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ABSTRACT Versatile video coding (VVC) will be released by 2020, and it is expected to be the next-
generation video coding standard. One of its enhancements is multiple transform selection (MTS) for core
transform. MTS uses three different types of 2D discrete sine/cosine transforms (DCT-II, DCT-VIII and
DST-VII) and up to 64 x 64 transform unit sizes. With this schema, significant enhancements of the
compression ratio are obtained at the expense of more computational complexity on both encoders and
decoders. In this paper, a deeply pipelined high-performance architecture is proposed that implements the
three transforms for sizes from 4 x 4 to 64 x 64 according to working draft 4 of the standard. The design has
been described in very high-speed integrated circuit hardware description language (VHDL), and it has been
prototyped in a system on a programmable chip (SoPC). It is able to process up to 64 fps@3840 x 2.160 for
4 x 4 transform sizes. To the best of our knowledge, this is the first implementation of an architecture for
VVC MTS supporting the 64 x 64 size.

INDEX TERMS FPGA, hardware architecture, multiple transform selection, pipeline, SoPC, versatile video

coding.

I. INTRODUCTION

The future versatile video coding (VVC) standard, currently
in committee draft (CD) status [1], will be released as a new
the international standard by 2020. It is expected that this
new standard will replace the current state-of-the-art high-
efficiency video coding (HEVC) [2] with bit rate reductions
of more than 30% at the expense of substantial increments in
complexity [3].

The new codec will be based on the same hybrid coding
scheme used in the previous ITU-T and ISO/IEC standard-
ized codecs (e.g., HEVC). With this scheme, the prediction
error is transformed, quantized and encoded into a bit stream.
In VVC, a new multiple transform selection (MTS) algorithm
has been proposed. In addition to the bi—dimensional (2D)
type Il discrete cosine transform (DCT-II) [4] used in HEVC,
two additional 2D transforms, based on DCT-VIII and
DST-VII [4], may be used during the encoding/decoding
process. According to WD 4* [5], the DCT-II transforms
may have sizes of up to 64 x 64, while the other two types
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may have sizes of up to 32 x 32. In all cases, the transform
sizes may be square or rectangular (i.e., with different widths
and heights). Additionally, 2D transforms are implemented
by concatenating two 1D transforms of the same or different
types.

The implementation of the MTS scheme described above
incurs higher computational costs and requires more flexibil-
ity than the implementation of the transform cores included
in the previous standards. Compared with the current state-
of-the-art HEVC standard, the VVC maximum block size
increases from 32 to 64, which multiplies the complexity
by 4.1 Additionally, the aforementioned rectangular trans-
form sizes and mixed types, which are not present in
HEVC or in other previous standards, demand more flexible
architectures.

In this context, it is useful to consider the design of a
dedicated processor to perform the function of the MTS core

* The architecture proposed in this paper has been implemented and tested
in accordance with WD 4.

The number of multiplications required by a direct implementation of a
2D NxN point DCT/DST is N2.
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as part of a VVC full implementation. Thus, such a full imple-
mentation could be composed of a multicore general purpose
processor (GPP) and one or more dedicated processors that
execute parts of the algorithm and act as accelerators [6].

In recent years, several hardware architectures have been
proposed for the transform cores of HEVC [7]-[14]; only a
few of these are related to VVC [15]-[19]. Moreover, none
of these architectures describes a complete processor that is
ready to be connected to a GPP.

In this paper, a high-performance architecture for the VVC
MTS core implementation is presented. It has been designed
to compute 2D transforms of up to 64 x 64 size in accordance
with the WD 4 of VVC. It has been prototyped and tested into
a development board based on a Cyclone V Intel-Altera chip
and supports HD resolution in real time. To the best of our
knowledge, this is the first implementation of a VVC MTS
core processor in a system on a programmable chip (SoPC).

The remainder of this paper is organized as follows.
Section II summarizes the proposals published in recent years
and explains the rationale for this proposal. Section III, intro-
duces some background to enhance the understanding of the
next sections. Section IV proposes the architecture, which is
shown in detail. Section V, explains the test and prototyping
details, and the results are compared with those obtained
using related implementations. Finally, section VI concludes
the paper.

Il. STATE OF THE ART AND RATIONALE

In recent years, much work has been invested in developing
hardware architectures that accelerate the computation of
transforms in the state-of-the-art HEVC standard [7]-[14].
Additionally, as the standardization process of the future
VVC progresses, the first proposals related to this standard
are arising [15]-[19].

A. PROPOSALS RELATED TO THE HEVC STANDARD

In HEVC, four transform unit (TU) sizes (4 x 4, 8 x 8,
16 x 16 and 32 x 32) are defined to encode the prediction
errors. A DCT-II type transform is used in all cases with the
exception of the intra-coded 4 x 4 luminance blocks, which
use a DST-VII type transform. Tables 1 and 2 summarize
several of the most interesting proposals regarding hardware
architectures that can be used to implement the HEVC trans-
forms. The proposals shown in Table 1 use ASICs as the target
technology, while the proposals listed in Table 2 use FPGA
technology. It is worth noting that although video codecs are
consumer electronic products, FPGA—based implementations
are useful for validating the architectures and establishing
comparisons among them in the scientific literature. In fact,
it is common practice to conduct the implementations using
both ASIC and FPGA technologies, as in [8]-[10]. Moreover,
although the throughput of the ASIC-based proposals may
be roughly one order of magnitude greater than that of the
FPGA-based proposals, most of the latter are still able to
operate in real time for both HD and UHD formats.
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TABLE 1. Comparison of different ASIC-based DCT-II implementations
for HEVC.

g;?ip}?s:i tech. (I\ZIILI;Z) #kgates] throughput

[8],2013 45 nm 333 205.5 4096x2 048@301fps

[9],201471 65 nm 742 14.9 7 680%4 320@?2381ps

[10],2015 90 nm 400 328 7 680%4 320@601ps

[13],2019 90 nm 401 303 7 680x4 320@?2401fps
T only 16x16 size is supported. 1 kgates are logic gates/1 000.

TABLE 2. Comparison of different FPGA-based DCT-1l implementations
for HEVC.

prop. clk #kALMs

and technology (kslices) throughput

year (MHz) T
[7],2013% Virtex 728nm | 256 | (2.0) | 3480x2160@20fps
(81,2013 |Cyclone IV 60 nm 125 16.2 2569x1 600@30fps
[9],2014% Stratix 1 65nm | 27 80 | 3480x2160@34fps
[10],2015| Arria I1 40 nm 200 7.3 7 680x4 320@301fps
[11],2017| Stratix III 65 nm 206 52 3480%2 160@37fps
[12],2017| Arria I1 40 nm 160 6.9 3480%2 160@30fps
[14],2019| Stratix III 65 nm 139 2.8 3480x2 160@A45fps

fonly 8x8 size is supported. *only 16x16 size is supported.
1 values in brackets are slices/1 000, otherwise, values are ALMs/1 000.
(1 ALM= 2 ALUTs=2.5 LEs)

The challenge addressed in the mentioned proposals is
the hardware implementation of the HEVC DCT-II trans-
forms for the full set of TU sizes at real-time speed for
high-resolution video sequences. In [7] and [9], the imple-
mentations support only 8 x 8 and 16 x 16 TU sizes, respec-
tively. Although it is claimed that implementations could be
designed to support all TU sizes using the proposed archi-
tectures, this would occur at the expense of a significant
reduction in the throughput and/or a significant increase in the
logic resources invested in those implementations. The other
proposals in Tables 1 and 2 can work with sizes from 4 x 4 to
32 x 32 with good throughputs. In addition, the architectures
presented in [11] and [12] support DST-VII transforms for
4 x 4 blocks, but this feature is unlikely to have a great impact
on throughput or on logic resources utilization.

In all cases, the proposed architectures take advantage of
the DCT-II separability property to accomplish the transform
using two 1D transform processors interconnected through
a transposition memory. Additionally, all of the propos-
als exploit the DCT-II symmetry properties to save logic
resources by using different variants of fast DCT algo-
rithms [4]. Several proposals, including [10]-[12] and [14],
use multipliers in the 1D transform engines to implement the
product matrix. Other proposals attempt to save resources by
employing alternative strategies for the multiplication. In [8]
and [9], multiplications are implemented by add-and-shift
operations. In [7], distributed arithmetic techniques [20] are

VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VWC MTS Core

IEEE Access

used to implement the multipliers with simple shift and accu-
mulator circuits. In [13], a n-dimensional Reduced Adder
Graph (RAG-n) algorithm [21] is used to minimize the num-
ber of adders in add—shift-based multiplication circuits.

One important block in all of the architectures is the trans-
position memory; proposals [7], [9] and [10] use an array
of registers and multiplexers, while [8] and [11]-[14] use
memories. Regarding the register-based implementations,
a 32 x 32 transposition buffer with 16-bit width would
consume 16384 registers, a large amount of logic resources.
Proposals [7] and [9] do not have this problem because their
implementations only support 8 x 8 and 16 x 16 transforms,
respectively. In [10], the blocks to be transformed are divided
into small blocks of fixed size, and the processing of indi-
vidual blocks is reordered in such a way that significant
reduction of the size of the transposition buffer is achieved.
In [8], [11] and [12], the transposition buffer is implemented
with a 32 x 32 buffer based on RAM memories. Compared
with the register—based buffer, the memory approach provides
a more area—efficient way to store large amounts of data,
although it is also less flexible. To parallelize the work of the
two 1D transform processors in [9] and [10], a ping—pong
buffer is implemented; with this mechanism, the first 1D pro-
cessor can write the first transform results in one block of the
transposition memory while the second 1D processor reads
the previous results from the other block. In [11], the results of
the first 1D transform are transposed before they are written
into the memory; thus, the 1D transform processors use the
transposition memory as a simple memory buffer. In [13], the
first 1D processor writes the first transform results row—wise
in the transposition buffer, and the second 1D processor reads
them column—wise; at the same time, the first 1D processor
writes the second transform results column-wise, and so on.

B. PROPOSALS RELATED TO VVC

In the VVC WD 4, three different transform types,
DCT-II, DCT-VIII and DST-VII, are used. For DCT-II
types, the transform size may be up to 64 x 64. In addi-
tion, rectangular transform sizes (e.g., 8 x 32) are allowed
for all combinations. A simplified algorithm is defined to
reduce the complexity of 64—size DCT-II transforms; with
this algorithm, the high-frequency coefficients of 64xN or
Nx 64 transforms arezeroed, although the final result is still a
64 xN or Nx64 block. A similar approach is used for 32xN
or Nx32 transforms of the DCT-VIII and DST-VII types.
A more detailed description of these new features is given
in section III.

Regarding only the transforms and in comparison
with HEVC, VVC introduces more complexity in several
ways. First, computation complexity is increased due to
the 64 x 64 size transforms. Even with the aforementioned
simplified algorithm, the computational cost of the 64 x 64
transforms is double the cost of the 32 x 32 transforms.
Second, neither DCT-VIII nor DST-VII has the same sym-
metry properties exhibited by DCT-II. This implies that no
fast DCT algorithms may be used in their implementation,
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TABLE 3. Comparison of different proposed hardware architectures for
the implementation of VVC transforms.

prop. clk #kga |[#KALMs

and tech. tes |(kslices) throughput

year (MHz) i . ghp

+

;)51]7’ ;?)S;E 245 60 n.a. 7 680x4 320@60fps

;)51]7’ 5(}))(3:1 143 n.a. (5.2) 7 680x4 320@35fps
FPGA

;)61]8 20 nm 147 n.a. 133 1920x1 080@35fps
ASI

£1071]9’ 658 ¢ 250 496 n.a. 7680x4 320@1601ps

nm

[18], | FPGA

2019 | 20 nm 228 na | 314 3840%2 160@961ps
FPGA

;)91]9’ 28 nm 271 na 1.4 1920x1080@43fps

T kgates are logic gates/1 000 n.a.: not applicable
ivalues in brackets are slices/1 000; otherwise, values are ALMs/1 000

thus hindering the optimization of logic. Third, both the
simplified transforms and the rectangular transform sizes
increase the complexity of the control circuits. Thus, it will
be more difficult to reach the high clock frequencies obtained
with conceptually simpler proposals for HEVC. Fourth,
due to the rectangular sizes and the simplified transform
algorithms, the first and second 1D transforms of a given
block may have different computational costs. This may be
a problem when blocks of different sizes are transformed in
sequence because it is difficult to parallelize the operations
in an efficient way.

To date, only a reduced set of hardware implementa-
tions of the VVC transforms has been proposed [15]-[19].
These implementations are compared in Table 3. In all cases,
the proposed architectures are also based on two 1D proces-
sors connected through a transposition memory.

In [15], a high-performance 2D transform hardware archi-
tecture for future video coding, the previous informal name
for VVC, was proposed. The 1D processors are able to
implement 5 transform types (DCT-II, DCT-V, DCT-VIII,
DST-I and DST-VII) in accordance with the initial algorithm
proposal. Inside the 1D processors, each transform is imple-
mented with dedicated hardware; this is rather inefficient,
as only one transform is performed at a time. The proposed
architecture is implemented with both ASIC and FPGA tech-
nology and is able to process 7680 x 4.320 sequences in real
time, but it supports only 4 x 4 and 8 x 8 sizes.

In [16], a similar approach is followed to implement the
5 transform types mentioned above; however, 4 x 4, 8 x 8§,
16 x 16, and 32 x 32 sizes, as well as all the non—square com-
binations, are supported. The proposed architecture is carried
out with an FPGA. With this implementation, 1920 x 1.080
sequences can be processed in real time, but this is achieved
at the expense of a huge amount of logic resources. The
data from [16] shown in Table 3 confirm that, as mentioned
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before, the functional complexity of VVC (e.g., the variety of
transform sizes and rectangular blocks) has a negative impact
on both the clock frequency and the throughput.

In October 2018, in WD 2 [22], a multiple transform
selection (MTS) schema based on DCT-II, DST-VII and
DCT-VIII was established, and it has been maintained to
date. Based on that schema, in [17], an architecture that
supports sizes from 4 x 4 to 32 x 32 but only DST-VII
and DCT-VIII types has been proposed. To conserve logic
resources, transforms are implemented with add—shift algo-
rithms, and the number of adders is minimized using a
RAG-n algorithm [21]. Furthermore, the same logic is reused
to implement both DST-VII and DCT-VIII, as the transform
matrices actually have the same coefficients (with differ-
ent signs and positions). Very high throughput is obtained
because the logic used to implement the transforms is able
to generate a 32—pixel output result every clock cycle. This is
achieved at the expense of a large amount of logic resources
(Table 3). Additionally, the operation of the second 1D pro-
cessor is shadowed with the first one in a perfect pipeline,
using a 512 x 64 memory to implement a ping—pong buffer.
To make it possible to pipeline a mixture of different trans-
form sizes, a TU size of 32 x 32 is considered, and the input
data from every TU are read row—wise, while all transforms
in the TU are implemented in parallel. The architecture has
been implemented with 65 nm ASIC technology; the results
are summarized in Table 3. It is worth noting that this imple-
mentation does not include DCT-II type transforms, block
sizes greater than 32, or the simplified algorithm for block
sizes greater than 16.

In [18], an approximation-based approach is proposed to
compute both DCT-VIII and DST-VII transforms. It con-
sists of applying low-complexity adjustment stages to the
DCT-II to obtain an approximated computation of the other
transforms at the expense of a small reduction in the codec
performance (e.g., a bit-rate increment for the same quality).
The proposed implementation is able to perform both direct
and inverse transforms of square sizes up to 32 x 32. The pro-
posal has been implemented with an FPGA. As can be seen
from Table 3, the results are very good in terms of throughput
and logic resources. Despite its undoubted interest, this type
of approximation has not been included in the standard to
date.

Finally, in our previous work [19], a 2D multiple transform
processor architecture was proposed and implemented with
an FPGA. This architecture can process transforms of square
sizes up to 32 x 32 and achieves HD real-time operation with
a logic consumption significantly smaller than those of the
previous proposals.

C. RATIONALE FOR THE PROPOSAL

In this work, an efficient architecture to be used as a hardware
accelerator in the MTS core implementation for VVC is
proposed. The proposal is based on [19] but incorporates
the new features defined in the standard up to WD 4,
ie., DCT-II, DST-VII and DCT-VIII types, rectangular
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transform sizes up to 64x64, and simplified algorithms for
large size blocks.

The same structure used in all the aforementioned pro-
posals, a structure that is based on two 1D processors and
a transposition memory, has been chosen. To conserve logic
resources while implementing the three transform types, mul-
tipliers are used in the 1D processors; in this way, a generic
structure can be used to implement any transform type. To fur-
ther restrict the amount of logic, a single core based on
16 multipliers is recursively used to implement all transform
types and sizes. Although this approach limits the speed
performance, this is compensated for by a large system clock
frequency and an efficient pipeline between the first and
the second 1D processors.

Regarding the clock frequency, in the previously men-
tioned approach the transform computation core has a very
regular structure; this results in a more efficient pipelining
inside each 1D processor as well as a large maximum fre-
quency of operation. A different issue is the inter—processor
pipelining. As has been said, it is difficult to implement
because, due to the rectangular blocks and the simplified
transform algorithms defined in VVC, a different number of
clock cycles may be needed to compute the vertical and hor-
izontal transforms of the same block. One way to solve this
problem is to follow the approach mentioned in [17], but this
strategy introduces an important restriction to the software
that hopefully implements other parts of the encoder/decoder;
namely, the entire TU, together with the types and sizes of
all the blocks inside, must be available before starting the
transform of every TU. In our proposal, large input and output
buffers have been included to interface with the GPP. In addi-
tion, a large transposition memory working as a circular
buffer (instead of the ping—pong buffer implemented in other
proposals) has been used. The circular buffer allows several
blocks of the same or different sizes to be written while
a large block is read. With the aforementioned additional
resources, the writing of the input data, the reading of the
output data and the computation of transforms have been
decoupled. Thus, it is more feasible for the 1D processors to
work in a continuous pipeline mode, and, with a variety of
input block sizes, the computation time of a 1D processor may
be shadowed by the computation time of the other processor.

Finally, there is an issue that has not yet been mentioned.
The proposals summarized in this section [7]-[19] claim to
support high throughputs (see Table 1, Table 2 and Table 3),
but they do not discuss the mechanisms used to move the
input data and the output results between the 2D transform
processor and a GPP. However, this is a very relevant matter
for the implementation of a hardware accelerator. As an
example, in [17], a throughput of 7 680 x 4 320@160 fps
is claimed. To accomplish that, 32 16-bit pixels should be
input to the processor every clock cycle, and the same num-
ber of pixels should be output for the results. Thus, a GPP
with a 512-bit bus width should be able to transfer more
than 497.6 Mwords/s (more than 254.8 Gbps). Even with
a throughput of 1 920 x 1 080@30 fps, a 5.8 Mwords/s
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TABLE 4. Basis functions for DCT/DST types used in VVC for N-point

1D transforms. XT * THT _ Y. .
= In
transform Basis function T(j), 1,j =0, 1,...,N-1 H H
type m
_ 2 i (2j+1) W = W
T;(j) = wy -\/;-COS<T
DCT-II i
Z i=o0 *
where o, = iﬁ =
1 i#0 T
Yint = Y
4 - (2i+1)-(2j+1)
DCT-VIII (i) = .
L0 = v+t COS( 4N +2 ) W W
4 m-i+1)-G+1)
DST-VII () = - si _ H
L= jan+1 Sm( IN+1 ) = ; |
Source: Test Model 4 [23]

(2.98 Gbps) transfer rate should be maintained. The architec-
ture presented in this paper is ready to be connected to a GPP
and, in fact, has been tested in an SoPC. In this architecture,
two Direct Memory Access (DMA) engines are used to move
data between a GPP and the 2D transform processor. To opti-
mize the transfer times, the processor has been provided with
a burst mechanism. In this architecture, a set of data blocks
of different sizes and types may be sent to the transform
processor, which begins processing the first one as soon as the
corresponding input block is available. This feature provides
flexibility to the GPP, allowing it to order either one or
several transforms at a time and, in the latter case, decreasing
DMA configuration time as well as shadowing part of the
DMA input data transfer with the computing of transforms
by the 1D processors.

IIl. BACKGROUND

A. VVC BLOCK PARTITIONING AND TRANSFORM TYPES
In VVC, pictures are divided into coding tree units (CTUs)
with a maximum size of 256 x 256 samples. The CTUs
are partitioned into 4 square coding units (CUs), and the
CUs may be further divided into square or rectangular CUs
with a minimum size of 4 in both dimensions. Leaf CUs are
divided into three coding blocks (CBs), one for luminance
samples and the other two for chrominance samples. In the
encoder, the residuals of these CBs are direct-transformed; in
the decoder, the inverse transform outputs are the residuals of
the CBs.

In VVC, an MTS scheme is proposed for residual coding
for both intra- and inter-CBs [23]. Three transform types are
used: DCT-II, DCT-VIII and DST-VII. The basis functions
for the 1D transforms of size N are shown in Table 4.

B. COMPUTING THE TRANSFORMS
For all transform types, the 1D direct transform may be
computed (using matrix notation) as:

Y=7-XxT )
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FIGURE 1. Example of the 2D transform of an HxW block: a) horizontal;
b) vertical.

In the expression above, X is a 1 xN matrix with a row of
the input picture block, 7" is an N x N matrix with the N—point
transform coefficients, and Y is an Nx 1 column matrix with
the result of the 1-D transform. The transform coefficients,
one set for each transform type and size, are obtained from
the basis functions by an integer approximation and will be
part of the VVC standard. For convenience, in WD 4 and in
the reference software [24], an equivalent approach is used:

y=x.77 )

For an HxW CB (herein, H and W stand for height and
width, respectively), the 2D direct transform computation can
be performed by first computing W 1D H—point horizontal
transforms:

Yiu = X" - Ty 3)
followed by H 1D W—point vertical transforms:

Y =Y!

int

T = xT-thT 18 =Ty - X - TE (@)

In expressions (3) and (4), X and Y are Hx W matrices with
the input and output blocks, and Ty and Ty are the H-point
and W-point transform coefficients matrices, respectively.
Yius 1s an intermediate W x H matrix that holds the results of
the first W 1D H—point transforms.

As an example, in Fig. 1-a, the WxH transposed input
matrix, X7, is 1D transformed into a WxH intermediate
matrix, Y;,, and in Fig. 1-b, the transposed Hx W intermedi-
ate matrix, Y . is 1D transformed into the final Hx W output
matrix, Y.

The 2D inverse transforms of Hx W CBs can be computed
in an analogous manner:

Yie = XT - Ty (5)
Y=Y .Tw = XT-1)7 - Tw=TL - X -Tw (6)

int ”
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FIGURE 2. Example of the simplified 2D transform of a 64 x 64 block:
a) horizontal; b) vertical.

It is worth noting that the operations involved in both
the direct and the inverse transforms are the same, the only
difference being the order in which the transform coefficients
are used to perform the multiplication operations.

To finish, in VVC, the horizontal and vertical types of the
transforms are selected by the encoder on a CU basis.
The transforms can be of any size from 4 x 4 to 64 x 64.
The latter size is only used for DCT-II type transforms.

C. HIGH-FREQUENCY ZEROING FOR LARGE BLOCK-SIZE
TRANSFORMS

To reduce the computational cost of large block—size trans-
forms, in WD 4 the effective H and W of the CBs are reduced
depending of the CB size and transform type [5]:

nonZeroW = min(W, (trTypeHor > 0)?716:32) (7)
nonZeroH = min(H, (trTypeVer > 0)?716:32)  (8)

In expressions (7) and (8), nonZeroW and nonZeroH are
the effective W and H sizes, trTypeHor and trTypeVer are the
transform types (0: DCT-II, 1: DCT-VIII and 2: DST-VII),
and the min(a,b) function returns the minimum of @ and b.
The sample values beyond the limits of the effective W and
H are considered to be zero, thus reducing the computational
cost of 64—size DCT-II and 32—size DCT-VIII and DST-VII
transforms.

Fig. 2 shows an example of a 64 x 64.2D direct transform.
For the horizontal 1D transform (Fig. 2—a), the 32 high-
frequency samples of the first 32 rows, as well as the 32 lower
rows, are zeroed. As a consequence, the horizontal transform
may be computed with only 1/4 of the operations, the lower
half of the 64 x 64 transform matrix is not used, and the last
32 output rows are zero. The computation of the subsequent
vertical 1D transform (Fig. 2-b) has also been simplified,

81892

as only the products involving the upper part of the 64 x 64
transform matrix will produce non—zero results. It is worth
noting that in this case the output is still a 64 x 64 matrix,
as it would be in a regular 64 x 64 transform.

IV. THE PROPOSED ARCHITECTURE

In this section, an architecture that can compute the
2D inverse transforms of the MTS core for VVC is pro-
posed. The core architecture, consisting of two N—point
1D transform blocks and a transposition memory, is explained
in subsections IV.A, IV.B and I'V.C. Subsection IV.D explains
how a complete SoPC based on this core architecture has been
implemented.

A. THE 1D INVERSE TRANSFORM COMPUTATION

The core data path for the inverse transform computation
is shown in Fig. 3. It is composed of 4 24-bit multipliers,
an adder tree, a 30-bit accumulator, and rounding and satu-
ration logic. The circuit is able to multiply 4 16-bit inputs
by 4 8-bit transform coefficients, obtaining a 16-bit output.
It has been highly pipelined to allow high clock frequencies
and, after an initial latency, it can generate an output every
clock cycle. This data path is instantiated 4 times to imple-
ment a ID-MTS processor, as shown in Fig. 4. In the figure,
data paths 0...3 are identical except for their ROM content.
To compute a 4 x 4 transform, the start input is asserted, and
the input data are entered (through din) on a column basis
in 4 clock cycles. After an initial latency, the 4 rows of
the output inverse transformed block are generated in dout,
starting with the top row, in 4 clock cycles.

For sizes other than 4 x 4, the procedure explained previ-
ously is iterated. As an example, the computation of an 8 x 16
size inverse transform is illustrated in Fig. 5. It is worth noting
that, unlike the examples shown in Fig. 1 and Fig. 2, the 8 x 16
input block has not been explicitly transposed because the
processor reads the input data on a column-by-column basis.

In Fig. 5, the 8 x 8 transform matrix has been divided
into 4 4 x 4 transform matrices (T1...T4) for convenience.
To compute the first output row, R11, the 1D inverse trans-
form circuit reads the first 4 points of the first column from
the input, C11, and stores in the accumulator a partial result
for R11 using T1. In the next clock cycle, it reads the other
4 points of the first input column, C12, and computes a result
using T2, which is accumulated, so that the accumulator now
stores the full R11 result. In the next two clock cycles, this
process is repeated to compute R12 using T3 and T4. In this
way, the entire output row is computed in 4 clock cycles.
The whole process is repeated for the 16 columns of the
input block to compute the 16 rows of the output transformed
block in 16 x 4 clock cycles. Generalizing this procedure,
the 1D inverse transform circuit is able to compute square or
rectangular transforms of different sizes ranging from 4 x 4
to 64 x 64.

The number of clock cycles needed to compute an HxW
1D inverse transform using the aforementioned algorithm can
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FIGURE 3. Core data path for the inverse transform computation.
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FIGURE 4. Architecture of the 1D inverse transform circuit (1D-MTS
processor).
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FIGURE 5. Example of computation of an 8 x 16.1D transform.

be obtained from the following expression:

1 1 H?
Ncyclu 1D transform = ; : l_J W )

In the previous expression, variables ¢ and b have been
included to take into account the impact of the simplifications
explained in subsection III.C. For DCT-II transforms, a = 2
if H = 64; otherwise, b = 1. Additionally, b = 2 if W = 64;
otherwise, b = 1. For the other transform types, a = 2
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if H = 32; otherwise, a = 1, and b = 2 if W = 32; otherwise,
b=1.

The 1D-MTS processor design is based on the ID-AMT
processor that can be found in [19]. It is worth noting
that, unlike 1D-AMT, the 1D-MTS processor proposed in
this paper can work with rectangular transforms with up to
64 x 64 sizes, as well as with the simplified transforms
mentioned in III.C.

B. PIPELINING

To increase the processor performance, the architecture has
been fully pipelined. Regarding the functionality, pipelin-
ing introduces extra initial latency cycles. This behavior is
shown in Fig. 6; in the timeline, five 4 x 4 transforms of
different types are launched at intervals of 4 clock cycles.
The results of the first transform can be read at dout after
13 clocks (initial latency L1 in the figure) along 4 clocks
(O1 in the figure). After the second transform is launched,
the two transforms run in parallel (L1 and L2 latencies in
the figure). This means that the first registers of the pipeline
are dealing with the second transform while the rest are still
with the first transform. In the worst case, when the fifth
transform is launched, all five transforms are in progress,
each occupying part of the processor pipeline. This behavior
allows the processor to maintain its maximum throughput
after an initial latency of 13 clocks. It is worth noting that the
controller must be able to work simultaneously with up to five
different transform requests in which the transforms have the
same or different sizes and/or types. This is the worst case; for
transform sizes other than 4 x 4, the number of simultaneous
transforms is always lower.

C. 2D INVERSE TRANSFORM COMPUTATION

The 2D inverse transform computation is performed by a new
version of the 2D-VVC-MTS processor proposed in [19],
with the following enhancements:
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FIGURE 7. Architecture of the 2D inverse transform processor.

m [t can process both squared and rectangular blocks.

m It can process blocks up to 64 x 64 in size.

m It can manage zeroing for DCT-II, DCT-VII and
DST-VII transform types.

This 2D-VVC-MTS processor uses two 1D-MTS proces-
sors to implement a 2D inverse transform with the archi-
tecture shown in Fig. 7. The blocks 1D-MTS-VT and
1D-MTS-HT are identical except in their rounding and sat-
uration circuits. The results from the ID-MTS—VT proces-
sor (i.e., the 1D vertical inverse transforms) are stored in
a transposition memory, TX-MEM; then, the 1D-MTS-HT
processor reads the transposed values and implements the 1D
horizontal transform. The transposition memory works as a
circular buffer, and it has been designed to store up to 2048
4 x4 (or 16 64 x 64) intermediate results. After ID-MTS-VT
ends a 1D transform, it can proceed with the next transform,
while simultaneously, ID-MTS-HT can start the horizontal
transform.

The number of clock cycles needed to compute an HxW
2D inverse transform is obtained by adding the number of
cycles needed to compute the corresponding vertical trans-
form (given in expression (9)) and the number of clock cycles
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needed to compute the horizontal transform:

1 w2
Ncycles 1D H transform = Z . E -H (10)

In (10), b, H and W have the same meanings as in (9).
In Table 5, the numbers of cycles needed to compute the
inverse transforms of all of the supported sizes are summa-
rized. In both expression (10) and Table 5, H and W refer to
the size of the block to be inverse transformed, which is the
input block used in the first 1D (vertical) transform.

It is worth noting that if the 2D processor works in a
continuous way, the vertical and horizontal processors will
work in parallel, and the numbers stated in Table 5 may be
substantially reduced. As an example, one 32 x 32 DCT-II
transform will require 2048 + 2048 = 4096 clock cycles,
but 8 transforms of the same type and size will be completed
in 2048 + 7 x 2048 4 2048 = 18432 clock cycles, as both
processors will work in parallel during 7 1D transforms.

D. ARCHITECTURE OF THE SoPC

An SoPC with a 2D-VVC-MTS processor, a flexible
input/output interface and a GPP has been designed to test
the functionality and performance of the processor.

1) INPUT BUFFER

An input buffer has been provided with a FIFO-based inter-
face to enable it to temporarily store the input blocks and
commands corresponding to the inverse transforms to be
computed by the 2D-VVC-MTS processor. Actually, this
module implements a 64-bit memory mapped input data
interface with two addresses. The first address is for writing
data blocks (e.g., a4 x4 block) into an input data buffer, while
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TABLE 5. Number of clock cycles needed to compute the 1D inverse
transform (vertical and horizontal) for different transform sizes.

) #clock cycles . #clock cycles
size size
HxW vertical horizontal HxW vertical | horizontal
trans. trans. trans. trans.
4x4 4 4 32x4 256 32
4x8 8 16 32x8% 256 128
4x16 16 64 16%32% 256 512
4x32% 16 128 32%32% 512 1024
8x4 16 8 64x4+ 512 64
4x32 32 256 32x8 512 128
4x64+ 32 512 16%32 512 1024
8x8 32 32 32x16% 512 512
16x4 64 16 16x641 512 2048
8x16 64 128 64x8F 1024 256
8x32% 64 256 32x16 1024 512
32x4% 128 32 32x32 2048 2048
16x8 128 64 32x64t 2048 4096
8x32 128 512 64x16F 2048 1024
8x64+ 128 1024 64x32 4096 4096
16x16 256 256 64x641 4096 8192

T DCT-II type; zeroing applied for size > 32
1 DCT-VIII and DST-VII types; zeroing applied for size > 16

the second address is for writing commands (e.g., types and
sizes of V and H transforms) into a command buffer.

A simplified block diagram of the input buffer is shown
in Fig. 8. It is composed of seven modules:

m GPP-I/F is the input memory mapped interface. The
cmd/data input is the address (0 to write data and 1 to
write commands).

m IBUF-MEM is a circular buffer with the same architec-
ture as the transposition memory mentioned in III.C.

m WR-GEN generates addresses and control information
to write the data blocks into IBUF-MEM.

m RD-GEN generates addresses and control information
to read the data blocks from IBUF-MEM. It also gen-
erates the start order to the 2D-VVC-MTS processor.

m COMM-BUFI is a FIFO buffer that is used to store
the commands containing the types and sizes of the
transforms to be computed.

s COMM-BUF?2 is a FIFO buffer that is used to store
the commands containing the types and sizes of the
transforms to be sent to the 2D-VVC-MTS processor
along with the start orders. The types and sizes cor-
responding to individual 2D transforms are read from
COMM-BUF1 once the full data block corresponding
to these individual transforms has been written into
IBUF-MEM.

m WR-CB is a block that generates the wr_req write
signal to read commands (types & sizes) from
COMM-BUF1 and write them into COMM-BUF2.

As shown in Fig. 8, the input buffer has two clock domains.
The interface clock domain corresponds to the GPP-I/F,
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FIGURE 8. Simplified block diagram of the input buffer.

WR-CB, WR-GEN and COMM-BUF1 modules. The sys-
tem clock domain corresponds to the RD—-GEN module. The
IBUF-MEM and COMM-BUF2 modules work with the
interface clock domain in their inputs and with the system
clock domain in their outputs. This separation increases the
flexibility in the SoPC physical design phase.

To start a single 2D transform, a command with infor-
mation on both size and type must be written to address 1.
The command is written into COMM-BUFI1. The input
data block must then be written to address 0 row-by-row
as 4 16-bit samples in every interface clock cycle. When the
entire input data block has been written into IBUF-MEM,
the command is moved into COMM-BUF2. Finally,
RD-GEN reads the command from COMM-BUF2, begins
reading the input data block from IBUF-MEM, and generates
a start for the 2D-VVC-MTS processor.

The input buffer has been designed to efficiently support
the pipelined work of the 2D-VVC-MTS processor. It has
been dimensioned to store up to 8 32 x 32 input blocks
(i.e., 512 4 x 4 blocks). This allows it to store enough data
to implement up to 8 64 x 64 DCT-II transforms because
the zeroed high-frequency points are not actually written
into the input buffer. To start a burst of #N transforms,
#N commands with information about the sizes and types
of the individual 2D transforms can be written to address 1
(in COMM-BUF1). Next, the input data blocks correspond-
ing to these transforms must be written to address O (into
IBUF-MEM) in sequence. After each single input data block
has been written, the corresponding command is moved
into COMM-BUF2. When the first command is available in
COMM-BUF2, the first transform is started by RD—-GEN.
Thus, while the 2D-VVC-MTS processor is computing the
first transform, the other input data blocks are being writ-
ten into IBUF-MEM, and the corresponding commands are
being moved from COMM-BUF1 to COMM-BUF2. In this
way, when the 2D-VVC-MTS processor ends with a 1D ver-
tical transform, a new transform will be started automatically.

2) OUTPUT BUFFER

The output buffer is also a FIFO-based interface that is used
to store the output data blocks corresponding to the inverse
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FIGURE 9. Simplified block diagram of the output buffer.

rden_data
A

2D transform results computed by the 2D-VVC-MTS pro-
cessor. The first address is used to read data blocks from a
buffer, while the second is used to read status information.

A simplified block diagram of the output buffer is shown
in Fig. 9. It is composed of five modules:

m GPP-I/F is the output memory mapped interface. The
sta/data input is the address (0 to read data and 1 to
read status).

m OBUF-MEM is a FIFO buffer. It stores the 64-bit
output data from the 2D-VVC-MTS processor until it
can be read through the GPP-I/F.

m SIZE-BUFI1 is a FIFO that stores the sizes of every
individual transform started by the 2D-VVC-MTS
processor.

m SIZE-BUF2 is a FIFO that stores the sizes of
the individual transforms actually computed by the
2D-VVC-MTS processor.

m MUX is a module that allows reading of either the
output data blocks stored in OBUF-MEM or the status
information through the GPP-I/F.

As shown in Fig. 9, the SIZE-BUF1 module belongs to
the system clock domain. The GPP I/F belongs to the inter-
face clock domain. The other modules have the system clock
domain for their inputs and the interface clock domain for
their outputs.

The OBUF-MEM has been dimensioned to store up to 8
64 x 64 DCT-II output blocks (i.e., 2048 4 x 4 blocks).
The output transformed blocks stored into the OBUF-MEM
can be read in sequence. By reading the processor sta-
tus, information about the number of blocks stored in the
OBUF-MEM, the block size of the first block, and the empty
and full flags from the SIZE-BUF2 FIFO can be obtained.

3) ARCHITECTURE OF THE SOPC
The SoPC consists of a 2D-VVC-MTS processor that is
connected to the input and output buffers described in the
previous subsections. In addition, two DMA engines are used
to move data from the GPP to the INPUT BUFFER and from
the OUTPUT BUFFER to the GPP. The system architecture
is shown in Fig. 10.

In the SoPC, the GPP writes one or more input data
blocks to be inverse-transformed into an internal On Chip
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FIGURE 11. Simplified block diagram of the VHDL testbench.

RAM (OCR). After that, it writes one or more commands
to the COMM-BUF]1 FIFO (inside INPUT BUFFER), each
with the types and sizes of the individual transforms. It then
configures DMAL to transfer the data blocks from the OCR
into the IBUF-MEM (also inside INPUT BUFFER). The
GPP has time to perform other tasks while the input blocks
are transferred to the INPUT BUFFER and the transforms are
computed and stored in the OUTPUT BUFFER; alternatively,
it can continuously poll the status in the OUTPUT BUFFER
interface to determine how many transforms have been com-
pleted. Finally, the GPP may configure the DMA2 to transfer
the results from the OUTPUT BUFFER into the OCR.

V. TESTS AND RESULTS

A. VHDL TESTBENCH

A VHDL testbench has been designed and used to fully
test the 2D-VVC-MTS processor and the input and out-
put buffers using ModelSim simulator [25]. The testbench
(see Fig. 11) may be configured to run tests in 4 modes.

In mode 1, the testbench uses pseudorandom input data
blocks and commands with all the supported types and sizes.
A uniform distribution was selected for the random generator.
For each block, the 2D inverse transform is performed by the
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2D-VVC-MTS processor and computed in software at the
same time, and the results are automatically compared for
equality.

In mode 2, the testbench reads the input data blocks and
commands from a file. The 2D-VVC-MTS processor per-
forms the inverse transforms, and the results are automatically
compared with the transforms computed by the software.
Mode 3 works in the same way as mode 2, but the results are
compared with those stored in a file instead of with results
computed by the software.

Finally, mode 4 works in the same way as mode 1 except
that the input data, types and sizes are written and transformed
in bursts of fixed size.

In all cases, a 150-MHz clock was used for the inter-
face clock domain, and a 200-MHz clock was used for the
system clock domain. These values are directly related to
the logic synthesis results summarized in subsection V.C.
With this testbench, the processor has been verified using
mode 1 and mode 4 tests. In each case, a set of 10° 2D
inverse transforms of random sizes and types was tested and
verified. Additionally, mode 2 and mode 3 were used to
conduct tests with Cactus, BasketballDrive and BQTerrace
sequences with Random Access 8—bit decoding configuration
and quantization parameter (QP) 32; these are 1920 x 1.080
sequences defined according to common test conditions [26].
In this case, the input data files (needed for both mode 2 and
mode 3 tests) and the output data files (needed only for
mode 3 tests) were obtained by instrumenting the decoder in
the VVC reference software [24]. Version 4.2 was used for
this purpose.

B. 2D-VVC-MTS PERFORMANCE RESULTS

A first set of performance results was obtained with the
VHDL testbench working in mode 3. The results are shown
in Table 6 for the aforementioned Cactus (CA), Basket-
ballDrive (BD) and BQTerrace (BQ) sequences. For each
sequence, the total decoding time and the average decod-
ing time per picture were obtained (see Full seq. column
in Table 6). Additionally, for both I-type and P-type pictures,
the decoding time of the slowest and fastest picture and the
average decoding time per picture are shown. The obtained
full sequence average decoding times per picture lead to
performances ranging from 282 to 1052 fps depending on
the sequence. With these numbers, real-time is supported for
both HD (1920 x 1.080) and UHD (3840 x 2.160) resolutions.
These quite good results benefit from the fact that most B
pictures contain many skipped blocks. Thus, the average time
required to decode I pictures ranges from 5 to 23 times the
average time required to decode B pictures depending on
the sequence. If only I-type pictures are taken into account,
performance ranges from 28 to 48 fps.

Although the results given previously are close to those that
could be obtained in a real scenario, they depend greatly on
the type of video sequences used in the tests. To obtain objec-
tive results that can be compared with those obtained using
other implementations, it is usual to compute the performance
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TABLE 6. Performance results obtained in mode 3 tests for the
Cactus (CA), BasketBallDrive (BD) and BQTerrace (BQ) sequences.

Full seq. I pictures B pictures
seq. | total avg.
(#pic| dec. | per | slowest | fastest | avg. | slowest | fastest | avg.

tures)| time | pic. | (ms) (ms) | (ms) (ms) (ms) | (ms)
(s) | (ms)

ca 134 2.7 14.2 153 14.5 9.3 0.002 | 2.3

(500)

Bp 1.77 | 3.5 19.4 15.3 17.4 17.8 0.142 | 3.1

(500)

BQ

057 | 1.0 11.2 14.7 12.4 16.1 0.000 | 0.6

(600)

TABLE 7. Theoretical number of frames per second obtained with the
VVC-MTS-PROC implementation for HD (1920 x 1.080) and UHD
(3840 x 2.160) resolutions. 4:2:0 sampling was considered for all cases.

transform size
resolution -
4x4 | 8x8 | 16x16 | 32x32 | 32x32} |64x641| Mix
1920x1080 | 257 | 128 64 32 64 32 40
3840x2160 | 64 | 32 16 8 16 8 10

T DCT-II type; zeroing applied for size > 32
1 DCT-VIII and DST-VII types; zeroing applied for size > 16

in number of fps when all picture blocks are transformed
(i.e., with no skipped pictures). Table 7 shows the theoretical
number of frames per second that can be processed by the
VVC-MTS-PROC for both HD and UHD resolutions in
a number of scenarios. In all cases, it has been assumed
that the processor works with a 200 MHz system clock
(subsection V.C) in a fully pipelined mode, i.e., that it is
always computing transforms one after another. In this way,
the 1D vertical and horizontal transforms of different blocks
can run in parallel, and the time needed to complete a trans-
form can be computed as the time needed to complete the
horizontal 1D transform. It has also been assumed that the
data motion to and from the processor runs in parallel with
the transforms processing. The last 6 columns of Table 7 cor-
respond to simple scenarios in which all blocks are square
and of a fixed size. In the last column, Mix, the frames are
supposed to contain blocks with a uniform distribution of
random sizes and types.

With these numbers, real time is supported for HD reso-
lution. It is worth noting that the processor performance is
closely related to the system clock frequency. The FPGA used
to prototype the SoPC is a low—end 28-nm chip [27]. The use
of medium—end [31], [32] or high—end [32], [33] FPGAs or of
an ASIC would greatly increase the maximum system clock
and hence the performance in terms of number of frames
per second.

C. IMPLEMENTATION AND LOGIC SYNTHESIS RESULTS
The SoPC has been implemented in a Cyclone V
SCSXFC6D6F31C6 FPGA [27] and prototyped with a
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TABLE 8. Physical design results for the SoPC design.

max. i/f max. sys #RAM

clock clock #reg |#mul| #ALMs blocks

(MHz) (MHz) (x10Kb)
151 204 9104 32 5179 391

SoCkit development board [28]. It has been built using
Platform Designer [29]. Fig. 12 shows the Platform Designer
view of the SOPC. The VVC-MTS-PROC block groups the
2D-VVC-MTS processor and the input and output buffers.
The other blocks are Intel-Altera IPs: a CLKIN module to
input a 50-MHz clock, two PLLs to generate the clocks of
the two domains from the 50-MHz clock, the GPP (an ARM
Cortex—A9 MPCore), and two DMA controller engines to
move data between the VVC-MTS-PROC and the GPP.

The GPP has two 64-bit AXI interfaces, a master and
a slave. The master interface (h2f_axi_master in Fig. 12)
is used to write the commands to the input buffer, read
the status from the output buffer, and configure the DMA
controllers. The slave interface (f2h_axi_slave) is used by
the DMAL1 controller to move data from the GPP OCR to
the VVC-MTS-PROC input buffer. It is also used by the
DMAZ2 controller to move data from the VVC-MTS-PROC
output buffer to the GPP OCR. It is worth noting that the
VVC-MTS-PROC input and output buffers have Avalon
Memory Mapped interfaces; the compatibility between the
Avalon and AXI interfaces is solved by the interconnection
logic automatically generated by Platform Designer [29].

The logic synthesis and physical design of the system
were performed using Quartus Prime [30]. Experimentally,
we chose clocks of 150 MHz for the interface clock domain
and 200 MHz for the system clock domain. To support these
clock speeds, the logic synthesis tool has been constrained
to prioritize speed versus area (i.e., resource consumption).
Additionally, retiming techniques have been used to increase
the clock speed. The physical design results are summarized
in Table 8.

D. TESTS CONDUCTED WITH THE PROTOTYPE

Tests were conducted with the prototype by computing a wide
set of transforms with random input blocks, transform types
and sizes.

In this testbench, the GPP boots a Linux OS from an SD
card that also contains the FPGA configuration file generated
by Quartus Prime; this file is transferred to the FPGA during
the OS booting. Finally, a UART interface is used to imple-
ment a PC terminal to run applications from the GPP OS.
A test application was written in C language and compiled to
be run in the GPP. When executing the application from the
console, a menu is displayed with the following options:

m Option 1: A reset command is sent to the processor. The
effect is the same as that of a hardware reset.

m Option 2: A set of 10%transforms, each with random
input data blocks, type and size, is performed.
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FIGURE 12. Platform Designer view of the SoPC.

FIGURE 13. Running the test with the prototyping board.

m Option 3: A set of 10° transforms, grouped in bursts
of 8, are performed. Each transform has random input
data blocks, types and sizes.

m Options 4, 5, 6, 7 and 8: These are the same as option
3 except that the block sizes are fixed to NxN, where
N=4 x 2(#0ption74)'

m Option 9: This option works similar to option 3 but with
block sizes fixed to 32 x 32 and transform types fixed
to DCT2.

m Option 10: This option works similar to option 9, but
the block types are randomly selected from DST-VII
and DCT-VIIL

In all of the above options, the GPP also computes the same
transforms by software and compares the results with those
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FIGURE 14. Simplified flow diagram of test option 3.

obtained by the processor on the fly. The software imple-
mentation is based on V 4.2 of VVC Reference Software.
Fig. 13 shows the prototyping board connected to a PC host
using an USB-UART interface. The console on the left side
shows the test menu.

Test option 2 is focused on validating the processor’s func-
tionality. After the execution of this test, the console shows
the percentage of blocks of different sizes and transform
types used in the test and indicates whether errors were found
when the hardware- and software-computed transforms were
compared.

The remaining test options focus on measuring the time
needed to perform transforms in the burst mode. In Fig. 14,
a simplified flow diagram for test option 3 is shown (the flows
in options 4... 10 are similar; the flow in option 2 is simpler).
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Initially, NTMAX is fixed to 106, and BURST is set to 8. For
each loop, a random set of 8 input blocks with random types
and sizes is generated. After the input blocks are written into
the OCR, 8 commands (one per transform) are written to the
processor input buffer (into COMM-BUF1), and DMAL is
configured and begins to move the input blocks from the
OCR to the processor input buffer (into IBUF-MEM). After
DMALI transfer is completed, the processor status is polled
until the transforms are completed. It is worth noting that,
in an actual application, the GPP could perform other tasks
instead of continuously polling the DMA and the processor.
When the transforms have been computed, DMA?2 is con-
figured and begins to move the results from the processor
output buffer (from OBUF-MEM) into the OCR. Finally,
when DMA? transfer has been completed, the 8 transforms
are computed in software, and the results are compared with
the results stored in the OCR. When the NTMAX transforms
have been performed, the console shows statistics for the
number of transformed blocks of each size and type and the
average time used to run various parts of the test.

To measure time, the Linux clock_gettime function was
used. As shown in Fig. 14, the execution time between each
sequential pair of 7 test points labeled from 1 to 7 was
measured. The time measured for test point #N is the GPP
execution time between the start gettime #N point and the
stop gettime #N point in Fig. 14. These test points correspond
to the following time measurements:

m Test point #1: whole loop.

m Test point #2: generation of random inputs, types and
sizes.

m Test point #3: copying of input blocks into the OCR.

m Test point #4: implementation of the transforms, includ-
ing data motion into/from the processor.

m Test point #5: software computation of the transforms.

m Test point #6: packaging of software results to make
them ready for the comparison.

m Test point #7: time spent comparing processor and
software-computed results.

Table 9 outlines the main results obtained with the afore-
mentioned tests. All of the measurements shown in this table
are given in microseconds. The first row, Th, was included
for reference. It corresponds to the theoretical time needed
by the 2D-VVC-MTS processor to complete transforms of
different sizes and types assuming fully pipelined work. The
times in this row are obtained by multiplying the system clock
period (5 ns) by the number of clocks needed to implement
the horizontal 1D transform, which is given in Table 5.

The times in the second row, Hw, come from the mea-
surements obtained with test options 3, 4, 5, 6, 8, 9 and 10.
They include the DMAs configuration, the time to move
data from the GPP OCR to the 2D-VVC-MTS processor,
the time to complete the transforms, and the time to move
the results back to the OCR. In all cases, the transforms are
computed in bursts of 8. Thus, the fastest 1D transforms are
shadowed by the slowest ones; this is true for all but the first
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FIGURE 15. Snapshot of the Logic Analyzer timing chronogram obtained during test 8.

TABLE 9. Time to complete 2D transforms of different sizes and
types (us).

transform size

x4 | 8x8 | 16x16 | eax6a | 32x32 | 32x32
mix* .

source random types only DCT-1I II))(;].;_Y/IIIII
Tht 453 0.02 [0.16| 1.28 40.96 10.24 5.12

Hwi [952( 077 [1.09| 2.99 58.4 15.98 9.58

Sw** 1440.5| 3.5 |43.6| 107.1 | 2652.9 891.8 1268.4

T Theoretical. 200 MHz system clock. Fully pipelined work (the operation
of one 1-D processor is shadowed with the other one).

I Measured (hardware). Includes the time to write the input data and to
read the results. 8 transform bursts; the time measured for a burst is
divided by 8.

* Mixture of random selected types and rectangular sizes.

** Measured (software). Transforms are computed by the GPP in software.

and the last transforms in each burst. Moreover, part of the
time to move data from the OCR to the processor is also
shadowed with the computation of the first transforms. The
times shown were obtained by dividing the average time to
complete 125000 bursts by 8.

Finally, in the third row, Sw, the time employed by the
GPP to compute the same transforms by software, is given
for reference. The software implementation is based on the
VVC reference software; in particular, no optimizations were
performed to take advantage of any GPP special instructions.

The measurements in Table 9 show that the 2D-VVC-
MTS processor’s actual computation times are close to the
theoretical times only for large block sizes (e.g., 32 x 32 or
64 x 64). For small sizes, the time required to program the
DMA configuration and move data to/from the processor is
dominant. However, for all block sizes, the computation times
are significantly shorter than those obtained with the software
implementation.
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E. LOGIC ANALYZER SNAPSHOTS

To obtain further insight into the SoPC operation, the Quartus
Prime Signal Tap Logic Analyzer was used to monitor several
key internal signals in real time. As an example, Fig. 15 shows
the snapshot obtained during the occurrence of a 32 x 32 burst
in test option 8. In the upper left corner, the simultaneous
activity in the WR_BUF and CMD_DAT signals shows the
writing of the 8 commands into the INPUT BUFFER. The
activity in WR_BUF that occurs while CMD_DAT = ‘0’
identifies the DMA1 transfers of the input data blocks from
the GPP OCR to the INPUT BUFFER. When enough data
has been moved into the INPUT BUFFER, the first vertical
transform 1is started; this can be identified by the pulse in
the internal START_VT signal. When a vertical transform
is completed, a new one is started, and a horizontal trans-
form (START_HT) is started at the same time. It is worth
noting that the DMAT1 data motion runs in parallel with the
first 1D vertical transforms. Additionally, with the exception
of the first vertical transform and the last horizontal trans-
form, the vertical and horizontal transforms run in parallel.
Finally, when the last horizontal transform is completed,
the DMAZ2 transfers the results from the OUTPUT BUFFER
to the GPP OCR. This can be identified by the activity on the
RD_BUF and DATA_OUT_BUF signals.

F. COMPARISON WITH OTHER PROPOSALS

Table 10 summarizes the key parameters used to compare the
performance of the 2D-VVC-MTS processor with that of
other implementations. All proposals in Table 10 implement
2D transforms using two 1D transform processors plus a
transposition memory. The type of transform implemented in
the proposals (direct or inverse) is not relevant for the purpose
of the comparison. To ensure a fair comparison, the data
included in Table 7 were used to characterize the performance
of our proposed implementation (SoPC, in the first row).
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TABLE 10. Comparison of FPGA-based implementations considering
UHD (3840 x 2160) resolution and 4:2:0 sampling.

fps@trans_size #KALM
im clk ftkreg (kslice)
#mul
pl. 4 8 16 32 64t MHz * [kgates]
* 3k
SoPC,
64 32 16 8 8 200 9.1 32 5.1
28 nm
[15],
93 93 n.a. n.a. n.a. 143 4.5 0 (5.2)
K0 nm
[16],
7 12 24 13 n.a. 147 274 1561 133
20 nm

[17], 643 643 643
65nm | x64 x16 x4

(18],
20 nm

[19],
28 nm

643 n.a. 250 n.a. n.a. [496]

11* 19* 41 96 n.a. 228 75.5 738 36.7

87 43 21 10 n.a. 271 4.6 32 1.4

+ DCT-II type, zeroing applied as required

n.a. not applicable (not supported)

* kreg are registers/1000

**yalues in round brackets are slices/1000; values in square brackets are
gates/1000; others are ALMs/1000.

* This result is not given in [18]. It was assumed that both 4 x 4 and 8 x 8
transforms are implemented as in [16] but with the (higher) clock
frequency in [18].

At this point, it is important to say that the implementation
described in this paper has a set of unique features:

m First, it is the only implementation that supports rect-
angular block sizes up to 64 x 64. The proposal in 17]
only supports DCT-VIII and DST-VII transform types
(with sizes up to 32 x 32, as defined in the standard). The
proposal in [15] supports 4 x 4 and 8 x 8 sizes only. The
other proposals ([16], 18] and [19]) support sizes up to
32 x 32. Rectangular blocks are only supported in [16]
and in our proposal.

m Second, it is the only implementation that supports the
simplified computation for the higher size transforms
that were defined in WD 4 (and that have been main-
tained in the actual CD).

m Third, our proposal is the only proposal that has been
implemented as a peripheral ready to be connected to a
GPP. Moreover, it has been implemented and tested in
an SoPC.

It is worth noting that all of these characteristics introduce

a complexity in the design that is not present in the other
proposals, posing a challenge in achieving good results with
respect to both consumed logic resources and throughput.

Regarding logic resources consumption, our proposal is

clearly better than [16] and [18]. Even considering that the
implementation in [18] includes both direct and inverse trans-
forms, the differences are very large. Compared with [15],
our implementation has 32 multipliers and twice the number
of registers, but it supports rectangular blocks up to 64 x 64
size. A fair comparison with proposal in [17] is difficult as it is
an ASIC implementation. In any case, its functionality is very
limited compared with that of our proposal. Finally, it must be
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taken into account that the architecture proposed in this paper
is an enhancement of our previous work in [19]; this enhanced
system supports 64 x 64 block sizes, rectangular blocks and
simplified computation of large transforms and includes the
input and output buffers and the system architecture described
in subsection IV.D. All of these improvements are responsible
for the increment in logic resource usage compared with [19].

As would be expected, the best throughputs are obtained by
the less complete implementations [15] and [17]. Our imple-
mentation yields results similar to those of [16] but uses far
less logic resources. The implementation in [18] exhibits very
good performance for 32 x 32 block sizes, but the throughput
decreases as the block sizes go down. Our implementation
has the opposite behavior. In an actual application, a mixture
of blocks of different sizes can be expected; in this case,
the performances of the two proposals approach similarity.
As an example, for a mix of equally probable blocks of sizes
from 4 x 4 to 32 x 32, our proposal would have a throughput
of 30 fps, while the proposal in [18] would reach 41 fps.
It is worth noting that, with the same mixture of blocks,
the proposal in [19] has a throughput of over 40 fps. From
this, it follows that the difference (40 — 30 = 10) is the
cost of supporting 64 x 64 block sizes, rectangular blocks,
simplified computations for large transforms and a complete
interface for a GPP. Additionally, as mentioned previously,
the approximated approach in [18] is non—standard and has a
slight cost in terms of bit rate.

Last but not least, it should be noted that our proposal was
implemented with a low—end FPGA, while proposals [16]
and [18] were implemented with medium—end FPGAs, and
proposal [17] was implemented with an ASIC. Our estima-
tion is that with a medium or high—end FPGA or an ASIC,
the architecture proposed in this paper could support real—
time UHD formats.

VI. CONCLUSION
In this paper, 2D-VVC-MTS, an efficient FPGA-based
architecture for the computation of the future versatile video
coding (VVC) multiple transform selection (MTS) core, has
been proposed. The architecture supports rectangular trans-
form sizes ranging from 4 x 4 to 64 x 64 and simplified
algorithms for large bocks according to WD 4 of the standard.
Moreover, 2D-VVC-MTS has been provided with a flex-
ible input/output interface, and a system on a programmable
chip (SoPC) has been designed to demonstrate its perfor-
mance. To the best of our knowledge, this is the first proposal
to include block sizes of up to 64 x 64 and the simplified algo-
rithms for large-size blocks. These two key characteristics
introduce a complexity that is not seen in previous proposals,
including those for the current HEVC standard and those for
the new VVC. In comparison with the latter, the architec-
ture proposed in this paper consumes fewer logic resources
and is able to work at higher or similar clock frequencies.
It supports HD resolution in real time and UHD@10 fps.
These numbers are achieved with a low—end FPGA-based
implementation, but with an ASIC or even a high-end FPGA,
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UHD formats could be processed in real time. In addition,
the small footprint of the core 1D transform processor leaves a
margin for future parallelization of the transform computation
by doubling or quadrupling the number of cores to increase
the speed (e.g., X2 or x4).
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