Methodology
	2.2.1. PMC Introduction
	2.2.2. Correlation Coefficient
	2.2.3. Fitting Methods
	2.2.3.1. Linear Regression Methods
	2.2.3.2. MARS

	2.2.4. Discussion

	2.3. Conclusion

	3. Generalization and Accuracy Improvements of the Energy Estimation Model
	3.1. Problem Statement
	3.1.1. Generalization Problem
	3.1.2. Multi-collinearity Problem

	3.2. Problem Solutions
	3.2.1. PMC Event Selection
	3.2.2. Multi-collinearity Suppression
	3.2.3. Design Flow of an Energy Estimation Model

	3.3. Conclusion

	PART C
	4. Energy Optimization and Reconfiguration Techniques
	4.1. Energy Optimization Techniques
	4.1.1. Power Impact Issues
	4.1.2. General Low-Power/Energy Optimization Techniques
	4.1.2.1. Low-level Optimization Techniques
	4.1.2.2. High-Level Optimization Techniques
	A. Power Management
	B. Energy-aware Operating Systems

	4.1.3. Video Coding Specific Power Optimization Techniques
	4.1.3.1. Low-Level Optimization Techniques
	4.1.3.2. High-Level Optimization Techniques
	A. Complexity-Based Methods
	B. DVFS-Based Methods
	C. Scale-based Optimization Techniques

	4.2. Reconfiguration on Video Coding
	4.2.1. Implementation Complexity on Video Coding
	4.2.2. Reconfiguration Techniques
	4.2.2.1. Definition of Reconfiguration Techniques and their Hierarchy
	4.2.2.2. Implementation Techniques of Reconfigurable Computing
	4.2.2.3. Implementation Techniques of Functional-oriented Reconfiguration
	A. Virtualization
	B. Just-in-Time Compilers

	4.2.3. Functional-Oriented Reconfiguration on Video Coding
	4.2.3.1. Video Decoding Process Framework
	4.2.3.2. Reconfigurable Video Coding Standard
	A. RVC Implementation
	B. Advantages of RVC

	4.3. Conclusion

	5. Energy Optimization based on Functional-oriented Reconfiguration
	5.1. Problems and Objectives of Video Energy Optimization
	5.1.1. Problem Statement
	5.1.2. Objectives

	5.2. Feasibility of Energy Control of Video Coding
	5.2.1. Features of Video Streaming Computing
	5.2.2. Feasibility of Energy Control of Video Coding

	5.3. Proposal
	5.3.1. Energy-aware Framework of Reconfigurable Video Coding
	5.3.2. Energy-aware Management

	5.4. Conclusion

	PART D
	6. Experimental Study-case Infrastructure
	6.1. Reconfiguration Engine and Development Environment of RVC Framework
	6.1.1. Reconfiguration Engine
	6.1.1.1. Low Level Virtual Machine
	6.1.1.2. Just-in-time (JIT) Adaptive Decoder Engine

	6.1.2. Development Environment
	6.1.2.1. Open RVC-CAL Compiler
	6.1.2.2. Graphiti
	6.1.2.3. Xtext Tool
	6.1.2.4. Simple DirectMedia Layer
	6.1.2.5. Cross Platform Make
	6.1.2.6. Eclipse
	6.1.2.7. Apache Subversion

	6.1.3. Building Procedure of an Energy-aware Decoder

	6.2. PMC Programming Tool
	6.3. Modeling Assistant Tool
	6.4. Platforms
	6.4.1. Description of the Platforms
	6.4.2. PMCs on ARM Platforms
	6.4.3. Component Classification and Energy-related Events
	6.4.3.1. Computation
	6.4.3.2. Communication
	6.4.3.3. Storage
	6.4.3.4. Buses
	6.4.3.5. I/O devices

	6.5. Benchmarks
	6.5.1. MPEG-4
	6.5.1.1. MPEG-4 Part 2
	6.5.1.2. MPEG-4 Part 10
	A. Constrained Baseline Profile
	B. Progressive High Profile

	6.5.2. HEVC

	6.6. Conclusion

	7. Implementation
	7.1. PAPI Integration
	7.1.1. Integration
	7.1.1.1. Framework with PAPI Integration
	7.1.1.2. Integration Primitives
	7.1.1.3. Integration Implementation
	A. As New Actions
	B. In Existing Actions

	7.1.2. The Dependence of PAPI and OS
	7.1.2.1. OS Patch on PandaBoard
	7.1.2.2. OS Configuration on BeagleBoard

	7.2. Implementation of the Energy-aware Manager
	7.2.1. Implementation of Energy-aware Events in Jade
	7.2.2. Implementation of Energy-aware Management Metric
	7.2.3. Implementation of the Energy-aware Manager
	7.2.3.1. Relationship and Communication Structure between Jade and the Decoder
	7.2.3.2. Implementation Details of the Communication Scheme
	A. Signal Mechanism
	B. Shared Memory Mechanism

	7.3. Conclusion

	PART E
	8. Results
	8.1. Model Validation and Evaluation
	8.1.1. Common Explanations of the Experiments
	8.1.1.1. Model Description
	8.1.1.2. Models Relative Errors

	8.1.2. PMC Events Selection
	8.1.3. Modeling Techniques Analysis and Comparison for the PHP Decoder Use-case
	8.1.4. Modeling techniques Extension
	8.1.5. Model Computation Speed

	8.2. Verification of the Energy-aware Manager Implementation
	8.3. Battery life Extension
	8.3.1. Experiment on Decoder Reconfiguration
	8.3.2. Experiment on Coding Parameter Change

	8.4. Conclusion

	PART F
	9. Conclusion and Future Work
	9.1. Conclusion
	9.1.1. Motivation and Results of the Proposed Energy Optimization and Management Mechanism
	9.1.2. Exploitation of Implementing the Modeling Method on FPGA Systems
	9.1.3. Publications

	9.2. Future Work

	Appendix A: Introduction of Battery Emulator Usage
	References

