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Abstract—Hyperspectral imaging (HSI) has been adopted dur-
ing the last years in different applications where material classi-
fication plays an important role. This favoured the improvement
and development of new HS sensors, leading to HS snapshot
cameras, where the sensor is able to acquire images in a real-
time video fashion, reducing the spatial and spectral resolution
for these cameras. However, although these cameras are able to
acquire RAW HS images at high frames per second (FPS) rates,
it is necessary to pre-process them to obtain an actual HS image
and then obtain a classification map.

This work addresses the development of an embedded
CPU+GPU HS video classification system able to acquire and
classify HS images in real-time video, i.e., at more than 25 FPS.
Also, it includes a comparison where three different CPU+GPU
embedded platforms are tested: NVIDIA Jetson Nano, NVIDIA
Jetson TX1 and NVIDIA Jetson TX2. The results obtained show
the feasibility of a HS video classification system using these
embedded platforms.

Index Terms—HSI, real-time, video, classification, embedded

I. INTRODUCTION AND MOTIVATION

During the last years, hyperspectral imaging (HSI) has
become an important technique in the field of material classi-
fication. This technology consists in the acquisition of images
in multiple narrow bands of the wavelength spectrum, ranging
from ultraviolet (UV) to infrared (IR), and allowing the spec-
tral characterization of the pixels captured in the scene. This
characterization, for each pixel, is called spectral signature,
and it is where complex classification algorithms rely on to
make founded decisions.

HSI has been tested in different domains, extending its use
to numerous fields where the classification plays an important
role. Although historically it was mainly used in remote sens-
ing for agriculture, geography or surveillance [7], nowadays
HSI is also employed in food industry [9], art restoration [11]
or medical applications [5].

This fact caused new hyperspectral (HS) sensors that im-
proved the former ones in different aspects. These sensors
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were usually of the type known as line-scan, i.e., a line
of pixels able to acquire hundreds or thousands of spectral
bands. As a drawback, the pixels line needs to be moved to
scan the whole scene. This method was improved over the
years by improving the spectral resolution or the wavelength
range of the bands included in the sensor and the acquisition
speed for this line. However, the intrinsic requirement for
this type of sensors of moving the pixels line, entails two
crucial drawbacks: (i) the camera needs to be integrated into
a system where either the camera or the scanned scene is
moving synchronously, and (ii) this movement along with the
acquisition of HS images with a high spatial and spectral
resolution prevents the use of these cameras for HS video.

These inconveniences motivated the development of a new
type of HS sensors that does not need to be moved, the so-
called snapshot. These sensors are similar to the ones found
in conventional RGB cameras, except for filter employed to
acquire different spectral bands. HS snapshot cameras have a
mosaic filter which includes up to 5× 5 bands arranged in a
squared pattern, hence featuring a reduced number of spectral
bands and compromising the spatial resolution. This fact is
due to the fact that the complete sensor is not capturing pixels
for every spectral band, as it depends on the filter pattern.
Despite the reduction in spatial and spectral resolution, these
cameras allow the possibility of capturing HS video at more
than 25 frames per second (FPS), defined as real-time video
in this application. Therefore, HS snapshot cameras are key to
support the development of HS video classification.

However, although raw image acquisition is fast, processing
HS images entails a high computational load that needs to
be handled carefully, typically with the help of hardware
accelerators [16]. In this work, a complete system composed
of a HS snapshot camera and a CPU+GPU embedded platform
able to (1) capture HS, (2) pre-process and (3) classify raw
images in real-time video is presented. In this work, the case
of study consists in the classification of brain tumors during re-
section operations [13] using a previously analysed and tested
algorithm chain. For system testing, different CPU+GPU em-
bedded platforms have been employed, finding differences,
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advantages and disadvantages and identifying potential uses
in different scenarios. The results of this comparison are
presented. Besides, the feasibility for HS video classification
tasks of the different platforms is demonstrated. The main
contributions of this paper are the following:

1) The detailed description of an embedded HS video
classification system stage by stage.

2) The analysis of different embedded platform-based HS
video classification system.

3) The recommendation of using these platforms in specific
scenarios.

The rest of the paper is structured as follows: Section
II introduces the related works found in the state-of-the-art
(SoA). Section III and Section IV detail the main concepts
involved in HS camera acquisition and the key classification
algorithms employed in this work. Section V describes the
implemented system. Then, in Section VI, experiments and
materials are described, leading to the Section VII where
the results are presented and analyzed. Finally, Section VIII
presents the main conclusions of the work.

II. RELATED WORK

During the last years, multiple works addressed the task of
using HS snapshot cameras within a classification processing
chain. Al-Sarayreh et al. [2] proposed a 3D-CNN architecture
to classify red meat using HS images captured from a snapshot
camera. This work compares three different classification algo-
rithms PLS-DA, SVM and their proposal 3D-CNN, evidencing
their feasibility with a classification accuracy around 81%,
91% and 96%, respectively. As an important remark, the
authors reported that spatial-spectral algorithms obtain the best
results given the limited spectral resolution of the snapshot
cameras. In terms of computational time, their tests showed
that PLS-DA, SVM and the proposed 3D-CNN, need 13, 38
and 61 seconds, respectively, to process one HS frame. Hence,
the system is far from achieving real-time video. In other work,
Steinbrener et al. [14] introduced a CNN able to classify fruits
and vegetables with an accuracy above 92% using an snapshot
camera with 16 spectral bands. This work also demonstrates
that HS images with a limited number of spectral bands are
useful for classification tasks. However, the authors did not
aimed at accelerating the algorithm, only focusing on the
classification results.

Other works have aimed to combine HS cameras with real-
time classification. For example, Hohmann et al. [8] introduced
an endoscopy in-vivo HS video classification system where the
sensor does not include any filter; the HS images are obtained
varying the wavelength of the light source and capturing the
different bands synchronously. With this system, the authors
are able to generate 6 spectral bands in about 0.45 seconds that
are pre- and post-processed in around 1.5 seconds more. The
results show a classification accuracy around 50% and 60%
for different classifiers, in applications for cancer detection
and prevention in the stomach.

To the best of authors’ knowledge, there have not been
other works addressing the HS snapshot video classification

Fig. 1. Snapshot camera filter pattern.

task, relying normally on high resolution HS linescan cameras,
where the acquisition time is far from real-time and the
computational load is higher due to the higher spectral and
spatial resolution [6]. These works are compared in Table I.

TABLE I
RELATED WORKS COMPARISON

Al-Sarayreh
et al. [2]

Steinbrener
et al. [14]

Hohmann
et al. [8]

Proposed
method

FPS 0.02 - 0.51 30

Camera type Snapshot
25 bands

Snapshot
16 bands

Variable λ
light source

Snapshot
25 bands

Real-time No No No Yes
Accuracy 96 % 92 % 50 - 60 % 64 %

III. BACKGROUND: HS SNAPSHOT CAMERA

To understand this work, the description of HS snapshot
cameras is of paramount importance, as raw images obtained
from these cameras need to be pre-processed to obtain HS
images. These cameras employ rectangular CMOS sensors
along with a HSI squared-pattern mosaic filter added at wafer-
level. In this work, the camera filter employed features a 5×5
squared pattern, meaning that the 25 pixels included in these
squares present a filter in a different wavelength. Consequently,
25 bands are captured while the spatial resolution is reduced
in 5 pixels per dimension. This is depicted in Figure 1.

For this reason, the raw HS image is rearranged to generate
a HS image. The result is denominated HS cube, as the HS
image consists of three dimensions: x and y for the spatial
dimensions of the image and z for the spectral bands. To obtain
a pre-processed HS cube, a white-black calibration procedure
on the reconstructed cube is applied. This process is employed
to convert the raw sensor acquisition values into reflectance
ones, expressed as percentages. In this way, the capture can
be compared to other HS images in different light conditions.
To do so, it is necessary to acquire white and black reference
images, i.e. two images that provide, under the current light
conditions, the maximum and minimum values of every pixel.
This process will be detailed in Section V-A1. As a final step,
a spectral correction is performed. In this procedure, every
band is corrected considering the main and secondary lobes
for every filter band in the sensor [15].

IV. BACKGROUND: SVM

A support vector machine (SVM) [4] is a machine learning
(ML) algorithm that finds an optimal hyperplane to separate
two classes, maximizing the margin between them. The SVM
training process aims to maximize the previous margin, given
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a ground truth data-set. This margin is defined as the distance
between the separating hyperplane and the training samples
closest to the hyperplane, called the support vectors. There
are two strategies to use this classifier in a multiclass problem:
one-vs-all (OvA) and one-vs-one (OvO), the one used in this
implementation.

The SVM implementation in this work employs a linear
kernel, where the function in charge to compute the distance
with the hyperplanes is the one presented in Equation 1. On
the equation, w refers to the normal vector of the hyperplane
of each class. x is the hyperspectral pixel that is going to
be classified. Finally, b is the bias factor of the linear kernel.
This process is repeated across all spatial pixels as denoted by
sub-indices i and j.

fij(x) = wij ∗ x+ bij (1)

V. ALGORITHM AND ACCELERATION

Fig. 2. System pipeline.

The proposed pipeline for the HSI video classifier is shown
in Figure 2. The block diagram represents where each part
of the code is executed and the followed sequence. Orange
nodes refer to CPU code, while nodes with green background
represent execution in the GPU. Within the green GPU block,
each of the white nodes represent a GPU kernel.

The process starts with the snapshot camera, which needs a
certain exposure time to take the photo. The camera is working
in an open-loop; A capture is taken as soon as the camera is
ready. The reading process, along with a crop on the image
are implemented on the CPU, referred in Figure 2 as Capture
system. The reason for this crop is that not all the camera
sensor is effective, finding inactive pixels in borders.

The following part of the pipeline is the actual process,
where the pre-processing and the classification are imple-
mented. Then, the labels obtained from the classification chain
are converted to a classification map, assigning one colour per
label. Finally, the classification map is displayed.

The implementation of the different kernels is explained in
the following subsections, that are split in two main parts: the
pre-process chain and the classification chain. These stages are
also represented in Figure 2.

A. Pre-processing chain

1) Cube conformation, white and dark calibration: The
process of cube conformation is explained using the two-pixel
and 25 bands of a HS image represented in Figure 3. The RAW
image obtained from the camera is depicted on the upper part
of the Figure, where the left darker pixels belong to the first
HS pixel (and its 25 bands) and the right lighter pixels belong
to the second HS pixel (and its 25 bands). The bottom part of
the figure refers to the output of the kernel, the hypercube, in
band interleaved pixel (BIP) format [3]. Here, every HS pixel
along with its bands are placed together, i.e., first, the first HS
pixel with its 25 bands and then, the second HS pixel with
its 25 bands. These HS pixels have been padded with zeroes
to generate 32 bands (7 are dummy) in order to make the
spectral information fit to the warp size of the GPU hardware
employed (32 threads).

Fig. 3. Cube conformation process. Darker colours refer to a spectral pixel
and lighter colours to another pixel.

The scheme employed to launch the threads of the kernel
is also represented in Figure 3; one thread per spectral pixel,
i.e., a thread per every pixel and band in the HS image.

Another computation implemented in this kernel is the
white and black balance (Equation 2). In this computation,
the difference between the original image Img and the dark
reference Dref is first obtained and then divided by the white
reference Wref and the dark reference. This is computed
before rearranging the RAW image, using the same grid.

Img′ = (Img −Dref )/(Wref −Dref ) (2)

2) Spectral correction: A multiplication between the hyper-
cube and the correction matrix provided by the manufacturer
is needed to linearly correct the sensor spectral information
(Equation 3).

P ′i =
N∑
λ=0

(Piλ ∗ Ciλ) (3)

Where P ′i is a HS pixel, C is the correction matrix, and
λ refers to a specific band. As the hypercube is arranged in
BIP and padded to 32 bands, a warp reduction is employed to
improve the GPU utilization as shown in Figure 4.
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Fig. 4. Spectral correction process. Represents the multiplication between the
hypercube and the correction matrix.

Using a grid where every pixel and band is handled by a
thread, the first step is to store in a register the corresponding
band of a pixel, for every pixel. Then, using warp intrinsic
operations [10], a sum reduction is performed where each
value of the warp is multiplied by the corresponding position
of the correction matrix.

3) Normalization: The normalization used on the system
consists of computing the mean value of the energy of each
spectral band, then the image is divided by this value, as can
expressed in Equation 4.

Ei =
1

N

√√√√ N∑
λ=0

P 2
iλ −→ Pni = Pi/Ei (4)

Using a grid where every pixel and band is handled by a
thread, the first step is to load and square the corresponding
value of band to carry out the normalization. As the band
number equals the warp size, the average of the values is
obtained performing a sum warp reduction. The result is stored
in the first thread of the warp, in which the square root is
computed . This result is copied on the rest of the warp threads,
taking advantage of the intrinsic warps operations. Finally,
each thread divides its corresponding band by the energy mean
of the HS pixel bands.

B. Classification chain

1) SVM: SVM classification has been divided into two
parts: The first one computes the distance of each HS pixel to
the support-vectors of the model (kernel score). The second
one calculates the probability that each HS pixel belongs to
each class (kernel estimate).

For an optimal implementation of an SVM classifier over a
GPU, the HS image needs to be arranged as band sequential
(BSQ). Hence a transformation between the pre-processing
chain and the classification chain has to be done. To transform
the hypercube from BIP (pre-processing) to BSQ (SVM), the
original BIP matrix is transposed.

Kernel score performs a matrix-vector multiplication as
reflected on Equation 1. To do so, a bi-dimensional grid
of threads is launched; threads of x dimension are used to
calculate a dot product within every HS pixel and a support
vector. This is repeated for each support vector, i.e., for every
pair of classes (an OvO classifier), using the threads of y
dimension. When the products are done, the factor bij is added.

Once the distance to every support vector is computed, the
probability of belonging to a class is calculated in the ker-
nel estimate. The kernel estimate uses the sigmoid function
(Equation 5) to estimate the probability of each class and
decoupling the probabilities between them [12].

f(x) =
1

1 + e−x
(5)

2) Spatial filter: Due to the low spatial resolution of
snapshot cameras and the granularity of SVM classifications, a
spatial filter [1] is proposed to smooth the classification maps
obtained with the system. This behaviour is implemented in
filter and max class kernel.

The filter kernel groups the classification pixel coming from
the SVM in a 3× 3 window and move this window over the
whole map. Then when the groups are done, the max class
kernel is in charge of applying a majority voting in each group
and selecting the class with the higher average probability.

Based on the SVM probabilities for each class, the filter
averages the probabilities for every pixel in the window,
obtaining an average probability for every class. Then, the
class with the highest probability is chosen as the pixel class.
In Figure 5 the functionality of the filter is depicted: as
can be seen in the highlighted window, pixel with highest
class probabilities are represented with different colors. As
the highest average probability class is green, that pixel is set
as class green.

Fig. 5. Spatial filter.

VI. TEST MATERIAL

A. HS snapshot camera

The HS snapshot camera (XIMEA, MQ022HG-IM-SM5X5-
NIR) employed in this work featuring a spatial resolution
of 409 × 217 with 25 spectral bands, ranging from 600 to
975 nm and with a full width at half maximum (FWHM) of
approximately 16 nm. This camera can perform up to 170 raw
FPS, depending on the exposition time settings.

B. Embedded CPU+GPU platform

In this work, three different CPU+GPU embedded platforms
from NVIDIA are tested. They are characterized in Table II.
The reason of comparing these platforms are their widely use
in embedded CPU+GPU ecosystems, with the benefit of the
CUDA programming language compatibility and support.

C. HS sequences and ground-truths

A set of video sequences acquired during resections of
real brain tumours have been used to validate the designed
experiments. The main characteristics of these video sequences
are the following: Video sequences feature a spatial resolution
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TABLE II
COMPARISON OF EMBEDDED CPU+GPU PLATFORMS.

Platform Jetson Nano Jetson TX1 Jetson TX2

CPU Cortex-A57
4 cores

Cortex-A57
4 cores

Cortex-A57 4 cores
+ Denver2 2 cores

GPU 128-core
Maxwell

256-core
Maxwell

256-core
Pascal

Memory 4GB 64-bit 4GB 64-bit 8GB 128-bit
Max.
Power 5 Watts 10 Watts 15 Watts

Size 69.6 x 45 mm 87 x 50 mm 87 x 50 mm
Weight 61 g 88 g 85 g

of 409 × 217, a spectral resolution from 600 to 975 nm (25
bands), and 200 frames per sequence with an exposure time
of 70 ms.

The database at our disposal has a total of seven video se-
quences in which the ground truth needed to perform the SVM
training has been obtained with the help of neurosurgeons.

To classify the video sequences, seven different models
in which one image is excluded have been trained. The
description of the experiment is shown in Figure 6.

Fig. 6. Classification experiment.

VII. RESULTS AND DISCUSSION

The system has been tested using the previously mentioned
material: a HS brain cancer classification chain and three
different platforms. Classification results with the given mod-
els show an average accuracy of 64.2 % for the sequences
tested. This result contrasts with higher classification results
found in the SoA, mainly caused by the spectral reduction
of the HS snapshot camera and the lack of extensive HS
databases for the application. The platforms considered show
differences of root mean squared error equal to 0.014 % in
average accuracy, taking Jetson Nano as reference. This error
is mainly due to different floating-point numbers rounding
effects in different platforms and the intrinsic camera noise.
Therefore, it is considered that these platforms obtain almost
equal functionality results.

Time results for the three different platforms, are sum-
marized in Figure 7. In this image, the time for each stage
and platform is represented within the maximum slot of time
for this application, i.e., the camera exposure time. This is
considered the maximum time slot for real-time processing, as
the process is done while the camera is acquiring the following
frame. The acquisition-processing process is implemented con-
currently with a delay of 1 frame. As can be seen, these three
platforms achieve smaller processing times than the maximum
time slot (23-23-35 ms vs 70 ms), meaning that the system
will always be limited by the acquisition, rather than by the

processing process. Without an acquisition time limitation, i.e.,
in applications where the exposure time could be lower, the
system would allow the acquisition and classification of more
than 28 and 40 classified FPS, for Jetson Nano and Jetson
TX1/TX2, respectively. This would happen when conditions
of light were enough to ensure the correct acquisition using
low exposure times; using sun light or strong enough light
sources.

Fig. 7. Slot of time between captures. Each region refers to a different ker-
nel: copy camera-memory (green), HS cube conformation (orange), spectral
correction (green), normalization (blue), BIP to BSQ (purple), kernel score
(pink), kernel estimate (red), filter (brown) and max class (black).

In addition, these results show that the difference between
Jetson TX1 and Jetson TX2 is negligible, whilst Jetson Nano
achieves near half the performance obtained. This result also
reveals that the process is completely limited by the computa-
tions performed, rather than the memory; the main difference
between Jetson TX1 and TX2 is the memory width bus (64-bit
and 128-bit), featuring the same number of processing cores
with a slight increase of the GPU frequency clock in the case
of Jetson TX2. This explains the slight difference in processing
time for both platforms. In the case of Jetson Nano, although
the memory width bus is the same as Jetson TX1, the number
of processing units is halved compared to Jetson TX1 and
Jetson TX2. For this reason, the processing time is near the
double for Jetson Nano, taking into account that the copy from
the camera to the memory (in green in Figure 7) is constant
for the three platforms.

In order to better compare these embedded platforms in
the system, four figures of merit (FoM) have been defined:
FoMweight and FoMsize consider the physical features of the
board, FoMfps measures the maximum number of attainable
FPS and FoMpower considers the maximum power consump-
tion. Given the case of study in this work, classification of
brain tumors in the surgeon room, the maximum of these
FoMs are set to the following: FoMweight = 1kg, FoMsize =
100cm2, FoMfps = 60 and FoMpower = 12W . They are set
taking into account the requirements within the surgeon room
and thinking on its usage along with other medical instruments
as medical microscopy (Zeiss Tivato 700), where the weight
and size are limited by the physical surface of the device and
the power is limited by the electrical characteristics of the
device. The maximum number of FPS is set to 60 given the
requirement of an interactive video application. These FoMs
for the three platforms are summarized in Figure 8.

As can be seen, Jetson Nano is the clear winner for all
the FoMs except for FoMfps, meaning that it is the smallest
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FoMweight

FoMsize

FoMpower

FoMfps

Fig. 8. Cross-platform comparison for the most significant parameters - Jetson
Nano in red, Jetson TX1 in green and Jetson TX2 in blue.

and lowest-consuming platform among the comparison. As
expected, the number of FPS obtained is smaller than the other
platforms. However, this number is high enough to classify HS
video in almost 30 FPS. Although Jetson TX1 and Jetson TX2
are similar in the FPS achieved, more than 48, their differences
arise mainly concerning the power consumption, where Jetson
TX1 is slightly better.

VIII. CONCLUDING REMARKS AND FUTURE LINES

This work presents a novel embedded HS video classifi-
cation system composed of a HS snapshot camera and three
different CPU+GPU embedded platforms. The results obtained
in this work show the feasibility of a HS video classification
with 25 spectral bands and a resolution of 409×207 pixels. The
results presented show that the classification obtained is almost
the same for the three tested platforms, being the classification
accuracy dependent on the SVM model and the application.

Time results show the viability of the three platforms under
consideration, Jetson Nano, Jetson TX1 and Jetson TX2, to
achieve a real-time video classification. In the case study of
this work, the exposure time needed in the HS snapshot cam-
era, 70 ms, limits the system, as the video acquisition only can
achieve 14 FPS. In contrast, the classification processing time
can be masked within that temporal window. However, if the
illumination conditions were different and the exposure time
would not be limiting, the system would reach a maximum
FPS number depending on the classification processing time.
This time is around 28 FPS for Jetson Nano and 40 FPS for
Jetson TX1 and Jetson TX2.

For the comparison of these platforms, 4 different FoMs
were defined, showing that Jetson Nano is smaller and con-
sumes less energy than Jetson TX1/TX2, but only would
achieve 28 FPS if the exposure time were not limiting. In this
regard, Jetson TX1/TX2 would achieve up to 40 FPS, being
considered a better option Jetson TX1 for its more minor use of
energy. For these reasons, Jetson Nano is considered the best
choice as an embedded system, as the penalty of having fewer
FPS is not considered essential; the real-time video constraint

is achieved, and the exposure time would be the limiting factor
for almost every actual application.

The future lines of this work would address the test of
different classification chains, analyzing the feasibility of HS
classification video systems employing different classification
algorithms to improve the accuracy results. These new algo-
rithms would entail a higher compute capability needed, hence
needing a further acceleration. This acceleration is expected by
reducing the operation precision from 32-bits floats to 16-bits
floats, or even to 8-bits integer.
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