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Resumen 

En los últimos años, la sofisticación creciente de los sistemas empotrados y las tecnologías de 

comunicación inalámbrica ha promovido la utilización cada vez más importante de las aplicaciones de 

vídeo streaming. Tal y como se ha publicado en el año 2013, la generación de jóvenes con edades 

comprendidas entre 13 y 24 años emplea, aproximadamente, 16.7 horas a la semana viendo vídeos en 

línea a través de las redes sociales, sitios web de negocio o de vídeo streaming. Se puede decir, por 

tanto, que el vídeo forma parte ya de la vida de las personas. Hasta ahora, la investigación en estos 

asuntos se ha centrado en la mejora del rendimiento, es decir, el incremento de la tasa binaria y la 

reducción del tiempo de respuesta. Sin embargo, la mayoría de dispositivos móviles están alimentados 

por baterías. Esta tecnología, es bien sabido, que avanza a una menor velocidad que los desarrollos 

multimedia o hardware. Debido a que la investigación en baterías no satisface la creciente demanda 

de energía de los dispositivos móviles, la investigación en aplicaciones de vídeo se centra más y más 

en la eficiencia energética. Cómo utilizar eficientemente el presupuesto escaso de energía disponible 

se ha convertido en uno de los principales retos de la investigación. Además, los estándares de vídeo 

de última generación tienden hacia la diversificación y personalización. Por tanto, es también deseable 

disponer de mecanismos para optimizar la energía con mayor flexibilidad y escalabilidad.  

En este contexto, el objetivo principal de esta tesis es encontrar un mecanismo de gestión y 

optimización que reduzca el consumo de energía de los descodificadores de vídeo aplicando la idea de 

reconfiguración funcional. El tiempo de uso de la batería del sistema se extiende como resultado de un  

compromiso entre energía consumida y calidad de vídeo. La reconfiguración funcional aprovecha las 

similitudes entre estándares para construir descodificadores de vídeo mediante la interconexión de 

unidades funcionales existentes. En el caso de que se disponga de un canal de retorno entre el 

descodificador y el codificador, el primero puede señalar al segundo cambios en los parámetros de 

codificación o en los algoritmos para adaptarse con el fin de ahorrar energía.  

El mecanismo propuesto de optimización y gestión de energía se materializa en el descodificador. 

Este mecanismo está formado por un gestor de reconfiguración basado en criterios energéticos, 

implementado como bloque adicional del motor genérico de reconfiguración, un estimador del 

consumo de energía, incorporado al descodificador, y, si está disponible, un canal de retorno 

conectado al codificador. El gestor de reconfiguración verifica el nivel de la batería, selecciona la 

descripción del nuevo descodificador e informa al motor de reconfiguración de la recomposición de 

un nuevo descodificador. Nótese que el análisis del consumo de energía es fundamental para el 
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funcionamiento correcto del mecanismo de gestión y optimización de energía. En esta tesis se 

propone un método de estimación de energía basado en la observación de eventos del sistema. 

También se propone un filtro de  estos eventos para automatizar la selección de los más relacionados 

con el consumo de energía. Por último, se incluye un estudio detallado de la influencia de las 

secuencias de aprendizaje en la precisión del modelo.  

La metodología de modelado del estimador de energía se ha evaluado en diferentes plataformas, 

mono- y multinúcleo con bancos de prueba de características diferentes. Los resultados confirman que 

la precisión del modelo es buena y su carga computacional baja. Las modificaciones realizadas en el 

motor de reconfiguración para implementar el gestor basado en criterios energéticos se han verificado 

en diversos escenarios. Los resultados indican la posibilidad de alargar el tiempo de vida de la batería 

del sistema en dos casos de uso diferentes. 
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Abstract 

In recent years, the increasing sophistication of embedded multimedia systems and wireless 

communication technologies has promoted a widespread utilization of video streaming applications. It 

has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week 

watching online video through social media, business websites, and video streaming sites. Video 

applications have already been blended into people daily life. Traditionally, video streaming research 

has focused on performance improvement, namely throughput increase and response time reduction. 

However, most mobile devices are battery-powered, a technology that grows at a much slower pace 

than either multimedia or hardware developments. Since battery developments cannot satisfy 

expanding power demand of mobile devices, research interests on video applications technology has 

attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery 

energy budget becomes a major research challenge. In addition, next generation video standards impel 

to diversification and personalization. Therefore, it is desirable to have mechanisms to implement 

energy optimizations with greater flexibility and scalability.  

In this context, the main goal of this dissertation is to find an energy management and 

optimization mechanism to reduce the energy consumption of video decoders based on the idea of 

functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off 

between energy consumption and video quality. Functional-oriented reconfiguration takes advantage 

of the similarities among standards to build video decoders reconnecting existing functional units. If a 

feedback channel from the decoder to the encoder is available, the former can signal the latter changes 

in either the encoding parameters or the encoding algorithms for energy-saving adaption.  

The proposed energy optimization and management mechanism is carried out at the decoder end. 

This mechanism consists of an energy-aware manager, implemented as an additional block of the 

reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback 

channel connected to the encoder end. The energy-aware manager checks the battery level, selects the 

new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth 

noting that the analysis of the energy consumption is fundamental for the success of the energy 

management and optimization mechanism. In this thesis, an energy estimation method driven by 

platform event monitoring is proposed. In addition, an event filter is suggested to automate the 

selection of the most appropriate events that affect the energy consumption. At last, a detailed study 

on the influence of the training data on the model accuracy is presented.  
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The modeling methodology of the energy estimator has been evaluated on different underlying 

platforms, single-core and multi-core, with different characteristics of workload. All the results show 

a good accuracy and low on-line computation overhead. The required modifications on the 

reconfiguration engine to implement the energy-aware manager have been assessed under different 

scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two 

different use-cases. 
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1. Introduction 
When using computer equipment to process data, it is always desirable to employ natural 

methods to obtain more intuitive results. The word "natural" means that the processing method can 

obtain the results directly through sensorial organs rather than using the brain to reprocess or 

recalculate them. Multimedia information which includes audio, images, video, and text is exactly in 

the line with this demand and thus is increasingly being favored. Currently, the computing capabilities 

of mobile devices have been rapidly improved and lead to a boost development of multimedia 

applications. However, most of the mobile devices are powered by batteries, which, unfortunately, are 

experiencing a relatively slow development. The battery lifetime of many mobile devices, especially 

Smartphones and tablets, easily fails to guarantee the user-desired lifetime. Energy constraint has 

become the major limitation on the developments of computation intensive applications. This chapter 

will present an introduction of the battery-limited problem. It is organized as follows: section 1.1 

discusses energy constraint challenges, experienced in multimedia applications, especially, video 

coding applications; section 1.2 presents the research motivations of low-power design; section 1.3 

introduces the objectives and methodologies of the thesis work. Briefly speaking, this thesis proposes 

a mechanism of energy optimization and management for video coding, especially for video decoding, 

based on functional-oriented reconfiguration. The goal is to extend the battery lifetime of mobile 

devices through the energy consumption control of video decoding; finally in section 1.4, the contents 

of this dissertation are outlined.  

1.1. Challenges 

Vision is the most direct approach for understanding this world. Approximate 70% of the outside 

accepted information comes from the visual sense. This information presents a colorful world in the 

form of images. With the social progress and technology development, people demand of image 

information is gradually increasing. The demand promotes flourish improvements on the related 

technologies. Forming as dynamic images, video information is featured by a huge quantity of data 

which introduce great difficulties on expression, organization, storage, and transmission. It is 

fundamental to compress the original video data for practical demands. Video coding has thus 

gradually become a hot topic in research communities. 

Since 1980s, video coding standardization has been progressing. A series of international 

standards of digital video coding were established for different network bandwidth and quality 

requirements. At the same time, the implementation of digital video coding technologies has been 

astoundingly advancing. One trend of video applications is the real-time data processing accompanied 
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by a new computing load, named as streaming computing. The so-called streaming is an 

uninterrupted, continuous, and moving data queue. The application which can organize data into a 

video streaming and operate on it is called streaming application. The embedded multimedia systems 

which support streaming applications are increasingly widely used in communication, networking, 

consumer electronics, and other fields. Streaming applications represented by video and audio serve 

as an important role in multimedia. Millions of Internet users enjoy video streaming every single day. 

For instance, video streaming has constituted the largest part of the multimedia applications in 

Facebook, Google+ and other social media [1]. Whitepapers from comScore [3] [4] reported that 

Smartphone users in Europe had passed 50% in December 2012 and Spanish users showed the highest 

adoption (66%. 75%) of Smartphones in five European countries (EU5: France, Germany, Italy, Spain 

and UK). In addition, over 23 million people in the EU5 countries had both Smartphones and tablets 

which had increased 94% than 2011. The total number of online video viewers had increased to 162% 

compared to the past year. In USA, the online video market had attracted 75 million audiences every 

day and nearly 40 billion videos per month in average. Smartphone market penetrated 50% at the end 

of third quarter in 2012 and 25% Smartphone owners also had a tablet which had emerged as a critical 

piece of mobile device landscape. Half of the tablet owners had reported that they used their tablets to 

watch video and TV programming. Both in Europe and USA, nearly 33% digital media minutes were 

spent on Smartphones and tablets. In addition, the Cisco Visual Networking Index forecast report also 

indicated that all forms of video content would continue to occupy approximately 90% of the global 

consumer internet traffic by 2015 [2]. Besides the daily normal utilizations, video coding and 

streaming are envisioned in numerous using areas including such as battlefield intelligence and 

reconnaissance, public security and surveillance, emergency response and disaster rescue, and 

telemedicine.  

Digital video has rapidly migrated across platforms and application contexts with the increase in 

user requests and demands. The demand for high-definition video was predicted to surpass standard 

definition format by the end of the year 2011 [2]. Higher quality video requires higher bit rates and 

thus requires greater performance and energy consumption. In recent years, with the increasing 

sophistication of the manufacture processing, the size of integrated circuits has been scaling down. 

Then, hardware technology prompts users to have greater demands of video quality. Meanwhile, the 

coding algorithms have also been improved. For example, the video coding standard H.264/AVC is 

able to provide half or even less the bit rate of previous standards while maintain the video quality [5]. 

The next generation video standard puts forward requirements of codec performance, compression 

efficiency, and other key technologies, towards a development on diversification and personalization.  
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However, energy consumption of mobile devices such as Smartphones and tablets is becoming 

increasingly serious with the development of video coding technologies. Mobile device itself is facing 

several energy challenges; video application makes the energy problem particularly obvious. In video 

application, video coding is considered as the most computation and energy intensive part. In 

particular, the stream computing is also bandwidth and delay intensive. These features lead to a great 

demand on system capacities for communication and computing, and consequently, a very high 

demand on energy support. Unfortunately, most mobile devices are designed as battery-powered and 

the development of battery technology falls far behind than that of either video applications or 

hardware, which doubles the processing power in every two years through Moore's law; Batteries do 

not event offer capacities twice larger over the last decade. Currently, most mobile devices are 

powered by lithium-ion batteries which offer more energy than other types of batteries [7]. Even this, 

it is not sufficient to increase the amount of energy created by chemical reactions. Some research 

groups have analyzed the nonlinear characteristics of different types of battery to achieve battery 

utilization. Other researchers try to exploit user movements to recharge batteries, but this is an initial 

research field [11]. Relying solely on battery performance improvement is difficult to solve the 

problem fundamentally. The only way to produce more powerful batteries seems to increase their size. 

However, this goes against to the lighter-and-thinner design trend of mobile devices which would 

offer more space for additional components rather than battery. The slow development of battery 

technology cannot provide sufficient energy, which makes critical difficulties to provide an as-long-

as-possible battery life with a limited energy budget. The battery depletion becomes the major 

drawback of the electronic field to constraint video coding developments. As a consequence, more 

researches shift into energy-efficient designs. 

1.2. Motivations 

As discussed above, excessive energy demand and consumption are critical limitations on the 

evolution of mobile hardware and services due to the quite moderate battery capacity developments 

[7]. The operational time within one charging cycle is limited to the fixed amount of energy stored in 

batteries. As the operational time is one of the most important factor for user satisfaction assessment 

on mobile consumer electronic devices [8][9], a failure to guarantee the user-expected lifetime will 

significantly decrease user desirableness. Therefore, the consumer electronics industry is motivated to 

find solutions for operation time extension.  

Research results indicated that processor intensive applications such as video playback can 

consume over 60% of the energy budget [6]. Thus, in this context, energy management and 

optimization on video application has become an attractive research topic to extend the battery 
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lifetime. How to build a framework which is able to adaptively optimize the energy consumption 

catches many research interests. In general, two kinds of method have engaged researches on this 

issue: 

 The first method provides the energy efficiency optimization achieved by improvements on new 

techniques of micro-electronics. As known that the power consumption is proportional to the 

load capacitance, circuit switching activities, and operating voltage, current and frequencies, 

these technologies aim to reduce the power-impact factors by improving circuit layouts, circuit 

logic designs, register transfer level designs, and advanced architecture designs with lower 

operating voltage supply. In this area, there have been many researchers and large teams working 

for a long time and it is difficult to make new contributions.  

 The second direction investigates how applications can deal with power management. As the 

temporal efficiency and spatial resource conflict in computer science, it is also difficult to 

simultaneously achieve low energy consumption and high QoS (Quality of Service) in video 

applications. Various approaches in this direction conducted adaption based on workloads. For 

instance, dynamic voltage and frequency scaling (DVFS) is able to dynamically adjust the supply 

voltage and frequency according to the workload, which, in the video application field, is the 

amount of computational complexity related to the quality of the rendered video images and data 

compression ratio. Although DVFS has achieved positive results of management and reduction 

of energy consumption, this approach does not change the workload (computational complexity); 

if there would be a method which could tradeoff power consumption and the workload by 

adapting the computational complexity, it would potentially provide further battery life extension.  

This thesis will follow the second research line. It proposes an energy management and 

optimization mechanism which can wisely switch among decoders with different computational 

complexities to adapt the energy consumption of the decoding process based on energy awareness.  

1.3. Objectives 

1.3.1. Brief Description of the Proposal  

Figure 1-1 depicts a scenario in which users with different remaining battery over diverse 

wireless networks accesses connect to a video server. In this context, two fundamental issues need to 

be considered during the playback of a video stream. The former one is how to deliver the same video 

content over different access networks. The latter one is how to deal with the video playback time 

over devices with different remaining battery capacities. In other words, the problem could be restated 

asking how to deliver the same video content to various mobile devices under the network bandwidth 
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and battery energy constraints, while satisfying a user-desired operational time and video quality. 

Mathematically, the problem can be expressed as equation 1-1:    

 𝑀𝑎𝑥 𝑇, 𝐵 ≤ 𝐵0,𝐸 ≤ 𝐸0 , 𝑎𝑛𝑑 𝑄 ≥ 𝑄0 1-1 

where 𝑇 is the operational time, 𝑄0 is the dissatisfactory video quality, 𝐵0 and 𝐸0 are sustainable 

requirements of network bandwidth and remaining battery capacity, respectively. Note that the value 

of 𝑄0 could be different to each single user.  

 

Figure 1-1 Example of Different Users with Different Remaining Battery over Wireless Networks 

This problem statement encompasses three different issues:  

 To deliver the same video content with different performance and capacity via different networks; 

 To ensure a quality level above user expectations; 

 To prolong the battery life of devices.  

The main goal of this thesis focuses on the third issue mentioned above, i.e. to prolong the 

battery life as a trade-off between energy consumption and video quality. An example of this trade-off 

is shown in Figure 1-2. A video sequence is presented with different qualities according to different 

battery levels. Figure 1-2 (a) shows the scenario in which a device with a full battery presents a high 

image quality sequence. On the other hand, Figure 1-2 (b) illustrates a scenario in which the same 

device with a lower battery level presents a lower video quality sequence. Video quality can be 

adjusted by either configuring encoding parameters, such as bit-rate, or changing the encoding 

algorithms, such as the entropy coding.   
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Figure 1-2 (a) Full Battery Case 

 
Figure 1-2 (b) Low Battery Case 

Figure 1-2 Example of Battery Capacity Level and Video Image Quality 

In video coding, decoding operations are the inverse of the encoding operations. Thus, decoders 

are restricted by the encoders. Video coding standards ensure the compliant compressed video data 

can be recognized and decoded. Thus, to keep the compatibility, a change in any encoding tool 

employed in the encoder side implies a change in the decoding procedure. Along with video coding 

technologies, user demand for video application exhibits an increasing diversification, i.e. higher 

quality requirements in addition of flexibility and scalability preferences [10]. Therefore, to fulfill 

these requirements, a variety of video standards have been developed. However, among the plethora 

of standards, some coding tools, namely functional unit (FU), are reutilized from one to the other.  

In this thesis, a technique known as functional-oriented reconfiguration is employed. The 

functional-oriented reconfiguration takes advantage of the shared functionalities among standards to 

build a decoder by selecting and connecting FUs from an FU pool. To direct this process, a decoder 

description, i.e. a list of FUs and their interconnection, can be conveyed into the encoded bitstream. In 

case different decoder descriptions are received at the decoder end, depending on its current battery 

level, the decoder might dynamically adapt the quality of the decoded images to extend the battery 

lifetime. This technique might offer a large potential for energy savings.   

1.3.2. Objectives 

The main goal of this thesis is to find an energy management and optimization mechanism to 

reduce the energy consumption of video decoders based on the idea of functional-oriented 

reconfiguration. The framework that describes this mechanism is outlined in Figure 1-3.  
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Figure 1-3 Outline of the Framework that Serves the Proposed Energy Management and Optimization Mechanism 

The previous objective can be decomposed into the following two objectives: 

 Objective1: to propose and implement an energy-aware manager to drive the functional-oriented 

reconfiguration; 

 Objective 2: to propose and implement an energy estimator for a video decoder.  

As can be seen in Figure 1-3, to optimize and manage the energy consumption of a video 

decoder, an energy-aware manager needs to be implemented as an additional unit of the original 

engine. The energy-aware manager checks the battery level and once the remnant energy is not 

enough to maintain the user-defined lifetime (a user preference), the energy-aware manager selects a 

new decoder description with different decoding features based on a set of criteria. Afterwards, the 

energy-aware manager informs the engine to reconfigure the decoder to build a new one. In is worth 

noting that the manager should ensure that the new selected decoder description is compatible with 

the received encoded video stream. In case it is required, the energy-aware manager might also inform 

the encoder to adapt its encoding algorithms based on the actual decoder reconfiguration.  

The analysis of the energy consumed by a decoder is fundamental for the success of the energy 

management and optimization mechanism. In this thesis, en estimation method driven by the platform 

performance monitoring counters (PMCs) which record several performance events (e.g., number of 

executed instructions) that reflect the energy consumption in real-time is proposed.  

1.4. Outline 

The thesis is organized as following: 
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PART A (Chapter 1). This introduction has stated the energy challenges in multimedia 

applications, especially in the field of video decoding. To extend the battery life time, this thesis 

proposes a new energy optimization and management mechanism for video decoding based on the 

ideal of functional-oriented reconfiguration, which can provide flexible energy saving solutions.  

PART B (Chapter 2 and 3) mainly discusses about energy estimation. Wherein, Chapter 2 

introduces the state-of-the-art of energy models, from general to coding-focused models, and 

discusses the merits and demerits of each type. An estimation methodology is introduced next in 

Chapter 3 including its basic mechanism, fitting methods, and model accuracy. Chapter 3 proposes a 

modeling method which fits into the reconfigurable framework. In particular, the method is designed 

to improve the model generalization and accuracy.   

PART C (Chapter 4 and 5) discusses energy optimization. Specifically, Chapter 4 first introduces 

different optimization techniques and then analyzes the main features of the current reconfiguration 

technologies. Before introducing the functional-oriented reconfiguration technique and its framework, 

an introduction is followed to discuss the computational characteristics of video decoding tasks, i.e. 

the fundamental factors for implementing the reconfiguration of video coding. Chapter 5 conducts a 

research on the energy optimization and management mechanism based on the functional-oriented 

reconfiguration. It proposes the energy-aware manager and a management and optimization metric for 

video decoding, giving a design example at the end.    

PART D (Chapter 6 and 7) introduces the implementations of the proposed management and 

optimization mechanism. Chapter 6 first introduces the infrastructure of the implementation. 

Development environments, reconfiguration engine, hardware platforms, bench marks and modeling 

assistant tools are presented. Chapter 7 introduces the integration of the energy estimation model into 

the reconfiguration framework and extend the reconfiguration engine with the energy-aware manager 

to achieve the implementation of the energy optimization and management mechanism.  

PART E (Chapter 8) draws the experimental results. Firstly, it gives the validation and evaluation 

of the models, including their estimation results, a guideline to choose the training sequences to 

improve model accuracy, extensions of the application range of the model, and the computation 

overhead. Second, the functionality of the energy-aware manager is tested and verified and, at last, the 

energy optimization potentialities are illustrated.  

PART F (Chapter 9) summarizes the thesis and describes some problems needed to explore in the 

future.  
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Energy Estimation: Research and Problems 

2. Energy Estimation: Research and Problems 
With the gradually increased gap between battery capacity and energy demand of multimedia 

applications, efficient utilization of the limited energy has become one of the most attractive research 

topics in mobile multimedia systems design. Many dramatic optimization techniques for battery life 

extension have been proposed by research communities. In general, the optimization/reduction 

decisions are determined based on the energy awareness, which is usually obtained from estimation. 

This chapter starts with a brief introduction of energy estimation models in two kinds: general models 

and coding-focused models. After a discussion about advantages and disadvantages of each kind, the 

related techniques of the most suitable model for energy estimation on video streaming, especially for 

reconfigurable coding, are introduced, and finally, problems of this candidate model are presented. 

2.1.  Energy Estimation Models 

An energy estimation model is the basis of adjustment of power consumption. A detailed survey 

of different energy modeling techniques will be described in following.  

2.1.1. General Models 

Although video coding is a class of application with its own characteristics independent to 

operating systems, it is bound to have common features as all computer applications, i.e., it is a 

collection of instructions and parameters, and the set of instructions controls computer running based 

on the established logics. Therefore, the general estimation models could be applied to video coding.  

General models can be abstracted into low and high levels. Low-level models estimate energy 

consumption by extracting information from circuits, gates, register transfers, and architectures. 

Avoiding hardware details, high-level models process with instructions, functional units, and device 

components to profile system energy consumption from a software point of view. Usually, low-level 

models provide more accurate results but involve more complex design details and require long time 

estimation. These physical-level models are more proper used for power analysis during the design 

stage rather than power estimation during runtime. Considering the quick response and easy usage, it 

is more suitable to employ the high-level estimation models into the coding field, which has more 

strict time constrains. A brief overview of different high-level models is introduced below.  

2.1.1.1. Instruction-Level Estimation Models 

The power model based on instruction level for individual processors was firstly proposed by 

Tiwari et al [12]. Figure 2-1 shows how this model works. The power consumption of each instruction 
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is measured when a sequence of instructions is executed, for example, on a processor instantiated 

FPGA board. For each individual instruction, its power consumption is defined to include a base cost 

and an additional overhead. Then, the model is drawn from the measurements. At last, the model is 

employed to estimate the power consumption of a different piece of code. Tiwari et al continuously 

proposed experimental approaches to empirically determine the base cost and the inter-instructions 

overhead cost [13]. Their subsequent researches showed that for both the complex General Purpose 

Processors (GPPs) and Digital Signal Processors (DSPs) the base cost could be reduced to as an 

averaged constant because of the dominance of the overhead costs.  

 

Figure 2-1 Principle Instruction-level Power Estimation 

The different combinations of instructions cause a vast number of inter-instruction effects, which 

is the main disadvantage of this approach. A simple solution proposed by Lee et al. [14] was to 

classify instructions into four categories based on their functionalities and addressing modes: loading 

immediate data to a register, transferring memory data to registers, moving data between registers, 

and operating in ALU. However, this simply method encountered difficulties when the instruction set 

had various addressing modes and high parallelism. Klass et al. [15] proposed an approach to reduce 

the complexity by observing the inter-instruction effects when a generic instruction was executed after 

a no-operation instruction. They assumed that the inter-instruction overhead mainly depended on 

instruction changes. Thus they inserted an NOP instruction before changing any instruction to 

quantify the transition overhead. As a result, they did not need to enumerate each pair of instructions 

to build the instruction model. In other work, Sama et al. [16] attempted to provide substantial 

improvements based on Tiwari's work [13]. The base energy cost was measured by individually 

repeating executing each instruction and the overhead energy consumption came from the changes of 

opcodes and control states between the subsequent instruction, and the data passing was also added 

into their model. To reduce the complexity of instruction pairs, this method classified instructions on 
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the basis of the functionalities and base costs. Therefore, the instruction overheads were only needed 

to be measured for the intergroup pairs. For those instructions in the same group, this approach 

assumed the same instruction overhead because the similar functionality and base costs usually 

indicated similar control states and opcode values.  

2.1.1.2. Function-Level Estimation Models 

Function-level power analysis (FLPA) is applicable to all types of processor architecture without 

taking into account the details of the system circuits. Instead of classical energy characterization 

abstracted from the instructions, the basic idea of FLPA is to obtain the distinct energy consumption 

from system activities of different processor functional units. Thus, a FLPA model usually divides the 

target device into several functional units and relates the processor operations to the power activities. 

Each functional unit is a cluster of components which are concurrently activated when a task is 

running. The FLPA modeling procedure is abstracted in Figure 2-2.  

 
Figure 2-2 Processor Modeling Methodology  

In this figure, the target processor is divided into 3 units. The first step of modeling is to 

characterize the system energy consumption of each unit. The proper parameters are selected from the 

executed algorithms (typically, the cache miss rate) and the processor configuration (typically, the 

clock frequency). For example, Nathalie et al. [17] divided a DSP processor into four units: 

instructions management unit (IMU), processing unit (PU), memory management unit (MMU), and 

control unit (CU). Similarly, Laurent et al. [18] abstracted complex DSPs into IMU, PU, and MMU 

units including parallelism/processing rate, cache miss rate and external data memory access rate as 

modeling parameters obtained by simulating each functional unit with small programs written in 
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assembly language. Then, in the second step, various scenarios, 𝛼𝑖, are executed. Each scenario has 

different system configuration 𝐹 = 𝑓(𝛼𝑖). The consumed energy (e) and the values of modeling 

parameters (𝑃1,𝑃2) of each unit are recorded. Finally, the relationship between the consumed energy 

and the selected parameters is decided and modeled for each unit. The whole energy consumption of 

this processor is the summation of the energy consumption of each unit. 

Based on FLPA methodology, the SoftExplor [19], a tool which automatically performs power 

and energy consumption estimations, has been widely used by lots of researches. SoftExplor 

facilitates the modeling process. It only requires coarse-grain knowledge on processor architectures 

and it achieves a good tradeoff between estimation accuracy and model complexity. More 

specifically, E. Senn et al. in their work Open-PEOPLE [20] presented a platform dedicated to 

provide a set of power analysis tools as a library of power models to develop power modeling 

methodologies with the considerations from entire embedded system including applications, hardware 

components, operating system (OS), and the associated services.  

2.1.1.3. Component-Level Power Estimation Models 

For better generalization, models abstracted in higher component-level have been proposed. 

Component-level models consider main system components (e.g., processor, memory, and 

coprocessor) and lead to more intuitive and feasible models.  

High-level abstraction models can obtain the static pre-characterized energy consumption from 

spreadsheets provided by manufacturers. These spreadsheets are very useful in the early stage of the 

design process to achieve initial decisions with power issues [21]. Spreadsheets provide a capability to 

quickly estimate the current and power consumption of each intellectual property (IP) core or library 

cell. Developers can configure the operating frequency, temperature, and other parameters to estimate 

the power consumption of his design by using spreadsheets (Figure 2-3). An example of using a 

spreadsheet to estimate the power consumption of processes and multimedia applications was 

developed for the BeagleBoard, a commercial prototyping board based on the OMAP processor, by 

González et al. [22]. However, this approach is valid only when the hardware exhibits regular activity 

patterns. It might not be able to provide guidance for block-level hardware power estimation due to its 

lack of flexibility when the hardware has different work modes workloads. With the increasing 

importance of power management techniques, they are limited in accuracy. 
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Figure 2-3 Models Based on Datasheet  

Several more general component-level energy estimation models were introduced in works [23]-

[26]. In a broad sense, a component can be an individual functional unit or a block with several 

similar functional units. The key idea of this method is to profile the energy insights of each 

component. Generally speaking, those devices of an embedded system can be divided into four main 

categories: computation, storage, communication, and I/Os. Each of these categories has its own 

unique objective functionality and thus cannot be replaced by another one. The energy consumption 

issues of each category can be independently analyzed and thus a component-level model can be 

easily extended by adding new components.  

Power behavior of components is driven by specific events. Devices requests and occurrences 

of hardware events such as cache misses, retired instructions, and memory accesses can be considered 

as influence factors of energy consumption. In some complex systems, each component can be 

described by a simple state machine containing information relevant to its power behavior. At 

different execution moments, each component is in a specific power state, which consumes a discrete 

amount of power. Average or peak power dissipation can be easily determined by looking at the 

power usage over time for a given set of environmental conditions. 

A new methodology is to relate energy consumption to software behaviors. In essence, all the 

hardware activities are driven by a series of software operations, i.e., a sequence of instructions. Any 

instruction in its execution stage will activate some modules in the processors and contribute to the 

energy consumption. In modern microprocessors, a set of special-purpose registers, named as 

performance monitoring counters (PMCs), is employed to record the number of hardware-related 

activities occurring during program execution. The original purpose of PMC design is to provide a 

practical method for developers to supervise and adjust system performance through the information 
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provided by those counters. Since PMCs provide a deeper insight into functional units of processor, 

cache, main memory, as well as some peripherals with low-overhead to represent the performance 

characteristics of applications at their runtime, a new direction for energy estimation has been 

introduced by PMCs. Figure 2-4 shows the general structure of a PMC-based modeling methodology. 

This structure is usually divided into software, middleware and hardware levels. Applications and 

estimation models run at the software level while the operating system runs at middleware level. The 

latter controls the PMCs configuration and provides an interface for applications to set the 

configuration. The components under-test components and the PMCs are implemented at the 

hardware level. The energy estimation is profiled by mathematical fitting based on real measurements 

of current and voltage, either from the entire platform or for each component, and PMC samples. 

 
Figure 2-4 A General Structure of PMC-based Modeling Methodology 

After Bellosa in work [27] correlated PMC-monitored events (PMC events) with energy 

consumption to obtain a good estimation, many studies have been continued in this direction [28]-

[33]. The work of Li et al [29] exploited the high-correlation between the number of instructions per 

cycle (IPC) and power consumption to estimate the energy dissipation. The main challenge of this 

approach is how to choose the best set of PMC events. Most researchers identified PMC events on the 

basis of the platform architecture analysis [28]-[33]. For example, Goel et al. [31] proposed an 

approach for choosing PMC events. Their first step was to identify the candidates by manually 

separating available PMC events into several categories that impacted dynamic power through 

different issues. Their work could effectively reduce the number of PMC events. However, a priori 

selection might encounter difficulties due to the limitation of events that could be monitored by PMCs 

and the limitation of the number of PMCs that could be used simultaneously. More specifically, 

Lively et al. [32] introduced how to choose suitable PMC events. They used different PMC events to 

build models for each application to ensure that the energy behavior trends were correctly represented. 

In contrary, X. Yu et al. [34] built a sub-model of a processor without any selection but repeated the 

same test case several times with two different PMC events each time to obtain all the information 

provided by the entire set of PMC events. This method was quite time-consuming, and it was not 
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suitable for the power management policy since it would entail a long delay to get a full estimation of 

one application. 

PMC-based methods for energy estimation are getting promising results in different fields, and 

thus the energy consumption modeling combined with PMC events and mathematical fitting are been 

widely used. 

2.1.2. Video-Coding-focused Models   

Video streaming includes images, audio and data. Large amounts of data are required to 

accurately represent video information. Video coding is significantly more complex than other 

applications due to the high complexity of the video compression algorithms. As an individual 

application, there have been researches on energy estimation models specifically focus on video 

coding fields.  

X. Lu et al [35] proposed a model for an H.263 encoder based on the bit rate and parameters from 

functional units such as DCT computation, quantization, and motion estimation. A similar model for 

an MPEG-4 simple profile encoder, based on the quantization parameters and the INTRA fresh rate, 

was proposed in work [36]. X. Li et al [37] proposed a model for an H.264/AVC decoder in which the 

consumption was estimated with the product of multiplying the video spatial resolution, temporal 

resolution, and quantization. Yahia Benmoussa et al [38] introduced an energy model of H.264/AVC 

decoder based on a set of hardware and video stream parameters such as bit-rate, clock frequency, and 

quantization parameters (QP). The entire energy model included four sub-models: QP-rate model, 

dynamic power model, static power model, and time model. The coefficients of those parameters were 

obtained by consumption measurements and regression analysis. This methodology was featured to 

achieve a good tradeoff between prediction property and lower-level model details. In work from Z. 

Ma et al. [39], they did not directly implement an energy/power model but proposed a model for an 

H.264/AVC decoder complexity estimation. The infrastructure of this complexity model was the 

complexity unit (CU) which was the fundamental operations of each decoding module (DM) over a 

time interval, such as one frame. The complexity of one DM was the product of the average 

complexity of one CU and the required number of CUs. Among several possible ways of defining the 

CU for a DM, they determined the final choice by considering if it was fairly constant for a given 

decoder and if it was able to be accurately predicted by a simple linear function. The entire decoder 

could be decomposed as several DMs, and then the decoder complexity would be easily obtained by 

summing up all the complexities of each DM. Since the decoder complexity is a direct representation 

of the energy consumption, then its exploration could become a tool to predict energy consumption.  
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2.1.3. Discussion 

As introduced above, each method has its advantages and disadvantages. There is no perfect one 

but with the comprehensive consideration of their features, some of them could be more proper for 

video coding modeling.  

Modeling approach at instruction-level mainly faces three problems: 

 The number of measured instructions needs to be quantified. This number has a direct 

relationship with the size of the instruction set architecture (ISA).  

 Modern architectures of processors have been implemented to use pipelines, which allow 

the execution of several instructions at the same time to improve the processing speed. Thus, 

the number of parallel instructions needs to be taken into consideration.  

 Drawing the whole picture of the full-system power consumption is difficult because that 

this approach cannot provide insight on the other isolated components, especially 

peripherals.  

The first two problems cause the model to be non-generalizable. They are needed to deeply 

understand design details of hardware, especially the supported ISA because the base cost of 

instruction may vary within the number of operands and the accessing methods. The last one leads to 

the difficulty for a model, at a specific time, to distinguish out what the issued part/component on the 

system in relation to the currently executed instructions is. Thus the developers cannot know which 

part/component consumes the greatest percentage of energy. 

The mandatory requirement of FLPA methodology is to decompose the whole system into several 

functional blocks with the consideration of their impacts on the power consumption. The point is to 

balance between accuracy, estimation cost, and decomposition granularity. The main disadvantages of 

FLPA are the complexity of the components determination, the coverage of all significantly 

influencing parameters, and the dependency among power consumption and performed instructions. 

Energy estimation models give a possibility to understand and analyze power behavior on real 

systems. Instruction-level or function-level models are usually drawn by detailed analysis on system 

architecture, i.e, the instruction set or the functional blocks, which limits the quick adaption of these 

models for various platforms. More specific models are those designed for video coding. They are 

abstracted from coding algorithm without hardware information during model building. This liberates 

video coding designers from their unfamiliar fields. However, it is not possible to detect the 

distribution of power consumption of different components from those video-coding-focused models. 

As a consequence, it is difficult to determine the bottlenecks of the design. In addition, the complexity 
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parameters may need to be redesigned for each codec standard, which is also a limitation on 

generalization.  

A more suitable energy estimation model for video coding should take consideration on both 

model abstract level and information provided by platform behavior observation. Modeling in a high 

abstract level means that most of the hardware details are hidden and models can be employed to 

model the energy consumption on different platforms with little modification. In addition, the 

modeling parameters can be easily determined. For platform behavior observation, the model should 

represent how the power is consumed within components. For example, for a processor model, the 

model could demonstrate the power distribution on ALU unit, memory unit or other accelerator 

modules such as branch prediction or pipeline. A PMC-based mechanism can better fit the two 

requirements mentioned above. PMCs are widely available in most of the modern processors and they 

can be accessed by the same pattern of interfaces provided by high level tools. In addition, PMCs 

translate hardware details to occurrences of different events. Different components can use different 

events as their way to represent energy. Therefore, the PMC-based estimation can be a good candidate 

for energy modeling of video coding.  

2.2. Introduction of PMC-Based Methodology 

2.2.1. PMC Introduction 

PMCs have been briefly introduced in the component-level estimation models. In modern 

processors, they are provided within a Performance Monitoring Unit (PMU) to gather statistics on the 

operation of the processor and memory system. Each PMC can count any of the available events in 

the target processor.  

Implementation of PMCs in different processors could differ from the quantity and the types of 

monitored events. Each processor has its specific events for monitoring. In order to achieve a better 

generalization, platform specific events should not be included into estimation models as candidates. 

In a broad sense, PMCs consist of the following three kinds of counters:   

 A cycle counter: This counter can be programmed to increase every main system clock 

cycle. It is only used to count the cycle numbers. Attention must be paid to the cycle counter. 

In some platforms, it may need to be enabled independently to the event counters. 

 Event counters: The concept of event counter and event need to be distinguished. An event 

is a special occurrence caused by computing operations. An event counter can be configured 

to select one specific event among all the platform-available events and increase its value 

once this event occurs. Thus, the behavior of an event counter can be defined by users 
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according to their individual requirements. Usually, the number of the available events is 

much more than the number of PMCs. For example, the PMU of cortex-A9 processor 

provides 6 PMCs and each one can count any of the 58 available events. Also note that the 

number of PMCs may be greater than the number of PMCs that can be used simultaneously. 

In this dissertation, PMC is referred as the event counter if there is no particular emphasis.  

 Controlling counters: There are some counters used to control other PMCs to complete 

various operations. The operation of these counters includes: enable, reset, start, stop, 

overflow flag set, and interrupts enable. 

There are many methods to access PMCs. For example, PMCs can be accessed via special file 

descriptors.  In windows 2000 operating system and later ones, users are provided with graphical view 

of how well the system performs by counting the data consumed by applications. The Linux PMC 

subsystem also provides an abstraction of the hardware capabilities, such as perf_event [40] which is 

an application programming interface (API) of the Linux kernel and perfmonX [41] which is a 

hardware-based performance monitoring interface for reading the PMCs from user space. 

2.2.2. Correlation Coefficient 

The basic principle of PMC-based energy estimation model is to use different system events to 

represent energy consumption. The model accuracy highly depends on the selection of PMC events. 

Whether or not an event should be used for modeling is determined by its relatedness to energy 

consumption. Usually, the correlation coefficient (𝑟) is used to express the strength of relatedness 

between two variables. The value of  𝑟 is between -1 and +1. 𝑟 greater than zero indicates a positive 

correlation, i.e., if the value of one variable increases, the value of the other one will also increases. 

Similarly, 𝑟  lower than zero shows that two variables are negatively correlated. The larger the 

absolute value of  𝑟 , the stronger they correlate to each other. Please note that the correlation 

coefficient does not reflect a causal relationship, i.e., one variable is not the incentive of another one. 

For example, in summer, the beer sales and the ice-cream sales rates both increase, which somehow 

indicates a kind of “common increase” relationship, and they both reflect the phenomenon of 

temperature increase. But selling a beer is substantially independent to an ice-cream sale; the real 

cause of increments of these two rates is the high temperature. 

 Correlation coefficient was firstly proposed by the statistician Karl Pearson [42]. It is also named 

as Pearson correlation. A Pearson correlation coefficient can be applied to the following cases: 

 Two variables are continuous and linearly related to each other.  

 The overall population of two variables is normally distributed, or is closed to a unimodal 

distribution. 
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 Observations of two variables are paired; each pair of observations is independent.  

Pearson correlation coefficient has strict preconditions for model establishment. If the previous 

conditions are not satisfied, it is possible to use Spearman’s rank correlation as a substitution. 

Spearman’s rank correlation coefficient is a non-parameter rank statistic, which was proposed by 

Charles Spearman in 1904 [43]. The requirements on sample data to use Spearman’s rank correlation 

coefficient are less strict than those required to use Pearson correlation coefficient. As long as the 

ranks of observed values are paired. Spearman’s rank correlation coefficient can be employed 

regardless of the overall distribution and sample size. One variable is a strictly monotone function of 

the other if the Spearman’s correlation coefficient is +1 or -1 when there are no repeated values of the 

sampling data. These two values, +1 and -1, are called perfect Spearman correlation. The spearman's 

rank correlation coefficient is defined as the Pearson correlation coefficient between the ranked 

variables. In the actual computation, the original variables 𝑋𝑖 and 𝑌𝑖  are converted to ranks 𝑥𝑖,𝑦𝑖 , i.e., 

the positions of original variables after sorting. If there is no repeated ranks, Spearman’s rank 

correlation coefficient uses the monotonic function (equation 2-1) to describe the statistical 

dependence, where 𝑑𝑖 is the difference between the ranks of each observation of the two variables and 

𝑛, the simple size. If there are repeated values, 𝑟 is need to be calculated by equation 2-2 as the 

Pearson correlation coefficient of ranks.  

 𝑟𝑠 = 1 −  
6∑𝑑𝑖2

𝑛(𝑛2 − 1)
 2-1 

 𝑟𝜌 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − 𝑦�)𝑖

�∑ (𝑥𝑖 − �̅�)2(𝑦𝑖 − 𝑦�)2𝑖
 2-2 

2.2.3. Fitting Methods 

There are many fitting methods can be used for model building. Linear regression is the most 

commonly used one. However, in some complex cases, in different intervals, power consumption and 

events may variously related, thus, in these cases, piecewise fitting methods like Multivariate 

Adaptive Regression Spline (MARS), are recommended to obtain better accuracy in complex 

situations.  

2.2.3.1. Linear Regression Methods 

Linear regression is an important branch of mathematical statistics [44]. Multiple linear 

regression is the study to research if there is a linear relationship among a number of independent 

variables (or predictors) and a dependent variable (or a response), and to use a multiple linear 

regression equation to express this relationship. It can also be used to quantitatively characterize the 

linear relationship among a dependent variable and several independent variables. Multiple linear 
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regression modeling is an effective tool for model predicting. For a practical problem, the linear 

regression model of the obtained n sets of data (𝑥𝑖1,𝑥𝑖2, … , 𝑥𝑖𝑛;𝑦𝑖| 𝑖 = 1,2, . . . ,𝑛) can be expressed 

as equation 2-3:  

 

𝑦1 = 𝛽0 + 𝛽1𝑥11 + 𝛽2𝑥12 + ⋯+ 𝛽𝑝𝑥1𝑝 + 𝜀1
𝑦2 = 𝛽0 + 𝛽1𝑥21 + 𝛽2𝑥22 + ⋯+ 𝛽𝑝𝑥2𝑝 + 𝜀2

… …
𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛1 + 𝛽2𝑥𝑛2 + ⋯+ 𝛽𝑝𝑥𝑛𝑝 + 𝜀𝑛

 2-3 

and can be written in matrix form as equation 2-4: 

 𝑦 = 𝑋𝛽 + 𝜀  2-4 

where, 

 

𝑦 = �

𝑦1
𝑦2
⋮
𝑦𝑛

� , 𝑋 = �

1
1
⋮
1

 

𝑥11
𝑥21
⋮
𝑥𝑛1

 

𝑥12
𝑥22
⋮
𝑥𝑛2

 

…
…
⋱
…

 

𝑥1𝑝
𝑥2𝑝
⋮
𝑥𝑛𝑝

� , 𝛽 = �

𝛽1
𝛽2
⋮
𝑦𝑛

� , 

𝜀 = �

𝜀1
𝜀2
⋮
𝜀𝑛

� 

2-5 

According to the least squares method, the obtained regression coefficients are cast as equation 

2-6: 

 �̂� = (𝑋′𝑋)−1𝑋′𝑦 2-6 

then, vector 𝑦� = 𝑋𝛽 = (𝑦1,� 𝑦2,� … ,𝑦𝑛�)′  is the return value of the dependent variable vector 

𝑦 = (𝑦1,𝑦2, … ,𝑦𝑛)′. For the model parameter estimation, regression equation 2-3 has the following 

basic assumptions [44]:  

 Independent variables 𝑥1,𝑥2, … , 𝑥𝑝 are deterministic variables, not random ones, and it is 

required that 𝑅𝐴𝑁𝐾(𝑋) = 𝑃 + 1 < 𝑛. This is to say, there is no perfect correlation among 

independent variables and the sample size should be larger than the number of explanatory 

variables.  

 The random error term has homoscedasticity which indicates that error term and 

independent variables are independent.  

 The random error term is normally distributed.  

2.2.3.2. MARS 

Table 2-1 shows the correlation coefficients between PMC events and energy consumption for 

one of the experiments described more in detailed in chapter 8. Correlation coefficients lower than 0.7 
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indicate that no absolute linear relationship exists between the concerned events and the energy. In 

this case, the trend line to fit PMC events to energy consumption is likely to exhibit various slopes 

depending on the range of the independent variables. Therefore, a piecewise method (which is 

proposed for building a model with different slopes in each interval), MARS, is recommended to 

achieve more accurate results. 

Table 2-1 Correlation Coefficients Between PMC Events and Energy 

Data 
Cache 
Access 

Instruction 
Cache 
Misses 

Data Translation 
Lookaside Buffer 

Misses 

Instruction 
Translation 

Lookaside Buffer 
Misses 

Hardware 
Interrupts 

Conditional Branch 
Instructions 

Mispredicted 

Instructions 
Issued 

0.51 0.68 0.52 0.38 0.74 0.63 0.79 

Multivariate Adaptive Regression Spline (MARS) was proposed by Jerome H. Friedman in 1991 

[45] and has been widely used in many complex fitting problems. “Multivariate” shows its ability to 

generate models in high dimensional problems. “Adaptive” refers to its flexibility and adaptability to 

adjust the model. “Regression” indicates its functionality to estimate the relationship among 

independent and dependent variables. And “Spline” is a special function that is piecewise-defined by 

polynomial functions. Spline interpolation is widely used due to its simplicity of construction, 

accuracy of evaluation, and capacity to approximate complex curve fitting and interactive curve 

design. MARS defines the tensor product of spline functions as the basis functions. The process of the 

generation of basis functions has strong adaptability, which can be completed without manual 

operations. In a multidimensional situation, due to the expansion of the sample space, how to divide 

the space has become a critical issue. MARS method does not require a space-disjointed partition as 

long as all sub-spaces can cover the entire sampling space. Each divided space corresponds to a 

coefficient and an input variable 𝑥𝑖. MARS model obtains its prediction value by combining all basis 

functions.  

For a system, the output set, which is the dependent variables set  𝑦 = (𝑦1, … ,𝑦𝑞), and the input 

set, which is the independent variables set 𝑥 = ((𝑥11, … , 𝑥1𝑝), … , (𝑥𝑞1, … , 𝑥𝑞𝑝), have the relationship 

shown in equation 2-7: 

 𝑦𝑗 = 𝑓𝑗�𝑥𝑗1, … , 𝑥𝑗𝑝� + 𝜀𝑗 2-7 

where 𝑞 is the number of observations and 𝑝 is the number of independent variables, {𝑓𝑗} is a set 

of deterministic functions, and {𝜀𝑗} is a set of random variables, which reflect the random disturbance 

of the system. By convention, the expectations of  𝜀𝑖 are set to zero, i.e., 𝐸(𝜀𝑖) = 0. The objective of 

MARS is to obtain an approximated function 𝑓𝑗  instead of fj  to analyze and calculate the system 
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response through a series of training data �yi1, … , yiq; (x11, … , x1p), … , (xq1, … , xqp)�
i=1
q . A MARS 

model can be represented by summing up a set of basis functions as indicated in equation 2-8:  

 𝑓�𝑥1, … , 𝑥𝑝� = �𝑐𝑚𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚) 2-8 

where 𝑐𝑚 is the coefficient of each basis function 𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚). The forms of basis functions in 

MARS method are expressed in equation 2-9:  

 𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚) = �𝑏𝑘𝑚(𝑥𝑣(𝑘,𝑚)|𝑃(𝑘,𝑚))
𝐾𝑚

𝑘=1
 

2-9 

𝐵𝑚(𝑥𝑖𝑚,…,𝑥𝑗𝑚)  is obtained by multiplying 𝐾𝑚  (at least one) basis functions 𝑏𝑘𝑚 , which are 

specified by the input variables 𝑥𝑖𝑚,…,𝑥𝑗𝑚, a subset of independent variables denoted as 𝑥𝑣(𝑘,𝑚), and a 

set of functional parameters𝑃(𝑘,𝑖𝑗); 𝑏𝑘𝑚 is a constant or a hinge function expressed in equation 2-10: 

 𝑏𝑘𝑚(𝑥|𝑠, 𝑡) = [𝑠(𝑥 − 𝑡)]+         (−∞ ≤ 𝑡 ≤ +∞) 2-10 

The subscript "+" of equation 2-10 indicates a positive part, i.e.,  

 [𝑧]+ = � 𝑧             𝑧 > 0
  0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 2-11 

In the equation 2-10, the parameters 𝑠 and  𝑡 are the truncated direction (𝑠 = ±1) and the knot 

position of the basis function, respectively, i.e., the item  𝑃(𝑘,𝑚) = (𝑠𝑘𝑚, 𝑡𝑘𝑚) of equation 2-9.  

The procedure of MARS algorithm is to obtain a set of basis functions 𝑐𝑚𝐵𝑚(𝑥𝑣(𝑘,𝑚)) through a 

forward iterative process and a backward iterative pass to make the objective function 𝑓 approximate 

the expected accuracy. Forward pass iteratively divides the training data and fits the estimation 

models. It will produce a large number of basis functions. The backward pass will selectively remove 

some basis functions with the premise to ensure the highest goodness of fit of the final model.  

During the forward pass, appropriate knot selection at each iteration is crucial for the model 

accuracy. To maximize estimation accuracy and to save computing time, there is no need to test each 

point to determine if it is appropriate for a new basis function. A minimum step size 𝐿 for variable 

selection is introduced, which results in less selection from a large amount of data for knot 

calculation. The step 𝐿 is calculated as equation 2-12:  

 
𝐿(𝑎) =

− 𝑙𝑜𝑔2[− 1
𝑝𝑁 𝑙𝑛(1 − 𝑎)]

2.5
 

2-12 
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where 𝑎 locates in a closed interval [0.01, 0.05], which is a reasonable range of narrowing the 

selection of candidate nodes. The quantity 𝑁 is the number of observations and 𝑝 is the number of 

predictors or input variables. With this selection step, the estimation accuracy is almost unchanged, 

while the approach speed is significantly improved. The entire iterative process will continue until the 

number of basis functions reaches the user-defined maximum number or the minimal lack of fit 

(LoF), which is the different between the real function 𝑓 and the model function 𝑓, is achieved.  

The forward pass usually leads to the over-fitting because MARS algorithm only allows building 

new basis functions based on previously generated basis functions. Thus, forward iteration will 

construct a large number of basis functions. The originally generated functions may have little or no 

contribution to the final model. Their function is to produce subsequent basis functions. To improve 

the generalization ability, the model will be pruned by MARS backward pass. It deletes the least 

effective basis function at each loop until it finds the best sub-model. The estimation performance is 

evaluated with new data rather than with training data. However, new data are always not available at 

the time of modeling building. Thus, the sub-model performances are evaluated by using the 

generalized cross validation (GCV) criterion. GVC is computed as in equation 2-13; the lower the 

value, the better the performance. It takes the trade-off between goodness-of-fit and model 

complexity. 

 𝐺𝐶𝑉(𝑀) =  𝑅𝑆𝑆

𝑁∗(1−𝐶(𝑀)
𝑁 )2

=
1
𝑁
∑ [𝑦𝑖−�̂�𝑀(𝑥𝑖)]2𝑁
𝑖=1

[1−𝐶(𝑀)
𝑁 ]2

   2-13 

where RSS is the residual sum-of-squares on the training data and 𝑁  is the number of 

observations; 𝐶(𝑀)  is the effective number of parameters, which is defined as  

𝑡𝑟𝑎𝑐𝑒(𝐵(𝐵𝑇𝐵)−1𝐵𝑇) + 1 + 𝑑 ∗ 𝑀;  𝑡𝑟𝑎𝑐𝑒(𝐵(𝐵𝑇𝐵)−1𝐵𝑇) + 1 is the number of MARS terms, i.e., 

the number of included basis functions; d is the penalty factor whose value is between 2 and 4, and M 

is the number of hinge-function knots. RSS always decreases as MARS terms increases. This is to 

say, the backward pass will always choose the model with largest terms if and only if the RSS is used 

to evaluate the model performance. Including too many items typically causes a model to have low 

generalization. Therefore, the GCV criterion takes into account the model generalization to adjust the 

training RSS and penalizes the addition of knots.  

The final model obtained by MARS algorithm is expressed in equation 2-14: 

 𝑓(𝑥) = 𝑐0 + � 𝑐𝑚�[𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]+

𝐾𝑚

𝑘=1𝑚=1

 2-14 
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where 𝑐0 is a constant basis function, each addend term is a basis function  𝑐𝑚𝐵𝑚, and 𝑠𝑘𝑚 =

±1. When MARS algorithm is used in this dissertation, to simplify the model, 𝐾𝑚 is set to 1 and only 

the basis function with one variable is employed, i.e, 𝑐𝑚𝐵𝑚 =  𝑐𝑚[𝑠𝑚(𝑥𝑖 − 𝑡𝑚)]+. 

As explained before, the hinge function is defined as 𝑏(𝑥|𝑠, 𝑡) = [𝑠(𝑥 − 𝑡)]+ . To make the 

model be continuous and have continuous first derivative, the hinge function can be replaced by its 

corresponding cubic truncated form as equation 2-15 to 2-20:  

 
C(x|s = +1, t−, t, t+) = �

0 x ≤ t−,
P+(x − t−)2 + r+(x − t−)3 t− < 𝑥 < t+,

x − t x ≥ t+

� 

 

2-15 

 
C(x|s = −1, t−, t, t+) = �

−(x − t) x ≤ t−,
P−(x − t+)2 + r−(x − t+)3 t− < 𝑥 < t+,

0 x ≥ t+

� 

 

2-16 

 𝑃+ =
(2t+ + t− − 3t)

(t+ − t−)2
 2-17 

 𝑟+ =
(2t − t+ − t−)

(t+ − t−)3
 2-18 

 𝑃− =
(3t − 2t− − t+)

(t− − t+)2
 2-19 

 𝑟− =
(t− + t+ − 2t)

(t− − t+)3
 2-20 

𝐶(𝑥|𝑠, 𝑡−, 𝑡, 𝑡+) is first order differentiable, but its second derivative is not continues at 𝑥 = 𝑡±. 

Each knot t can define a linear truncated function, while a cubic function needs three knots: 𝑡，𝑡+，

𝑡−. Figure 2-5 shows an example of linear and cubic hinge functions. 

 
Figure 2-5 (a) Linear and Cubic Basis Function when S=1 
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Figure 2-5 (b) Linear and Cubic Basis Function when S=-1  

Figure 2-5 Linear and Cubic Basis Function 

This post pass ensures that the model is everywhere differentiable in the variable space. 

Therefore, the model is smoother and the fitting accuracy is improved without introducing heavy 

computable complexities. 

2.2.4. Discussion 

There is no doubt that a PMC-based model combined with linear regression or MARS method can 

achieve very accurate predictions. However, this method has a weakness when a model obtained for 

one system wants to be applied to other systems with the condition that the appropriate PMC events 

for each system could be unique. There are reasons of this uniqueness. One reason is that the type of 

observable events and the number of hardware counters vary from one kind of architecture to another 

due to the variation in the hardware organization. Therefore, the exact model will be different to each 

platform depending on the availability of native PMC events. Another reason is that the number of 

available hardware counters in a processor is limited while each model might have a lot of different 

PMC events that a developer might like to measure. Each counter can be programmed with the 

indexes to monitor various types of PMC events. In other words, although CPUs typically have 

multiple counters, each of them can only monitor one PMC event at one time, and some counters can 

only monitor specific PMC events, such as the PMC used to count clock cycles. Therefore, 

architectures cannot concurrently monitor in general the interesting combinations of PMC events. A 

challenge on the development of PMC-driven component-level models is how to select, using 

efficiency and accuracy trade-offs, the most suitable PMC events for each component.  

Besides selection on PMC events, in practical problems, regression analysts usually tend to 

thoughtfully select the relevant indicators to avoid missing important system characteristics. However, 

these indicators are often highly correlated, which is the multi-collinearity phenomenon of multi-

variable system [46]. Multi-collinearity occurs when two or more predictors in the model are 

correlated and provide redundant information about the system response. Thus, it becomes difficult or 

impossible to distinguish individual effects on the dependent variables. Essentially, collinearity makes 
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the same variable enter into a model twice, which results in an extreme case of confounding. In 

general, it is not necessary to have “perfect” collinearity to cause problems; as long as two variables 

are highly correlated, they will cause a “near-collinearity” problem. In multiple linear regression 

analysis, the multi-collinearity often seriously affects the parameter estimation, enlarges the standard 

modeling error, introduces the model distortion and decreases the model robustness. Because of its 

serious harm and widespread presence, it is needed to eliminate its adverse effects.  

2.3. Conclusion  

In this chapter, general and video-coding-focused energy estimation modeling methodologies are 

introduced. Comparing their different features, PMC-based estimation leads a promising mean to 

balance modeling generalization and accuracy. Thus, it is recommended for energy estimation on 

video coding. In order to use this mechanism, knowledge of PMC is introduced. The key point to 

obtain an accuracy model is how to define a proper set of PMC events for energy prediction. 

Correlation coefficient is a common method to evaluate the degree of relationship of two variables. 

Therefore, it can be employed to choose the energy-correlated PMC events. The correlation 

coefficients that can be used depend on the characteristics of sampling data. Pearson correlation 

coefficients and Spearman’s rank correlation coefficients are two of the most widely used approaches. 

With the selected PMC event set, fitting methods are employed next to obtain the final energy 

functions. Linear regression is a common method for data fitting and has shown its accuracy on PMC-

based models. With the consideration of nonlinear factors, it could be more optimistically to use a 

piecewise method, MARS, to obtain higher accuracy. Furthermore, with a discussion about PMC-

based methods, two problems have emerged: difficulties on PMC events selection and harms from 

multi-collinearity phenomenon. Next chapter proposes a more general methodology to solve these two 

problems.  

30 

 



Generalization and Accuracy Improvements of the Energy Estimation Model 

3. Generalization and Accuracy Improvements of the 
Energy Estimation Model 
To achieve the support on multiple hardware platforms and various coding standards, the 

estimation model should meet two requirements: one is to involve not too many details of the 

hardware platforms, and the other one is to avoid including knowledge from specific coding 

standards. That is to say, the model should have a high generalization and can be employed to any 

platform and coding standard with little modification. In this context, a PMC mechanism, which has 

been widely used due to its simplicity and high efficiency, is suggested combining into the 

optimization module. Although a PMC-based model is not a new idea, model generalization and 

multi-collinearity of model predictor (independent variables) are still two issues with impact on the 

accuracy of models and are worthy of improvement. In this chapter, section 3.1 will first state the two 

problems and then the solutions are proposed in section 3.2. The conclusion will be drawn in the final 

section 3.3.  

3.1. Problem Statement 

3.1.1. Generalization Problem 

Before going into any further step, it is worth noting that this thesis will focus on modeling the 

energy consumption of computing processor and memory units. Other peripheral activities are 

estimated by the number of interrupts and each interrupt is assumed to consume the same energy. For 

these two focused components, models usually consider the number of executed instructions, or 

simply, the number of instructions, as the most intuitive renderer of energy consumption. However, in 

modern processors, additional units responsible for branch predictions and cache memory and 

techniques such as pipelining are implemented to accelerate the processing speed. These elements are 

factors that greatly impact on the energy consumption. 

Figure 3-1 is a general block diagram of the architecture of a processor including the memory. 

The processor is divided into 4 parts corresponding to the 4 stages of an instruction process. The 

instruction fetch unit fetches instructions from the L1 instruction cache memory based on a prediction 

over the instruction streams. Then, it places the fetched instructions into the input buffer of the 

pipelined instruction decoder. After the instruction decode unit decodes and sequences instructions, 

the execution unit starts to execute the decoded instructions. This unit may consist of several identical 

pipelined Arithmetic Logical Units (ALUs), pipelined multipliers and an address generator for loading 

and storing instructions. It also performs register write-back operations, processes branch estimations, 

and other changes on the instruction stream such as instruction condition code evaluations. The 
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load/store unit includes the entire L1 data cache memory system and the integer load/store pipeline. 

The L2 cache unit services L2 cache misses from both the instruction fetch unit and the load/store 

unit. With this complex structure of processor, only the number of executed instructions cannot 

completely represent the processor functionality. Note that several processor units will introduce 

additional energy consumption. For example, pipeline blocking, cache miss, and prediction failure 

will cause the processor to stall and decrease the number of issued instructions, but at the same time, 

other units will be active to prepare actions such as pipeline discard (due to wrong branch predictions) 

or memory access (due to cache misses). The activity of these additional units impacts on the total 

energy consumption and thus brings difficulties for estimating energy using the number of executed 

instruction, i.e. only by relating energy consumption to arithmetic unit activities. The unsatisfactory 

results from the only-instruction-based model will be shown in the results chapter.  

 

Figure 3-1  General Processor and Memory Architecture 

To improve the estimation accuracy of PMC-based models, the principle is to increase the 

information about energy-related activities obtained from predictors. Briefly speaking, the idea is to 

avoid biases due to predictor selection. One simple solution is to include all the platform available 

PMC events. However, with a large number of events, there will be an increased overhead for PMC 

configuration and control, especially caused by multiplexing of PMCs. An experimental result of this 

overhead is shown in Figure 3-2 (a) to (d). In this experiment, an embedded platform is configured to 

decode four different frames, (a) to (d), of a video stream with several PMCs monitoring up to 15 

events during the decoding process. Each plot on the left in Figure 3-2 (a) to (d) shows the time to 

decode one frame of the cideo stream (y-axis) when the platform is configured to monitor different 

number of PMCs (x-axis). In addition, the CPU time plot only considers the processor time to decode 

while the total time plot includes, on top of that, any other activities of the CPU and its idle time.   
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Figure 3-2-(a) 

  
Figure 3-2-(b) 

 
Figure 3-2-(c) 
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Figure 3-2-(d) 

Figure 3-2 PMC Overhead 

As can be noticed, the CPU time to decode a frame is almost constant while the total time 

increases with the number of PMCs. Plots on the right in Figure 3-2 (a) to (d) show the percentage of 

CPU time employed in PMC management. As can be seen, the decoding rate decreases by 4% when 

using 15 PMCs instead of using just one. This result suggests the need of limiting the number of PMC 

events taken into account. Since the size of the PMC event set needs to be reduced, the selection of 

PMC events is a problem that is worth to study.  

The core concept of a PMC-driven model is to relate the energy behavior to the occurrence of 

several events, which are closely dependent on the architecture features and the platform monitoring 

capabilities. Model accuracy is strictly dependent on an elaborated selection of PMC-events, which 

may differ from platform to platform due to the uniqueness of each platform. Thus, a proper set of 

PMC events may not achieve the same accuracy when applied to a new platform. Formally, this 

problem is considered as a generalization problem.  

Figure 3-3 shows an accuracy comparison on three models for two embedded platforms: P board 

(PB) and B board (BB).  
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Figure 3-3 A Comparison on Model Performances in Two Platforms 

In this example, 30 simple programs, such as a video decoder and encoder and an audio decoder 

and encoder, are used as benchmarks. 10 of them are employed as training data, namely 𝐵𝑇 and other 

20 ones are used to evaluate model accuracies, namely 𝐵𝑉. The embedded system BB is configured to 

monitor all the board-available events. During the executions of programs from the 𝐵𝑇 group, both the 

measured energy consumptions and events samples are obtained. Four PMC events whose correlation 

coefficients of energy consumption are larger than 0.8 are selected as the model predictors, i.e., 

Instruction translation look-aside buffer misses (TLB_IM), conditional branch instructions taken 

(BR_TKN), store instructions (SR_INS), and total cycles (TOT_CYC). With these four PMC events, 

a model to estimate the energy consumption of the BB embedded system is built. When building the 

estimation models for the PB platform, the 𝐵𝑇 group is also employed as the training data and the 

procedure of selecting PMC events is not repeated. This set of predictors on BB is used as a referrence 

to build the energy estimation models for PB. The difference is that in the PB platform, the BR_TKN 

event is not available. This event has been replaced with the number of branch instructions 

(BRN_INS). Then, with this change, the PB-model 1 is built. Also, a second model, the PB-Model2, 

is built with only the TLB_IM, SR_INS, and TOT_CYC events. The performances of these three 

models are evaluated with the programs from the 𝐵𝑉 group. The relative errors between the estimated 

and the measured energy consumptions are calculated. As can be seen in Figure 3-3, no PB models 

achieves good performance compared with that of the BB model. In the latter case all the estimation 
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errors are maintained below 10%. Note the log scale in the Y axis for relative errors presentation has 

because of the large differences.  

This comparison shows that an elaborated set of PMC events on one platform may not be 

practical on another one. Thus, model generalization needs to be solved. Modern processors have 

been implemented with different hardware architectures, instruction sets, pipeline depths, specific 

acceleration circuits and different instruction cycles. These variances indicate different data flows 

during the processing which will cause different contributions to the whole energy consumption. 

Therefore, more typical events need to be distinguished for each processor to achieve higher 

estimation accuracy.  

3.1.2. Multi-collinearity Problem 

In addition to the overhead introduced when dealing with a large number of PMC events, their 

correlations also need to be considered. In fact, there is no absolute definition of the correlation 

degree, which is a concept somehow based on the experimental experience. Table 3-1 lists a 

correlation degree scale as a function of the value of correlation coefficients [43].  

Table 3-1 Correlation Coefficient vs Correlation Degree 

Value of Correlation Coefficients Correlations Degree 

0.8~1.0 Very Strong Related 

0.6~0.8 Strong Related 

0.4~0.6 Moderately Related 

0.2~0.4 Weak Related 

0.0~0.2 Very Weak or No Related 

Table 3-2 An Example of Internal Correlation of PMC Events 

 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

E1 1.00 0.1307 0.6990 0.5694 0.7044 0.5326 0.7260 0.4800 0.5079 0.4732 0.7718 

E2  1.00 -0.2145 0.2953 -0.0894 0.1237 0.2082 -0.3449 -0.5140 -0.4640 -0.1763 

E3   1.00 0.6043 0.8902 0.5442 0.5815 0.5226 0.7020 0.6323 0.7131 

E4    1.00 0.7042 0.6788 0.6788 0.3285 0.3431 0.2667 0.3037 

E5     1.00 0.5453 0.8221 0.3182 0.5319 0.7161 0.7183 

E6      1.00 0.5110 0.4928 0.4734 0.2937 0.3810 

E7       1.00 0.1657 0.2802 0.5749 0.6828 

E8        1.00 0.9053 0.4093 0.5058 

E9         1.00 0.6847 0.6212 

E10          1.00 0.7513 

E11           1.00 
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Table 3-2 shows an example of the internal correlation among 11 PMC events. The values in 

Table 3-2 are obtained from the selection process of PMC events for the BB platform mentioned 

above. As can be seen, several events are strongly correlated to each other, e.g., 𝑟(E3, E5), 𝑟(E1, E7), 

𝑟(E5, E7) , 𝑟(E1, E11) , 𝑟(E3, E11) , and 𝑟(E5, E11)  are over 0.7, which represents a strong 

relationship. This indicates a possible multi-collinearity phenomenon in PMC events. Multi-

collinearity has two main harms on estimation accuracy [44][46][47]: 

 Multi-collinearity can lead to unstable solutions. When the training values of independent 

variables have slight changes, the coefficients of the built models may drastically change in 

magnitude and sign. This brings potential risks in applying the models in practical cases. 

 Multi-collinearity can cause regression coefficients not to appear significant. As a 

consequence, important variables may be dropped.  

A potential risk of multi-collinearity is the accuracy and the stability degradation with regard to 

the regression coefficient technique, which means that the presence of multi-collinearity produces bad 

estimates on model parameters but this fact does not imply that the fitted model always produces 

unsatisfactory predictions. How well a model performs depends on the purpose of the model. Usually, 

a model could be employed: 

 To illustrate the relationship between the predictors (independent variables) and the 

response (dependent variable); 

 To predict the response of future observations.  

If the primary purpose of a model is for prediction, the relationship between predictors and 

response is not strictly required as long as the model is able to accurately represent the outcome 

trends. Thus, multi-collinearity is less harmful for a predictive model. It will be a problem if the 

modeling purpose is interested in both the prediction and how the individual predictor influences the 

response. Because it is inherently difficult to tease apart the individual impacts if two or more 

predictors are correlated. A regression model uses the information from variation between predictors 

and their corresponding variation in the response to make the estimations. Each predictor may 

contribute with less information for estimating its individual impact if multi-collinearity exists and 

therefore the effective amount of information to assess the predictor’s effect is reduced.  

To develop an energy-aware management and optimization, it is mandatory first, to understand 

how energy is impacted by different events and next, to make energy-efficient decisions. This is to 

say that the energy estimation model should clearly represent the relationship between predictors and 

response, i.e., the system activities and the energy consumption, to avoid misleading the 

internalization of the energy cost of different operations. In particular, the model should locate the 
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energy hot spots which are quite useful to determine how to optimize the limited energy budget. 

Therefore, there is a need to suppress the redundant PMC events to release the multi-collinear 

influence in order to build models which distinguish the impacts of each PMC event on the energy 

consumption. As a consequence, the information provided by the estimation model can be used by the 

energy-aware manager to wisely guide the application execution for energy saving.   

3.2. Problem Solutions 

As stated in the previous section, how to select the PMC events to be used in the energy 

estimation model among the different candidates is an important research point. If an energy 

estimation model includes all the available PMC events in the platform, most of the details of the 

application will be covered. However, a large number of PMC events, on the one hand, increases the 

complexity of on-line modeling and sampling time, on the other, introduces serious multi-collinearity 

problems. Thus, it is necessary to have a methodology to suppress the multi-collinearity problems by 

reducing the number of PMC events without losing the captured application behavior features. 

Identifying the PMC events which are strong related to energy consumption is the primary 

requirement of the energy estimation modeling process. In this context, a PMC-filter is proposed in 

this dissertation. It includes two parts, one is to identify the most appropriate PMC events and another 

one is to suppress the multi-collinearity problem.  

3.2.1. PMC Event Selection 

PMC event selection is a step to eliminate those events with a weaker contribution to energy 

consumption. In this step, the Spearman's rank correlation, 𝑟𝑆𝑖, has been employed because the overall 

distribution of the sample data is unknown. A threshold, α, of  𝑟𝑆𝑖 is set to identify the PMC events 

with large energy correlation and to eliminate, from the initial set of PMC events, those whose 

coefficients are below α. This step can be simply described as the following pseudo code in Figure 

3-4.  

 
Figure 3-4 Pseudo Code for Eliminating Weakly Energy-related PMC Events 

Set threshold α for energy correlation detecting; 
for ∀ event ∈  {Eventoriginal} 
          if 𝑟𝑆𝑖(eventi, energy) >  α 
              eventi  → {Eevente1} 
          end 
end 
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In this step, how to judge the variable dependence with the correlation coefficient is the main 

concern. Figure 3-5 shows how two PMC events, issued instructions (TOT-IIS) and L1 data cache 

accesses (L1-DCA), relate to energy consumption.  

 
Figure 3-5 Relationship between PMC Event and Energy Consumption 

In this example, 15 different video sequences are decoded on the PB platform, which is the same 

commercial embedded board used for the experiments discussed before in section 3.1.1. During the 

decoding processes, two events, TOT-IIS and L1-DCA, are monitored by the PMCs and the real 

energy consumptions are measured. Generally speaking, each event contributes to the energy 

consumption, thus an accurate model should capture all their impacts. However, as can be seen in 

Figure 3-5, the relationship varies from one video sequence to another. In some cases, these two 

events both are highly correlated to the energy while in some others, the correlations decrease to a 

middle level, and in some extremely cases, they have weak relationships. Therefore, a quite high 

event selection threshold may likely drop from the models those events that are highly related to the 

energy consumption. Similarly, a too low threshold will add to the model many events and will 

introduce a high overhead due to PMC sampling. Thus, the event selection threshold is recommended 

to be set at the middle level, i.e., the threshold could be set in a range from 0.4 to 0.6. This is to say 

that the events which have moderate relationship with energy should be maintained. 
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3.2.2. Multi-collinearity Suppression 

As far as the system integrity and continuity concern, there are dependencies among PMC events, 

which are known as multi-collinearity. Figure 3-5 shows a potential collinearity between TOT-IIS and 

L1-DCA because the relationships between their energy consumptions has a quite similar pattern. 

Several PMC events can be highly correlated, i.e. the information provided by one of them can be 

predicated or explained by the others. In the previous section, it has been explained that the 

correlation coefficient shows the relationship between two variables. In other words, if two variables 

are perfectly correlated, they provide the same information to build an estimation model. Multi-

collinearity makes more difficult to distinguish the PMC events that are relevant for the energy 

consumption because of the redundant information among variables.  

A method to better interpret the correlation of two variables is to calculate their coefficient of 

determination (𝑅2), which is the square of their correlation coefficient. 𝑅2 reflects the percentage of 

the variance of one variable that can be explained by the variance of another one. For example, if the 

correlation coefficient between variable 𝑋  and variable 𝑌  is 0.7, namely,  𝑟𝑌𝑋 = 0.7 , then the 

coefficient of determination, 𝑅𝑌𝑋2 , equals to 0.49. This means that 49% of the variance of variable 𝑌 

can be explained by variable 𝑋 [43]. The stronger the correlation of two variables, the more variance 

of one variable can be explained by another and the more information of one variable can be 

represented by another one. However, 𝑅𝑌𝑋2 = 0.49 also means that 51% of the information cannot be 

replaced. This is because even these two variables have a strong correlation (𝑟𝑌𝑋 = 0.7), there are still 

reasons that cause the differences between them. The idea of the shared variance can be intuitively 

shown in Figure 3-6. The gray area stands for the shared variances of two variables. The larger it is, 

the stronger they are related.  

 
Figure 3-6 Shared Variance 

In the first case, there is no overlap of the two circles because there is no relationship between 

them. In the second case, the two circles begin to overlap because they share 25% information. While 

the third situation shows that one circle almost perfectly covers the other one due to the quite high 
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correlation between them. During the model fitting, the correlation information among PMC events is 

targeted to reflect more energy variation features within fewer PMC events. A simple example below 

will give a better explain on this goal: 

Considering an accurate energy estimation model with two independent variables, 𝑌  and  𝑋 , 

namely 𝐸 = 𝑎𝑌 + 𝑏𝑋 + 𝜀. Assuming that 75% of the features in 𝑌 can be explained by variable 𝑋, 

thus the variable 𝑌 can be estimated by variable 𝑋 expressed in equation 3-1:  

 𝑌 = 𝑐𝑋 + 𝜀𝑥→𝑦  3-1 

Where ε  is the estimation error due to the 25% of unexplained features of  𝑌. Thus the energy 

model can be rewritten as equation 3-2:  

 𝐸 = 𝑎�𝑐𝑋 + 𝜀𝑥→𝑦� + 𝑏𝑋 + 𝜀 = (𝑎𝑐 + 𝑏)𝑋 + (𝑎𝜀𝑥→𝑦 + 𝜀) 3-2 

If the relationship between 𝑋 and 𝑌 is stronger, the value of item 𝑎𝜀𝑥→𝑦 will be smaller, which 

means the error caused by using X to represent Y is smaller, and thus the whole error aεx→y + ε will be 

smaller. A high correlated case also indicates a reduction of the effective sample size. Since 𝑋 and 𝑌 

share 75% of their variance, thus only 25% of the information (i.e., a fourth) provided by the samples 

can be used to model the impact of each variable. As a consequence, 75% of the redundant 

information could be dropped and the effective sample size could be reduced. 

There is no absolute threshold to distinguish if multi-collinearity causes harmful influences. The 

variance inflation factor (VIF), a widely used multi-collinear indicator [47], is going to be employed 

in this thesis. It provides a reference to evaluate how much variance of the coefficient estimation is 

being inflated by multi-collinearity. The VIF can be expressed as 𝑉𝐼𝐹𝑖 = 1
1−𝑅𝑖

2. Assuming that there 

are 𝑃 independent variables, 𝑅𝑖2 is the coefficient of determination of the regressing variable  𝑥𝑖 on the 

other 𝑃 -1 independent variables. VIF is able to identify and separate the influences of distinct factors 

on the variance of the coefficient estimation. A large value of  𝑉𝐼𝐹𝑖  indicates a serious multi-

collinearity among independent variables. In this thesis, the following steps have been designed to 

iteratively refine the PMC set, namely, 𝑃𝑒1, using the VIF values as a reference: 

 Calculate the VIF values of all PMC events in 𝑃𝑒1.  

 Set a certain threshold, 𝛽, to be used to find out those PMC events whose 𝑉𝐼𝐹𝑠 exceed this 

threshold. And, from them, find out one event, 𝑃𝐸𝑎, which has the largest 𝑉𝐼𝐹. If there are 

several PMC events with the same largest 𝑉𝐼𝐹, the one with the smallest energy correlation 
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coefficient will be chosen.  

 Determine one PMC event, 𝑃𝐸𝑏, who has the closest correlation with 𝑃𝐸𝑎.  

 Eliminate one PMC event between 𝑃𝐸𝑏  and 𝑃𝐸𝑎  from  𝑃𝑒1 , the one which has smaller 

energy correlation coefficient.  

 Recalculate the 𝑉𝐼𝐹 values of remaining PMC events and repeat the process from step 2 

until all the 𝑉𝐼𝐹 values are below threshold 𝛽 . The resulting PMC events, as a new set 

of 𝑃𝑒2, are the most important ones as far as the energy correlation concerns.  

This procedure can be outlined in the following pseudocode: 

 
Figure 3-7 Pseudo Code of Multi-collinearity Suppression 

Set threshold β for VIF; 
do{ 
  for ∀ eventi  ∈  Ee1 
       get VIF(eventi); 
       if  (VIF(eventi) >  𝛽) 
           eventi → Etmp; 
       end 
  end 
 Find eventi ∈  Etmp  have largest VIF 
   eventi → EL; 
 Find eventa ∈  EL has smallest 𝑟𝑆𝑎(eventa, energy)  
 ∀ eventi  ∈ �Ee1 − {eventa}�,  ∃ eventb has largest 𝑟𝑆𝑎(eventa, eventb ) 
 eventdel = 𝑟𝑆𝑎(eventa, energy)>𝑟𝑆𝑏(eventb, energy)? eventa: eventb;  
 Ee1=Ee1-{eventdel}; 
} while(∃ evnet ∈ Ee1: VIF(eventi) >  𝛽) 
End 
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3.2.3. Design Flow of an Energy Estimation Model 

 
Figure 3-8  Design Flow of an Energy Estimation Model 

A full energy estimation model is based on the power measurement. It provides correlations 

between system activities and energy consumption. Generally, to build a high-level energy estimator, 

two main steps are needed: parameters determination and model construction. Figure 3-8 shows the 

design flow of an energy estimation model. Note that the device whose energy wants to be estimated 

is called device under test (DUT). To estimate the energy, the parameters of the model, which are the 

samples of a set of PMC events, are obtained during the executions of different benchmarks. The 

selections of model parameters have been explained in detail in the previous two subsections. Then, in 

order to fit the energy model, the current of the whole system or the current of specific components 

together with the supplied voltage have to be measured and considered as model response. The energy 

estimation model is constructed by a proper fitting method. As it has been mentioned in section 2.2.3, 

the linear regression and the MARS methods are two candidates to process the fitting procedure. Once 

the coefficient of each independent variable is set, the model is able to estimate the energy from 

model inputs. In addition, the real measurements are also used to assess the model accuracy. Some 

adjustments would happen if the estimation results have unacceptable errors, which means the 

estimation of correlations between system typical activities and system energy consumption are not 

well presented. Once a model is set with the adequate accuracy, it can be used within the energy 

manager to provide information needed by the energy-optimizing strategies.  

43 

 



Generalization and Accuracy Improvements of the Energy Estimation Model 

3.3. Conclusion 

The accuracy of a PMC-driven model is highly related to the selected PMC events which reflect 

the application behavior features. Reduced modeling bias and accurate approximations are achieved 

when a greater number of counters are involved. However, a large number of PMC events also 

increases the model complexity and sampling time. An accurate PMC-driven model needs an 

elaborated selection of PMC events service as the explanatory variables (independent variables), thus 

this method faces a generalization problem. In addition, several PMC events can be highly correlated, 

i.e. the information provided by one of them can be predicted or explained by the others. This 

correlation, also known as multi-collinearity, makes more difficult the selection of the PMC events 

that are actually involved in the consumption of energy. A potential risk of multi-collinearity is the 

accuracy and the stability decrease with regard to the regression coefficients. In this chapter, a PMC-

filter is proposed to solve these two problems. It includes two steps; the first step automatically 

identifies the most appropriate PMCs with no requirement on any specific detailed knowledge of the 

employed platform and the second step uses variance inflation factor (VIF) to suppress the redundant 

PMC events to release the multi-collinear influence. 
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4. Energy Optimization and Reconfiguration 
Techniques 
As discussed in chapter 1, multimedia applications have become widespread with the advent of 

wireless communications. Its development presents two big challenges. One is the energy issue. 

Unlike the traditional multimedia applications, electronic mobile devices in the wireless environments 

are usually powered by battery and exhibit their energy-intensive features. Their functions are 

restricted by the limited amount of energy. Energy issue has been a critical point which strongly 

affects computation capability and video compression quality of mobile devices. The other challenge 

is the implementation complexity. The continuous evolution of more complex and advanced video 

coding standards has greatly impeded their efficient specification and implementation, and delayed 

the time to market. Reconfigurable design has been proposed to address these design expectations: 

deployment time reduction of new standards, implementation flexibility, dataflow programming, and 

platform generalization. In this chapter, existing research work on energy optimization and 

reconfigurable design will be presented.  

4.1. Energy Optimization Techniques 

Despite the continuous advances in chip technology, CPU clock rates have reached to an upper 

limit and the new architecture designs change to increasing the computational performance by 

increasing the number of cores. Nevertheless, CPU clocks are high and the power consumption 

problem is still serious in multicore based systems. Low-power research has attracted significant 

attentions on embedded multimedia application in electronic mobile devices, especially on wireless 

video streaming and playback applications due to their high energy-consuming characteristics.  

4.1.1. Power Impact Issues 

The power consumption on digital ICs is generally divided into two categories: static and 

dynamic power. The main source of static power is the leakage power which is not related with the IC 

switching activity. Static power is the power required to maintain the circuit in the same logic state. 

The total static power can be directly obtained by measuring the voltage dropping across a small 

calibrated resister located in the supply path. Dynamic power is the internal power generated by 

transitions of chip signals during system operations. The power consumption of a single circuit cell 

[48] is expressed in equation 4-1: 

 𝑃𝑎𝑙𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑉 ∙ 𝐼 + 𝛼 ∙ 𝐶𝐿 ∙ 𝑉2 ∙ 𝑓𝑐𝑙𝑘 4-1 
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Where, 𝑉 stands for the supply voltage, 𝐼 is the static current, 𝛼 is the factor of node switching 

activity which is defined between 0 and 1, 𝐶𝐿 is the load capacitance, and 𝑓𝑐𝑙𝑘 is the clock frequency. 

 
Figure 4-1 Power Consumption Trend [49] 

Figure 4-1 shows the plot of three power consumption trends with regard to the progress of 

technology density, i.e., computing, leakage, and active power. These three power consumptions 

increase at a rate of 𝑘3, 𝑘2.7, and 𝑘1.9, respectively, where 𝑘 represents the scaling factor. In this case, 

it is set to 1.4. The computing power is related to the computing density which is defined as the 

maximum possible number of computations per area and time unit. Note that this trend is based on the 

assumption of a continuous increasing of clock frequency and voltage supply. With this in mind, 

many low-power design methods have been proposed to suppress this increase. Despite the fact that 

the growth of clock frequency has been limited lately, the excessive power consumption is still a 

bottleneck in IT industry.  

Static power is the unavoidable power consumed by semiconductors. It is independent of the 

workloads, but is determined by the threshold voltage and transistor size. General approaches have 

difficulties to reduce the static power. On the other hand, dynamic power is proportional to the charge 

and discharge frequency of stray capacitances of logic units, which is usually optimized by each 

specific design. From equation 4-1, power impact issues can be summarized into four areas: operating 

voltage, load capacitance, switching activity, and operating frequency. Reduction of these four factors 

is the general objective of energy consumption reduction techniques. Note that there is a certain limit 

on voltage reduction because voltage will inevitably impact the speed and stability of any circuit. For 

example, when the voltage is reduced, the circuit delay increases and, as a consequence, the system 
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clock frequency must be reduced. Low clock frequency causes a system to run too slowly and 

therefore, to miss the predetermined deadlines. As a consequence, the performance of the system will 

be unacceptable compromised. Voltage reduction is always combined with other methods to optimize 

energy efficiency.  

4.1.2. General Low-Power/Energy Optimization Techniques 

Low-Power/Energy optimization techniques can be classified into different levels in the basis of 

their action objects. From low to high, the optimization levels are: technology level, gate level, circuit 

level, register-transfer level (RTL), architecture level, and system level. In this thesis, the system level 

is defined as high-level optimization while the others are classified as low-level approaches.  

4.1.2.1. Low-level Optimization Techniques  

Low-level approaches are investigated to directly solve the problem from the hardware point of 

view. In the following, typical techniques of each level are introduced.  

Basic technology-level low-power designs techniques are the reductions of supply voltage and 

transistor size. In addition, the technological progress makes multilevel circuit layout possible. A 

scaled-down technology achieves the power reduction by increasing system integration degree to 

reduce circuit delay, inter-chip communication, and device capacitance [50] [51]. With the rapid 

development of technology, the ratio of chip area to package area is closed to 1:1 which dramatically 

shortens circuit delays and improves system reliability.  

Regarding gate-level optimization techniques, logic gates are designed with low-power 

characteristics and structures [55] [56]. Professional development tools and software are employed to 

facilitate power optimization design. For example, a design tool [57] [58] can convert several two-

input gates to three-input or more-input gates if the optimization configuration is enabled. A gate with 

more inputs can effectively reduce power consumption by reducing the number of logic gates and 

layout complexity. Another common used approach is to optimize pin permutation [59]. Pin 

permutation achieves low-power design by connecting the high transition-rate signal to a pin with less 

work load, or connecting a high-load pin with a low transition-rate signal to reduce switching activity. 

Circuit-level low-power designs techniques focus on dynamic power. They typically consider 

physical capacitances and circuit switching frequencies. At this level, power optimization techniques 

include dynamic CMOS and asynchronous circuits [52] [53]. Dynamic CMOS logic gates memorize 

data by maintaining CMOS transistors in the state of high resistance. They can effectively reduce the 

number of device components and thus reduce the load capacitance. The advantages of asynchronous 
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circuits are modularity and combinability. Unlike synchronous circuits，they do not require global 

clock, but only need to use handshaking signals and FIFOs to interconnect different modules. Thus, 

the power consumption caused by the clock jitters of high frequency signals can be reduced. 

Comparing to synchronous circuits, the asynchronous circuits have greater potentials to reduce the 

power consumption [54]. 

Low-power technologies at the register transfer level (RTL) mainly reduce the power 

consumption by decreasing the glitch-spurious switches of registers. At this level, optimization is 

mainly achieved through clock gating, memory access, and operand isolation [60]-[62]: 

 Clock gating is a commonly used method to decrease dynamic power. For sequential logic 

circuits, the main source of system dynamic power is due to their frequent clock transitions 

combined with the large parasitic capacitances of their outputs. Clock gating uses AND/OR 

gates to control the switch of the system clock. Its main idea is to switch off the clock 

source of idle modules in order to avoid unnecessary transitions caused by pending signals. 

In actual circuits, when the input clock of an idle module is disabled, data access of its 

subsequent modules is also turned off, e.g., if the clock of a register is disabled, the 

combinational logic connected to the outputs of this register will be in the quiescent state. 

Thus, the overall power consumption of the circuit will be significantly reduced.  

 Memory is an indispensable component in almost any system. It also consumes a large share 

of the whole energy budget. A method based on block-memory-access divides the available 

memories into a plurality of parts and a selection signal will be decoded to access the 

targeted block. A reasonable design of address buses and chip selection signal will only 

select the required memory block to avoid energy consumption from un-selected blocks. 

 Operand isolation technique is a method which makes the module input to be zero and 

maintains the output unchanged when the system is waiting. Outside stimulus will not act on 

system until the system is reactivated. In this way, unnecessary switching activities are 

avoided. 

Architecture-level methodologies are considered when circuits are implemented [63]-[68]. At 

this level, IC designers focus more on the resource allocation and scheduling and balance among chip 

size, speed, reliability, and power consumption. It is well known that voltage reduction is one method 

to reduce power consumption. Its disadvantage is that circuit delay is significantly increased. A 

conclusive low-power design techniques should meet circuit efficiency while reducing voltage. To 

achieve this objective, the two most popular techniques, parallel structure and pipeline, are applied 

[65]. Parallel structure decomposes workloads to different processing units, e.g., datapaths or 
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mutlicores. In a two-core or two-datapath system, the operation frequency can be half of the original 

one. In addition, the circuit can use a lower operating voltage. The advantage of parallel structures is 

that they can increase system performance without increasing voltage and frequency [66]. This brings 

opportunities for energy-efficient design in energy constrained devices [67]. In embedded systems, it 

has become very popular to integrate multi-core SoCs into the system architecture [68]. This design, 

on the positive side, increases hardware utilization and leads to higher energy efficiency and 

performance. On the negative side, the leakage power influence must be considered. Since the leakage 

power is proportional to the silicon die area, parallel structures increase the circuit size and thus may 

incur in more leakage power consumption. Pipeline structures are essentially a parallel structure. It 

divides an instruction cycle into different steps in such a way that different steps can be executed 

concurrently. However, pipeline design has high complexity, it inserts additional registers among each 

step and thus increases the area and load capacitances, resulting in additional power consumption. 

Another important component presents on architectures is system bus which may also contribute to 

energy reduction. There have been many bus coding algorithms for different bus structures.  

4.1.2.2. High-Level Optimization Techniques 

Low-level approaches can achieve positive results. But these methods have large design costs 

and are usually implemented at the design stage. Therefore, they cannot be continuously improved 

after the device implementation. This lack of flexibility makes difficult to further optimize the energy 

consumption. Different research works have reported potential gains on energy efficiency by using 

work load adaption techniques at high level. At this level, efficient methods are employed to manage 

either task states or hardware components to reduce the energy consumption. These methods will be 

described in the following.  

A. Power Management  

Power management aims to effectively allocating and managing power resources to avoid excess 

consumption. This method has a significantly positive impact on systems, especially on battery-

powered handheld devices. According to different principles and objectives, power management can 

be divided into two groups: state-based and performance-based power management. State-based 

methods take the advantages of the low-power states supported by devices to achieve power reduction 

[69] [70]. The main idea is to use the system idle state to save power and to quickly wake up the 

system when it is needed. Under the precondition to satisfy user requirements, performance-based 

algorithms decrease power consumption by dynamically adjusting system parameters such as voltage 

and frequency [71]. 

Early research mainly focuses on state-based algorithms for low-power design. As chip 

technology advances, especially when the frequency and voltage of processors become scalable, 
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performance-based research is gradually becoming a hotspot. Besides the feasibility of frequency and 

voltage scalability, the main reason to promote the progress of performance-based algorithms is the 

broader scope of applications regarding those of the state-based methods. Essentially, state-based 

methods are one of the extreme cases of performance-based methods [72]. For the more complex 

applications, their characteristic of long-term continuous computing leads to an inapplicability of 

state-based algorithms. This is because the high complexity and high calculation amount determine 

that the processing unit cannot maintain in a long period of idle state and more important, a frequent 

switching itself leads to an increase of energy consumption. 

DVFS (Dynamic Voltage and Frequency Scale) is one of the most successful approaches of 

performance-based optimizations. Experiments were shown that most of the time, programs are 

running without fully utilizing the processing ability of processors [73]. Regarding to electronic 

mobile devices, they rarely demand high-performance for basic applications, even for applications 

such as high-resolution video playback and video call, the system only need to be changed to a high-

performance state for a limited amount of time. It is not necessary to always use the highest voltage 

and frequency in the systems. In order to significantly reduce system power consumption, the DVFS 

technique dynamically scales the voltage and frequency of processors based on the demand 

computation of tasks. DVFS must satisfy the time deadline constraint when scales the voltage and 

frequency levels. Many researches [75]-[79] have conducted their researches to focus on accurate 

prediction of workload to improve the effectiveness. Common methods are based on algorithm-

specific information, compiler analysis, and runtime prediction. However, two characteristics of 

applications, i.e., the non-stationary behavior and runtime distribution, make it impossible to perfectly 

predict workload even with the most complex predictors. In work [80], they tried to solve this 

problem by using a runtime distribution-ware workload prediction. They partitioned the software 

program into program regions and profiled runtime information, i.e., computational cycle and 

memory stall time, and updated the statistical parameters of the runtime distributions. Then, they set 

the voltage and frequency while satisfying the hard real-time constraints.   

B. Energy-aware Operating Systems 

One possibility to optimize energy is through the management of individual components. In any 

advanced computing device, the operating system (OS) fully controls the device including the work 

mode, hardware states, and running applications. The concept of energy-aware OS was proposed in 

the late 90s with two Linux-based OSs for laptops: Odyssey [81] and ECOSystem [82]. Odyssey 

estimates future demands of resources and energy to adapt the quality of service delivered to users. 

Similarly, ECOSytem focuses on the balancing between performance and energy consumption to save 

energy. It consideres the battery discharge rate as an indication of energy consumption. A share policy 
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related to tasks’ currencies was used to schedule tasks and to preserve energy for more important 

tasks. In energy-aware OSs, energy is considered as the first-class resource [83]. Recently, battery 

faces more serious insufficiency to support energy-hungry applications due to the energy limitations 

of smart mobile devices. Energy-aware OSs, such as Cinder [84] and ErdOS [85], have again been 

proposed for mobile devices. Cinder achieves energy efficiency by application of isolation, 

subdivision, and delegation based on the energy accounting and power modeling. Different from other 

energy saving philosophies, ErdOS includes resources states, usage patterns, and user habits into 

management policies to achieve more flexible and efficient results [86]. It is worth mentioning 

Nemesis OS, which was an OS designed for multimedia applications [87]. According to application 

costs and utilities, as well as the congestion of system resources, this OS builds an energy allocation 

model and assignes credit to each application when accessing resources. By these means, applications 

can adapt their energy consumption to save energy.  

In conclusion, energy-aware operating systems provide benefits for energy saving by managing 

the available resources rather than allowing applications to manage these resources.  

4.1.3. Video Coding Specific Power Optimization Techniques 

General low-power design techniques can be applied to the design of video codecs. In addition to 

those general ones, video specific features and considerations can provide more possibilities for low 

power design. Note that in most video coding standards, the encoding process is not specifically 

standardized. It is free to design an encoder as long as the generated encoded stream can be decoded 

as it is described in the standard. The decoding process is an inversion of the encoding process. The 

optimization at the encoder end can also impact the energy consumption of the decoding processes. In 

this chapter, no matter the optimization is for encoder or decoder, it is uniformed as the video coding 

optimization. Note that one stage that cannot be exactly inverted is the quantization stage because it is 

a non-invertible process which loses information. The following discusses low-level and high-level 

optimization techniques in video coding. 

4.1.3.1. Low-Level Optimization Techniques 

At the integrated circuit level, Liu et al. [88] have optimized algorithms in IDCT, deblocking 

filter, and prediction units to reduce processing cycles, memory size, and access frequency. Other 

low-power designs have included the use of constant multipliers [89], reduced transitions in datapath 

[90], and self-adaptive techniques [91]. These approaches were mostly applied to RTL level. 

At architecture-level, different impacts on energy consumption of video coding have been deeply 

investigated. The reason why pipelines and parallel architecture enhanced the energy efficiency was 
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studied with performance and energy considerations in mind [92]. This study has provided a good 

guide for energy optimization design. A power-aware motion estimation design was presented in 

work [93]. The motion estimation (ME) has multiple modes and was supported by a specific VLSI 

architecture which reduced external accesses caused by video content and thus further reduced the 

power consumption. An energy-aware processor architecture design methodology within the balance 

of power, throughput, and area was specified for a H.264/AVC codec [94]. The design guidelines 

included pipeline organization and granularities, parallelism, and memory architecture. Parallel 

architectures of integer ME and fractional ME was proposed for memory access reduction [95]. It also 

achieved power scalability and hardware efficiency.   

An interesting result of digital signal processor (DSP) usage was shown in paper [96] to guide the 

processing element selection for video decoding applications on embedded heterogeneous platforms. 

These platforms usually contain several General purpose processors (GPPs) and DSPs. GPP is a 

processor that is not implemented to particular languages or programs while DSP processor, is 

specialized to process particular types of operations to provide better performance-energy properties. 

In the previous mentioned work, they indicated that the required video bit-rate and resolution greatly 

impacted on the tradeoff of performance and energy. GPP could be a best choice in many cases, 

especially for those cases of low video bit-rate and resolution because of a considerable processing 

overhead in the case of DSP decoding, which might lead to degradation in performance and energy 

efficiency.  

Furthermore, compared to other applications, video codecs process larger amount and more 

various types of data. Cache optimizations for multimedia applications have been proposed by many 

researchers.  Z.Y. Xu el. al. [97] indicated that multimedia applications typically had a data block 

strategy which had good reusability. Thus, the structures and rules of traditional cache were still valid 

for multimedia. S. H. Wen et. al. [98] divided cache memories into three parts: instruction loop buffer, 

instruction cache, and scratchpad memory data buffer. In addition, they utilized the multi-bus mode 

which included one instruction bus and several data buses. Data were directly passed to scratchpad 

memory for processing usage through DMA in order to reduce the system energy on data searching 

and loading. J. H. Kim [99] proposed two new cache structures for optimizing data access of motion 

compensation in an H.264/AVC decoder. One structure was called index-separate-direct-mapping 

cache which mapped one page of the main memory into two continuous lines of cache. Another was 

called circular cache which only stored the necessary part of data instead of using the full cache line. 

Both structures could reduce the demand of memory bandwidth and improve the system performance 

and thus the system power consumption was decreased.  
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4.1.3.2. High-Level Optimization Techniques 

A. Complexity-Based Methods 

Different from other applications, video processing is usually modularized and standardized. This 

uniformity makes the low-power design on video start to reduce the computational complexities of 

algorithms to decrease power consumption.  

Chu-Hsing Lin at el. [100] observed several energy issues. They observed that the fast scene 

changes resulted in consumption increase. They proposed that videos could be encoded with higher 

bit-rate to have better video quality because by doing this, it paid a lower penalty in power 

consumption than increasing the video quality by increasing the resolution.  

Landge et al. [101] proposed a wavelet-based video decoder using hardware independent 

complexity metrics. The metrics were derived from the frequency of basic blocks executions and 

captured video content features and encoding parameters. They could be translated into platform-

specific metrics to determine for the optimal voltage and frequency configuration for energy 

optimization.  

Work [102] analyzed computational complexity of main functional blocks in an H.264/AVC 

encoder. They stated that ME occupied around 98% of the total computational complexity of the 

encoding process. A large reduction of power consumption could be achieved by reducing ME the 

complexity. In [103], a multi-mode content-dependent ME algorithm was proposed for power-aware 

video coding. Based on the predictions and judgments of motion complexity, the ME execution was 

switched among one of the four searching modes: full search, adaptive search range, adaptive 

enhanced four-step search, and three-step search. Those modes with lower search range decreased the 

computational complexity, while the image quality in terms of PSNR (Peak Signal to Noise Ratio) 

was dropped a little accordingly. 

Wang et al. [104] improved the Sum of Absolute Transformed Differences (SATD) algorithm by 

using the linear transform and the fixed-spatial relationship of predicted pixels in intra mode. This fast 

SATD could be applied after Sum of Absolute Differences (SAD), eliminating unwanted intra 

prediction modes to significantly reduce computational burden. Another intra prediction improvement 

was proposed by Hsia et al.[105]. In this work, the prediction of the 4x4 intra blocks in improved 

based on partial sampling prediction and symmetry of adjacent angle modes.  

The analysis in [106] showed that the entire computation for prediction mode selection could be 

reduced if those less probable modes were skipped for computation. In this analysis, a fast coding 

mode selection in H.264/AVC encoders was proposed. Similarly, Grecos et al. [107] showed that a 
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high speed-up could be achieved if the computationally intensive prediction modes were not 

performed. They proposed an inter-mode decision scheme for P slices in an H.264/AVC codec by 

using smoothness constraints, neighborhood information, and a set of skip mode conditions. Also, 

Kim et al. [108] proposed an algorithm for inter-model determination based on the rate-distortion cost 

of the tracked MB for the current MB. 

B. DVFS-Based Methods 

DVFS methods are also wildly used on video coding energy optimization. W. H. Yuan et.al 

proposed a GRACE-OS [109], an OS which implemented a low-power scheduler. This algorithm 

reduced the processor energy consumption while guaranteed the performance. It dynamically 

predicted the work load of tasks based on real-time statistics to achieve internal-task DVFS. Although 

this method obtained good results of energy consumption reduction and deadline guarantee, it 

increased the frequency of scale and did not consider the variation of task arriving time due to 

network transmission. Subsequent researches continuously developed this idea and included energy-

efficient scheduling [110]-[113] to achieve better results.  

Several parameters represent coding features. Thus, they can be used to predict the workload. 

Soner.Y et. al [114] proposed a stochastic modeling and optimization framework to perform dynamic 

voltage scaling in multicore systems by capturing the spatial and temporal variability of tasks such as 

frame type, compressed frame data size, and the computational workload to decode a frame. In the 

previously mentioned work, four models to capture the task statistical characteristics were introduced. 

Different tasks could be mapped into different cores with various voltages. This scheme minimized 

the average energy consumption while guaranteed the time constraints. Similarly, in [115], three 

efficient DVS techniques were presented for an MPEG decoder. A simulator was developed to take 

workload predictions based on the number of IDCT computations required by each frame.  

Conventional DVFS methods used the expression WCET/D as the metric to set the frequency to 

meet the deadline constraints, where WCET is the worst case execution time and D is the time to 

deadline. Research works showed that these pessimistic methods could lose opportunities to further 

reduce energy consumption. WCET rarely occurs in reality because the execution time may present 

different kinds of statistical distributions. Work in [116] indicated that more energy reduction was 

obtained by setting the frequency as the ratio of average execution time to the time to deadline as long 

as the deadline condition was guaranteed.  

From the architecture point of view, the voltage and frequency adjustments should avoid the 

cyclic nature of dependencies in executing tasks to lose the throughput constraints. In work [117], a 

methodology was proposed for such cyclic dependent tasks. This methodology assumed WCET to 
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identify the executions that could be slowed down at an off-line step and utilized the slacks arising 

from tasks that finish their executions before the WCET to execute new tasks. Thus, the energy 

consumption was reduced while the throughput constraints were satisfied. Similarly, in work [118], 

they focused on energy optimization with the consideration on transition overhead, inter-core 

communication, and discrete voltage levels. They proposed a two-phase approach. In the first phase, 

they proposed a coarse-grained parallelization algorithm which utilized a set of independent sub-tasks 

instead of the original periodic dependent tasks.  In the second phase, a genetic scheduling algorithm 

was proposed to search and find the best schedule to optimize energy consumption.  

C. Scale-based Optimization Techniques 

More recent researches showed that video quality and performance did not increase linearly as the 

computational complexity increases. As shown in Figure 4-2, user perceptions of video quality and 

performance always meet a saturation point and little improvement is achieved beyond this point 

[119].  

  
Figure 4-2 User Perception VS. Power Consumption [119] 

This conclusion has attracted researchers to focus more on rate-distortion-complexity 

optimization rather than ceaselessly persist in computational complexity to achieve better user 

perception. The goal of rate-distortion-complexity optimization is to, heuristically, select power-aware 

algorithms to adaptively tradeoff between user satisfaction and power consumption based on video 

content features and battery states. For example, a configurable video coding system [120] was 

proposed to use dynamic parameterization in ME based on the tradeoffs derived from input and output 

signal statistics. In [119]- [122], the proposed system could dynamically configure it based on battery 

status, content complexity, user preference, and operating environment to prolong the battery lifetime 

and meet resource constraints of target platforms.  
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This adaptive idea has been standardized as Scalability Video Coding (SVC) as an extension of 

the H.264/AVC codec. It can efficiently encode video streaming to fit various bandwidths of 

transmission channels and computational resource constraints of decoding devices. SVC structures 

video bit streams into different layers corresponding to different qualities, frame rates, and 

resolutions. Thus it can provide flexible encoding solution for temporal, spatial, and quality 

scalability. Proper layer design can provide a power-aware feature for codec design [123]-[125].  

Some new optimization schemes including user experience has been studied for on-line 

streaming. In[126], they managed the downloading cache based on the user view history and the 

network condition to minimize unnecessary active periods to save energy. In addition, video codec 

optimization can integrate various techniques. In[126], they presented a scalable H.264 Ultra-HD 

video codec engine that used various low power optimization techniques across architecture, design, 

circuit, software and system. A special custom buffer was designed to enable accessing up to 36x4 

pixel aligned at any vertical pixel position to simultaneously reduce the shared level-2 memory 

accesses. Meanwhile, a task management scheme dynamically switches among the used hardware 

accelerators. 

4.2. Reconfiguration on Video Coding 

4.2.1. Implementation Complexity on Video Coding 

Along with the significant development of video codec, user demands of video are increasing in 

diverse directions. Users have higher requirements on video quality, as well as flexibility and 

scalability of the video products. Therefore, the implementation of the new video coding generation 

has reached a consensus on higher coding performance and greater flexibility from both theoretical 

and practical points of view.  

In conventional video coding, each standard defines a different format. A standard is the only 

bridge to achieve communication among codecs. That is to say, a codec can only be implemented to 

encode/decode video streams in accordance with the provisions of standards. This greatly reduces the 

adaptive capacity of codecs. Some standards define different profiles and levels with sectional 

differences to satisfy more user requirements. As a consequence, a decoder which is satisfied to 

particular profiles or levels only supports particular categories of applications [128]. This increases 

the burden of network transmission. Standards were implemented in the past as a monolithic 

specification with predefined functionalities, applications, and platforms [10]. Although coding 

designers have considered the overlap among encoder tools, however, since codec systems have been 

frequently implemented in highly parallel computing platforms, it is inevitably to introduce additional 
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complexities during the implementation processes, such as global variables, non-optimal process 

arrangements, and inefficient data structures. Continuous evolutions of more complex and advanced 

standards have seriously impeded their efficient specifications and implementations. To meet various 

demands for multimedia communication, traditional video codec standards are facing difficulties such 

as longer time to market, difficult to quickly implement, and lack of flexibility. With the consideration 

of these difficulties, the concept of reconfiguration was proposed to improve the reusability and 

flexibility of codecs.  

4.2.2. Reconfiguration Techniques 

4.2.2.1. Definition of Reconfiguration Techniques and their Hierarchy 

Reconfigurable techniques were derived from reconfigurable computing, which was first 

proposed by Professor Gerald Estrin in 1960 [129]. Reconfigurable computing is a computing mode 

between software and hardware computing. It achieves the approximated performance to hardware 

while maintains implement flexibilities as software implementations. The main technical basis of 

reconfigurable computing is reconfigurable devices. The internal hardware circuits of reconfigurable 

devices are determined by configuration information, thus, the hardware resources can be 

programmed by dynamically calling or modifying the configuration.   

From another perspective, reconfigurable techniques have the capability to change or improve 

system functionalities or produce new functionalities by re-connecting the existing functional units. 

To emphasize this purpose, this capability is stated as functional reconfiguration, or functional-

oriented reconfiguration. In this case, the reconfiguration process does not focus on the physical 

implementation details (e.g., implemented platform, software or hardware computing, how to 

configure the reconfigurable devices). In fact, functional-oriented reconfiguration pays more attention 

on how to change system functionalities. It performs in an earlier stage than the physical 

implementation stage. It is like a conceptual tool to provide functionally correct designs at a higher 

level. A functional-oriented process is independent of its implementation platform.  

Figure 4-3 summarizes the relationship among different levels of reconfigurable systems. A 

reconfigurable implementation can be divided into physical, rule, and system layers. The physical 

layer consists of processing devices such as the configurable processor, e.g., DSP or FPGA. It is the 

infrastructure for a reconfigurable platform. The rule layer defines the methodologies and techniques 

to achieve a reconfigurable system, such as task scheduling, software and hardware division as well as 

communication system. System layer is higher than physical and rule layers. It is based on user-

oriented requirements to provide system-level reconfiguration schemes. Functional-oriented 

reconfiguration is implemented at this level. It aims to optimize applications to satisfy performance 
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requirements or to change the connection of functional units to implement new functionalities. This 

process is platform-independent. Any updated or new functionality will then be converted to the 

specifically concrete implementation on any hardware platform by automatic conversion tools.   

 

Figure 4-3 Relationship among Different Levels of Reconfigurable Systems 

4.2.2.2. Implementation Techniques of Reconfigurable Computing  

Reconfigurable computing can be implemented by a variety of methods, which can be included in 

any of the following categories: software reconfiguration, programmable hardware reconfiguration, 

and logic structure that is dedicated to the execution phase. 

Software reconfiguration, which can significantly reduce the utilization of hardware, is the most 

commonly used method. A software reconfiguration may achieve running time reduction and 

flexibilities when the design is changed. An inappropriate software reconfiguration may increase the 

power consumption and become an unpractical scheme. With regard to the performance, most 

designers prefer to implement all the performance-constrained functions by hardware. Hardware 

reconfiguration techniques can be divided into static and dynamic ones. Static reconfiguration 

techniques refer to the static overloading of logic functions, i.e., to change the logic functions by 

simultaneously downloading the configuration files and information to the programmable devices in 

addition to the external control flow. When the system is running, reconfiguration is not allowed and 

the process of reconfiguration cannot be interrupted. Static techniques are not competent for 

applications whose circuit may often need to be changed, such as a video streaming computing. On 

the other hand, dynamic reconfiguration techniques have a caching logic, which can quickly modify 

the global or local circuit logic by means of an external logic which controls the layout, routing, and 

resource allocation. Dynamic reconfiguration can be processed in clock cycles, not affecting the 

overall system operation. Although compared to static techniques, dynamic ones have already 

improved in efficiency and flexibility, they still have a potential risk to cause a performance decrease 

and the power consumption increase if the reconfiguration lasts a long time for implementing 

complex logic functions. 
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Reconfigurable computing approximately achieves the design flexibility of software designs 

implemented on GPPs and the performance efficiency of designs implemented on application specific 

integrated circuits (ASICs). Since Xilinx Company introduced its first Field Programmable Gate 

Array (FPGA) in mid-1980s [130], reconfigurable technology has been rapidly developed and 

promoted. FPGA is an integrated circuit designed to be able to make substantial changes after 

manufacturing at run time. Currently, researches in reconfigurable computing involve many aspects 

such as software and hardware platforms, operating systems, programming languages, compiler tools, 

and implementation algorithms. These issues will not be extended since they are out of the scope of 

this thesis. 

4.2.2.3. Implementation Techniques of Functional-oriented Reconfiguration 

A reconfigurable computing device can implement and modify a specific functionality. 

Functional-oriented reconfiguration is an abstract model independent of the platform details. The 

purpose of functional reconfiguration is to reduce the complexity of an initial design, improve the 

code quality, optimize the structure, and facilitate the modification and extension of functionalities. 

The core idea of functional reconfiguration is to take into account of new environments, requirements, 

and functionalities of software systems in advance and, as a consequence, to improve the flexibility, 

reliability, and development efficiency of a design to avoid the redesign of the whole system. 

A functional-oriented scheme aims to provide a portable solution for any platform. Thus, its 

implementation should be portably translated from the high-level representation to native machine 

code suited to the architecture of the underlying platform. Figure 4-4 shows an example of functional-

oriented implementation. A virtual machine (VM) is employed to provide the independence of 

platform. Meanwhile, to shorten the time of translation from high-level presentation to machine code, 

quick compiler techniques, especially JIT technique, is employed to obtain this speedup.   

 

Figure 4-4 Functional Reconfiguration Framework 

Functional reconfiguration techniques are briefly introduced in what follows.  
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A. Virtualization 

Generally speaking, a compilation process is an inevitable step from source code writing to 

application binary generation. Compilation is actually processed by either a compiler or an interpreter. 

The former converts the human readable programs to the executable machine codes, the so-called 

binary or backend codes, which can be directly executed on a particular hardware.  

The whole compilation procedure is separated into four stages: high-level source code, 

intermediate representation (IR) (e.g., object files or bytecode), sequence of operation, and final 

execution. The difference to use a compiler or an interpreter is the moment to trigger the execution 

procedure. After translating the source code into IR form, compiled languages (such as C, C++ and 

FORTRAN) use a linker to generate the complete machine code, which is a series of basic operations 

to control the target processor to execute its corresponding work. Interpreted languages (such as Java, 

Python and Ruby) also experience these steps. The difference is the following. A compiled language 

first saves those basic operation sequences generated from the source code, and then, executes them 

together by one single command; an interpreted language “throws” these basic sequences to an 

execution unit and immediately produces the actions. The observed phenomenon is that a compiled 

language needs firstly compilation and then execution, while an interpreted language can be directly 

“executed” from the source codes.  

In addition, for those compiled languages, the generated object files are specified for one 

particular processor architecture. For example, the files for the ARM architecture cannot be used for a 

MIPS processor. Source files are translated into the target processor instructions during the 

compilation. Thus, the same source code needs to be re-compiled to be executed on another processor. 

For any interpreted language, a compilation procedure is also needed. But the generated IR files are 

platform independent, and they can be translated into specific processor instructions during the 

execution processing. Therefore, the source code can execute on various platforms without 

intermediate conversion. The process of translating IR files to target processor instructions is 

completed by a virtual machine (VM).  

Although interpretation and compilation are the two main methods by which applications are 

implemented, they are not mutually exclusive, especially for modern languages. The terms of 

“interpreted language” or “compiled language” only mean that the canonical implementation of that 

language is an interpreter or a compiler, respectively. Currently, the virtualization-oriented technology 

further eliminates their boundary. A high level language is ideally an abstraction independent of 

particular implementations. Virtualization technology includes an application, the VM, and additional 

software responsible for implementing the program execution. A VM is an abstract layer outside the 

hardware layer to achieve the cross-platform or cross-instruction-set implementations as long as the 
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compiler translates the program codes into the IRs of the VM. It brings more flexible practices on 

code optimization. Essentially, the JVM (Java Virtual Machine) of Java and the CLI (Common 

Language Infrastructure) of C# are VMs rather than simple programming languages. They have an 

stack-based instruction set architecture, which is hardware independent. Applications based on VMs 

are run on a computer using an interpreter or a Just-In-Time (JIT) compiler or both. Details of JIT 

compilers will be described later. By using a VM and a very-high-level input program representation, 

these systems are able to provide platform portability and security services in addition to reasonable 

performance.  

B. Just-in-Time Compilers 

As mentioned before, to achieve real-time reconfiguration, fast compilation and execution are 

required. This is to say, an application will not be compiled and translated into native instructions like 

classical compilers do. Instead, the compiler should recompile the functional units as less as possible. 

To achieve this goal, target application is first translated into an IR format. Then, IR files will be read 

line by line and executed by an intermediate engine from a VM. As discussed in the previous section, 

an interpreter saves the compilation time, but its execution efficiency is much lower than a compiled 

binary program. Thanks to the JIT technique, the execution time has been much better improved.  

The JIT compilation is a combination of interpretation and compilation, having the advantages 

and drawbacks of both. JIT compilation interprets instructions one by one, but it will cache the 

translated codes to reduce recompilation overhead. JIT compilation is a form of dynamic compilation 

and it is particularly suited to dynamic programming languages. A JIT engine takes IRs from a 

compiler front-end and produces machine code to execute it on-the-fly. Note that JIT does not target 

to parse the syntax neither to provide a runtime library support. It typically takes the conjunction with 

front-end engines and a suite of libraries to generate IRs and to provide the environment for code 

execution.  

JIT has two features that help it to achieve the reconfiguration goal: (1) efficient, especially 

during the run-time; (2) easy extension. Compilers use abstract syntax trees (ASTs) to translate and 

compile source codes. In computer science, an AST is a tree structure to represent the abstract 

syntactic structure of source codes. The word abstract means that not every detail of the real syntax 

will be represented in the AST. Modifying ASTs requires updating existing modules, which makes 

difficult to support older codes when new features are added. JIT can add new frontends without 

adding new node types to the AST. This feature provides to JIT an, easy extension as far as the 

implementation concerns. Although JIT engines have essentially identical goals, they may implement 

different approaches for processes such as IR optimization, machine code emission, and code 
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rewriting on different architectures. And the cost of expensive processes should be controlled in order 

to maintain performance benefits from native code creations.  

4.2.3. Functional-Oriented Reconfiguration on Video Coding 

4.2.3.1. Video Decoding Process Framework 

Different video standards vary in their algorithms, but their similarities can be summarized as the 

following three aspects: 

 Video algorithm operations are based on MBs. The structure of MBs is shown in Figure 4-5 

as an example. The pixel size of a MB may be different but MB operations are all designed 

with parallelism in mind. 

 

Figure 4-5 Video Sequence hierarchy   

 Video data are processed by structured operations. Each pixel within the block has the same 

dependencies and relationships to other pixels.  

 Each conventional codec system of the MPEG series is based on the same processing 

procedure, which can be structured into several main functional blocks as shown in Figure 

4-6. This framework consists of a syntax parser, a residual decoding module, a motion 

compensation module, and a frame buffer module for prediction. The syntax parser extracts 

the syntax structure of the input streaming to obtain the control information and residual 

data. The residual module completes the inverse quantization and inverse transformation of 

the residual data. The motion compensation module and the buffer module will implement 

the picture prediction.   
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Figure 4-6 Hybrid Decoder Framework 

A simplified block diagram of an H.264/AVC video decoder is shown in Figure 4-7.  

 

Figure 4-7 Simplified Block Diagram of an H.264/AVC Video Decoder 

The encoded stream comes in the form of Network Abstraction Layer (NAL) packets. To decode 

the contents of a video NAL packet, the decoder first performs the entropy decoding and then reorders 

the decoded data to obtain the quantized coefficient array X. The residual difference 𝐷𝑛′ is obtained 

after inverse quantization (Q') and transform (T') of  X. The decoder parsers the header information of 

the streaming data to determine if intra or inter decoding process must be carried out, at a macroblock 

(MB) basis. For inter predicted MBs, a predicted macroblock (MB) is obtained by the Motion 

Compensation engine (MC) based on information on one or more previously decoded frames 

(  𝐹′𝑛 − 1). For intra MBs, a predicted MB is obtained based on the information on previously 

decoded MBs from the same frame. After adding this MB to the residual to obtain picture 𝜇𝐹′𝑛, then 

the decoder carries out a loop filter (Deblocking) to complete the decoding and, at last, outputs the 

decoded video in YUV format. The reconstructed picture will be stored in a frame buffer and may be 

used as one of the reference pictures for next frames.  

4.2.3.2. Reconfigurable Video Coding Standard 

As it has been introduced above, video processing can be divided into different procedures. Thus, 

it is possible to implement new coding functionalities just changing any of the procedures without 

modifying the whole decoding framework. In this context, the Reconfigurable Video Coding (RVC) 
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standard has been proposed by MPEG [131]. MPEG RVC has proposed the creation of a flexible and 

configurable video coding framework. RVC defines each coding procedure as a coding tool. It builds 

a sharing mechanism on these coding tools based on either non-compliant or compliant MPEG 

standards to promote the development of multimedia middleware. RVC has introduced the idea of 

functional-oriented reconfiguration to video fields. It aims to dynamically reconfigure decoders 

according to different requirements and specific applications with high flexibility and scalability 

[131]-[133].  

A. RVC Implementation 

Unlike other standards which have been developed case-by-case in monolithic textual 

descriptions (e.g, C/C++ reference software), RVC is based on the concept of Abstract Decoder 

Models (ADMs), which takes advantage of reusable and restructurable coding tools to implement 

multiple decoders or even a new decoding scheme different from any existed coding standard. The 

use of ADM allows a generic representation on multiple coding specifications. It supports the 

dynamic combination of different coding tools with a high flexibility, reusability, and scalability. 

Traditional MPEG standards provide different profiles to balance between decoder compression 

performance and its implementation complexity. To enable an appropriate profile selection, a 

normative description has been included into the media syntax (bitstream). RVC has further extended 

the profile-based formalism. The decoder fundamental algorithms can be combined in an arbitrary 

way in the RVC standard by adding side-information into the encoded bitstream. Two MPEG 

standards are applied in this context [131]: 1) MPEG-B part 4, which generally defines the framework 

and the standard languages used to describe the components of the framework and 2) MPEG-C part 4, 

which defines the video tool libraries (VTLs) employed in existing MPEG standards. These two 

standards are continuously evolving with new amendments for upcoming or future decoder 

descriptions.  

66 

 



Energy Optimization and Reconfiguration Techniques 

 

Figure 4-8 RVC Framework 

As shown in Figure 4-8, RVC framework aims to produce an ADM that represents the 

specification of a decoder profile. The ADM allows passing the reconfiguration information, referred 

to a decoder description, from encoder to decoder. An RVC bitstream includes two parts: the original 

encoded media content and the decoder description. The decoder description includes two kinds of 

information: Bitstream Syntax Description (BSD) and Functional Unit Network Description (FND). 

BSD information describes the syntax structure of the encoded bitstream. For example, the syntax 

elements, and the attributes of syntax elements such as length, number and the occurrence order of 

these elements. FND information describes the employed codec tools and their inter-connections. 

RVC framework has standardized VTLs to represent each functional unit (FU) as a coding tool. 

Currently, all the FUs are drawn from existing MPEG standards but the VTLs can be updated with 

any new coding tool. When a decoder description is received, a decoder parser will first analyze this 

information to know the structure of encoded bitstream by parsing the BSD and to know the 

connection of employed FUs by parsing the FND. According to the result of this analysis, the decoder 

will be implemented by selecting and connecting the corresponding FUs from VTLs.  

Each FU has a textual specification that defines its purpose and a reference implementation 

expressed in a standardized language called RVC-CAL Actor Language (RVC-CAL) [134]. In this 

language, an FU is defined as an actor, which is an encapsulated entity including input and output 

interfaces, parameters, and an internal finite state machine. One actor cannot modify the internal state 

of another one. The only form of interaction among actors is to send tokens through connection 

67 

 



Energy Optimization and Reconfiguration Techniques 

channels. An actor may have several actions. An action is a computation process which may consume 

the input tokens and may produce output tokens. Each action has its own enable condition, input 

tokens, and current actor state. After an action executing, the actor internal state may be changed. The 

name of the FUs is normative to distinguish two kinds of usage in the VTL: 

 The algorithmic (ALGO) coding tools, such as the Inverse Discrete Cosine Transform 

(IDCT) and the Inverse Quantifier (IQ); 

 The data management (MGNT) tools, such as data multiplexers or demultiplexers. 

RVC-CAL is trying to express the parallelism and modularity of decoder algorithms, which is a 

suitable attribute to implement RVC technique on a wide variety of platforms, from multi-core GPPs 

to FPGAs. ADMs are built as block diagrams with an XML dialect, the so-called XML Dataflow 

Format (XDF). FUs are processing entities and their connections represent the data flow. With the 

normative standard libraries of FUs and decoder descriptions, an ADM is able to define a new 

decoder or a decoder based on existing standards. It expresses a configuration to form a decoder. This 

configuration corresponds to an oriented graph in which vertices are the required FUs and edges are 

the communication dependencies between FUs. Figure 4-9 gives an example of a decoder 

configuration. An instance of FU is defined by its identifier and its name attribute. It can optionally 

assign values to the parameters of an actor. 

 

Figure 4-9 MPEG RVC Configuration of Decoders 

The FNL expresses the network for one decoder configuration. An FNL defines 3 types of edges: 

(1) between an input port of a network and an instance (input); (2) between an output port of an 

instance and an input port of another instance (Connection); (3) between an output port of an instance 

and the output port of a network (Output). As an example, Figure 4-10 illustrates the FNL description 

of network in Figure 4-9. 
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Figure 4-10 FNL Description of the Network in Figure 4-9 

B. Advantages of RVC 

RVC has been introduced mainly on the basis of the following aspects:  

 To support diverse video content and formats. A variety of video standards have been 

widely used in different situations. Since media materials are in varied formats, applications 

require a device that can dynamically change its operating mode to adapt to media contents 

without restarting. For example, IPTV was clearly defined in its design requirements to 

allow the use of bitstreams of several standard types (Figure 4-11-a) in the transmission end. 

To be able to decode all the bitstreams, currently, there are two main solutions at the 

receiver end: one is to use the transcoding technique, and another is to use multiple decoders. 

Transcoding increases the decoding time and causes a progressive loss of quality for each 

successive generation due to the cumulative compression degradations. While using 

multiple decoders, on one hand, the system complexity is greatly increased especially when 

it needs to switch among a variety of codecs; On the other hand, it is necessary to pre-

specify the bitstream transmission order because the hardware devices can not dynamically 

adapt their functional units to decode the different bitstreams. How to enhance the flexibility 

of the receiver end and to dynamically adapt to different user demands have become 

meaningful research issues. RVC framework solves this problem through reconfiguration. 

As shown in Figure 4-11 (b), the transmission channel allows transferring the bitstream with 

various standards. All decoders are constructed to be conformed to the MPEG-B standard. 

Depending on the decoder description, a decoder can be constructed by selecting FUs within 

only one MPEG standard VTL, by using FUs from several MPEG standard VTLs, or by 

combining MPEG VTLs and non-MPEG VTLs together. RVC provides a unified platform 

for video codec technology to relieve the incompatibility of different standards.  
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Figure 4-11 (a) Traditional Solution 

 

Figure 4-11 (b) RVC Solution 

Figure 4-11 Two Solutions to Manage Multiple Bitstreams  

 To shorten the design period and to avoid repeating designs. As mentioned before, current 

mainstream video standards have many coding tools in common (e.g., transformation, quantization 

and intra-prediction). The successful video standards have presented common design methodologies 

and functionality partitions. This similarity demonstrates a possibility of FU reutilization. It is also 

possible to introduce new tools with similar structures. 

 
Figure 4-12 An Abstraction of RVC Framework for a New Standard Development 

Figure 4-12 illustrates how a new video coding standard, MPEG-new, can be designed 

based on an existing one, MPEG-a. The necessary modifications are to re-encapsulate the 
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FU-B and to design new FU-D while the FU-A and FU-C can be reused without any change. 

RVC scheme significantly facilitates a new standard implementation. It provides a platform 

which defines standards from the perspective of coding tools to improve the reusability and 

introduces new features and technologies to systems. MPEG RVC aims to reduce the 

technical barriers among video coding standards by unifying and combining different 

functional units of various coding toolsets.  

In addition, with the fast technology developments, video coding will move towards a new 

stage. MPEG and VCEG have launched a new standard for a new generation coding 

research [135]. Comparing to the current algorithms, new standards will provide higher 

resolutions and significant improvement in compression efficiency while increasing the 

coding complexity [136]. Larger data and faster processing speed are big challenges of 

existing video equipment and implemented technologies. It has become worthy of studying 

on how to quickly adapt the codecs themselves to new coding technologies and the inclusion 

of new coding tools. 

 To facilitate the demand-oriented designs. With the continuously increasing demands for 

products, personalized design is becoming more attractive. Traditional video codec design 

defines a number of standards for choice, which limits users’ preferences within the range of 

defined standards. In some situations, users would rather define their own decoders to avoid 

unnecessary complexities. For example, H.264/AVC standard defines the syntax elements 

and various coding tools. In a certain application, only part of these elements or tools needs 

to be used. However, all of them have to be supported by the decoder to meet an 

H.264/AVC standard. In addition, with the development of video codec technologies, many 

new encoding tools with high performance or low complexity have attracted the vendors. 

But they have not been included into the existing standards, thus they cannot be correctly 

decoded by the existing devices, unless a new standard is developed. One feature of RVC is 

to quickly implement and include new coding tools. The only thing to pay attention is to 

ensure that the input and output interfaces of new coding tools can be correctly connected to 

the decoding network without influencing the data flow. 

Along these lines, the development of MPEG RVC codec standard has gradually become a hot 

topic in the video coding field. MPEG RVC framework will provide a unified platform for video 

codec technology. The aim is to reduce cost of the new technology development, relieve the 

incompatibility of different standards and enhance the promotion of the new video standards.   
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4.3. Conclusion 

Motivated by the pervasive use of multimedia applications on battery-powered portable devices, 

the latest video coding standards have been developed to enable higher data compression rates and 

decoding efficiency. This continuous evolution towards more complex and advanced standards has 

greatly impeded their efficient specification and implementation from both energy-constraint and 

design standardization points of view. This chapter includes two parts. They present a detailed 

introduction on the related work on two topics: energy optimization and reconfigurable design. In the 

first part, energy optimization techniques have been first introduced at different levels, including low-

power designs for the special case of video coding. The second part is related to reconfigurable 

design, which is a new philosophy motivated by the requirements of high flexibility and scalability. 

Many implementation techniques have been studied for reconfigurable design. In particular, 

reconfigurable design on video coding is defined in this thesis as functional-oriented reconfiguration. 

The MPEG reconfigurable video coding standard is described and its advantages are described.    
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5. Energy Optimization based on Functional-
oriented Reconfiguration 
Chapter 1 has addressed the motivation to optimize the energy consumption of streaming 

applications running on battery-powered mobile devices. Video codec design no longer only focuses 

on performance improvement and response time reduction but gradually more attention is being 

shifted to energy efficiency designs. Chapter 4 has discussed various low-power design techniques 

proposed by the research community, ranging from low to high level and from general to video 

focused purposes. This chapter will address an energy optimization methodology on video 

applications with the goal of balancing energy consumption and quality of service based on the 

functional-oriented reconfiguration, which, as an available mechanism, has shown its simplicity and 

flexibility on video codec design. On top of that, functional-oriented reconfiguration provides a new 

notion of energy optimization. Effectively, it can quickly assimilate different new FU-based low-

power designs, and adjust a decoding scheme to adapt it to different battery conditions and user 

preferences. In this chapter, an energy-aware codec manager, independent to platforms and codec 

standards, is proposed. Besides, problems and objectives of energy optimization and management are 

first stated in section 5.1. Afterwards, the feasibility of energy control using reconfigurable video 

coding is discussed in section 5.2. Then, the energy-aware manager will be introduced in section 5.3, 

and, finally, in section 5.4, the conclusion will be drawn. 

5.1. Problems and Objectives of Video Energy Optimization  

New trends on video coding design focus on energy efficiency and optimization for longer battery 

lifetime. The reason for this tendency is that the gradually growing demands for data rates and 

enhanced functionalities result in much more complex coding algorithms which consume a significant 

part of the battery energy. Dynamic adaption, either on computing resource allocation or video 

quality, has become an attractive topic. A considerable amount of research works have shown positive 

and practical solutions. Recently, MPEG proposed a new ad hoc group known as Green MPEG to 

address energy issues in decoder standardization [137]. Green MPEG proposes a concept referred to 

as Green metadata, which could be extracted from either the video encoder or the pre-processor and 

used at the receive end to reduce the power consumption. The green metadata can be used at the 

decoding end. An additional power optimization module processes the green metadata information 

and applies the appropriate operations for power-consumption control. If a feedback channel is 

available, the metadata could be sent back to adapt the encoder operations [138].  
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For energy-efficient decoding, Green MPEG distinguishes two sets of Green metadata: 

Complexity Metrics (CM) metadata and Decoding Operation Reduction Request (DOR-REQ) [138]. 

A decoder may use CM metadata combined with DVFS technique to scale the voltage and operating 

frequency for power savings. For example, the CM metadata is embedded into the bitstream and is 

extracted at the receiver to indicate frame-decoding complexity. According to this indicator, the 

power optimizer module will set the correct operating voltage and frequency of the CPU, which could 

reduce the power consumption while guaranteeing the decoding deadline. In a point-to-point 

application, the remote encoder may use the DOR-REQ metadata to modify the encoding complexity 

of the encoded bitstream and thus, the decoder can reduce its local power consumption due to the 

decoding complexity reduction. The proposal of this thesis is similar to the metadata idea. An energy-

aware manager detects the remaining energy and takes into account the energy estimation from an 

energy estimator as a signal to switch from the current configuration to another one. At the same time, 

the energy-aware manager will ask the encoder to adapt and produce compliant bitstreams.   

Green metadata is the additional information that enables energy reduction on the basis of four 

aspects: decoder power consumption, display power consumption, media selection for joint decoder 

as well as display power reduction and quality recovery after low-power encoding. In past MPEG 

meetings, a research group from Samsung proposed a display adaptation for power reduction [139]. 

Their methodology achieved power saving by scaling the backlight to reduce display power 

consumption while still producing the same perceived quality.  In this section, the problems of the 

adaptive low-power design will be discussed and according objectives are proposed. 

5.1.1. Problem Statement 

The processing and transmission of video data occupy a dominant position in multimedia 

communications research. The intrinsic large amount of information of video data challenges storage, 

processing and transmission technologies. Video coding technologies focus on how to improve the 

coding efficiency to reduce the binary rate and, as a consequence, to meet the channel bandwidth. For 

video compression, its main objective is to approach efficiencies close to the Shannon distortion limit 

by means of advanced complex algorithms and coding techniques. In addition, with the development 

of wireless communication technologies, especially the third/four-generation of mobile 

communication systems, the channel bandwidth has significantly increased. This improvement has 

made possible to process and transmit multimedia data over wireless channels in real time [140] 

[141]. However, the high computational complexity involved leads to high energy consumption, 

which is unacceptable for energy-constrained mobile devices. Limited by energy and bandwidth, real-

time video data processing and transmission have three requirements: 
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 Video data compression ratio need to meet bandwidth limitations.  

 Reconstructed video should maintain a certain quality after decompression. 

 The energy consumed by video data decoding should be maintained within a certain range 

to guarantee the battery life time, especially for handheld terminals. 

Obviously, these three requirements are mutually restrained. For example, blind compression to 

meet the channel bandwidth requirement may cause an unsatisfactory distortion. Conversely, too 

much attention on quality will make the process not to comply with the bandwidth requirement. In 

addition, although efficient video compression strongly reduces the amount of data transmitted to 

reduce the transferring energy consumption, on the other hand, decoding highly-compressed encoded 

bitstreams requires higher computational complexity and more energy supply. Therefore, video 

coding design for mobile devices aims to overall consider the relationship among bandwidth (binary 

rate), video quality (distortion) and energy consumption. In this context, energy awareness can be 

added to a configurable codec. A configurable codec can adaptively evolve its energy consumption 

state as a tradeoff between video quality and energy.  

As introduced in chapter 4, many system level energy solutions have been proposed for energy-

aware behavioral adaption and resource control. The core idea of these solutions can be considered to 

exploit a system “slack” [49]. For example, adaptive voltage scaling is a process variation slack and 

clock gating is a temporal slack. Discovering new types of slack can introduce new possibilities for 

energy efficiency improvement. For example, low-power designs that offer execution alternatives can 

be considered as user experience or execution slacks. Scalable algorithm design can be considered as 

an example of this kind of slack.  

Investigations of energy optimization suffer from two limitations: 

 One is that these existing approaches have been designed for specific codec standards or 

implemented on particular platforms. These methodologies depend too closely on human 

intuition and specific codec knowledge. They take advantage of the features of their target 

application, but, at the same time, they are limited in terms of the capacity to develop and 

extend to new standards. Flourishing markets of mobile devices and video applications may 

introduce new coding tools with higher complexities when implementing a specific 

optimization approach. Reconfigurable coding techniques provide a unified methodology 

for video coding design. They can adjusts different operations modes based on the condition 

and environment changes.  

 Another one is that they are typically restricted to either encoders or decoders. In the 

literature [142], there are two design paradigms: either to assume the encoder has enough 
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energy and computing resources or to shift the majority of the workload to the decoder. 

With the advanced wireless networks, a growing number of applications could be benefited 

from the use of energy management concurrently in both the encoder and decoder sides. For 

example, both encoder and decoder are energy constrained when running a video chat 

application on Smartphones. One difficulty to apply this control globally is that there is 

always a predefined consistency between the compressed video data to be recognized by 

decoders. This limit could also be overcome using functional-oriented reconfigurable 

frameworks. Effectively, new decoders can be built from the decoder description 

encapsulated into the encoded data.  

In different situations, users may have different definitions of optimization. For example, with a 

fully charged battery and WLAN connection, users may prefer to pursue streaming with high quality. 

On the contrary, limited by battery capacity or network transmission bandwidth, users are more likely 

to accept encoded streaming with low quality when the emphasis is put more on the information 

transmitted. In this context, a flexible solution would be more attractive for users. Combing 

functional-oriented reconfiguration techniques and energy optimization could be a new direction to 

achieve flexible and universal solutions on energy efficiency.   

5.1.2. Objectives 

Wireless communication promotes on-line video watching and thus, to achieve a satisfactory 

user experience, both video content and network transmission adaptation are needed. This fact 

indicates that video application design has been shifting lately to systematically consider the energy 

allocation between computation and communication. This is to say, an ideal design will be able to 

jointly control the computational complexity parameters during video coding and transmission 

according to real-time conditions and constraints, such as video content characteristics, network 

constraints, battery capacity, and distortion requirements. Then, the objective is to implement a 

framework to manage video energy consumption by means of reconfigurable decoders and adapting 

encoder parameters and algorithms to extend the battery life time. During execution time, the 

framework monitors the running conditions to provide online information to conduct a proper energy 

management. 

5.2. Feasibility of Energy Control of Video Coding 

The basis of video reconfiguration is the scalability and substitutability of each functional unit. 
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5.2.1. Features of Video Streaming Computing 

Video decoding is a complex application which demands high amount of calculation. Each 

functional unit requires a certain calculation amount. Moreover, their calculation amounts present big 

differences according to streaming content, frame type, code rate, quantization parameter (QP), 

texture complexity, and motion variation.  

To show the differences, the HEVC decoder is executed on the PB board, which is one of the two 

embedded boards used in the previous discussed experiments. The detailed description about this 

board will be given later in Chapter 7. Figure 5-1 (a) to (d) present the average, variance, maximum, 

and minimum numbers of computing instructions sampled by a PMC during the decoding of 100 

frames for four video contents, namely ducks, harbor, mobile, and, hall encoded at different QPs 

while keeping other parameters the same for the same content. QP with smaller value indicates finer 

quantization and higher computing complexity. The number of instructions is employed as an 

indicator of computing complexity.  

 
                   Figure 5-1-(a) Average Number of Instructions                Figure 5-1-(b) Variance Number of Instructions 

 
                 Figure 5-1-(c) Maximum Number of Instructions             Figure 5-1-(d) Minimum Number of Instructions 

Figure 5-1 Instruction Variation of Different Contents Encoded with Different QP  
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The same as in Figure 5-1, Figure 5-2 (a) to (d) show the instruction variations when the same 

four video contents are encoded by different frame type combinations, i.e., only I frame, one I frame 

followed by all P frames, alternant I and P frames, and alternant I, P, and B frames. An I frame is 

intra-coded, that is, no other frames will be needed as a reference to decode it. P frame stands for 

predicted picture which refers to previous frame to avoid storing unchanging image information. 

Likewise, B frame is Bi-predictive picture which obtains data reference from both previous and 

following frames to further compress data. I frames are less compressible and typically requires 

higher amount of calculation for encoding and decoding. 

  
                    Figure 5-2-(a) Average Number of Instructions                  Figure 5-2-(b) Variance Value of Instructions 

  
                  Figure 5-2-(c) Maximum number of Instructions               Figure 5-2-(d) Minimum Number of Instruction 

Figure 5-2 Instruction Variation of Different Contents Encoded with Different Frame Types 

As can be seen from these figures: 

 Video decoding is a task which demands great computational complexity. To decode a 

frame, eight orders of magnitude, i.e., hundreds millions, of instructions are executed.  

 Computation complexity varies among different encoding parameters. For example, with the 
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same content encoded by different QPs, the average, maximum, or minimum values of the 

number of executed instructions decrease along QP increases. This pattern can also be 

observed in the case of frame type changes. It is worth mentioning that for a piece of 

encoded sequence, the QP may be fixed while it can include several frame types.   

 Computation complexity varies in the overall decoding process. Comparing the maximum 

and minimum number of instructions obtained during the decoding of the same sequence, 

the difference can reach to 17.8 times. In addition, the variance locates in high orders of 

magnitude indicating a great difference among sampled data. There are several reasons for 

this variation. First, the different types of frame lead to a great difference on processing 

modes. Secondly, the complexity of texture and the intensity of motion compensation 

impact on computation complexity. Generally speaking, more complex texture and more 

intensive motion lead to more residual and motion information. During the decoding process, 

more data need to be processed which addresses more amount of computation.  

5.2.2. Feasibility of Energy Control of Video Coding 

Video streaming with different encoding computation complexities always lead to different 

energy consumption. Two decoders from MPEG-4 Part 10, namely CBP and PHP are executed to 

decode four video sequences on the same platform, the one mentioned in subsection 5.2.1. The CBP 

decoder implements the constrained based profile and the PHP decoder implements the progressive 

high profile. Each sub-figure in Figure 5-3 stands for the energy consumption of a different video 

content. As can be seen, there are obvious differences of energy consumption between the two 

decoders when they are decoding streams encoded with the same sequence.  

 
Figure 5-3 Energy Consumption Comparison on Two Decoders 
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The largest difference between CBP and PHP is the algorithm of entropy coding, which follows 

the transformation and quantization processing to remove statistical redundancy [143]. The CBP 

decoder only supports context-adaptive variable-length coding (CAVLC) while PHP decoder supports 

both CAVLC and context-based adaptive binary arithmetic coding (CABAC). One main idea of 

entropy coding is to relate the length of codeword to symbol frequency by using variable length 

coding (VLC). CAVLC [144] uses many VLC tables and selects proper tables according to the 

context that has been transmitted. CABAC [145] combines an adaptive binary arithmetic coding 

technique and a well-designed context model with full consideration of statistical characteristics of 

video streaming to flexibly complete lossless coding under the condition of knowing the model 

probability distribution of existing syntax elements. Compared to CAVLC, CABAC achieves better 

compression ratio but introduces more computational complexity.   

The aforementioned results suggest that there is a potential space to adjust video coding energy 

consumption by changing the coding complexity. The amount of energy required in video processing 

should be properly used rather than be assigned indiscriminately. With the information provided from 

energy awareness, a decoder can be configured with less complexity or at appropriate spatial and 

temporal resolutions to yield the best perceptual quality. In this situation, RVC framework shows 

benefits from its high flexibility. All encoding details are passed to the decoder as side information. 

By parsing this information, a decoder can replace different FUs, thus, changing the decoding 

algorithms and energy consumptions.   

5.3. Proposal 

5.3.1. Energy-aware Framework of Reconfigurable Video Coding 

The proposed energy optimization module currently focuses on the decoder end based on the 

conceptual view of the original RVC framework. It includes two additional units, namely energy-

aware manager and PMC-based energy estimator. The whole framework of energy-aware RVC is 

shown in Figure 5-4. The energy-aware manager provides decisions on how to switch among different 

decoder descriptions to reduce the energy consumption during the decoding process. And the energy 

estimator estimates the energy consumption during a certain time interval. The estimation results are 

passed to the energy-aware manager together with the battery state-of-charge to provide a metric that 

is used to reconfigure a decoder.  

80 

 



Energy Optimization based on Functional-oriented Reconfiguration 

 
Figure 5-4  Proposed Energy-aware RVC Framework 

To complete a reconfiguration, a reconfiguration engine is needed. It has two inputs, a decoder 

description, which is also known as decoder configuration, and VTLs. Usually, VTLs can be 

represented in different forms according with the kind of engine that has been employed. The engine 

interconnects the necessary functional units to form a complete decoder and translate this decoder 

network to byte code format. Again, this format depends also on the engine type but it is platform 

independent.  

5.3.2. Energy-aware Management 

The core question of energy-aware management is how to choose the proper functional units. 

This problem can be mathematically described as following: 

The energy-aware manager assumes a decoder can be structured with a set of FUs, 𝐷 =

{𝑓𝑢1,𝑓𝑢2, … , 𝑓𝑢𝑝}  chosen from a finite set, 𝐹𝑈 = {𝑓𝑢1,𝑓𝑢2, … ,𝑓𝑢𝑞}. The manager operates the 

reconfiguration with an operation mode 𝑘, selected from a set 𝒦 = {𝑘1,𝑘2, … ,𝑘𝑚}, which is featured 

by a tuple (𝜔1 ,𝜔2 , …𝜔𝑛 |∑𝜔𝑖 = 1 ) defining the user preference. The operation mode can be 

extended by including additional dimensions to the given parameters. For example, it can be restricted 

to the computation complexity, bitrate, and quality. How to choose the operation mode depends on 
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maximizing the overall system gain,  𝐺 , and battery life time, 𝑇, while ensuring decoder function 

validity, i.e., 

 

max  𝐺 = 𝑔𝑖
𝑘,𝑗�𝐷𝑗, 𝑙�  and max  𝑇 = �𝑡𝑖 

𝑠. 𝑡.  �𝑒𝑖
𝑗(𝐷𝑗)  ≤  αE 

 

5-1 

Where,  

 𝑔𝑖𝑘 is a model of system gain under the preference mode 𝑘 ∈  𝒦𝑖, being defined as equation 

5-2: 

 𝑔𝑘,𝑗�𝐷𝑗 , 𝑙� =
𝜔𝑐 × 𝑙
𝐶�𝐷𝑗�

+  
𝜔𝑏 × 𝑙
𝐵(𝐷𝑗)

+
𝜔𝑞 × 𝑄(𝐷𝑗)

𝑙
 5-2 

 𝑙 presents the level of energy-saving and larger value means that greater efforts should be 

carried out to optimize energy unitization on battery life extension; 

 𝐶�𝐷𝑗�, 𝐵�𝐷𝑗�, and 𝑄�𝐷𝑗� stand for decoder computing complexity, bitrate, and image quality, 

respectively; 𝐶�𝐷𝑗�  and 𝐵�𝐷𝑗�  are inverse proportional to system gain which means a 

decoder is more expectedly designed with less computational complexities and bit rate but a 

higher image quality is always targeted, as shown in the proportional relationship 𝑄�𝐷𝑗� 

item;   

 𝑡𝑖 is the time to decode one frame; 

 𝑒𝑖
𝑗 is the energy consumption of decoding one frame; 

 𝐸 is the total battery capacity; 

 𝛼 ∈ (0,1] is a user-defined parameter establishing the limit of the energy budget for video 

applications. 

The model of system gain can be applied to both native-stored bitstreams and on-line streams 

because the energy optimization module will automatically choose a compatible decoder description 

to reconfigure the decoder according to the computed system gain. One difference for these two 

decoding situations is that native decoding does not need to consider the energy impact from data 

receiving and network condition. However, currently, the system gain is facilitated by only 

considering computational complexity, i.e., 𝜔𝑐 = 1,𝑎𝑛𝑑 𝜔𝑏 = 𝜔𝑞 = 0 for both cases. In addition, the 

on-line streaming case has a possibility to gain further energy saving by communication with the 

encoder side. This idea follows the idea of Green Metadata. Figure 5-5 shows an example of this 

concept for a point-to-point application (e.g., a video conference). In this situation, each terminal 

device contains a receiver for decoding and has a feedback channel. The receiver sends an energy-
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aware message from its local decoder to the remote encoder. This message will inform the remote 

encoder to adjust its encoding parameters with the concern of the battery life of its client, i.e., the 

device for decoding the bitstream. The remaining battery life is determined by the client based on the 

energy consumption of the current representation it is using, which can be estimated by an energy 

model. Periodically, the energy optimization model computes the energy saving level (ESL) (Step 1 in 

Figure 5-5). In this thesis, ESL is defined as 1
  𝐵𝑟

𝐸𝑟�
, where 𝐵𝑟 denotes the remaining battery budget for 

video applications and 𝐸𝑟  is the current energy-consuming rate which is estimated by the energy 

estimation model. The expression  𝐵𝑟
𝐸𝑟

 shows the time it takes the whole energy budget to be consumed 

at the current rate, and thus a smaller value suggests a more pressing necessity of energy reduction. 

That is why ESL is defined as a reciprocal. The ESL is sent by the client to the encoder through the 

feedback path between the transmitter and receiver (Step 2 in Figure 5-5). The ESL is extracted at the 

encoding end (step 3 in Figure 5-5) to translate the energy saving request into a new configuration of 

the encoder (Step 4 in Figure 5-5), so that it can produce a streaming which complies to the ESL (Step 

5 in Figure 5-5). In this way, each encoder can adapt the complexity of the encoded stream as a 

function of the battery level of the other device communicating with it (Step 6 in Figure 5-5).  

 
Figure 5-5 An example of the Usage of ESL Information 

5.4. Conclusion 

Rather than keeping improving the compress ratio and processing ability of video coding, 

dynamic adaption has been newly considered to meet the requirements of longer battery lifetime. An 

ideal design will be able to jointly control the computational complexity parameters during video 
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coding and transmission according to real-time conditions and constraints. This chapter has proposed 

an energy-aware optimization model to manage and optimize the energy consumption based on the 

RVC specification. This idea is follow up of the conceptual framework of Green MPEG. The 

optimization module performs as an energy-aware manager of energy consumption and services at the 

decoder end. It takes into account the energy consumption ratio to determine how to reconfigure the 

decoder while providing the largest system gain, i.e., lower computational complexity and bit rate, 

and higher image quality. In this thesis, the system gain is only determined as computational 

complexity.  
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Experimental Study-case Infrastructure  

6. Experimental Study-case Infrastructure 
This thesis focuses on an energy optimization method based on functional-oriented 

reconfiguration. To evaluate its capacity on energy saving, RVC specifications running on embedded 

platforms are chosen as the experimental study case. Figure 6-1 shows the infrastructure of the study-

case. The aim of this chapter is to introduce each element of Figure 6-1: the reconfiguration engine 

and development environment of the RVC framework, the PMC tool, the modeling assistant tool, the 

hardware platforms, and the benchmarks.    

 

Figure 6-1 Experimental Study-case Infrastructure 

6.1. Reconfiguration Engine and Development Environment of 

RVC Framework 

The principles and advantages of the RVC framework have been introduced in previous chapters. 

In summary, along with the coding development process, the video coding standard has a constant 

goal: to achieve a bit-rate as low as possible while maintaining the best possible quality. The 

performance improvements on video coding have been achieved at the expense of additional 

computational complexity. The continuous evolution of more complex and advanced standards has 

greatly impeded their efficient specification and implementation. In attempt to facilitate innovation in 

video coding design and to quickly integrate successful algorithms into existing standards, the 

reconfiguration mechanism has been introduced into the video field and already shown its features of 
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flexibility and scalability. It is believed that these features can help to save energy with awareness of 

energy consumption. In the following, the reconfiguration engine and the development environment 

used in this thesis are introduced.  

6.1.1. Reconfiguration Engine 

6.1.1.1. Low Level Virtual Machine 

Targeting for code portability, a virtual machine (VM) infrastructure is mandatory for the 

reconfiguration engine. Performance and portability is a crucial point for VM choice. VMs such as 

Java and Python have high portability because they are written in standard C and rely a lot on their 

own libraries. However, at the same time, the VMs for high-level languages, such as JVM for Java or 

CLR for C#, are more than twice slower than the equivalent C compilation [147]. LLVM is another 

choice with the efficiency consideration in mind. LLVM was originally developed by Chris Lattner at 

the University of Illinois, Urbana-Champaign, as a register-based compiler framework [148]. It is 

implemented in a level lower than typical VMs. Thus, it could provide an infrastructure to easily port 

any VM to a platform that already supports LLVM.  

Essentially, LLVM is a compiler architecture rather than a compiler. It can be considered as a 

library to help designer to build compilers. The LLVM compilation procedure consists of three stages: 

high-level language frontend interpretation, intermediate optimization and backend code generation. 

The frontend converts high-level languages, e.g., the RVC-CAL language in RVC framework, to 

LLVM intermediate representation (LLVM IR). A frontend only needs to be responsible for syntax 

analysis, validation, and error diagnosis for the source code. After the fronted translates the source 

code into LLVM IR, the intermediate optimizer is responsible for LLVM IR optimization. The 

optimizer is based on the LLVM virtual instruction set and is independent of the compiler frontend 

and backend. It provides the language-independent optimization and CPU-aimed codes generation. 

The backend code generator converts optimized LLVM IR into machine codes corresponding to the 

specified target processor.  

LLVM has its own format of IR. All the LLVM IRs are finally compiled to assembly language 

of the specific platform. Then these assembly codes are executed by the native assembler and linker to 

generate executable shared libraries. The whole LLVM architecture is shown in Figure 6-2. 
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Figure 6-2 LLVM Framework [148] 

LLVM IR is the key point for LLVM optimization and native code generation. The LLVM 

virtual instruction set is close to an assembly language. The abstract mechanism of LLVM IR is an 

infinite set of virtual registers. They are coded in a Three Address Code (3AC) form and a Static 

Single Assignment (SSA) form. A 3AC code is an intermediate code which has at most three 

operands and is typically decomposed into a four-tuple: (Operator, Operand1, Operand 2, result). SSA 

is a refinement of  the 3AC form. SSA form ensures each variable is assigned exactly once. Note that 

existing variables have different copies. A new assigned variable is indicated by the original name and 

a subscript, so that every definition gets its own version. The SSA form is independent of high-level 

programming languages and the target architecture syntaxes. Based on 3AC and SSA forms, LLVM 

can simplify the value transfer through virtual registers and memory by only using load and store 

operations. As a consequence, LLVM can produce much faster and more efficient executions.  

In addition, due to the standardized LLVM IR, the LLVM optimizer can be reused for any new 

programming language or device. This is a general procedure without any modification. LLVM 

optimization is achieved through various passes. In LLVM framework, a pass is an operation on a unit 

of IR. Each pass is a node to perform a part of the transformations and optimizations work. All the 

passes make up the compiler. Passes can be classified into analysis, transform, and utility passes. 

LLVM optimization and conversion work is done by a number of passes. Each pass is a node which is 

responsible for the optimization or transform. Pass framework has a very good reusability. Developers 

can choose from existing passes to build their own optimization and transformation. They can also 

rewrite new passes to implement their solutions. The reason is that each pass is independent, so a new 

pass does not need to take consideration on the implementation of previous passes. Thus, developers 

can easily achieve their desired effects. Then, LLVM, being a lower level VM, is easier to port to 

different OS and hardware architectures.  

As discussed above, LLVM fits all the expectations of the RVC framework implementation: 

high portability and efficiency. Thus, it has been chosen to be employed into the RVC framework to 

support reconfigurable decoding. Note that in RVC specifications, the coding algorithms are 
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implemented by the RVC-CAL programming language. The LLVM compiler does not provide the 

corresponding frontend for the CAL language. Therefore, the LLVM IR is generated by an open 

RVC-CAL compiler which will be introduced in the next section.  

6.1.1.2. Just-in-time (JIT) Adaptive Decoder Engine 

Two RVC-specific components support RVC ADMs. The first component consists of VTLs 

described as an LLVM representation. The second component works as a layer of the LLVM 

compiler. Ideally, this compiler should be a JIT-implemented compiler. Besides these two 

components, an LLVM-based Just-in-time adaptive decoder engine (Jade) is developed to manage the 

description of ADMs and the connection of VTLs to produce decoders. On top of that, a configuration 

engine in Jade works to select the required coding tools from the VTLs based on the network 

description of an RVC specification. Then, Jade produces an implementation of the corresponding 

decoder and a model of execution in an imperative bytecode form according to the LLVM 

environment. Finally, the LLVM compiler gets and translates the produced bytecode into native code 

for its execution on the platform. As such, Jade is responsible to dynamically load and execute ADMs, 

to schedule among different decoder descriptions, and to manage the execution of the final decoder. 

Therefore, it the proposed energy-aware manager can be implemented as an additional unit to 

determine when and how to select the different FUs with regard to the current energy awareness.  

6.1.2. Development Environment 

Table 6-1 lists the necessary tools and libraries of RVC-CAL development environment.  
Table 6-1 Summary of Tools and Packages 

Tools and Libararies Functionalities 
ORCC A plugin for Programming languages translation 

Graphiti A graphical tool to build the XDF network 
Xtext A tool for development of programming languages 
SDL An open source library to facilitate multimedia implementation 

Cmake 
An advanced platform-crossed compilation tool for source code 

management and compilation 
Eclipse IDE  An integrated development environment for RVC-CAL developing 

Java-JRE and Java-JDK Supports for Java running environment and development environment 
SVN Application and projects version control and source codes management 

The recommended operating system is the Ubuntu series due to its abundant third-part 
libraries.  

6.1.2.1. Open RVC-CAL Compiler 

The RVC-CAL reference language, used for MPEG RVC specification, has been designed as a 

subset of the CAL language. Compared to CAL, RVC-CAL retains a high level of abstraction to 
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describe actors, but reduces its expressivity on types, operators, and functionalities that cannot be 

easily integrated into hardware platforms. Open RVC-CAL Compiler (ORCC) [146] is an open source 

compiler that can be loaded as an Eclipse plugin to provide a complete Integrated Development 

Environment (IDE) dedicated for designing, analyzing, and transforming RVC specifications. The 

most important feature of ORCC is to convert CAL codes to any other programming languages, such 

as Verilog, VHDL, C/C++, Java, and LLVM IR. This makes that the high-level CAL language can be 

easily adapted to any platform (Figure 6-3). Note that ORCC is only employed to generate the source 

code. The assembly or executable code for the target platform are obtained by other tools.  

 

Figure 6-3 ORCC Framework 

The converters of ORCC are called backends. In Table 6-2, the existing ORCC backends and 

their implementation status against the video decoders are summed up. 

Table 6-2 RVC Specifications on ORCC Backend [146] 

 MPEG-4 Part 2 SP MPEG-4 Part 10 MPEG-H Part 2 JPEG 

C √ √ √ √ 
HLS √ × × - 
Jade √ √ √ - 

LLVM √ √ √ - 
Promela √ - - - 

Simulator √ √ × √ 
TTA √ × √ - 

Xronos √ × - √ 

 

To generate LLVM IRs for RVC-CAL specifications, ORCC provides its embedded specific 

converter for the RVC-CAL language. This IR converter permits that the body of actions is 

decomposed in the form of load and store instructions as Static Single Assignment (SSA) form. In 

addition, the represented actor structure is still equivalent as the original one which contains its name, 

pattern, a list of actions and the Finite State Machine (FSM). This is to say, at the moment of 

performing a translation from an RVC-CAL FU into LLVM IR, the original high-level information 

must be kept. The full translation has two steps: one is a specific ORCC frontend that parses a chosen 

network and translates it to an ORCC specific IR. The second is a dedicated ORCC backend to 
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generate the targeted language based on the representation generated from the previous step. For the 

requirements of Jade, a new LLVM-based backend, named Jade backend, has been developed to 

produce LLVM IR of the VTLs. 

6.1.2.2. Graphiti 

Graphiti is a graphical tool infrastructure which provides the graphical representations and 

editing possibilities [149] [150]. An example of an RVC specification based on Graphiti of Eclipse 

IDE is presented in Figure 6-4. Graphiti provides a fast and easy network building through visual 

programming. The decoder description can be hierarchically defined by Graphiti as an XDF network. 

The vertices of the XDF network have three forms: input port, instance and output port. The instance 

can be assigned to a sub-network or an actor, which is the minimal unit in RVC framework. The 

edges between two vertices represent the data flow. They will be instantiated as virtual FIFOs. 

Graphiti allows a very easy and clear method to view the whole project. 

 

Figure 6-4 The Graphical FU Network Editors in Eclipse IDE 

6.1.2.3. Xtext Tool 

The Xtext tool is a text editor employed as an advanced RVC-CAL editor [149] [151]. It 

provides features such as syntax coloring, content assist and code correction for increasing the 

92 

 



Experimental Study-case Infrastructure  

efficiency of actor development. Moreover, with ORCC plug-in, the development environment is able 

to parse all actors and build their interior dependence on-the-fly, which facilities the error detection.   

6.1.2.4. Simple DirectMedia Layer 

Simple DirectMedia Layer (SDL) is an open source cross-platform library designed to provide a 

common abstract layer to hardware components via OpenGL and Direct3D [152]. SDL is designed in 

C language and provides several low level controls on images, audio, and I/O peripherals. It allows 

developers use the same or similar codes to develop any application on multiple platforms (e.g., 

Linux, Windows and Mac OS). SDL is currently widely used for developing games, simulators, 

media player, and other multimedia applications.  

6.1.2.5. Cross Platform Make 

Cross Platform Make (Cmake) is an advanced platform-crossed compilation tool for C/C++ 

projects [153]. Cmake uses a simple syntax to describe the compilation process of multiple platforms 

and can output a variety of forms of make files or project files. The configuration file of Cmake is 

named as CmakeLists.txt, which is a set of Cmake scripts to manage all the components of the project. 

Cmake does not directly build the final executable file, but it generates the standard build files (such 

as the Makefile for Unix or projects/workspaces for Windows), and then it executes the application in 

accordance with general compilation approaches. Another feature of Cmake is to support directory 

hierarchies and applications that depend on multiple libraries. 

The main goal to use Cmake in this thesis is to compile and install Jade in the target 

environment. In addition, it is also used to compile the codes that converted by C/C++ backend. Note 

that Cmake is more like a tool to facilitate source code management and completion rather than a 

compiler. Cmake is OS-dependent and the calling of a real compiler is embedded into the 

configuration file of Cmake. For a Windows-based platform, the Visual Studio compiler could be 

employed as the tool to compile and debug the code, while for Linux-based platforms, GCC-based 

method is the most widely used tool to obtain the executable files.  

6.1.2.6. Eclipse 

Eclipse is a free integrated development environment with the original design for java software 

development. ORCC is implemented in Java as an Eclipse plugin. In this project, depending on user 

needs, either Eclipse IDE packages for C/C++ developers or for Java developers can be employed. 

Meanwhile, ORCC requires a Java environment. The Java Runtime Environment (JRE) is required 

with at least the version 1.6. of Sun's JRE. OpenJDK is recommended on Linux [154].   
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6.1.2.7. Apache Subversion 

Apache Subversion (SVN) is a version control system for open-source projects under the Apache 

license. It can be used to maintain the RVC-based applications and Jade project [155].  

6.1.3. Building Procedure of an Energy-aware Decoder 

Figure 6-5 illustrates the building procedure of an energy-aware decoder with the ORCC 

infrastructure in the context of this thesis.  

 
Figure 6-5 General Working Procedure 

The ORCC plugin in Eclipse IDE works as the frontend to generate source codes in format of 

different backends. To use Jade, ORCC provides a specific frontend to generate the LLVM IR. Then, 

Jade is needed to achieve the on-line reconfiguration. The energy estimation model is included into 

the original RVC framework, so the converted code does not need to be modified and can be directly 

used as the input of Jade. Finally, the converted code with the network description will form the 

executable decoding process to decode the encoded video sequences. Along the decoder execution, 

the energy information will be provided to Jade to dynamically switch to a new decoder description, 

and if the feedback channel is available, Jade will pass the energy metadata to the encoder side to 

adapt the encoding parameters.  
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6.2. PMC Programming Tool 

Performance Application Programming (PAPI) is a third-party tool that provides a methodology 

to use PMCs for most major microprocessors. PAPI can be divided into two layers as shown in Figure 

6-6: 

 Framework Layer. The framework layer consists of APIs in low and high levels and 

machine independent support functions. This abstraction layer provides portability across 

different platforms. It uses the same routines with similar argument lists to control and 

access PMCs. 

 Component Layer. The component layer defines and exports a machine independent 

interface to machine dependent functions and data structures. These functions are defined in 

the components, which may use kernel extensions, operating system calls, or assembly 

language to access the hardware performance counters on a variety of subsystems. PAPI 

uses the most efficient and flexible of the three, depending on what is available on the 

platform. 

 

Figure 6-6 PAPI Architecture 

PAPI provides two interfaces to the underlying counter hardware: a simple, high-level interface 

for the acquisition of simple measurements and a fully programmable, low-level interface for user 

with more sophisticated needs. The high-level interface simply provides the ability to start, stop and 

read specific events, one at a time. The low-level API of PAPI is employed to manage hardware 

events for fine-grained measurement and control of the PAPI interface. Using low-level API rather 

than high-level one benefits from efficiency and functionality. Low-level API is also featured with the 

ability to obtain executable and hardware information and to set options for multiplexing and 

overflow handling. The advanced features beyond simple event counting from low-level APIs are:  

 Multiplexing. PMCs are generally a scarce resource. There are often much more events of 

interest than counters to count them on. Multiplexing is one way to relieve this dilemma. 

When a microprocessor has a limited number of hardware counters, multiplexing overcomes 
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this limitation by subdividing the usage of counter hardware over time (timesharing) among 

a large number of performance events. Multiplexing allows more events to be counted than 

there are limited physical counters. However, when timesharing is employed, the 

measurement of the existing counters results in some loss in precision [156]. Note that in 

this case no single event is measured for the full analysis time. When a physical counter is 

switched to monitor another event, the counting report of the previous event mapped on this 

counter is estimated by its history information. And, unavoidably, multiplexing incurs a 

small amount of overhead when switching events. In other words, the more events are 

multiplexed, the more likely is that the results will be statistically skewed. The amount of 

time spent in the measured regions should be greater than the multiplexing time slice times 

the number of events measured in order to get acceptable results. The default time slice for 

multiplexing is currently set at 100000 microseconds.  

 Parallel Programming. PAPI can be used with parallel as well as serial programs. The 

parallel usage is based on threads. A thread is an independent flow of instructions that can 

be scheduled to run by the operating system. Multi-threaded programming is one form of 

parallel programming where several controlled threads are executed concurrently in the 

program. All threads execute in the same memory space, and can therefore work 

concurrently on shared data. Threads can run in parallel on several processors, allowing a 

single program to divide its work among several processors, thus running faster than a 

single-threaded program, which runs on only one processor at a time. In PAPI, each thread 

is responsible for the creation, start, stop, and read of its own counters. When a thread is 

created, it inherits PAPI information or state from the calling thread unless PAPI usage is 

explicitly specified. PAPI supports threading agnostically by allowing the user to specify the 

function that returns the current thread ID. 

 Overflow. Most processor can generate an interrupt when a PMC exceeds a threshold. PAPI 

provides the overflow handler to allow the user to take periodic measurements. If a sample 

value exceeds the predefined threshold, then the interrupt handler will be called by the 

current context with additional arguments. These arguments will help the user to determine 

which event causes the overflow and at what location in the source code the overflow 

occurred.  

PAPI only tracks “hardware events”, the occurrence of signals onboard the microprocessor. It 

does not count system calls, software interrupts or other software events. Currently, PAPI only 

supports thread level measurements with kernel or bound threads. There are two kinds of events 

defined in PAPI:  

 Preset Events. As a part of PAPI, there is a predefined set of events, namely preset events, 
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which represent a common implementation. Preset events are a common set of CPU events 

which are more general, relevant and useful for application performance tuning. These 

events are typically found in many CPUs that provide performance counters and give access 

to the memory hierarchy, cache coherence protocol events, cycle and instruction counts, 

functional unit, and pipeline status. A preset can be either directly available as a single 

counter or derived using a combination of counters. PAPI defined a set of about 100 preset 

events for CPUs. However, some ones may be unavailable on any particular platform. A 

given CPU will implement a subset of those, often no more than a few dozens. PAPI 

provides interfaces to determine exactly which preset events are available on a target 

platform. With this predefined set, same source code will count similar and possibly 

comparable events when running on different platforms. If a programmer chooses to use this 

set of standardized events, then the source code of PAPI does not need to be changed and 

only a fresh compilation and link is necessary. 

 Native Events. Each processor has a number of events that are native to its specific 

architecture. There are generally more native events available than the number of them that 

are mapped onto the PAPI preset events. For some specific components, native events are 

generally the only available option. PAPI provides access to native events on all supported 

platforms through the low-level interface. Even if no preset event is available that exposes a 

given native event, native events can still be accessed directly.  

Native events have the advantages that they are comprehensive and cover all the platform 

available events. To use native events effectively, one should be very familiar with the particular 

platform in use. In addition, the native event codes and names are platform dependent, so native codes 

for one platform are not likely to work for other platforms. Although the modification for using native 

events is easy, in order to make the model be more general, this thesis has chosen to use the preset 

events. A number of PAPI functions are employed to automatically detect existing events on the 

target platform from the predefined event list.  

6.3. Modeling Assistant Tool  

To show the performance of the proposed energy-aware manager, experiments on real platforms 

with a modeling assistant tool are necessary. This assistant tool includes a measurement system and a 

battery emulator. A measurement system is needed to carry out the voltage and current measurements 

for the estimation modeling.  Instead of a time-consuming battery charging procedure, a battery 

emulator is employed [157]. As shown in Figure 6-7, the measurement system consists of a PC-

controlled battery emulator connected to a programmable power supply. The chosen power supply is 
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the Agilent 66321D Mobile Communications DC Source [158], which includes a digital voltmeter to 

take measurements. The adjusted voltage output is plugged into a DC/DC converter module to raise 

the regular voltage of the battery to the operating voltage of the embedded platform. 

 

Figure 6-7 Block Diagram of the Measurement System  

The battery emulator is a PC-based controller. It must be able to control the power supply to 

simulate the voltage drop of a battery based on the measurements of the current consumed by the 

platform. To achieve this, an accuracy battery model must be previously specified. 

For any battery, during discharge, current within the battery is carried on by ions moving from 

negative to positive electrodes through the non-aqueous electrolyte and separator diaphragm. To 

simulate the battery, a polynomial regression model is chosen. This model in equation 6-1 describes 

its role as a sum of polynomials, which are dependent on the state of discharge (SoD) of the battery 

[157]. Q is the battery capacity and i(t) is the current delivered by the battery. V is the output voltage 

of battery, Rint is the internal resistance of battery and ck are the regression coefficients. Finally, n is 

the order of the equation. To build the model, only the characteristic parameters of the battery are 

needed. By using this model, the discharging curve of any battery can be emulated with averaged 

errors below 2% [157].  
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As shown in Figure 6-8, a battery simulator based on the Labview software, from National 

Instrument, has been developed to implement the battery emulator. The estimated voltage is passed to 

an Agilent power supply via IVI drivers and VISA drivers to simulate the battery.  

 
Figure 6-8 Measurement System Layers [157]  

The usage of this emulator is quite simple. Figure 6-9 shows the Graphical User Interface (GUI) 

of the battery emulator. Its usage is described following in detail in Appendix A. 

 
Figure 6-9 GUI of the Battery Emulator and Simulator [157] 
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6.4. Platforms 

In order to get a comprehensive analysis of the energy consumption behavior in CPU and 

memory components in a controlled environment, two embedded platforms are considered instead of 

a real mobile device. These platforms have been selected because they both have ARM processors, 

which come from the same processor architecture family as those processors presented in actual 

mobile devices. In addition, they are open development platforms with detailed technical information 

on the chips and a large open-source support community, which facilitates the embedded software 

development. 

6.4.1. Description of the Platforms 

In this project, two embedded systems, PandaBoard [159] and BeagleBoard [160], are employed 

targeting the evaluation of the proposed energy-aware manager. According to their manufacturer, both 

boards are designed as a prototyping vehicle for mobile application developments. In particular, they 

are aimed at projects targeting battery-powered mobile devices.  

These two boards consist of a rich set of resources to run a wide range of applications. The 

PandaBoard has been implemented in various versions. The focus of this project is PandaBoard ES 

which is built with a TI OMAP4460 processor containing two ARM Cortex-A9 cores running at up to 

1.2 GHz. Other onboard devices are a C64x DSP, a PowerVR SGX540 GPU, and a DDR2 SDRAM 

with size of 1 GB. In addition, PandaBoard ES is rich in peripherals: 10/100 Ethernet, 802.11 b/g/n 

wireless module, Bluetooth, USB 2.0, stereo audio in and out, dual-display output, and expansion 

headers for I2C, LCD, and camera. Persistent storage is via an SD card cage. BeagleBoard has a 

similar architecture but is a weaker version of PandaBoard. The employed version is BeagleBoard 

XM which is based on a TI OMAP3530 application processor consisting of an ARM Cortex-A8 core 

clocked up to 720 MHz, a 2D/3D graphic engine featured to a SGX510 GPU, a TMS320C64x+DSP 

processor core, and 512 MB low-power LPDDR RAM memory. The connectivity and peripherals are 

similar to those of the PandaBoard except the supports of wireless and Bluetooth modules and an 

HDMI interface.  

Table 6-3 describes the main features of them. 
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Table 6-3 Platform Features of PandaBoard and BeagleBoard [159] 

Component Features 

Processor 

PandaBoard ES (OMAP 4460) BeagleBoard XM (OMAP 3530) 

Two ARM Cortex-A9 cores 

Two ARM Cortex-M3 microprocessor 

 

One ARM Cortex-A8 core 

 

Digital Signal Processor (DSP) 

Image and Video accelerator 

Image Signal Processor (ISP) 

2D/3D graphic accelerator 

Memory 

PandaBoard ES BeagleBoard XM 

1 GB DDR2 SDRAM 512 MB LPDDR RAM 

SD/MMC Card Cage 

Connector 

Video Audio 

PandaBoard BeagleBoard 

3.5mm, L+R Out 

3.5mm, Stereo In 

High-Definition 

Multimedia 

Interface (HDMI), 

Type A 

 

DVI-D 

S-Video Connector 

LCD Expansion Connector 

Communication 

Interface 

PandaBoard BeagleBoard 

2.4 GHz 802.11 b/g/n WIFI 

Bluetooth V2.1 
 

10/100 Ethernet  

USB Port 
USB 2.0 OTG Port 

USB Host Ports 

Expansion 
General Purpose Expansion (I2C, USB, MMC,DSS...) 

Camera Expansion Connector 

Debug 
14 Pin JTAG 

UART/RS-232 Port 

GPIO Pins  

User Interface 
Switches 

Reset Button 

6.4.2. PMCs on ARM Platforms  

The Performance Monitoring Unit (PMU) of Cortex-A9 processor provides six PMCs to monitor 

the events of processor and memory components, 2 of them can be used simultaneously. In Cortex-A8 

processor, there are 4 PMCs and 2 of them can be simultaneously used. Both processors provide a 

coprocessor (CP15) to manage PMCs and their control registers [175][177]. The purpose of CP15 is 
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to control and provide status information for functions implemented in the processor. Its main 

functions of the system include the controls and configurations of the overall system, the 

configurations and managements of the cache and memory units, the preloading engine for L2 cache, 

and the system performance monitoring, which is the function used in this thesis. Unfortunately, on 

ARM/Linux platforms, these PMCs are restricted to access from the user-space by default. Trying to 

access PMCs from the user space will cause an exception of illegal instruction violation. This problem 

can be easily solved with a user-written driver to connect the user-space functions to PMC operations. 

Moreover, it is necessary to bind the monitored PMC events to one thread to evaluate its performance 

without the interference from other threads. If PMCs are configured directly through the configuration 

register, they will monitor all the occurrences of the interested events but not distinguish which thread 

operations triggers them. Thanks to the PAPI tool, the PMC usage has been facilitated. PAPI tool and 

its features have been introduced in section 6.2 in detail. The Table 6-4 (a) to (c) below list all the 

available preset events on PandaBoard and BeagleBoard. 

Table 6-4 Introduction of the Common Preset Events  

Table 6-4 (a) On Both Prototype Boards 

 

Events Events Description 

Cache 

Access 

PAPI_L1_DCA L1 data cache accesses 

PAPI_L1_DCM L1 data cache misses 

PAPI_L1_ICM L1 instruction cache misses 

Conditional 

Branching 

PAPI_BR_MSP Conditional branch instructions mispredicted 

PAPI_BR_INS Branch instructions 

Instruction 
Counting 

PAPI_TOT_INS Instructions completed 

PAPI_TOT_CYC Total cycles 

Data Access 
PAPI_SR_INS Store instructions 

PAPI_LD_INS Load instructions 

TLB 

Operations 

PAPI_TLB_DM Data translation lookaside buffer misses 

PAPI_TLB_IM Instruction translation lookaside butter misses 

 
Table 6-4 (b) On PandaBoard 

Events Events Description 

Floating 

Point 
Operations 

PAPI_FP_INS Floating point instructions 

Instruction 

Counting 

PAPI_HW_INT Hardware Interrupts 

PAPI_TOT_IIS Instructions issued 

PAPI_VEC_INS Vector/SIMD instructions 
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  Table 6-4(c) On BeagleBoard 

Events Events Description 

Cache 

Access 

PAPI_L1_ICA L1 instruction cache accesses 

PAPI_L2_TCM L2 total cache accesses 

PAPI_L2_TCM L2 total cache misses 

Conditional 

Branching 
PAPI_BR_TKN Conditional branch instructions taken 

Instruction 
Counting 

PAPI_STL_ICY Cycles with no instruction issued 

 

6.4.3. Component Classification and Energy-related Events 

Most embedded systems are single-board computers (SBCs) which are complete computers built 

on a single circuit board. There are no exact design standards for an embedded system. An embedded 

system consists of various physical components and can be easily extended. General speaking, those 

devices of an embedded system can be divided into five main categories: computation, storage, 

communication, buses and I/O (as shown in Figure 6-10).  

 
Figure 6-10  High-Level Overview of the Embedded System Architecture 

Each of these categories has its unique functionality that cannot be replaced by another one. 

Therefore, each category can be considered as an independent component which deserves a specific 

analysis of its energy consumption. The energy consumption of each component can be obtained by 

observing the representative events. Note that the representative events differ from each category in 

the embedded system. 

6.4.3.1.  Computation 

As the most complex component, there are many details need to be considered for the 

computation unit. Processors have been implemented with various hardware architectures, instruction 

set, pipeline depth, specific acceleration circuits, and instruction cycles. These variances have 
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different contributions to the whole energy consumption. The execution of each instruction consumes 

a baseline energy. Additional units such as branch prediction, cache, and pipelining are implemented 

to accelerate the processing speed and they also contribute to the energy consumption. Usually, more 

typical events need to be distinguished from each processor to make higher accurate energy 

estimation. 

6.4.3.2.  Communication  

A communication component may change among several states to complete a communication 

operations. The transfer and traffic are the two most important states. The energy of the traffic state 

can be estimated by counting the number of time intervals in which the component stays in this state 

and the energy of the transfer state can be predicted by the number of transferred bytes.  

6.4.3.3. Storage 

The total energy can be predicted by the amount of transferred data. In other words, the prediction 

is computed by directly multiplying the transferred size or the bandwidth and the access times. 

Usually, a complex storage component may have several states that consume different amount of 

energies. A more accurate model also considers the energy consumption during the state transitions. 

In embedded systems, SD card or flash are usually used as the storage component which are not as 

complicated as the hard disc. Thus it can be assumed that each access of the SD card or flash has the 

same energy consumption, and their energy is mainly related with the access times, which can be 

estimated through the number of L2 data cache misses. 

6.4.3.4. Buses 

Since embedded systems have a fixed bus frequency, the energy consumption of buses can be 

estimated by the number of bus activities and the bus width. 

6.4.3.5. I/O devices 

Most of the I/O devices have several states which consume different amount of energy. Their 

energy consumption mainly depends on the number of I/O requests and the according state.  

To simplify the work, this dissertation mainly considers the computation, memory and main 

peripheral units. All the units can be estimated through a PMC-based approach, which facilitates the 

model implementation. Note that the energy consumption of the peripheral components is presented 

by their interface operations, and each interface is assumed to consume the same amount of energy.  
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6.5. Benchmarks 

Four representations of decoders standardized by MPEG RVC are employed as the test bench: 

the Simple profile (SP) from the MPEG-4 part 2 standard [161]-[163], the Constrained Baseline 

Profile (CBP), the Progressive High Profile (PHP) from the MPEG-4 part 10, which is also named as 

AVC/H.264 [164]-[166], and the HEVC Main Profile (MP)[167]. All the sequences come from the 

JVC conformance sequences. They are widely used in research and display a wide variety as far as the 

amount of spatial detail and movement concerns. The following is a brief introduction about these 

four decoders. They belong to two video coding standards: MPEG 4 and HEVC. 

6.5.1. MPEG-4 

MPEG-4 is a video coding standard designed for rich multimedia. It provides various codec tools 

with excellent compression capability. MPEG-4 uses a number of new technologies such as shape 

encoding and adaptive discrete cosine transform (DCT) to greatly improve the coding efficiency. 

MPEG-4 consists of several standards which are termed as different parts. Part 2 and Part 10 are 

employed in this project.  

6.5.1.1. MPEG-4 Part 2 

MPEG-4 Part 2, also known as MPEG Visual, is a DCT based standard defined to provide higher 

compression efficiency with new compression tools such as combination of motion-compensated 

prediction and scalar-quantized DCT coefficient coding [162]. Video applications are ranged from 

low-quality and low-resolution requirements to high definition preference, thus, video standards are 

grouped with a set of capabilities in a manner appropriate for various applications. Each profile is 

declared with different code in the encoder to allow a decoder to recognize the applied constraints and 

requirements to correctly decode the stream. MPEG-4 Part 2 has 21 profiles ranging from simple one 

to advanced one. Among them, the simple profile (SP) has been implemented in RVC framework. SP 

is designed to applications that constrained by low bit rate and low resolution conditions.  

6.5.1.2. MPEG-4 Part 10 

MPEG-4 Part 10 was jointly developed by ITU-T and MPEG, and is commonly referred to 

H.264 or advanced video codec (AVC). It is based on the advantages of the previous standards such 

as H.263+, MPEG-4 Part 2, and integrates their successful experience. It still uses the traditional 

hybrid coding framework but introduces new features, such as multiple reference frames, multi-block 

types, integer transform, intra-prediction, and other new compression technologies, to achieve 

significant improvement of coding efficiency. AVC offers the lowest bitrate for a given quality among 

any previous codec. The performance improvement leads AVC to become the most widely used 
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standard for video products and services where quality and compression efficiency are paramount. For 

example, digital television broadcasting, video real-time communication, and network video 

streaming transmission. 

H.264/MPEG-4 AVC has been a promotional technology for digital video in almost every area 

and has substantially displaced the older standards within their existing application domains. 

However, the coding method of AVC relies on the fact that the computational power and memory 

have much progressed on the latest generation of high-performance hardware. With the consideration 

of hardware cost and power consumption, AVC also offers different profiles to control the degree of 

sophistication in codec. Profiles of AVC can be generally divided into baseline, main, and high 

groups. Each group includes several profiles sharing some common features. Two profiles have been 

implemented in RVC framework:  

A. Constrained Baseline Profile 

Constrained Baseline Profile (CBP) shares the common features between baseline, main, and 

high profiles. It is primarily designed for low-cost applications or additional fault-tolerant 

applications, such as video conference, and mobile video.  

B. Progressive High Profile  

As a member of the high profile group, progressive high profile (PHP) supports all types of 

frame and offers best compression ratio but without supporting the field coding features. It is typically 

used for broadcast. 

6.5.2. HEVC 

With the increasing diversity of multimedia services, users have become more demanding with 

regard to broadcast resolution and video experience. Moreover, with the growing popularity of 

electronic mobile devices such as smart phones and tablets, the traffic and transmission needs are 

giving rise to increasing challenges on the networks. H.264/AVC has been proved to be insufficient 

for data compression of high definition sequences. The coding efficiency needs to be further 

improved. Therefore, High Efficiency Video Coding (HEVC) was proposed essentially to address 

these issues. HEVC is a successor of H.264/AVC and particularly focuses on two key points: one is to 

provide higher compression quality and video resolution and another one is to facilitate the 

parallelism for multi-core architectures. HEVC doubles the data compression ratio compared to 

H.264/MPEG-4 AVC at the same level of video quality but the computational complexity increases 

from two to ten times [167]. HEVC partitions picture into coding tree units (CTUs) to achieve a better 
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parallel processing. The size of the CTU is selected by the encoder based on the sampling schema and 

syntax elements.  

The first version of HEVC standard was completed and published in early 2013. Its main profile of 

HEVC has been implemented in RVC framework. In this work, it is employed as the benchmark for 

HEVC standard.  

6.6. Conclusion 

This chapter describes the whole infrastructure of the study-case used in this thesis work. It firstly 

introduces how the reconfiguration video coding engine works as well as the development 

environment including the necessary tools, libraries and working procedures to implement an energy-

aware manager embedded in video decoders. Afterwards, energy modeling related tools, i.e., the PMC 

programming tool and the modeling assistant tool are introduced. Then, a study on the experimental 

platforms used in this thesis has been presented with descriptions of platform features, available 

PMCs, and a simple component classification. Finally, four benchmarks are introduced. They are four 

typically used video coding profiles specified by RVC, corresponding to the simple profile of MPEG-

4 part 2, the constrained baseline profile and the progressive high profile of AVC/H.264, and the main 

profile of HEVC.  
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7. Implementation 
Chapter 6 has introduced the whole system structure of the study case. In this chapter, the 

implementations related to energy optimization and management are described in detail. To enable the 

management, an estimation model, which is based on the PMC mechanism, is needed to provide 

energy awareness. Thus, the PMC control tool, PAPI, should be inserted into the original decoder. 

The better solution is to integrate PAPI APIs into the ORCC framework. In this way, PAPI APIs can 

be modularly operated and more importantly, PAPI APIs can be automatically included into the 

generated backend code, keeping the platform independence of ADMs. Besides energy awareness, the 

energy-aware manager, which takes charge of making reconfiguration decisions, is the core design of 

this implementation. This manager accurately and efficiently makes decisions to reconfigure the 

decoder and inform the encoder to adapt its encoding parameters. A accuracy means, on one hand, 

that the current capacity of the battery and the rate of energy consumption are accurately predicted, 

and, on the other hand, users’ preferences are accurately considered by the manager. Efficiency means 

that the manager does not introduce an overhead spoils the decoder performance. 

7.1. PAPI Integration 

The predicted energy consumption is an important reference for the proposed energy-aware 

manager to make the optimization decisions. As discussed in section 2.2.4, the modeling method 

based on performance monitoring counters is chosen in this thesis work due to its simplicity and 

generalization. To facilitate the configuration and usage of PMCs, PAPI is employed in this work. 

Readers are kindly recommended to read section 6.2 to get more details of this tool. In this section, 

the integration of PAPI APIs into the ORCC framework is described. In fact, since ORCC can convert 

the RVC-CAL specifications into other backend formats, such as C/C++, VHDL and LLVM IR, these 

PAPI APIs can be manually inserted into the generated code after converting. In doing so, all the 

inconvenience will be brought to designers. First of all, not only those source files used by PAPI APIs 

need to be modified, but also the configuration file needs to be modified in order to include the correct 

PAPI library path. And more importantly, the modification procedure must be repeated any moment 

the RVC-CAL representation requires any tiny adjustment, even if those ones independent from the 

PAPI APIs. This procedure is time-consuming and loses the benefits of the abstraction provided by 

ADMs. Therefore, it is worthy of considering to directly integrate PAPI APIs into the original RVC-

CAL framework.  
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7.1.1. Integration 

7.1.1.1. Framework with PAPI Integration 

One of the most important features of the CAL language is the concept of Dataflow Process 

Network (DPN) [173]. DPNs provide an efficient modular method to build systems using 

unidirectional FIFOs instead of synchronization primitives such as mutex or semaphores [174]. An 

actor of an RVC-CAL specifications can be considered as a particular case of a DPN. Based on the 

concept of DPNs, it is easy to integrate PAPI functions into the RVC-CAL structure to take PMC 

event samples during decoder execution. To do so, start and stop signals are needed to control PMCs 

counting. Different actors can trigger and send these signals. Figure 7-1 shows an example of a 

decoder network that has been modified to include PAPI function calls for a case in which the overall 

decoder performance wants to be monitored using the PMCs. As can be seen, the start signal is sent at 

the decoder initial state to enable the PMCs to take samples. A stop signal sent from the display actor 

stops those PMCs. In this case, PMCs periodically (e.g., after decoding every 25 frames) sample 

events occurred from all the fired actors during the period. Afterwards, PMC statistics are stored.   

 
Figure 7-1 PAPI Tool Integration 
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7.1.1.2. Integration Primitives 

ORCC provides a mechanism to call native functions from a local library once those functions 

are declared in ORCC code as native ones. Thus, instead of translating PAPI functions from C 

language to RVC-CAL language, only the PAPI interfaces are needed to be inserted into the RVC 

framework. As a consequence, the PAPI interfaces are automatically merged into any code generated 

by various backends, such as C/C++ and LLVM IR. 

 

Figure 7-2 Native Function Mechanism 

This mechanism of native functions can be shown in Figure 7-2. At the RVC-CAL framework, 

PAPI API functions are marked as native functions (with the label “@native”) in a single package. 

This package can be imported into any actor where the PAPI API functions are called. Then, the 

modified RVC-CAL representation will be translated into a target backend, e.g., C backend. 

Automatically, actors are translated into “C” files. On the other hand, native function are associated to 

actual C implements of the PAPI API functions. Header files of the PAPI function calls are included 

into the automatically generated C files. All PAPI API functions are referenced as external functions 

in each actor. In addition to translate the “C” files, ORCC also generates a configuration file which 

indicates the structure of all the “C” files and, more importantly, configures the paths to all packages 

and libraries.   

The following primitives are PAPI API functions that have been integrated into the RVC-CAL 

framework: 

111 

 



Implementation 

@native procedure event_init() end 

 A procedure to initialize the structures employed to monitor the performance counters. In 

this procedure, the PAPI library will be first initialized. This initialization checks memory 

states, hardware support, and system call status. It is known that there is a limitation of the 

physical number of PMCs that can be simultaneously employed, thus, in order to monitor 

more events, a multiplexing scheme will be enabled and initialized next. At last, the thread 

support will be initialized, which will make PMCs to monitor and record only the events 

caused by the function with specific thread ID.  

int ( size=32) eventCodeSize = *; 

@native procedure event_create_eventList(  int eventCodeSize,  

       int(size=32) eventCode[eventCodeSize],  

       int threadID) end   

 A procedure to add a list of events defined in eventCode array to the PAPI event set. This 

set will be used to configure PMCs control registers to make PMCs monitor and record 

corresponding events. In this procedure, an empty event set will be first created. The size of 

the PAPI event list is defined by the variable eventCodeSize, and note that the event set 

should be assigned by the thread labeled as threadID. This event set can be bounded to a 

component, which is set as CPU by default. Note that new components can be created. If the 

multiplexing mode is initialized, the standard event set need to be converted to a 

multiplexed one. After checking the availability and validness, each defined event will be 

added into the event set.  

@native procedure event_start(int threadID) end 

 This procedure will start monitoring the previously created event set assigned to the thread 

labeled as threadID. 

int ( size=32) eventCodeSize = *; 

@native procedure event_stop (                int eventCodeSize,  

                    int(size=64) PMC[eventCodeSize],  

                    int threadID) end   

 This procedure will stop monitoring the previously created event set assigned to the thread 

labeled as threadID and store the sample values of each PMC in an array named PMC. 

These values indicate the numbers of occurrences of the monitored events and will be used 

for energy estimation. 
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@native procedure event_destroy_eventList(int threadID) end 

 A procedure to delete the event set assigned to the thread labeled as threadID. In this 

procedure, all the events are removed from the PAPI event set and their profiling is turned 

off. The memory associated with the event set will also be de-allocated. 

7.1.1.3. Integration Implementation  

There are two ways to insert PAPI primitives. One is to take the PAPI primitives as a new action. 

Another one is to insert those primitives into existing actions.  

A. As New Actions 

Figure 7-3 shows an example of integrating PAPI primitives into an RVC-CAL actor as new 

actions.  

init: action ==>  

do 

    event_init(THREAD_ID); 

    event_create_eventList(eventCodeSetSize, eventCodeSet, THREAD_ID); 

    event_start(THREAD_ID); 

end 

papi_done: action ==>  

do 

    event_stop(eventCodeSetSize, PMC, THREAD_ID, PAPI_TITLE); 

    event_destroy_eventList(THREAD_ID); 

    PAPI_LIST := 0; 

end 

schedule fsm INIT: 

  INIT                  (init)                        --> start; 

  start                  (read.avail)              --> readpix0; 

  readpix0           (readpix.l)                --> readpix1; 

  readpix1           (readpix.u)               --> readpix2; 

  readpix2           (readpix.ul)              --> pixdone; 

  pixdone            (write)                      --> PAPI_DONE; 

  PAPI_DONE  (papi_done)               --> INIT; 

end 

Figure 7-3  PAPI Interface for an RVC-CAL Actor 

All the actions are constrained using an internal FSM to impose a partial order among action 

tags. In this case, once the actor is scheduled (or fired), the init action is first enabled. The last action 

of the actor (papi_done) is the one that stops the PMC sampling and reads the samples. However, 
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these two PAPI actions, init and papi_done can be scheduled after any other actions as long as the init 

action is executed before the papi_done action. In this way, PAPI can be integrated into any actor if 

the developer wants to focus on any specific unit. In addition, more functionality can be added in 

either the init or the papi_done action. 

B. In Existing Actions 

Similarly, those PAPI primitives can also be simply inserted within actions. Figure 7-4 shows 

partially the code as of an example that monitors the display action in the displayYUV actor.  

initialize ==> 
 do 
  if isEnergy_aware_src()=1 then 
       event_init(); 
       event_create_eventList(eventCodeSetSize, eventCodeSet, thread_ID);  
       event_start_src(thread_ID); 
      end 
     end 
displayPicture: action ==> 
 guard 
  nbBlockGot >= pictureSizeInMb, 
  (displayYUV_getFlags() & DISP_ENABLE) != 0 
 do  ... ... /* Display related Functions */ 
  nbFrameDecoded := nbFrameDecoded + 1; 
  if isEnergy_aware()=1 then 
   EstCounter := EstCounter +1; 
   if EstCounter =25 then 
    event_stop(eventCodeSetSize, PMC, thread_ID);  
    IsEventStarted := false; 
    EstCounter := 0; 
    source_pause(PMC); 
    event_start(thread_ID); 
        IsEventStarted := true; 
       end 
  end 
 end 

Figure 7-4 PAPI Interface for an RVC-CAL Decoder in DisplayYUV Actor 

In Figure 7-4, at the initialization phase, if the energy_aware mode is enabled, functions to 

configure PMCs are called through PAPI primitives. The energy-aware mode is explained more in 

detail, later, in the section 7.2. Note that the initialization action is only executed once the first time an 

actor is fired. The decoded frame will be displayed when the corresponding action, displayPicture, is 

scheduled. All the actions executed during the PMC-working period are monitored by PMCs. After 

decoding a certain number of frames (e.g., 25 frames), the PMC sampling will be stopped. 
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Afterwards, the statistic PMC data will be passed to the energy model to estimate the energy 

consumption during this period. The estimation procedure will be completed in the source_pause 

function. Then, PMCs will start sampling again for the next 25 frames.    

Essentially, there is no large difference between these two methods. In the RVC-CAL 

framework, each time one actor is fired, only one of the actions will be executed according to the 

current state of the FSM. In other words, from the moment PMCs are started until they are stopped, 

not only the actors where PAPI primitives are inserted are scheduled, but other actors may also be 

fired. Thus, PAPI functions monitor in this way the behavior of several actors rather than only one. In 

the case shown in Figure 7-3, after the papi_done action is accomplished, the corresponding actor is 

scheduled out from the enable state. PAPI functions are then started again until this actor is re-fired to 

trigger the init action. Unlike the case shown in Figure 7-4, PMC monitoring is achieved in a non-

continuous way. 

7.1.2. The Dependence of PAPI and OS 

The PAPI tool is used to facilitate the configuration and utilization of PMCs. It provides a 

universal interface to hide the hardware details. However, there is still one tool layer which is not 

independent of the operating system and hardware. In this case, to successfully use the PAPI tool on 

embedded platforms, OSs patches or specific configurations are needed.  

7.1.2.1. OS Patch on PandaBoard 

Although PMCs are available in the PandaBoard, they cannot be directly used. The basic reason 

is that on the PandaBoard, PMCs are not only enabled by the performance monitoring unit (PMU), 

but are also determined by the PMU/CTI (Cross Trigger Interface) interrupt. Cortex-A9 processor has 

a functionality called cross trigger, which uses the events of one module to trigger the behavior of 

another module. CTI connects all the modules that generate trigger events to the Cross Trigger Matrix 

(CTM) to achieve the cross trigger.  

To better understand the kernel patch for PMC support, the concept of Linux interrupt is briefly 

introduced at first. Linux interrupts can be divided into two types: soft interrupts and hard interrupts. 

Soft interrupts are implemented by the signal mechanism. However, to support PMCs, hard interrupts 

are needed. The interrupting device sends hard-level signal to the interrupt controller through the 

interrupt bus to inform the OS that an interrupt has been generated. Then, the OS will detect the kind 

of interrupt and the index of the interrupt bus by checking the state register and the status bit of the 

interrupt controller. To use the interrupt bus, the device needs to send an interrupt requirement (IRQ).  

Then, the OS will decide to response to the IRQs based on their priorities. Thus, the patch should be 

able to let the OS to detect the PMU interrupts.   
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Figure 7-5 Block Diagram of the Cortex-A9 CTI Connections 

Figure 7-5 shows a simplified block diagram showing the interconnection between the PMU, 

the CTI and the PTM [175][176]. PTM is the abbreviation of Program Trace Macrocell, a module that 

performs real-time instruction flow tracing. Except cycle counters, the PTM can use all available 

PMC events through its extended external inputs (PTMEXTIN). Among all the extended external 

inputs, two of them are used to access PMCs and each one could independently select one of the PMU 

events to monitor. Trace tools could use the information generated by the PTM to reconstruct the 

execution of all or part of a program. Based on this connection, the main tasks of the patch are:  

 To add PMU Support; 

 To add power management (PM) support. Hooks to initialize the hardware at run-time are 

available to support dynamic PM through the ARM PMU driver. Without having these 

runtime PM hooks, the configuration of the PMU hardware would be lost when low power 

states are entered and hence would prevent PMU from working; 

 To implement the route from PMU IRQs to CTI IRQs. CTI enables the debug logic, the 

embedded trace macrocell (ETM), and the PMU. The ETM is part of the PTM. It is a real-

time trace module and provides the instruction and data tracing of a processor. The CTI is 

connected to a number of trigger inputs and trigger outputs. Each trigger input can be 

connected to one or more trigger outputs. The base address of the CTI is not fixed and can 

be different for specific system implementation. However, the offset of any particular 

register from the base address is fixed. 

7.1.2.2. OS Configuration on BeagleBoard 

Unlike PandaBoard, BeagleBoard uses the Cortex-A8 processor. The Cortex-A8 processor 

implements the ETM instead of the PTM. Similarly to the relationship of the PTM and the PMU, 

116 

 



Implementation  

PMC events are all available for the ETM through the extended external inputs (EXTIN). Each PMC 

event is mapped to one of the two extended external inputs.  

 
Figure 7-6 Block Diagram of the Cortex-A8 CTI Connections 

The interconnections between the PMU, the CTI, and the ETM are shown in Figure 7-6 [177]. 

Note that the difference between the Cortex-A9 and the Cortex-A8 is that, for the latter, the interrupt 

of the PMC can be generated by the PMU itself without passing the CTI. The processor will assert the 

pin nPMUIRQ if the PMU generates an interrupt. This pin can be routed to an external interrupt 

controller for prioritization and masking. Since PMU IRQ can be directly detected by the OS as long 

as the debugging unit is enabled, there is no need to patch the OS to support PMC events. Thus, to use 

the PMC events on the BeagleBoard, the procedure would be as follows: 

 Enable performance events and counters 

 Enable OMAP 3 debugging peripherals to enable the according hardware.  

7.2. Implementation of the Energy-aware Manager  

7.2.1. Implementation of Energy-aware Events in Jade 

As introduced in section 6.1.1.2, the Just-In-Time adaptive decoder engine (Jade) is responsible 

for the decoder reconfiguration and scheduling. The proposed energy-aware manager is an additional 

unit of Jade. Jade provides three operation modes to implement a decoder, namely command line, 

console, and scenario. The scenario mode is the most powerful one to manage decoder configuration 

and execution through a JSC (JavaScript configuration file)-formed file. To configure the initial 

settings of decoders, this file specifies a list of pre-defined XML events. In this file, each line is an 

XML event to be executed to perform different functions. Table 7-1 lists the most commonly used 

XML events. 
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Table 7-1 List of Jade Events in Scenario Mode 

XML Events Functionality 
Load Load and store a given decoder network with a specific identifier 

Start Start the decoder. Parameter 'id' is the indicator of the employed decoder network to 
configure the decoder 

Pause Pause a given decoder 
Set Reconfigure an existing decoder with a new decoder network 

Wait Put Jade in wait mode for a given period (in second) 
Remove  Remove a given decoder network 

Stop  Stop and exit Jade 

To implement the energy-aware management, three specific XML events should be added into 

the original list.  

1. <Mode /> 

This event allows users to set Jade to work in either energy-aware or non-energy-aware 

(normal) mode. If Jade is set in energy-aware mode, all users’ preferences are recorded as the 

guidelines to make reconfiguration decisions.  

2. <Enable />, <Disable /> 

The energy-aware manager will be enabled if the energy-aware mode is set in the <Mode /> 

event procedure. It is disabled if the non-energy-aware mode is set. However, the energy management 

might be enabled or disabled at any moment while Jade is running. These two events are used to 

enable or disable the energy-aware mode after the <Mode /> event procedure.  

Figure 7-7 shows an example of scenario configure file in which the proposed events have been 

employed. In this example, first, Jade provides an interface to let users set the Jade work mode (Line 

4) and corresponding parameters. Then Jade loads two different decoder descriptions and set the 

identifier of each one with the parameter ‘id’ (Line 7 and 8). After the successful return of the Load 

event, users can also disable the energy-aware mode if it has been enabled before (Line 11).  Jade 

executes then the decoder based on the corresponding decoder description with the parameter ‘id’ 

which is defined in the Load event (Line 14-17). The encoded sequence is defined by the parameter 

‘input’ with the access path. Users can use the Enable event to run Jade in energy-aware mode (Line 

20) again. If users do so, Jade will set the current total energy amount (it can be provided by the 

battery monitor). During decoder execution, the energy estimation model periodically provides 

estimated when a certain number of frames are decoded, and the energy-aware manager will compare 

it with the low battery threshold. Once a low battery state is detected, although users have set the 

same decoder to decode the two available sequences (Line 23 and 24), Jade will automatically load 
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and reconfigure another decoder determined by the video manager to decrease the energy 

consumption. After decoding all sequences, Jade will stop and exit (Line 27 and 28).  

 
Figure 7-7  Scenario Specification for JADE with the Event Extension Proposal 

7.2.2. Implementation of Energy-aware Management Metric 

To optimize and manage the energy consumption, the management metric has been introduced 

in section 5.3. The metric depends on the system gain related to the energy-saving level, computing 

complexity, bitrate, and image quality. In this work, the system gain has been simplified as indicated 

in equation 7-1, i.e., the system gain 𝑔�𝐷𝑗� is proportional to the inverse of the computing 

complexity 𝐶(𝐷𝑗).  

 𝑔�𝐷𝑗� =
1

𝐶�𝐷𝑗�
 7-1 

This is to say, the energy-aware manager will always reconfigure the decoder with the lowest 

complexity one once it detects the low-battery situation. The complexity can be indicated by the id of 

the decoder description, e.g., a larger id indicates a less complex decoder.  

7.2.3. Implementation of the Energy-aware Manager 

Another challenge of this thesis is to efficiently control the decoder to reduce the overhead 

introduced while decoding. The core of Jade is the Just-In-Time (JIT) compiler. JIT exploits the 

LLVM IR to achieve real-time decoder reconfiguration.    
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Figure 7-8 LLVM Interaction with JIT and GCC Compilers 

Currently, JIT cannot perfectly support the ARM architecture and thus the JIT compiler cannot 

correctly generate an executable binary. As an alternative, Jade uses GCC to generate the binary file 

from the LLVM IRs. Figure 7-8 shows the relationship between LLVM, JIT and GCC. However, 

using the GCC compiler, all the VTLs in the form of LLVM IRs are recompiled and every FU is 

linked together as a monolithic file, even those FUs that have been already compiled in previous 

decoders and reused in the current decoder. This seriously increases the reconfiguration time. The 

whole process of reconfiguring a decoder is shown in Figure 7-9, including the backend translation 

and executable binary file generation. Arm-fix is a parameter used to enable GCC instead of JIT to 

complete the compilation.     

 
Figure 7-9 RVC Specification Implementation Process  

GCC is a static compiler. The decoding processing is executed by Jade after the source code is 

compiled and linked to form a single binary file (tempDecoder). In this case, tempDecoder is a child 

process forked by Jade. To communicate and synchronize Jade and tempDecoder, the inter-process 

synchronization mechanism is used.  
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7.2.3.1. Relationship and Communication Structure between Jade and the Decoder  

As far as the communication concerns, Jade works as a parent process. After the preparatory 

work to execute the decoder, Jade forks the child process. This child process will execute a system 

call from the “exec” family to execute different programs from its parent process. In the case of Jade, 

the child process is the decoder, named as tempDecoder. If the energy-aware mode is disabled, during 

the execution of tempDecoder, Jade will change into the wait status and be woken up until 

tempDecoder finishes. A simplified relationship between Jade and the decoder can be seen in Figure 

7-10.  

 
Figure 7-10 Relationship between Jade and Decoder in Energy-aware Disable Mode 

However, the situation when the energy-aware mode is enabled is more complicate: 

 First, as a parent process, Jade can only be woken up by the return or exit signal sent from 

its child process, i.e., tempdecoder. In this way, the energy-aware manager, which is 

implemented as a unit in Jade, cannot timely obtain energy update information from the 

tempdecoder. An alternative solution is to change Jade to the pause status instead of wait. 

This allows waking up Jade through various signals. Meanwhile, while the energy-aware 

manager makes the management decision, tempdecoder is also in the pause status waiting 

for the signal from Jade (to continue the decoding processing or to be killed due to the low-

battery situation). A simple way to change the process is to call the pause function, which 

suspends the program execution until a signal arrives.  

 Second, the energy estimation value needs to be shared between Jade and tempdecoder. 

Unlike the shared data among threads that belong to the same process, there is no direct way 

to pass parameters among different processes. Therefore, a shared memory mechanism is 

employed to pass the data between Jade and its child process, tempdecoder.  

Based on this pause-status mechanism, the decoder control of Jade based on the decisions from 

the energy-aware manager is summarized in Figure 7-11.    
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Figure 7-11 Relationship between Jade and the Decoder in Energy-aware Enable Mode with Pause-wake 

Mechanism 

However, experimental results show that this pause-wake mechanism introduces an 

unacceptable performance decrease. The number of decoded frames per second decreases 70%. This 

is because each time a process is waken up from its pause status, a sequence of steps is carried out, 

including:  

 To load this process from kernel space to put it to user space;  

 To resume its last executed information to CPU and registers.  

This is a quite time-consuming procedure. Therefore, to avoid the overhead of context switching, 

a simple while (1) loop is employed instead of the pause status. And all the shared information, such 

as energy estimation values and low battery flags, are passed through the shared memory. If the low 

battery signal is true, the decoder calls the exit function and terminates. In this case, there are two 

conditions to break the while (1) loop, one is the low battery state and another is the decoder finish 

signal. The former one is controlled by the energy-aware manager and the latter one is sent by the 

tempdecoder and automatically detected by Jade based on the signal mechanism. A low-battery break 

will cause the energy-aware manager to inform Jade to reconfigure the decoder with a lower-power 

decoder description while a finishing-break will make Jade to load a new sequence to decode. The 

final communication scheme between Jade and the tempdecoder is shown in Figure 7-12.  
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Figure 7-12 Relationship between Jade and Decoder in Energy-aware Enable Mode with while (1) mechanism 

7.2.3.2. Implementation Details of the Communication Scheme 

A. Signal Mechanism 

The core of the communication between Jade and the tempdecoder is the signal mechanism 

provided by the Linux OS. The mechanism is used for event notifications among asynchronous 

processes. In Linux, a common way to communicate processes is the signal channel. A process can 

send a signal to a different processes using the kill() system call with prototype: 

int kill(pid_t pid, int sig) 

This system call will send the signal with number sig to the process with process ID pid. Signal 

numbers are small positive integers, which may vary from one platform architecture to another one. 

There are a set of pre-defined signals and the corresponding default actions. In Linux, by default, a 

SIGKILL signal kills a process, a SIGSTOP signal stops the process and a SIGCONT signal resumes 

a stopped process. When a process receives a signal, a default action will occur, unless the process has 

been arranged to handle this signal. A handler for a user-defined action can be set up with prototype:  
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typedef  void (*sighandler_t) (int); 

 (sighandler_t) signal (int sig, sig_handler); 

This prototype sets up the routine sig_handler as a handler for a signal with number sig. When a 

signal arrives, the signal handler is invoked to interrupt the current program. When the signal handler 

returns, the interrupted activity will be continued. In the proposed implementation, as shown in Figure 

7-12, there are two signals used. Every time the tempdecoder finishes decoding a certain number of 

images, the energy consumption of this period is estimated and stored into the shared memory. 

Meanwhile, the decoder will send the SIGCONT signal. The handler of the SIGCONT signal is to 

inform the manager to check the battery status with the estimated energy information. If the decoder 

has finished its work and exits, a SIGCLD signal sends and its handler sets a child-finished flag as 

true to break out Jade from the while(1) loop.   

B. Shared Memory Mechanism 

Signals are just employed to inform or notify a process about what has happened in another 

process, but they are not used to pass data. Considering that parent and child processes have their own 

data sections, the simple usage of global variables cannot be utilized to pass data among different 

processes. Thus, a shared memory mechanism is employed to pass data between Jade and the 

tempdecoder. Shared memory schemes are efficient methods to pass data between programs because 

data do not need to be copied among communicating processes. One process creates a memory 

portion and other processes (if they are allowed) access it.  

In Linux, a process creates a shared memory segment using the function with prototype: 

shmget(key_t key, int size, int flag): 

This function returns the ID of the created shared memory if the creation is successful or -1 if an 

error happens. Parameter key is a non-negative integer to identify each section of shared memory. It is 

typically set as the constant 'IPC_PRIVATE', which lets the kernel choose a new key. The keys of 

shared sections are system-wide, and their values continually increase to a maximum value and then 

wrap around to zero. Parameter Size is the size of shared memory segment in bytes and the argument 

flag specifies the initial access permissions and creates the control flags. This function call can also 

get the ID of an existing shared segment when a process requests sharing an existing memory portion.  

Once a shared memory segment has been created, a process can attach this segment to its address 

space by calling the shmat() function. Once successfully attached, the process can read from or write 

to the segment according to the permission configuration requested during the attach operation. A 
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shared memory segment is described by a control structure with a unique ID that points to an area of 

physical memory. The identifier of the segment is called shmid. The prototype of the shmat function 

is: 

 shmat(int shmid, void *addr, int flag). 

It will return a pointer to the shared memory if the mapping is successful or -1 on error.  

In addition, the shared memory can be controlled by a system call as: 

shmctl(int shmid, int cmd, struct shmid_ds *buf) 

The parameter cmd can be one of IPC_STAT, IPC_SET or IPC_RMID. IPC_STAT fills the buffer 

with the structure of shared memory and obtained the status of the shared memory specified by shmid. 

IPC_SET can change the status of the shared memory. IPC_RMID will remove the shared memory 

segment from the system once the last process which has attached to this segment terminates or 

detaches from it. 

Jade and the tempdecoder use shared memory to pass information. Jade creates a piece of shared 

memory with a particular key number and attach itself to this space. The decoder can then get the ID 

of this shared segment with the same key and attach to it. Then, both of these two processes can 

access the memory segment to share the energy related information and low battery flag. Finally, the 

shared memory is removed by Jade and the decoder.  

7.3. Conclusion 

In this chapter, the proposed implementation of the energy optimization and management based 

on the functional-oriented reconfiguration is described in detail. As far as Figure 5-4 concerns, the 

complete implementation includes the energy estimation model and an energy-aware manager for 

decoder reconfiguration. As thus the implementation consists of solutions for these two parts: 

 Firstly, to estimate the energy consumption of various decoders, the PMCs need to be easily 

configured and enabled. Two methods to integrate PAPI API functions into any actor of 

ORCC framework are introduced. One is to create new actions to operate on PMCs and 

another is to insert those API functions into the existing actions of the actors. Both methods 

can avoid the modification of the generated target source code. A tiny difference is that with 

the second method, continuous sampling of PMCs can be maintained. In addition, the 

necessary OS patches and configuration operations to enable PMC usage are introduced.  

 Next, the discussion focuses on how to implement the energy-aware manager. This manager 
125 

 



Implementation 

is an additional unit of the tool Jade. To enable it, three additional events of Jade, namely 

mode, enable, and disable events are implemented. The mode event selects the work mode 

of Jade while the enable and disable events set Jade to work in energy-aware mode or 

normal mode, respectively. In the energy-aware mode, the proposed energy-aware manager 

is enabled. Besides work mode setting, the core operation of this manager is to decide when 

to reconfigure once the low battery state is detected. In the implementation of this thesis, the 

decision is simplified. The manager chooses the decoder with the lowest complexity to 

reconfigure. Another part of the implementation in this chapter focuses on the 

communication between Jade and the decoder. Jade controls the decoder execution and the 

decoder passes energy information to the manager. A signal-based inter-process 

communication scheme is employed for the communication. Data is passed between the two 

processes through a shared-memory scheme. This implementation method achieves the 

efficiency to make reconfiguration decisions.  
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8. Results 
The objective of this thesis work is to provide an energy optimization and management 

mechanism on video coding applications to extend the battery life. This mechanism includes an 

energy estimation model and an energy-aware manager based on the functional-oriented 

reconfiguration engine. The functional-oriented reconfiguration, stated in this thesis, is one of the 

reconfiguration techniques which is platform-independent and aims to improve system functionalities 

or produce new functionalities by re-connecting the existing functional units. In this chapter, the 

experimental results, including the validation and evaluation of the model, the verification of the 

energy-aware manager implementation and the battery life time extension will be given in three parts: 

for the first part, the results related with the selection of PMC events will be firstly presented. Then, 

starting with the selected PMC event set, an analysis will be conducted to guide the training data 

selection. This guideline will be treated by more tests to prove its capability of improving the model 

accuracy. Finally, the overhead of the estimation model will be given to show its real performance; 

for the second part, the modifications of the reconfiguration engine to implement the energy-aware 

manager will be testes and verified; at last, the potential battery life extension by combining the 

estimation model and the energy-aware manager will be shown.  

All the experiments are carried out on two embedded platforms, the PandaBoard platform and 

the BeagleBoard platform, running a Linux 3.8.0 kernel. In the following parts of the chapter, “PB” 

and “BB” are used as the name of each platform. Note that the PB has been patched to add the 

performance monitor unit interrupts to support PAPI. Four decoders, the simple profile of the MPEG4 

Part 2 decoder, a progressive high profile decoder implementation and a constrained baseline profile 

decoder implementation of the MPEG4 advanced video coding standard, and a main profile of the 

high efficiency video coding decoder have been considered as the benchmarks. Seventy-eight, forty-

one and seventy-one conformance sequences have been applied to test each standard, respectively. 

They are configured with the common test conditions such as different spatial resolutions, frame 

combinations, slice types, quantization parameters, frame rates, and entropy coding methods. SP, 

CBP, PHP and MP are defined as the short name of each decoder, respectively. More details of the 

experiment infrastructure has been introduced in chapter 6. 

8.1. Model Validation and Evaluation 

To help the energy-aware manager makes the reliable determination on decoder reconfiguration, 

an accurate estimation model is necessary. Followed by the methodology described in chapter 3, the 

modeling procedure is: 
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 PMC events selection, which uses a PMC-filter to select the more suitable set of events; 

 Model fitting, which employs either linear regression or MARS regression to build the 

energy estimation model. 

Once a model is built, its validation and evaluation are conducted to demonstrate the model 

performance. There are two aspects to assess: 

 Accuracy assessment, which compares estimation results and measurement results to assess 

the model accuracy.  

 Efficiency assessment, which merges the estimation model into the decoder to test the 

decoder performance decrease.  

The results of these four steps will be described in detail in the next sub-sections.  

8.1.1. Common Explanations of the Experiments 

Before moving into the details about the experimental results, the common explanations will be 

given in short. 

8.1.1.1. Model Description 

The energy estimation model proposed in this paper is expressed in equation 8-1. 

 𝐸𝑀 = 𝑃� × 𝑇𝑖 + 𝑓(𝑃𝑀𝐶𝑠) 8-1 

The first addend is the baseline energy. Given that either the OS running on the platform or any 

of its idle devices always consume a certain amount of energy, it is necessary to set this bottom line as 

the product of the system idle power (𝑃�) and the execution time (𝑇𝑖). The second addend in this 

equation, the so-called incremental energy, denotes the energy consumption enforced by the system 

activity. This term is the one estimated from the observation of the PMC events and its values are 

usually much smaller than the ones of the baseline energy. Usually, the modeling procedure needs to 

use external power measurement to profile coefficients for each event. Typically, these values are 

directly obtained with the hardware measurements. The measurement system has been described in 

section 6.3. This measurement system is also used to evaluate the accuracy of the estimation models. 

8.1.1.2. Models Relative Errors  

The mean absolute percentage error (MAPE), which is the percentage of the difference between 

the estimated energy value and the measured value is calculated to visually show the modeling 

accuracy as equation 8-2. 
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Where 𝑦𝑡  is the measured value, 𝑦𝑡�  is the predicted value, and 𝑛 is the number of the fitted 

points, i.e., the number of frames of this sequence.  

To assess the overall accuracy of each model, the MAPE distribution will be used. It is 

calculated as the pseudocode in Figure 8-1. Any test sequence (𝑠𝑒𝑞𝑗 ) from the benchmark set is 

trained to build a model (𝑀𝑜𝑑𝑒𝑙𝑗 ). The MAPE error (𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗
𝑘 ), when this model (𝑀𝑜𝑑𝑒𝑙𝑗 ) is 

employed to estimate the energy of each test sequence, will be calculated from the estimation energy 

(𝑀𝑜𝑑𝑒𝑙𝑗(𝑠𝑒𝑞𝑘)) and the measured energy (𝑀𝑒𝑎𝑠(𝑠𝑒𝑞𝑘)). Then, all the MAPE errors of this model 

will be averaged to present the accuracy of the model, where N is the number of benchmarks. Finally, 

𝑁 averaged MAPE errors will be distributed into different error levels. For example, errors lower than 

10% is an error level and errors ranging from 10% to 20% is another error level. In this thesis, an 

estimation model, whose averaged MAPE error is less than 10%, will be considered to be an accurate 

model. 

 

Figure 8-1 Pseudocode to Calculate MAPE Distribution 

 

8.1.2. PMC Events Selection 

As discussed before, the set of PMC events is a key point to build a PMC-driven model from two 

considerations: modeling overhead and captured application characteristics. Some works [26][27][29] 

before used only total number of instructions (TOT_INS) as the only parameter to estimate the energy 

consumption. However, this simple model does not show good accuracy when employed for complex 

applications. In this subsection, the modeling results from a TOT_INS-based energy estimation model 

for a video decoder model running on the PB platform will be shown. PMCs are set to monitor 

TOT_INS with the period of decoding one frame. Both, linear and MARS regression methods 

 For ∀ seq ∈ {benchmarks} 
 𝑀𝑜𝑑𝑒𝑙𝑗 = 𝑓 �𝑃𝑀𝐶𝑠�𝑠𝑒𝑞𝑗�� 
 For ∀ seq ∈ benchmarks 
  𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗

𝑘 = 𝑀𝐴𝑃𝐸(𝑀𝑜𝑑𝑒𝑙𝑗(𝑠𝑒𝑞𝑘),𝑀𝑒𝑎𝑠(𝑠𝑒𝑞𝑘)) 
 End 
 𝐴𝑣𝑔𝐸𝑟𝑟𝑗 =  𝑎𝑣𝑔(∑ 𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗

𝑘𝑁
𝑘=1 ) 

End 
Distribution (𝐸𝑟𝑟𝑀𝐴𝑃𝐸𝑗

𝑘 )   
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(described in section 2.2.3) are conducted and four decoders, SP, CBP, PHP, and MP (described in 

section 6.5) are employed as the benchmarks. SP, CBP, PHP, and MP are used as their abbreviations, 

respectively, for simplicity. Among the encoded sequences of each decoder standard, each one of 

them is selected as training data to obtain the model parameters once and the model generated with 

these parameters is evaluated by all sequences.  

As can be seen in Table 8-1 (a) to (d), model accuracy decreases when the decoder complexity 

increases. For the PHP and MP decoders, less than 15% models can achieve the accuracy lower than 

10%, which is unacceptable in real applications.  

Table 8-1 Average Error Distribution of Models Based on TOT_INS 

Table 8-1(a) SP Decoder  

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 7.41 22.22 40.74 18.52 11.11 
MARS 14.81 33.33 37.03 7.41 7.41 

Table 8-1(b) CBP Decoder  

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 5.26 17.54 36.84 22.82 17.54 
MARS 12.28 12.28 19.30 24.56 31.58 

Table 8-1(c) PHP Decoder  

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 2.78 11.11 30.56 25.00 30.56 
MARS 2.78 8.33 27.78 25.00 36.11 

Table 8-1(d) MP Decoder  

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 3.03 6.07 39.39 12.12 39.39 
MARS 1.56 6.25 34.38 10.94 46.87 

 

These results are analyzed in the following discussion. In modern processor, the total number of 

instructions includes both, issued and replayed instructions. Replaying is a technique which is 

employed by multi-threaded processors to avoid stalling the pipeline when a long latency event 

occurs. A pipelined processor will continue to issue instructions followed an issued instruction as long 

as they do not depend, or their dependencies can be resolved by forwarding results. This mechanism 

makes pipeline continuously process instructions, so the instructions will be executed quickly. 

However, for complex algorithms, it is more frequent that instructions encounter long latency events, 

such as a load operation that generates misses in the cache, a conflict with a shared port or 
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communication among different functional units. In these cases, to allow independent instructions 

executing immediately without waiting periods, instruction replay technique solves this problem by 

squashing the instructions in the pipeline and beginning the execution of instructions from a different 

thread. This will cause problems in the energy estimation. As discussed in section 6.2, PAPI binds its 

observation on specific threads. This is to say, those instruction assigned to different threads will not 

be counted by the PMC although they are caused by the same application. Thus, to use only the total 

instruction count will hide the cases when the long latency occurs. Usually, long latency is always 

accompanied by data missing, data unavailability or mis-prediction, which may result in more energy 

consumed by this instruction than other immediately completed instructions. Therefore, a model must 

be able to capture the energy consumption using the information of various types of events to give a 

more accurate prediction. Otherwise the model will not be able to correctly compute the energy 

estimation.  

Before using the PMC-filter, the correlation threshold, α, to eliminate the weak energy-related 

PMC events and the VIF threshold, 𝛽 , to filter the multi-collinear PMC events, need to be set. 

Correlation coefficient values in the order of 0.1, 0.3 and 0.5 are experientially considered as weak, 

medium and strong, respectively [44]. Similarly to the proposal in [32], the threshold α has been set to 

0.5. As a common empirical rule, VIF values larger than 10, from 5 to 10 and less than 5 are usually 

considered as belonging to sequences with high, medium and low multicollinearity, respectively. As 

far as the energy characteristics concern, the threshold β has been experimentally set to 10. Both two 

thresholds are set with the medium values in order to ensure that the retained PMC events capture 

most of the energy characteristics of the applications running on the platform. 

After the threshold setting, the proper PMC event set needs to be identified. All PMCs sample 

the pre-defined events corresponding to the platform along the decoder execution. According to the 

Cortex-A9 technical reference manual [177], there are only two PMCs that can be simultaneously 

used. To relieve the limitation of the number of events that can be sampled, the multiplexing 

technique provided by PAPI is employed. It is needed to point out that this timesharing method causes 

a small loss in precision [40]. 

Table 8-2 Selected Events and functionality 

PMC Events Monitor Events Description 
TOT_INS Instructions completed 
L1_DCM Level 1 Data Cache Miss 
HW_INT Hardware interrupts 

For the test-bench and video sequences previously described, three platform energy-related PMC 

events (See Table 8-2) have been selected following the procedure detailed in section 3.2. The 
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selected events reflect three important energy-consuming activities: processor activity, memory access 

and peripheral operations. TOT_INS is proportional to the decoder execution time. It might be 

interpreted as the average energy consumption of decoding a frame. A larger value means a longer run 

time and a larger amount of required energy. Given the stream-like nature of a decoder, the selection 

of the L1_DCM event reflects the fact that the L1 data cache is one of the most active units from the 

energy consumption point of view. The selection of this event is reasonable because video decoders 

always exert a particular burden on cache due to their high data rates and large sizes. Especially for 

the streaming video, data cache performance decreases because the continuous video data obtained 

from the network decreases the spatial locality. However, the L1_ICM is not selected because the 

decoding algorithms usually consist of tight loops that are repeatedly used. HW_INT is proportional 

to the activity of peripherals during the decoder execution. This event is used to capture the activities 

outside the CPU and memory domain. It is worth to mention that these HW_INT-based events model 

the peripherals activity in a coarse way because it is assumed that every peripheral activity consumes 

the same energy. However, the models implemented in this work have an acceptable accuracy 

because: 1) the PandaBoard platform is configured as the minimal system which only enables a 

minimal set of devices to avoid introducing more complicated issues; 2) the architecture of the 

embedded systems are not as complex as the one of the desktop systems, thus the energy consumption 

of peripheral activities can be assumed to have the same value.  

8.1.3. Modeling Techniques Analysis and Comparison for the PHP Decoder 

Use-case 

After PMC event selection, next step is to build models based on this PMC event set. Usually, a 

modeling procedure is an iterative process which needs to be repeatedly adjusted to determine the 

final parameters. Modeling validation and error analysis are the two major steps in the modeling 

process. Modeling validation is the first step to assess model performance because the estimation 

results will guide the underlying investigation and the prediction ability of a model is the precondition 

to provide good answers. Error analysis on the estimation results is carried out to adjust the model 

performance. An incisive analysis is the guide to modify modeling assumptions and to shorten the 

repeating time of achieving the required accuracy. In the following, the first modeling validation 

results, results analysis, and the validation results after model pruning will be orderly presented. All 

the results are obtained by running the PHP decoder on the PB platform with the all the sequences 

compatible with this decoder. 

In general, it is impossible for any quantitative prediction to achieve hundred-percent accuracy. 

The estimation error is the deviation from actual values, which determines the estimation accuracy. 

To compare the accuracy of the estimation models obtained during the modeling process (potential 
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estimation models), three colors (red, orange and green) are employed to visually represent the MAPE 

of each model at three levels: greater than 20%, from 10% to 20%, and less than 10%, respectively. 

Each row in Figure 8-2 represents the MAPE for all the sequences, including the training sequence 

used to obtain the model parameters, when an estimation model is applied.  

                
                                        Figure 8-2(a) LR                                                      Figure 8-2(b) MARS 

Figure 8-2 Average Error 

From Figure 8-2, it can be noticed the different accuracy achieved from the potential estimation 

models. Surprisingly, as can be seen in Figure 8-2 (a) and Figure 8-2 (b), the more complex MARS 

methodology behaves worse than a simple linear regression method. Unlike the previous work [179], 

Figure 8-2 (b) indicates that increasing the model complexity does not necessarily imply a gain in 

accuracy.  

A good model should have similar estimation results on training data and test data. In these 

figures, the diagonal line presents the estimation error of each model tested by its training data. 

Obviously, the estimation results should be quite good. But not every row in which this point locates 

is all in green. In some extreme cases, the rows are almost completely in red. This means that there 

are several models that perform quite well during the model training while lost their prediction 

abilities with other input sequences, especially for MARS models. This phenomenon is called over-

fitting. Over-fitting usually refers to a model becoming overly complex in order to get consistent 

hypothesis while resulting in a poor generalization ability. Usually, there are some reasons to cause 

over-fitting:  

 Extraction errors of modeling samples (in this case, the PMC samples on the PMC events), 

including (but not limited to) too few samples, sampling method errors, not enough 

consideration of operational scenarios and characteristics, with the effects that the sample 

data cannot effectively represent the behaviors of the response.  

 Too large interference of noise data.  

 Logical assumptions that made at the model training step are no longer appropriate for the 

real practices. Any prediction model is build and applied based on several assumptions. 
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Common assumptions include: historical data can be used to speculate future behavior; 

application scenarios and context do not have significant changes, training data is similar to 

the application data, and so on. If the above-mentioned assumptions are against to the 

situations of the real practices, then, the model based on these assumptions cannot be 

applied effectively.  

 Too many explanatory variables. 

In this experiment, the input data of linear fitting and MARS fitting are the same, and the linear 

method shows a relative good predictive capacity, which excludes reasons of accuracy decreased due 

to number of explanatory variables and noise interference. Meanwhile, the application scenarios and 

context do not significantly change, the modeling data and application data share a certain similarity, 

and therefore the third mentioned factor leading to over-fitting can also be excluded. Therefore, the 

reason of over-fitting can be attributed to the first factor. Specifically, it is because the training data 

cannot represent all the features of the prediction objects.  

An example based on PB platform below compares the different estimation results of MARS and 

linear regression when they are applied to the data outside the training interval in order to better 

understand how the over-fitting phenomenon affects more on the accuracy of piecewise fitting 

method.  Figure 8-3 shows the histogram of the values of each PMC event for an individual training 

sequence (also from the PHP test sequences). MARS method fits its basis functions based on the data 

distribution of the training sequence. The two knots 𝑡− and 𝑡+ of the cubic function of each PMC 

event are listed in Table 8-3 and marked as red lines in Figure 8-3.  As can be seen in the figure, most 

of the events belong to the intervals defined by their knots. 

 
Figure 8-3 PMC Value Sequence Histogram 
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Table 8-3 Basis Function Knots   

PMC Events KNOT 𝐭− KNOT 𝒕+ 
TOT_INS 2.52× 108 4.42× 108 
L1_DCM 1.51× 106 4.70 × 106 
HW_INT 634.50 1182.50 

 

Figure 8-4 shows the actual energy consumed and the estimated energies drawn from a linear 

and a MARS model as a function of the TOT_INS value. As can be seen, when the values of the 

TOT_INS event of the test data are located within the interval of the training data values (i.e., 

[2.52 ×108, 4.42 ×108]), the MARS method has a quite good estimation. Since the MARS method is 

designed to employ local linear fits, it may adapt too close to its training data and, therefore, to lose its 

predictive capabilities when a new data set is involved. Thus, the basis functions responsible of this 

behavior produce uncontrolled estimation errors when applied to sequences whose PMC value range 

is located far away from the basis function knots.  

 
Figure 8-4 Comparison of the Linear Model and the MARS Model 

In fact, over-fitting problem also exists when using the linear method, but is not as serious as in 

the MARS method because these two methods are different in how to reflect data trends. Linear 

method uses a straight line mapping of the independent variables to the dependent variable and tries to 

fit a model based on the statistical properties of the training data to have an overall minimal mean 

square error. While MARS introduces the idea of piece-wise accuracy which only considers accurate 

if the data fall within the current range. Furthermore, although each basis function of MARS is linear, 

0 0.5 1 1.5 2 2.5

x 10
9

-50

0

50

100

150

200

250

300

TOT-INS Events

En
er

gy
 (J

)

 

 
Measurement
Linear Estimation
MARS Estimation

Training Data Interval

137 

 



Results 

MARS permits one variable to be estimated with several basis functions and the superposition of all 

the basis function may eventually present in the form of polynomial. It is not difficult to imagine that 

when the actual observations fall outside of the prediction interval, the increase/decrease speed of the 

polynomial response will be much greater than that of the linear response. If the current model cannot 

correctly reflect the data trend, this will inevitably result in an inaccurate prediction. Therefore, 

MARS presents a much worse performance than linear regression when over-fitting exists.  

As discussed above, one solution to avoid serious over-fitting phenomena is to employ training 

data with more varieties. In order to better understand how to select the training sequences to improve 

the model predictability and stability, the conformance video sequences used in this work have been 

classified into the following two criteria: the average energy consumption per frame and its 

coefficient of variation. It has been shown in [37] that complexity parameters such as frame size and 

rate are proportional to the average energy consumption of a sequence. The video decoder behavior is 

related to the complexity of the input sequence which could be well reflected by the average 

consumption per frame. Therefore, the better the matching between the frame average energy 

consumption of the training and test sequences, the better the accuracy. The variation of the frame 

energy consumption can be represented by its coefficient of variation (CV) [180], which is a statistical 

normalized measure of dispersion. The CV is defined as the ratio of the standard deviation,𝜎 , to 

the mean, 𝜇. 

Based on the measurement of the energy consumption on the tests carried out using the PHP 

decoder, the average frame energy and the CV values are experimentally divided into four groups. For 

the former, the groups are the following: {<=0.7J}, {0.7J, 1J}, {1J, 3J} and {>3J} while for the latter, 

they are {0, 10%}, {10%, 20%}, {20%, 80%} and {>80%}. Figure 8-5 (a) and (b) show the 

maximum and average estimation errors of each of the 16 resulting groups for the linear and MARS 

regression methods, respectively. The x and y axis reflect the CV and average frame energy partitions, 

respectively. The blue color means that no sequence has been allocated into the partition while the 

other three colors have the same meaning as in Figure 8-5 as far as the relative average energy 

estimation error concerns.  

 
Figure 8-5  (a) Maximum  
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 Figure 8-5 Average  

Figure 8-5 Estimation Error of Each Group 

Although the linear regression and MARS regression methods have different performance, one 

common observation from Figure 8-5 is that the best models are those whose training sequences have 

frame average energy and CV values in the medium intervals. Effectively, the training data used by 

both methods must be located in a sufficiently wide interval as not to provide a wrong tendency.  For 

instance, small CV values represent sequences with relatively stable energy consumption. In other 

words, it is very likely that the concerned sequence consists of fewer types of frames. On the other 

hand, high CV values represent sequences which include different types of frames. While the former 

sequences provide a model that lacks the capacity of capturing the behavior of more complex 

sequences, the latter sequences derive models which adapt too closely to the training data which lose 

its generalization ability. For the frame average energy values, similar arguments can be reasoned.  

The analysis above suggests that the combination of various conformance sequences can have a 

better chance to achieve better model accuracy than a single conformance sequence. As a 

consequence, new models have been built combining sequences which belong to each resolution 

group (QCIF, CIF and HD) and have medium CV values. Models have been tested with all the 

combined sequences and the results are shown in Figure 8-6. In this figure, three colors (red, orange 

and green) are employed to represent the average relative energy estimation errors at three levels: 

greater than 10%, from 10% to 5% and less than 5%, respectively. The maximum and average errors 

are detailed in Table 8-4 (a) and Table 8-4 (b), respectively. In these tables, the columns show the 

number of models (in percentage) distributed on each of the three level intervals defined above. 
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.  
Figure 8-6 (a) LR  

 
Figure 8-6  (b) MARS Average  

Figure 8-6 Average Error for Model Based on Combined Training Sequences 

Table 8-4 (a) and (a) show clear performance improvements in both modeling methods when 

combined training sequences are employed instead of the individual sequences. Besides, the resulting 

MARS models are able to obtain more accurate results than those of linear models.  

Table 8-4 Error Distribution of Models Based on Combined Training Sequences 

Table 8-4 (a) Maximum  

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 0.00% 38.75% 41.25% 18.12% 1.88% 
MARS 0.00% 45.63% 45.62% 8.75% 0.00% 
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Table 8-4 (b) Average 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 69.37% 26.87% 3.76% 0.00% 0.00% 
MARS 83.13% 15.00% 1.87% 0.00% 0.00% 

In Figure 8-7, the estimation errors of the linear and MARS regression models trained by the 

same combined training sequence, which is one of the combined training sequences used in the 

experiment whose results is shown in Figure 8-6, have been compared with more details. Note that the 

x axis denotes all the frames of this combined sequence, and the y axis shows the relative estimation 

error of each frame. As can be seen, the MARS method provides more accurate estimation than the 

linear one. It is worth to point out that all average estimation errors from the MARS model are less 

than 6.5%. This is because of the piecewise characteristic of MARS. Since a combined training 

sequence captures more decoder behaviors than a single one, an accurate model better represents the 

different relationships of the decoder complexities and their energy consumption. These relationships 

are determined by the slope of each basis function. Therefore, the MARS model can better match 

different decoder behaviors. On the contrary, the linear regression lacks of the predicted capability to 

relate the non-linearity to the linearity. 

 
Figure 8-7  LR and MARS Comparison based on One Combined Training Sequence 

8.1.4. Modeling techniques Extension 

For a deeper evaluation of the model accuracy, the energy consumptions of different decoders 

have been estimated. Besides the previously employed PHP decoder, new experiments are conducted 

with the SP decoder, the CBP decoder, and the MP decoder. Note that given the memory limitations 

of the BeagleBoard, the platform fails to run the CBP, PHP, and MP decoders. Thus, only the 

MPEG4Part2@SP decoder is tested on the BeagleBoard and to keep the accuracy analysis, the 

PandaBoard has been employed with the SP decoder, the CBP decoder, and the MP decoder.  
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Table 8-5 (a) shows the average distribution of the errors of the energy estimation model when 

the SP decoder is used to decode the set the test sequences on the PandaBoard platform. Models that 

utilized combined training sequences have good performance with both linear and MARS methods, 

i.e., the 95% of the models have an average estimation error smaller than 10%. This SP decoder has 

also been tested on the BeagleBoard platform. The test results are summarized in the Table 8-5 (b). In 

this case, almost the totality of the models have an average estimation error smaller than 5%. This is 

because on one hand, the PMC events available on each platform are different, which leads to the 

model has different errors, and on the other hand, the platform with higher complexity (i.e., the 

PandaBoard) could be more difficult to obtain its energy estimation model as accurate as the model 

for the platform with lower complexity (i.e., the BeagleBoard). 

 

Table 8-5 Average Error Distribution of Models Based on Combined Training Sequence of SP Decoder  

Table 8-5 (a) On PandaBoard 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 76.00% 19.58% 4.42% 0.00% 0.00% 
MARS 66.78% 28.99% 4.23% 0.00% 0.00% 

Table 8-5 (b) On BeagleBoard 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 99.23% 0.77% 0% 0% 0% 
MARS 100% 0% 0% 0% 0% 

 
Table 8-6 shows the distribution of the average errors of the energy estimation models when the 

CBP decoder is used to decoder the set of test sequences. The two fitting methods, linear and MARS, 

can approximately achieve an amount of 90% and 94% of the models with an average relative 

estimation error smaller than 10%.  

Table 8-6 Average Error Distribution of Models Based on Combined Training Sequences of CBP decoder 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 10.74% 78.52% 10.74% 0.00% 0.00% 
MARS 14.05% 79.34% 6.61% 0.00% 0.00% 

 
Most existing energy modeling methods assume a linear model. However, the relation between 

power consumption and system statistics is essentially non-linear. The non-linearity introduces errors 

when a linear model is used. With high-CV sequences, non-linearity is more serious than in the case 

of low-CV sequences. As a piecewise method, the MARS method considers the linearity within each 

data interval, therefore, averaging the global errors. For the CBP decoder, the CV values of the video 
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sequences vary over a larger range than those of the PHP decoder (from 4% to 190% in PHP decoder 

and from 4% to 310% in CBP decoder). Thus, the linear method almost double the number of models 

with an estimation error larger than 10% compare to the MARS method.  

Table 8-7 Average Error Distribution of Models Based on Combined Training Sequences of MP decoder 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 39.39% 57.30% 3.31% 0.00% 0.00% 
MARS 16.67% 77.78% 5.55% 0.00% 0.00% 

 
Table 8-7 shows the distribution of the average errors of the energy estimation models when the 

MP decoder is used. In this case, both linear and MARS methods have similar estimation accuracy. 

That is, more than 95% of the models achieve an average error smaller than 10%. Again, this result 

also shows the CV values of the video sequences impact the estimation accuracy. In this group, all the 

sequences have a moderate variation of their CV values, ranging from 1% to 20%. Thus, although the 

linear method has less flexibility than the MARS method, it is still able to capture the sequence 

characteristics. 

In addition, since the PandaBoard has a multi-core processor, the PMC-based energy estimation 

models have also been verified when the decoder is executed using the two cores. Given that the RVC 

framework divides the decoder algorithm into several FUs, a proper mapping of the FUs increases the 

decoder performance. An example of partitions of the four tested decoders (SP decoder, CBP decoder, 

PHP decoder, and MP decoder) is shown in Figure 8-8 (a)-(c), respectively.  
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Figure 8-8 (c) MPEG MP  

Figure 8-8 Decoder Partition 
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The contribution to the whole energy consumption on each core is defined by the number of FUs 

mapped to each core. Thus, to train the sub-model of each core, the dynamic energy model employed 

is the one indicated in equation 8-3: 

 𝐸𝑀 = 𝑃� × 𝑇𝑖 + 𝐸𝑐1 + 𝐸𝑐2 = 𝑃� × 𝑇𝑖 + 𝑓1(𝑃𝑀𝐶𝑐1) + 𝑓2(𝑃𝑀𝐶𝑐2) 8-3 

As the same as equation 8-1, 𝑃�  and 𝑇𝑖  denote the system average idle powers and 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑖 

execution time, respectively. 𝐸𝑐𝑗 is the estimated incremental energy of 𝐶𝑜𝑟𝑒𝑗. Since the measurement 

system takes the measurement for the whole platform, it is needed to divide the measured incremental 

energy into two parts, and each core will use one part to train its own model. A share of the total 

measured incremental energy is allocated to each core. After several experiments with the decoders, 

the weights are experimentally set as 1:6 (C1:C2), i.e., 𝐶𝑜𝑟𝑒1 is assumed to consume one-seventh of 

the total incremental energy and 𝐶𝑜𝑟𝑒2 consumes six times more energy. The estimation results are 

shown in Table 8-8 (a) to (d). 

Table 8-8 Average Error Distribution of Models Based on Combined Training Sequences in Two Cores 

Table 8-8 (a) SP Decoder 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 78.09% 18.43% 3.48% 0.00% 0.00% 
MARS 56.37% 39.06% 7.53% 0.00% 0.00% 

Table 8-8 (b) CBP Decoder 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 14.17% 67.08% 18.75% 0.00% 0.00% 
MARS 53.75% 37.50% 8.75% 0.00% 0.00% 

Table 8-8 (c) PHP Decoder 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 20.84% 63.78% 15.38% 0.00% 0.00% 
MARS 26.68% 68.60% 4.72% 0.00% 0.00% 

Table 8-8 (d) MP Decoder 

Methods <5% 5%-10% 10%-20% 20%-30% >30% 
Linear 92.05% 4.55% 3.40% 0.00% 0.00% 
MARS 52.56% 39.10% 8.33% 0.00% 0.00% 

 
As can be seen in these tables, when the complexity of the decoder architecture increases, the 

estimation difficulty also increases. Comparing the percentage of the models which have errors less 

than 10% in single-core and multi-core modes, the estimation accuracy slightly decreases for the 

MARS method in the multi-core mode. However, MARS method can still keep this percentage larger 
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than 90% in all estimation cases. Differently, the modeling performance of the linear method varies 

from decoder to decoder. For the simple SP decoder, linear method can keep similar accuracy 

compare to its predictive ability in single-core mode. With the increase of the decoder complexities, 

the inter-core communication may result in a nonlinear relationship between PMCs and the energy 

consumption. Thus, more than 15% of the models based on the linear method have an average error 

larger than 10% for the CBP and PHP decoder. It is surprising that for the MP decoder, linear method 

has a quite good performance in the multi-core case. One reasonable explanation is that, as an 

embedded system, the processing capacity and speed of PandaBoard is limited. To decode a MP 

sequence, which has high computational complexity, the system may be saturated what, in turn, could 

be expressed as a linear relationship between PMCs and energy consumption.   

8.1.5. Model Computation Speed 

In this section, the impact of the implementation of the energy estimation model on the decoder 

performance is analyzed. The number of decoded frames per second (FPS) is employed as the metric 

to reflect the decoder performance. The FPS reduction rate obtained when the decoder implements the 

energy estimation model on PB platform is listed in the Table 8-9. The testing video sequences 

employed are: hit001 and jvc009 (CIF and QCIF, respectively) for the SP decoder; BA2_Sony_F 

(QCIF) and HCBP1_HHI_A (CIF) for CBP and PHP decoders; BQSquare (416x240) and PartyScene 

(832x480) for the MP decoder. As can be seen, PMC monitoring and energy estimation have slight 

influence on the decoder performance. The largest decoder performance decrease for linear and 

MARS are 3.87% and 3.91% when the decoders are executed using one core, and 3.99% and 4.04% 

when two cores of PB processor are both enabled for decoding.  
Table 8-9 Energy Estimation Impact on FPS (%) 

Method 
SP CBP PHP MP 

QCIF CIF QCIF CIF QCIF CIF QCIF CIF 
Linear 

Estimation 
Single-Core 3.87 2.38 2.58 1.94 1.92 1.83 1.55 1.17 
Multi-Core 3.91 2.31 2.18 2.03 2.02 1.94 1.21 1.04 

MARS 
Estimation 

Single-Core 3.99 2.40 2.84 1.98 1.96 1.75 1.60 1.19 
Multi-Core 4.04 2.37 2.64 2.03 1.94 1.85 1.60 1.06 

In addition, the ratio of the process processing time to the total execution time is used as an 

indicator to intuitively show the PMC overhead. The processing time is the CPU time when the 

processor executes the decoder thread, which does not count the occupation of the CPU by other 

processes and the hardware interrupts. The total execution time is the duration from the decoder start 

point to its end point. It includes the processing time, PMC operation time, and other operation time 

during the decoder execution such as thread switch and OS system calls which are caused by 
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introducing the PAPI functions. It does not distinguish which event or which process is running on the 

CPU. 

 
Figure 8-9 (a) PHP Decoder     

 

Figure 8-9 (b) CBP Decoder 

Figure 8-9  Modeling Overhead  

In Figure 8-9, it can be seen that the PAPI functions cause extremely little influence on the 

decoder performance. The x-axis is the estimation frequency, i.e., to estimate energy every certain 

number of frames. And the y-axis is the time (total and processing). It is worth to point out that both 

the processing time and the total time vary from one execution to another due to some un-

deterministic issues like operating system interaction, program layout, crossing page boundaries, 

unaligned instruction fetches, and hardware interrupts, etc. However, this variation fluctuates within a 

narrow range. The numbers shown in the above figures have been averaged by repeating the same 

decoder and sequence for 10 times. As can be seen, the processing time concentrates around 132s and 

11.4s in two profiles, respectively. The largest modeling overhead happens when the estimation is 

carried out at a frame basis, which is 1.34% and 6.50%, respectively. When the estimation frequency 

decrease, the overhead also decreases and in both decoders, in the other situations, all the modeling 

overhead are lower than 1.50% of the total execution time. 
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Figure 8-10 Model Computing Time Percentage 

Above figures show the overall overhead caused by all the operations and interrupts related to 

the activity of energy estimation, to evaluate the overhead of modeling computation, a simple method 

by inserting time stamps can be used. The steps to do the energy estimation are: (1) Stop the PMCs 

sampling; (2) Do the estimation; (3) Start again the PMCs to sample. The time stamp can help to 

compute the execution time of these three steps. As shown in Figure 8-10, the computing time in less 

than 0.6% even in the worst case, i.e., to do the estimation every frame. Thus, the PMC-based method 

would be able to estimate the energy consumption on-line with a small performance cost. 

8.2. Verification of the Energy-aware Manager Implementation 

Before illustrating how well the energy-aware manager performs on battery life extension, the 

implementation of new primitives and the modifications on Jade to implement the energy-aware 

manager should be verified. Jade is the reconfiguration engine developed to manage both the 

description of ADMs and the connection of VTLs to produce decoders. On-the-fly reconfiguration to 

adapt the current energy constraint, ideally, needs a feedback path between the sender and receiver. 

The energy-aware manager should extract the information from the bitstream to decide the 

corresponding network connection. It has been introduced in chapter 7 that Jade can work at its 

scenario mode to execute different events through JSC-formed configuration files. Thus, Jade will 

pre-load all the decoder networks listed in the configuration file.  Various encoded sequences are pre-

defined to be loaded accordingly to different battery levels to simulate the metadata-based adaption. It 

is worth to note that the scenario mode is an emulation of a continuous video streaming decoding. The 

following figures will show the event configurations and their execution results. Note that only 

important information is captured to directly present the consequences. 
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Figure 8-11(a) Normal Mode 

 
Figure 8-11 (b) Energy-aware Mode 

Figure 8-11Verification on Mode primitive  

Figure 8-11 (a) and Figure 8-11(b) show how the “Mode” primitive works. Before loading the 

decoder description and starting to decode a video sequence, the mode event is defined for the work 

mode. As can be seen in Figure 8-11 (a), if the normal mode is selected, Jade will enable neither the 

energy estimation nor the energy-aware manager and will not interfere on the decoding process once a 

decoder is started. The decoder continuously decodes the video sequence until it is finished. Instead, 

in the case shown in Figure 8-11(b), the energy-aware mode is enabled and the video manager 

initiates the PMCs. As a result, an estimation of the consumption of each frame is obtained. The 

remaining battery capacity is thus estimated.  
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Figure 8-12 Verification on Energy Disable primitive  

 

Figure 8-13 Verification on Energy Enable primitive  

Figure 8-12 and Figure 8-13 show the proper results of the “EnegyDisable” and 

“EnergyEnable” primitives, respectively. “EnegyDisable” is used to disable the energy-aware mode. 

As can be seen in Figure 8-12, although the video manager is set to work at the energy-aware mode, 

the “EnegyDisable” event can still configure it to work in normal mode. A similar result can also be 

seen in Figure 8-13 to enable the energy-aware mode after executing the “Mode” event.  

Figure 8-14 and Figure 8-15 will generally illustrate how the energy-aware manager controls 

the decoding process. Note that in the JSC-formed configuration files, the parameter “id” of “Load” 
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event is the identifier of the decoder description and it will be passed to the “Start” event to define 

which decoder is executed. 

 

Figure 8-14 Verification on Reconfiguration Control Part 1 

Low-battery state is achieved after a long time decoding period. As can be seen in Figure 8-14, 

the energy-aware mode is disabled, and thus the complete execution of the sequence decoding is 

accorded to the JSC-formed configuration file, i.e., only the decoder with “id” 1 is executed. 

Differently, Figure 8-15 shows the decoding control under the energy-aware mode. 
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Figure 8-15 Verification on Reconfiguration Control Part 2 

In this case, as can be seen in Figure 8-15, the decoder has been reconfigured by Jade once the 

battery capacity is detected lower than the current threshold. Four thresholds, 250J, 100J, 40J, and 

0.2J, are pre-defined here as examples. Note that the total battery capacity can be set to any value 

through the battery emulator. At the full battery stage, the configuration file specifies that the decoder 

with id 1, i.e., the PHP decoder, is the one to be employed. As can be seen in Figure 8-15, the printed 

message shows that this decoder is started. Once the remaining battery is lower than the first 

threshold, the decoding process will stop and the energy-aware manager will inform Jade to 

Start Decoder

Start PMC Events

Enable Energy-aware Mode

Start Decoder

Start PMC Events

NOTE

Start Decoder

Start PMC Events

Start Decoder

Start PMC Events

NOTE

NOTE

151 

 



Results 

reconfigure a new decoder with another id, which is calculated by the management metric. In this 

example, the new decoder with id 2 is selected, i.e., the CBP decoder. Please note the blue arrows in 

Figure 8-15. Here is the difference between the configuration file and a real execution. The 

configuration file defines only to use the PHP decoder, while the energy-aware manager controls to 

use the CBP decoder. Two more reconfigurations occur when it is detected that the battery level is 

below the other two thresholds.  

8.3. Battery life Extension  

Since the energy estimation model has demonstrated its accuracy on different decoders and the 

functionality of the energy-aware manager has been verified, to include them into the RVC 

framework for energy saving appears feasible. Experiments to show the battery life extension have 

been conducted on the PB.  

8.3.1. Experiment on Decoder Reconfiguration 

Previous analysis [178] has reported that the HEVC standard may increase the complexity by 

up a factor of two compared with the AVC/H.264 standard. Thus, an AVC/H.264 decoder could be a 

good candidate when the remaining battery level falls below a certain threshold. In the first 

experiment, the PHP decoder and the CBP decoder are employed to test the energy improvement by 

changing the decoder description. The MP, PHP and CBP decoders are switched between each other 

based on an energy-aware management decision.  

With the same energy budget (i.e., 3600 Joules, in this experiment) set by the battery emulator, 

a clear playback extension is shown in Figure 8-16, when Jade runs in the energy-aware mode. The 

black solid line denotes the pre-defined energy threshold, and in this case, it represents one third of 

the total energy budget (i.e., 1200 Joules). The other three red-plus, green-point, and blue-diamond 

lines illustrate how Jade operates in normal mode and two energy-aware modes, respectively. In all 

cases, encoding parameters such as the quantization parameter (QP) and resolution have been adjusted 

to run the test with similar quality. The turning point in the plot corresponds to the situation in which 

the remaining battery level is detected at less than the predefined threshold. In all three test cases, the 

energy is consumed at the same rate before the turning point. Without any energy considerations, Jade 

continues running the same decoder (MP), and the battery runs out at 1448s. In the energy-aware 

mode, two reconfiguration decisions were tested. The green-point line shows the battery life extension 

created by switching from a MP decoder to a less energy-consuming decoder, i.e., the PHP profile of 

H.264/AVC standard. In this situation, the battery lasts for 1656s, an increase of a 14.4% with respect 

to the previous operational time. The blue-diamond line provides another energy-saving possibility by 
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reconfiguring the decoder to the CBP profile. The battery runs out at 1764s, which achieves an 

increase of a 21.8% in the operational time compared with that of the MP decoder. In the two energy-

aware cases, the potential for energy efficiency improvement has been achieved by reconfiguring the 

HEVC decoder to become the H.264/AVC one. Additionally, the result also shows a 6.5% (from 

1656s to 1764s) increase of the playback time when Jade uses the CBP profile instead of the PHP 

profile during the reconfiguration. This is because the PHP decoder has relatively high compression 

ability and supports higher quality applications than the CBP decoder, at the expense of a large 

amount of energy consumption.  

 

 
Figure 8-16 Energy Efficiency Improvement by Reconfiguration 

8.3.2. Experiment on Coding Parameter Change 

One of the goals of this work is to achieve energy efficiency improvement via decoder 

reconfiguration. However, in point-to-point or broadcasting scenario, the energy-aware manager 

might take the decision to choose a battery lifetime extension by informing the encoder to reconfigure 

its encoding parameters. When the energy-aware manager detects a low-battery state, it will message 

the encoder to encode the raw data with less complexity. The block diagram of a simplified diagram 

of a video encoder/decoder is shown in Figure 8-17.  

 
Figure 8-17 MPEG Codec Algorithm 
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As can be seen, decoding is a reverse processing of encoding, thus, the energy consumption of 

the decoder is affected by the way the encoder performs on video data compression. An example of 

influence on computational complexity by encoding with different algorithms has been partly shown 

in section 5.2.2. More details about factors that impact on the sequence quality and encode/decode 

efficiency are listed below: 

 The period of the I frames, i.e. the distance between the two I frames. Decreasing the period 

of I frames will improve the objective video quality, but it will also increase the network 

load.  

 Number of P and B frames. The encoding/decoding of P and B frames introduces more 

computational load, regarding to the encoding/decoding of I frames. As an example, if the P 

to I frame ratio is increased, more energy will be consumed in both, the encoding and the 

decoding process, because I frames do not require motion estimation and compensation as P 

frames do.  

 Data Rate. It is one of the most important elements to control the image quality. Generally 

speaking, with the same resolution, the larger data rate, the lower compression rate.  

 Resolution. Both, spatial and temporal resolutions are primary factors in determining data 

rate. General speaking, a higher resolution requires a higher encoding/decoding workload as 

well as more energy. 

 Quantization Parameter (QP). QP is one of the most important encoding parameters. QP has 

very much influence on the image quality. As an example, in work [132], a decrement on 

the QP from 32 to 27 produces a 3dB increment on the PSNR (Peak Signal to Noise Ratio), 

approximately. In addition, the lower QP value also results in higher energy consumption. 

 Entropy Coding. Different entropy encoding/decoding schemes will introduce different 

computational complexity and energy consumption. As an example, the H.264/AVC 

standard defines two kinds of entropy coding: CABAC and CAVLC. CABAC is a lossless 

encoding which provides good quality. CAVLC uses less CPU resources, but it affects the 

image quality. Note that if the entropy coding is changed, the decoder needs to be 

reconfigured.  

Note that factors listed above include two kinds of impact issues. One is the encoding algorithm 

(entropy coding) and the other one is the coding parameters (all the factors except entropy coding). In 

this case, the energy-aware manager could inform the encoder when and how to adjust and optimize 

the parameters or encoding tools to meet the energy constraints. Note that if the encoder changes the 

coding parameters, the decoder does not need to be reconfigured. The following two experiments are 

conducted by changing the coding algorithm and coding parameter, respectively, when the energy-

aware manager detects the low battery states. 
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Figure 8-18 shows the energy savings created by changing the QP parameters of a PHP-

supported sequence under the same experimental environment as the previous one in section 8.3.1. 

The red-plus and green-point lines show how energy is consumed when the video stream is encoded 

with two different QP parameters, respectively. By increasing the QP value from 27 to 32, the 

playback time is extended from 1426s to 1623s, i.e., a 12.1% improvement.  

 
Figure 8-18 Energy Efficiency Improvement by Changing the QP 

A proper selection and adaption of encoding parameters may have a moderate influence on 

energy consumption. Since a decoder is a connection of various functional units, both a combination 

of FUs replacing and parameter adaption could achieve more efficiency on battery lifetime extension.  

8.4. Conclusion 

This chapter assesses the thesis proposal, which is an energy management and optimization 

mechanism including an energy estimation model and an energy-aware manager based on a 

functional-oriented reconfiguration engine, namely jade.  

The energy estimation model for decoders has been first validated and evaluated with a set of 

selected PMC events on the PB platform. Conducting an analysis on this result, a suggestion to select 

training data to achieve more accurate models is introduced. This suggested method is repeated on the 

PB and BB platforms. All the results show good accuracy following the guide of training data 

selection, i.e., more than 90% of the models achieve an average error smaller than 10%, especially 

when using the MARS fitting method. In addition, the overhead of PMC monitoring and energy 

estimation is proven to have slight influence on the decoder performance. Based on the accurate 

energy estimation model, the energy-aware manager is able to potentially save energy consumption 

during the decoder execution. The modifications of Jade to include the energy-aware manager are first 

tested and verified. Results show that Jade can correctly respond under the different test cases. As a 
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consequence, by combining the estimation model and the energy-aware manager into the RVC 

framework, the experimental results show a good potential of energy efficiency improvement with 

increases of about 14.4%, 21.8%, and 12.1%, respectively in three different test cases. 
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Conclusion and Future Work  

9. Conclusion and Future Work 
The capabilities of wireless mobile devices have been growing on full-scale except for their 

energy source, the battery, which has experienced a relatively slow development. Therefore, it has 

been a critical issue to optimally use the limited battery energy under certain performance 

requirements and quality of service. This thesis work has focused on the energy optimization and 

management mechanism for video decoding applications based on functional-oriented reconfiguration 

to reduce their energy consumption, and thus, to extend the battery lifetime. The functional-oriented 

reconfiguration is one of the reconfiguration techniques which is platform-independent and aims to 

improve system functionalities or produce new functionalities by re-connecting the existing functional 

units. An energy estimation model and an energy-aware manager have been implemented to support 

the energy consumption control. The obtained results show a good potential to increase the battery life 

time. In this chapter, a conclusion of the thesis work and future research direction will be drawn. 

9.1. Conclusion 

9.1.1. Motivation and Results of the Proposed Energy Optimization and 

Management Mechanism 

Along with the great developments of semiconductor and wireless communication technologies, 

mobile devices such as Smartphones and tablets have been blended into people's daily life and 

promote a great progress on multimedia utilization. Video streaming playback decoders, which 

occupy a large percentage of multimedia applications, have been mainly designed to optimize the 

decoding speed during a long time. However, the usefulness of mobile devices is severely limited by 

the battery capacity which is far behind of the devices demands. Battery lifetime is an important factor 

to assess user's satisfaction on a mobile device. A failure to guarantee the user desired lifetime can 

significantly degrade the user experience on a product, and make it unacceptable. 

Motivated by the energy constraints, the research interests have been shifted from pursuing 

maximum performance to tradeoff between energy and performance for energy saving. For the 

streaming applications which usually execute for long periods, energy-saving is especially important. 

This thesis has addressed this problem with the goal of reducing the energy consumption. A technique 

for energy optimization and management through the functional-oriented reconfiguration of video 

decoders has been proposed. Reconfigurable video is a new design philosophy based on data flow and 

parallelism. It aims to provide a uniform framework to facilitate the design of next generation video 

codecs and the consistency of encoders and decoders among various coding standards. Unlike 

traditional monolithic designs, reconfigurable video designs are able to replace or add functional units 
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without disorganizing the whole decoder network and thus it is proved to be a flexible technique to 

satisfy various user demands. Reconfigurable video design leads to a new direction for energy 

optimization on video streaming applications. One of the contributions of this dissertation to the state-

of-the-art in energy-aware design on video coding is to introduce reconfiguration to the energy saving 

field to provide a flexible solution without specific details from either the hardware platform or the 

used coding standards. In this work, video decoders are implemented through the reconfigurable video 

coding (RVC) standard which allows connecting functional units from video tool libraries (VTLs) to 

form a complete video decoder. This framework allows a high degree of flexibility and scalability as 

the encoders and decoders can dynamically adapt themselves based on both the current battery 

capacity and user preferences to achieve a better utilization of the limited energy in multimedia 

applications.  

The proposed energy optimization and management mechanism is implemented at the decoder 

end. It consists of an energy-aware manager implemented as an additional unit of the reconfiguration 

engine, an energy estimation model, and if available, a feedback channel connected to the encoder 

end. The reconfiguration engine is a tool to reconfigure the decoders. During video streaming 

playback, the energy-aware manager estimates the battery lasting time based on the monitored battery 

level and the predicted energy-consuming rate from the energy estimation model. Once it is detected 

that the remaining battery is not sufficient for user desirable lasting time, it will inform the 

reconfiguration engine to reconfigure the decoder for consuming less energy. If the feedback channel 

from the decoder to the encoder is available, the manager can inform the encoder unit to change either 

the encoding parameters or the encoding algorithms for energy-saving adaption. 

Although the ultimate objective of energy saving is achieved by efficiently switching the decoder 

implementation, how and when to reconfigure the decoder for energy consumption adaption is 

extremely important. Considering that a model to estimate the energy consumption is very helpful to 

lead to elegant and correct energy management decisions, this work has launched an accurate and 

practical energy estimation model for the CPU, memory, and basic processor peripherals based on the 

use of PMCs. In most modern processors, PMCs are implemented as special-purpose registers to 

monitor the occurrences of several events such as the cache miss and hardware interrupt and can be 

managed by high-level tools. Although the PMC-based modeling technique has been widely used in 

many research works, a departure from previous researches in this thesis work is to propose a 

methodology for PMC events selection without manual intervention, which supports multiple 

hardware platforms and video coding standards. In particular, a PMC-filter is implemented to 

automate the selection of the most appropriate PMC events that affect energy consumption and reflect 

the energy behavior of applications. Furthermore, a detailed study on the influence of the training data 
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on model accuracy has been presented for better model building. The modeling methodology has been 

evaluated on different underlying platforms, single-core and multi-core, and different characteristics 

of workload, including the use of MPEG4 Part2 SP, MPEG4 Part10 CBP, MPEG4 Part10 PHP and 

MPEG HEVC decoders. All the results show a good accuracy and low on-line computation overhead.  

Besides the energy estimation model, an energy-aware manager has been implemented to take 

the charge of the energy consumption control. How to choose the proper decoder for reconfiguration 

when the low battery situation occurs is the main challenge to design the management metrics of the 

energy-aware manager. A good decision should comprehensively consider the decoder computational 

complexity, the image quality, and the desirable battery lasting time. In this work, this decision has 

been simplified. To choose a new decoder, only the computational complexity has been considered. In 

addition, both new events of the reconfiguration engine and the required modifications on the engine 

to implement the energy-aware manager have been implemented. The reconfiguration engine provides 

three usage modes to implement a decoder, namely command line, console, and scenario mode. The 

scenario mode is the most powerful one to manage decoder configuration and execution. In this mode, 

the engine uses pre-defined XML events to manage the decoder configuration and execution. Three 

events, namely "Mode", "Enable", and "Disable", have been added to enable the energy-aware 

manager for energy optimization and management. The modifications on the reconfiguration engine 

focus on the communication between the engine and the decoder. A signal-based inter-process 

communication scheme and a shared-memory scheme have been implemented to communicate and 

pass data between them, respectively. These implementations have been verified to test the engine 

correctly responds to the reconfiguration decisions made by the energy-aware manager under the 

different test cases. 

Integration of the energy estimation model into the RVC framework along with the energy-aware 

manager included in the reconfiguration engine achieves easy and flexible reconfiguration 

management for the energy saving criteria. The experimental results indicate a possibility to lengthen 

the battery lifetime in three energy-aware test cases: reconfiguring the HEVC decoder to a PHP or a 

CBP H.264/AVC decoder, and adjusting the QP coding parameters. The experimental results carried 

out on different test cases show a good performance of the proposed energy-aware optimization 

mechanism, which allows significant increases in the battery lifetime by functional reconfiguring the 

decoders. 
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9.1.2. Exploitation of Implementing the Modeling Method on FPGA 

Systems 

On the GPP-based embedded systems, the information provided by PMC events works as a 

profiler of the system behavior. However, FPGA systems may require a more hardware-aware 

profiler. Some contributions have been achieved in works [169] [170]. The University of Toronto has 

implemented a snooping software profiler to count the total number of cycles during an application 

execution [169]. In this work, they have developed an on-chip, real time, FPGA-based profiler, 

Airwolf, for the Nios II processor to be synthesized on Altera FPGAs. Airwolf works similarly as 

PAPI. It inserts software drivers around the software functional blocks to enable or disable particular 

counters implemented in Airwolf. These FPGA-based profiling tools have similar functionalities as 

PMCs embedded processors or general purpose processors. They can be considered as a proxy of the 

system behavior and used to estimate the system energy consumption. Therefore, the PMC-based 

modeling methodology is also applicable to the FPGA systems with their profiler tools. 

In addition, in spite of the fact that the PAPI-based implementation of the proposed methodology 

addresses software solutions, the scope of the PMC-based energy estimation methodology could be 

enlarged to drive hardware-based RVC tools and methodologies such as the dynamic partial 

reconfiguration (DPR) of FPGA [181] or the multi-dataflow composer tool (MDC) [182]. Effectively, 

to achieve run-time hardware reconfiguration, the MDC tool assembles several specifications and 

inserts multiplexers to switch the data-flow through a shared set of actors, while the DPR permits the 

reconfiguration of specific parts of an FPGA. To exploit the proposed methodology, tools to directly 

insert specific PMCs into hardware description language (HDL) specifications exist [183]. Once 

PMCs are inserted and the generated HDL code is synthesized, neither multiplexer selection nor 

partial reconfiguration prevents the event count gathering to obtain the energy estimations.  

9.1.3. Publications 

Journals: 
 R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “Energy-Aware decoder management: 

a case study on RVC-CAL specification based on just-in-time adaptive decoder engine,” IEEE Trans. 

on Consumer Electronics, vol. 60,  no.3, pp. 499-507, Aug. 2014. 

 J. Wei, R. Ren, E. Juarez and F. Pescador, “A Linux Implementation of the Energy-based 

Fair Queuing Scheduling Algorithm for Battery-limited Mobile Systems,” IEEE Trans. on Consumer 

Electronics, vol. 60,  no.3, pp.267-275,  May 2014. 

  R. Ren, J. Wei, E. Juárez, M. Garrido, C. Sanz and F. Pescador, “A PMC-driven 

methodology for energy estimation in RVC-CAL video codec specifications,” Signal Processing: 
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Image Communication, vol. 28, no. 10, pp. 1303–1314, Nov. 2013. 

Conferences: 
 R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “Energy-Aware Decoders: a Case 

Study Based on an RVC-CAL Specification,” Conf. on Design and Architectures for Signal and 

Image Processing, Oct. 2014. 

 R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “On-line Energy Estimation Model of 

an RVC-CAL HEVC Decoder,” pp.63-64, Int. Conf. on Consumer Electronics, Jan.2014. 

  R. Ren, E. Juárez, C. Sanz and F. Pescador, “On-line Energy Estimation Methodology for 

RVC-CAL Video Codec Specifications,” Conf. on Design of Circuits and Integrated Systems, 

Nov.2013. 

  R. Ren, E. Juárez, C. Sanz, M. Raulet and F. Pescador, “System-Level PMC-driven Energy 

Estimation Models in RVC-CAL Video Codec Specifications,” Conf. on Design and Architectures for 

Signal and Image Processing , pp.55-62, Oct.2013. 

  R. Ren, E. Juárez, F. Pescador and C. Sanz, “A Stable High-Level Energy Estimation 

Methodology for Battery-Powered Embedded Systems,” IEEE Int. Symp. on Consumer Electronics , 

pp.1-3, Jun. 2012. 

MPEG Meetings: 
 R. Ren, E. Juárez, M. Raulet, J.G. Wei, M. Garrido et al, m33115: Energy-aware 

Reconfiguration based on a Just-im-Time Adaptive Decoder Engine (JADE). ISO/IEC 

JTC1/SC29/WG11, 108th MPEG Meeting Document Register, Mar.-Apr. 2014. 

 E. Juárez, R. Ren, M. Raulet, J. G. Wei, M. Garrido et al, m31243: Performance Monitoring 

for Energy Estimation in RVC-CAL Description. ISO/IEC JTC1/SC29/WG11, 106th MPEG Meeting 

Document Register, Oct.-Nov. 2013. 

 E. Juárez, R. Ren, J. G. Wei, M. Raulet, M. Garrido et al, m28171: Proposal of a Decoder 

Energy Management Scheme with RVC. ISO/IEC JTC1/SC29/WG11, 103th MPEG Meeting 

Document Register, Jan. 2013. 

  E. Juárez, R. Ren, J. G. Wei, M. Raulet, M. Garrido et al, m25903: RVC Inverse Transform 

FU for HEVC. ISO/IEC JTC1/SC29/WG11, 101st MPEG Meeting Document Register, Jul. 2012. 

9.2. Future Work 

As proposed in this thesis, to efficiently extend the battery lifetime through the energy 

optimization and management, two aspects, first, the accurate estimations on energy consuming rates 

and remain battery capacities and, second, the appropriate reconfiguration decisions are required. The 

future work will be focused on these two aspects. 
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From the accuracy point of view, first of all, a system-wide energy estimation model is needed. 

The test cases considered in this thesis have been carried out using two embedded platforms without 

the consideration on processer, memory and peripheral units. As discussed in the work [168], the 

hardware performance information is not only available on processors, but also scattered at the whole 

platform. For example, other important components such as the graphics processing unit, the memory 

interface and the network interface also have hardware to monitor various events that can supply 

information about the system performance. This kind of counters will provide additional information 

to include into the energy model for a heterogeneous system. The third-party tool, PAPI, used in this 

methodology, is able to extend the utilization of the modeling methodology. A branch of the PAPI 

tool, named as the component branch (or PAPI-C), has been designed to count events beyond the 

CPU. PAPI-C applies APIs to configure and count events related to other components such as 

network or memory controllers, power or temperature monitors or even specific processing units. In 

the energy estimation model introduced in this paper, an event which records the number of hardware 

interrupts is employed to include the information related to with the energy consumption on the 

peripherals. This event gives the model a general system-wide estimation not only limited to the CPU 

and memory components. However, more specific models can be individually built with more 

component details. Moreover, the battery discharging characteristics and a precise battery discharging 

model under different thermal conditions still need an exhaustive investigation to give a more 

accurate estimation on the remaining battery level. 

From the management point of view, as a first step on battery life extension based on 

reconfiguration, the energy-aware manager in this thesis only considers the reduction on the 

computational complexity to save energy when it makes the reconfiguration decisions. However, the 

problem can be extended in various directions. Image quality and network delay are two QoS 

requirements for user satisfaction on streaming applications. To provide a low-distortion and high 

compression ratio decoder, high computational complexities are needed. In turn, this leads to high 

energy consumption, which is against the original intention of the energy-aware manager. These three 

issues, the compression ratio of the video data, the video quality, and the battery life time are mutually 

restrained. Thus, to achieve satisfactory battery life time both, video quality adaption and network 

transmission adaption, should be taken into account. The energy-aware manager should 

comprehensively consider how to balance the computational complexity, the network bit-rate 

constraint, and the distortion of multimedia delivery. This tradeoff depends on the relationship and 

interaction between computational and channel parameters, thus, it is worth to do research on 

management metrics allowing to built a more complete management metric which jointly selects 

video source parameters and channel parameters based on the video content characteristics, available 

network resources, underlying network conditions and user preferences. In addition, the energy-aware 
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manager can include other low-power design methods such as dynamic voltage and frequency scaling 

for further energy reduction. 

As described above, the management point will be the heart of the future research. It 

comprehensively considers different elements to provide more efficient and practical energy 

management strategies. 
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Appendix A: Introduction of Battery Emulator 
Usage 

Figure 6-9 Figure- 1, the Graphical User Interface (GUI) of the battery emulator and Figure- 

2, the DLOG graph for current and voltage observations, are two mainly used interface used for 

taking the measurements. The usage is described following:  

 
Figure- 1 GUI of the Battery Emulator and Simulator [157] 

 Icon 1: To load the reference curve. First, enter the period used to sample the reference 

curve of the battery state of charge, e.g., 200ms, and then press the button 'LOAD' to load 

the curve. 

 Icon 2:  To calculate the battery model. Enter the degree of the polynomial reference curve 

and then press the button 'CALCULATE' to calculate the model. Depending on the 

introduced degree, the model accuracy is visually shown and the higher the degree, the more 

precise the model will be. The range of degree is set between 2 and 10 in this emulator. 

 Icon 3: To introduce the battery parameters. This interface is used to set the battery internal 

resistance (bottom), the initial state of the battery (middle) and the maximum current that 

the battery can deliver (top). The capacity of the battery is not introduced because it has 

already been obtained from the reference curve. 

 Icon 4: To choose the usage mode. If the simulation mode is enable, the program will 

emulate the behavior of the battery according to the values of the current that is introduced 

through controlling the 'discharge current' slider (bottom). If the simulation is disable, the 
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program will emulate the behavior of the battery according to samples of the actual current 

measured by the power supply.  

 Icon 5: Graphical preview. The reference graph appears in blue in this chart and the battery 

model is shown in red. 

 Icon 6: Battery charge indicator. Indicates the charge status of the battery and the remaining 

lifetime according to the current consumed at this moment. 

 Icon 7: Emulation control buttons. Press 'PLAY' to start the battery emulator, press 'PAUSE' 

to temporarily stop it and press this button again to continue, press 'STOP' to stop the 

simulation. 

 Icon 8: Function buttons. Press 'EXIT' to close the program, press 'DLOG' to switch the 

window of the graph of current and voltage evolution and press 'CCDF' to show the 

cumulative distribution of the current. 

 Icon 9: Power supply control. Choose from the pull-down list the connect port of the power 

supply. Make sure that the power supply is switched on and the driver of National 

Instruments is enable. Enter the current sample period for current and voltage sampling.  

 

Figure- 2 Graph of the Current and Voltage Evolution [157] 

 Icon 1: Graphical representation. There are three axes in this graph: voltage axis (left), time 

axis (bottom) and current axis (right). Three different curves are presented in the graph. The 

“Active curve” (voltage is shown in blue and current is in red) is the one being measured. In 

addition, two reference curves can be loaded trough the “Open curve” button located at the 

top-right corner in this window. Current sampling curve can also be saved into a text file 
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trough the “Save curve” button.  

 Icon 2: Curve information indicator. These tables indicate the minimum, average, and 

maximum of current, voltage and power of the active curve and the two reference curves, 

respectively.  

 Icon 3: Graph control. Three pull-down lists can control the scale of the axes of voltage 

(mV/div), time (HMS/vid) and current (mA/div), respectively. The “Markers” button opens 

a pop-up window with additional information between two markers (X1 and X2). There is 

also an indicator of the mouse position which is given by the coordinate of three axes.  

 Icon 4: Curve button. Three buttons are used to load two reference curves button and to save 

the current curve.  

 Icon 5: Pop-up window shows the battery capacity, energy consumption and remain battery 

between X1 and X2 markers for each curve. 

 Icon 6: Button to return the initial window. 
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