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ABSTRACT An analysis of the relationship between the bandwidth of acoustic signals and the required
resolution of steered-response power phase transform (SRP-PHAT) maps used for sound source localization
is presented. This relationship does not rely on the far-field assumption, nor does it depend on any specific
array topology. The proposed analysis considers the computation of a SRP map as a process of sampling a
set of generalized cross-correlation (GCC) functions, each one corresponding to a different microphone pair.
From this approach, we derive a rule that relates GCC bandwidth with inter-microphone distance, resolution
of the SRP map, and the potential position of the sound source relative to the array position. This rule is
a sufficient condition for an aliasing-free calculation of the specified SRP-PHAT map. Simulation results
show that limiting the bandwidth of the GCC according to such rule leads to significant reductions in sound
source localization errors when sources are not in the immediate vicinity of the microphone array. These
error reductions are more relevant for coarser resolutions of the SRP map, and they happen in both anechoic
and reverberant environments.

INDEX TERMS Acoustic signal processing, microphone arrays, signal sampling, sound source localization,
steered-response power maps.

I. INTRODUCTION
Sound source localization based on steered-response
power (SRP) maps computed using the generalized cross-
correlation (GCC) function with phase transform (PHAT),
i.e. SRP-PHAT, has been reported to perform robustly against
noise and, especially, reverberation [1], [2]. The PHAT
applied to the GCC function has the effect of narrowing its
maxima, hence allowing a more precise identification of the
time difference of arrival (TDOA) between microphones [3].
However, this increased precision can only be exploited
by correspondingly reducing the spatial resolution1 of SRP
maps, which turns out to be one of the main drawbacks of

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .
1Herein, resolution is defined as the distance between contiguous points

in the map grid. Therefore, the lowest resolutions correspond to the finest
map grids, and the highest resolutions are associated with the coarsest grids.

sound source localization based on SRP-PHAT [1] since it
implies higher computational costs.

Therefore, implementing a sound source localization sys-
tem based on SRP involves finding a balance between com-
putational cost and precision. To present, this challenge has
been approached in several ways. One of them has con-
sisted in performing calculations at several resolution lev-
els, from coarsest to finest, and limiting the extent of the
map each time the resolution is decreased. This hierarchi-
cal search can be implemented, for instance, by defining
rectangular and regular grids whose cells are iteratively
decomposed into finer grids [4]–[7]. Instead of conducting
the hierarchical search using regular grids, some researchers
have proposed grouping regions by TDOA [8], or decreas-
ing resolution mainly in regions where the SRP function is
expected to vary most abruptly [9]. Other approaches try
to avoid iterative processes, thus keeping resolution fixed,
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while computational cost is maintained at an affordable level
by restricting the search space only to regions where the
sound source is expected to be, according to some a priori
information [10], [11].

When coarse spatial resolutions are used for generating
SRP maps based on spiky functions such as the GCC-PHAT,
two risks are taken. On the one hand, the narrow peak corre-
sponding to the global maximum of the GCCmay not be ade-
quately sampled; on the other hand, spurious local maxima of
the GCCmay be reflected in the SRPmaps. These two effects
can distort localization estimates, an effect that is more likely
to happen at the first stages of hierarchical searches, thus
leading to severe errors in the overall results. In order to avoid
such errors several approaches have been proposed so far,
such as stochastic region contraction (SRC), which involves
performing a stochastic search of the highest peaks in the
SRPmap [12] before decreasing map resolution and reducing
map extent; calculating the integral of the GCC-PHAT along
an interval of time delay values defined by the position of
each grid point and the spatial resolution of the map [13]; or
designing the map grid considering the specific geometry of
the microphone array [14]. Alternative approaches based on
deep learning have also been proposed to reduce the number
of local maxima in the SRPmap by either post-processing the
GCC [15], or the map itself [16].

Qualitatively, the width of peaks in the GCC are known to
be related to the spectral content of the audio signal. Thus,
signal spectrum or, more specifically, signal bandwidth is
not independent of the spatial map resolution required to
obtain good localization estimates. This relation can be used
to design the afore-mentioned hierarchical search considering
the bandwidth of the specific signal being processed [4],
and it is also implicit in proposals such as integrating the
GCC-PHAT [13] (integration is equivalent to low-pass filter-
ing) or applying multi-band analysis to reduce the effects of
spatial aliasing [17].

The peak narrowing in the GCC becomes particularly rel-
evant for large inter-microphone distances when the sound
source is likely to be near themicrophone array, or even inside
it. For this reason, distributed microphone arrays potentially
allow better precision in source localization [18], but at the
cost of higher computational load, as reasoned before. For
these particular cases, a quantitative rule relating signal band-
width and inter-microphone distances has been proposed in
order to avoid the appearance of spurious secondary lobes in
the beam pattern of the array. Specifically, it is commonly
assumed that the acoustic wavelength for far-field measure-
ments using microphone arrays should be larger than twice
the inter-microphone distance (e.g. [19]). However, such rule
does not consider map resolution.

Considering all the previous questions as a whole, it is
straightforward to conclude that there is a relationship
between inter-microphone distance or array size, signal
bandwidth, and the spatial resolution required to avoid
under-sampling the GCC. In this paper, we present a rule that
quantifies this relation. The analysis leading to this rule does

not rely on the far-field assumption and it is not dependent on
any specific array topology. The rule can be applied to hier-
archical searches at every resolution level to avoid the emer-
gence of spurious maxima at the corresponding SRP maps,
hence achieving lower errors in sound source localization
estimates. Furthermore, it provides an alternative interpreta-
tion, based on basic signal processing theory, of algorithms
involving GCC integration [13], design of map grids with
reduced resolution in certain areas [14], or adjustment of grid
resolution as a function of signal bandwidth [4].

The adopted approach considers the computation of a SRP
map as a process of sampling a set of GCC functions, each
one corresponding to a different microphone pair. This the-
oretical analysis is presented in sections II and III, while
its implications for SRP map calculations are discussed in
section IV. Section V shows how to incorporate the previous
theoretical results into the process of calculating SRP maps
by limiting the bandwidth of the GCC specifically for each
point in the map. Results obtained using this approach pre-
sented in section VI indicate that it can provide significant
error reductions in the estimation of source positions. The
conditions in which such improvements can be achieved are
discussed in section VII.

II. PROBLEM STATEMENT
Sound source localization consists in estimating the position
Ers of an acoustic source with respect to a certain coordinate
reference, given the corresponding acoustic signals captured
at a set ofK microphones whose positions are known.When a
SRP algorithm is used, the source position is estimated as [2]:

Ers ≈ argmaxP (Er) , (1)

where P (Er) is the value of the SRP map at position Er . This
can be calculated as:

P (Er) = 2π
K∑
k=1

K∑
l=1

Rkl (τl (Er)− τk (Er))

= 2π
K∑
k=1

K∑
l=1

Rkl (τkl (Er)) , (2)

where τk (Er) is the propagation delay between position Er and
the position of the k th microphone, and Rkl (τkl (Er)) is the
GCC function between the sound signals captured at micro-
phones k and l, respectively sk (t) and sl (t), evaluated at time
lag τkl (Er). When the PHAT weighting is used, the GCC can
be calculated as:

Rkl (τ ) =
∫
∞

−∞

Sk (ω) S∗l (ω) · e
jωτ

2π
∣∣Sk (ω) S∗l (ω)∣∣ dω, (3)

being Sk (ω) the Fourier transform of sk (t), and j the imag-
inary unit. This calculation is problematic when the inte-
gral spans over frequencies for which the signal-to-noise
ratio (SNR) corresponding to sk (t) and sl (t) is low [3],
due to the division in (3). In the case of passband signals,
whose SNR is high only within a certain frequency interval
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ωmin ≤ ω ≤ ωmax, this can be solved by limiting the
integration to the same interval:

Rkl (τ ) =
∫
ωmin≤|ω|≤ωmax

Sk (ω) S∗l (ω) · e
jωτ

2π
∣∣Sk (ω) S∗l (ω)∣∣ dω. (4)

Therefore, P (Er) is a non-linear function of a three-
dimensional variable Er . Its maximization is commonly per-
formed by evaluating it on a set of predefined points (usually
a grid) in the area of interest, and selecting the point yielding
the highest value [2]. Considering (2), this approach can be
seen as a sampling of P (Er) in which each sample is obtained
by combining certain samples of the GCC functions Rkl (τ ).
When jumping from one of these predefined points Er to a
contiguous one in the grid Er + 1Er , the time lags at which
the GCC functions need to be evaluated change from τkl (Er)
to τkl (Er +1Er), hence missing all intermediate values of the
GCC functions. In cases for which |τkl (Er)− τkl (Er +1Er)|
is large enough, some narrow peaks of the GCC may be
missed, leading to localization errors like those illustrated
in [20, Figs. 7 and 8].

According to this approach, the calculation of SRP maps
can be understood as a compound sampling process of the
GCC functions corresponding to all microphone pairs. The
research question faced here is whether some basic sampling
theory can be applied to model this process and derive an
equation that relates GCC bandwith to grid resolution, and
whether such amodel could be useful for improving the local-
ization performance of SRP-PHAT algorithms by modifying
the calculation of GCC functions instead of making use of
GCC integration at a later stage as in [13], or designing point
grids specific for each scenario, like in [14].

III. GEOMETRICAL ANALYSIS
Let’s consider the simple case of two microphones k and l
and one point Er = (x, y, z) for which P (Er) needs to be
evaluated (Fig. 1). Without loosing generality, let’s further
suppose that both microphones are symmetrically arranged
around the origin of coordinates, so microphone k is placed
at position Erm = (xm, ym, zm), and the position ofmicrophone
l is −Erm. Given the value of the sound velocity c, the TDOA
between microphones k and l associated to point Er is:

τkl (Er) =
1
c
(rl − rk) =

1
c
(‖Er + Erm‖ − ‖Er − Erm‖) , (5)

where ‖·‖ is the Euclidean norm, and rk = ‖Erk‖. We are
interested in studying the sampling process of Rkl (τ ), so we
analyze how the sampling time τkl changes as the potential
source position changes from one grid point to a contiguous
one. Specifically, according to a first-order Taylor approxi-
mation, given τkl (Er), the TDOA at a contiguous point Er+1Er
can be approximated as [21, chap.11]:

τkl (Er +1Er) ≈ τkl (Er)+∇τkl (Er) ·1Er, (6)

where ∇τkl (Er) is the gradient of the TDOA and · is the dot
product. The interval between adjacent samples of Rkl (τ ) can

FIGURE 1. Simplified scenario comprising two microphones (triangles)
and one position (circle).

then be estimated as:

1τkl = |τkl (Er +1Er)− τkl (Er)| ≈ |∇τkl (Er) ·1Er| . (7)

According to the properties of the dot product:

1τkl ≈ |∇τkl (Er) ·1Er| ≤ ‖∇τkl (Er)‖ ·1r, (8)

where 1r = ‖1Er‖. Therefore, the maximum sampling
interval of Rkl (τ ) is bounded by the product between the
resolution of the SRP map and the modulus of the gradient
of the TDOA. The resolution of the SRP map is defined
as the distance between any point in the map grid and its
closest surrounding points. It is mathematically represented
by1r , previously defined as the distance between contiguous
points in the grid. This resolution is constant for regular
grids, and position-dependent for irregular grids. In what
follows, no assumption ismadewith respect to this issue. That
is, the subsequent formulation is valid for both regular and
irregular grids.

Considering (5), the gradient of the TDOA can be
calculated as:

∇τkl (Er) =
(
∂τkl

∂x
,
∂τkl

∂y
,
∂τkl

∂z

)
, (9)

with

∂τkl

∂x
=

1
c

(
x + xm
‖Er + Erm‖

−
x − xm
‖Er − Erm‖

)
,

∂τkl

∂y
=

1
c

(
y+ ym
‖Er + Erm‖

−
y− ym
‖Er − Erm‖

)
,

∂τkl

∂z
=

1
c

(
z+ zm
‖Er + Erm‖

−
z− zm
‖Er − Erm‖

)
.

And the square of its Euclidean norm is:

‖∇τkl (Er)‖
2
=

(
∂τkl

∂x

)2

+

(
∂τkl

∂y

)2

+

(
∂τkl

∂z

)2

=
1
c2

(
‖Er + Erm‖

2

‖Er + Erm‖
2 +
‖Er − Erm‖

2

‖Er − Erm‖
2

− 2
x2 − x2m + y

2
− y2m + z

2
− z2m

‖Er + Erm‖ · ‖Er − Erm‖

)
=

2
c2

(
1−

r2 − r2m
‖Er + Erm‖ · ‖Er − Erm‖

)
, (10)

VOLUME 9, 2021 121551



G. García-Barrios et al.: Analytical Model for Relation Between Signal Bandwidth and Spatial Resolution

FIGURE 2. Contour plot of c
∥∥∇τkl

(
Er
)∥∥ in the horizontal plane when both

microphones are in that plane.

where, similarly as before, r = ‖Er‖ and rm = ‖Erm‖.
According to the law of cosines:

rk = ‖Er − Erm‖ =
√
r2 + r2m − 2 rrm cosϕ, (11)

where ϕ is the angle indicated in Fig. 1. Analogously:

rl = ‖Er + Erm‖ =
√
r2 + r2m + 2 rrm cosϕ. (12)

Now, substituting (11) and (12) in (10):

‖∇τkl (Er)‖
2
=

2
c2

(
1−

r2 − r2m√
r2 + r2m + 2 rrm cosϕ

·
1√

r2 + r2m − 2 rrm cosϕ

)

=
2
c2

1−
r2 − r2m√(

r2 + r2m
)2
− 4 r2 r2m cos2 ϕ

 .
(13)

Thus, the Euclidean norm of the gradient is:

‖∇τkl (Er)‖ =
1
c

√√√√2−
2
(
r2 − r2m

)√(
r2 + r2m

)2
− 4 r2 r2m cos2 ϕ

=
1
c

√√√√√√√√2−
2
((

r
rm

)2
− 1

)
√((

r
rm

)2
+ 1

)2

− 4
(
r
rm

)2
cos2 ϕ

.

(14)

This expression shows that the norm of the gradient
depends on the distance to the centre of the microphone

array, relative to half the inter-microphone distance
(
r
rm

)
, and

on the angle ϕ. The contour plot in Fig. 2 shows that the

FIGURE 3. Plot of c
∥∥∇τkl

(
Er
)∥∥ as a function of distance for several angles.

largest gradients occur near the centre of the array and for
angles near 90o, with a maximum at the segment linking both
microphones. This result is consistent with the simulation
results on SRP sensitivity illustrated in [14]. Fig. 3 depicts
the relation between the norm of the gradient and

(
r
rm

)
for

several angles. This graph shows that the maximum value of
c ‖∇τkl (Er)‖ is 2, which happens between both microphones,
and that the largest differences for diverse values of ϕ happen
approximately for 0.2 <

(
r
rm

)
< 20, i.e. for cases in which

the difference between the size of the array and the distance
between the array itself and the source positions is one order
of magnitude at most. On the opposite, when

(
r
rm

)
is large

(far field) the influence of ϕ vanishes.

IV. IMPLICATIONS FOR THE CALCULATION OF THE SRP
MAP
According to the approach introduced in the previous section,
the calculation of a SRP-PHAT map (2) basically consists in
a sample-and-sum process that includes sampling of several
GCC-PHAT functions (4) with variable sampling intervals (8)
whose values depend on the resolution of the SRPmap, on the
specific position being evaluated, and on the microphone
positions. This sample-and-sum process leads to erroneous
results when the selected samples of the GCC cannot rep-
resent some narrow peaks of the function. As stated by the
sampling theorem [22, chap.8], if such loss of information
(due to aliasing) is to be avoided, then the inverse of the
sampling time should be greater than twice the bandwidth of
the signal:

2 ·
ωmax

2π
<

1
1τkl

H⇒ 1τkl <
π

ωmax
, (15)

where it has been implicitly assumed that bandpass sampling
is not feasible or, in other words, that ωmax > 2 · ωmin.
If condition (15) is to be met in all cases, then taking (8)
into account one can derive a sufficient condition that allows
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obtaining a SRP map that does not suffer from aliasing in the
sampling of GCCs, given a specific microphone array and the
corresponding audio signals:

‖∇τkl (Er)‖ ·1r <
π

ωmax
. (16)

This relationship between distance r , array size rm (both
implicit in ‖∇τkl (Er)‖), map resolution 1r , and signal band-
width ωmax can be exploited in several ways, depending on
which of these magnitudes are defined by the scenario where
the localization system is to be deployed and which ones are
adjustable:
• For distributed microphone arrays in which the sound
source is likely to be placed somewhere between the
microphones, this implies r . rm and in this case√
2 . c ‖∇τkl (Er)‖ ≤ 2 (see Fig. 3). Therefore,

the required map resolution is:

1r <
cπ

2 · ωmax
. (17)

• When the distance from the source to the array is known
to be larger than the array size, then the TDOA gradient
is bounded by the case ϕ = 90o (see Fig. 3), thus:

1r

√√√√√√1−

(
r
rm

)2
− 1(

r
rm

)2
+ 1

<
cπ

√
2 · ωmax

, (18)

and the map resolution can be estimated from the mini-
mum value expected for r or, alternatively, a map reso-
lution dependent on r can be set.

• In any of both cases, if the map resolution is not
adjustable, the corresponding conditions can be used for
setting the upper limit in the integral used for calculating
the GCC (4).

• Alternatively, condition (16) can also be used to calcu-
late a SRP map with predefined resolution and variable
GCC bandwidth. This implies limiting the GCC band-
width in those points of the SRP map for which the
TDOA gradient is high. Note that the time-domain effect
of reducing the GCC bandwidth is similar to that of an
integration of the GCC function, which is the operation
proposed in [13]. Further details about this approach are
given in the next section.

V. CALCULATION OF SRP MAPS WITH VARIABLE GCC
BANDWIDTH
As pointed out before, when SRP maps with predefined reso-
lution are to be generated, condition (16) can be used to gen-
erate them while avoiding aliasing in the sampling of GCC
functions. This can be done following the next procedure:

1) Obtain the coordinates of the points in the grid used
for generating the SRP map. Such grid will typi-
cally be characterized by its boundaries and a certain
resolution 1r .

2) For each point in the grid, the SRP will be obtained as
the summation in (2). After initializing this summation,

FIGURE 4. Cross correlation (GCC-PHAT) between two exactly equal
speech signals taken from the dataset described in section VI-A, having a
3.76 ms delay between them. The thin line depicts the GCC-PHAT
calculated by integration along the 200 Hz-4000 Hz band, the continuous
thick line shows the result of limiting this interval to 200 Hz-1000 Hz, and
the dotted line shows the effect of applying the proposed normalization
to the band-limited GCC-PHAT.

the next actions should be performed for each pair of
microphones in the array (k, l):
a) Obtain the vectors linking the grid point and the

microphone positions Erk and Erl (see Fig. 1).
b) Calculate Er = 0.5 · (Erl + Erk) and Erm = 0.5 ·

(Erl − Erk).
c) Also compute cosϕ = (Er · Erm) / (‖Er‖ · ‖Erm‖).
d) Use the previous results to calculate the norm of

the gradient of the TDOA, as in (14).
e) Knowing 1r and ‖∇τkl (Er)‖, estimate the max-

imum frequency ω̂max that guarantees avoiding
aliasing according to (16).

f) Calculate the GCC-PHAT as in (4), setting the
upper limit to the integral equal to ω̂max.

R̂kl (τ ) =
∫
ωmin≤|ω|≤ω̂max

Sk (ω) S∗l (ω) · e
jωτ

2π
∣∣Sk (ω) S∗l (ω)∣∣ dω.

(19)

g) Evaluate the resulting GCC for τkl =

c (‖Erl‖ − ‖Erk‖), and add the result to the SRP
value.

The SRP-PHAT function in (2) can be interpreted as a
likelihood function that should be maximized to find the best
possible estimate for the sound source position [23]. Fig. 4
illustrates the effect that the bandwidth limitation specified
in step 2.f has on the resulting GCC (band-limited GCC).
Apart from the expected effect of reducing the frequency of
the oscillations in the GCC, and increasing the width of its
main peak, limiting the bandwidth has the consequence of
reducing the height of that peak. While increasing the width
of the peak has the positive effect of reducing the aliasing
when the GCC is sampled to generate a SRPmap, reducing its

VOLUME 9, 2021 121553



G. García-Barrios et al.: Analytical Model for Relation Between Signal Bandwidth and Spatial Resolution

height may reduce the likelihood associated to the true source
position when evaluating (2), thus altering the position of the
maximum value of the SRPmap. This reduction on the ampli-
tude of the GCC peak can be compensated by normalizing the
band-limited GCC proportionally to the bandwidth reduction,
as follows:

R̃kl (τ ) =
ωmax − ωmin

ω̂max − ωmin

·

∫
ωmin≤|ω|≤ω̂max

Sk (ω) S∗l (ω) · e
jωτ

2π
∣∣Sk (ω) S∗l (ω)∣∣ dω, (20)

where ωmin and ωmax are the limits of the signal bandwidth,
and ω̂max is the maximum frequency estimated in step 2.e.
This normalization has the effect of keeping the value of
the GCC peak unaltered, as shown in Fig. 4, at the cost of
amplifying the oscillations of the function when τ moves
away from the peak position.

The qualitative effect of applying the band limitation pro-
cedure proposed before is illustrated in Figs. 5 and 6. Both
correspond to simulation in fully anechoic conditions of
the acoustic propagation of a speech signal taken from the
database described in section VI-A. In both cases a triangular
microphone array has been supposed, with the sound source
placed in the same plane, in a nearby position in Fig. 5, and in
a further position in Fig. 6. The left plot in both figures shows
the standard SRP-PHAT map, while the middle and right
plots show the SRP-PHAT maps calculated with the proce-
dure proposed here, both without (middle) and with (right)
the normalization in (20). One noticeable effect of limiting
the band of the GCC is a reduction on the number and
relative relevance of the local maxima in the resulting SRP
map, which makes it more robust against changes in spatial
resolution. For source positions far from the centre of the
array, the norm of the TDOA gradient (Fig. 3) is low, which
results in little band limitation and, consequently, similar
results are expected in the estimation of source positions;
this is the case illustrated in Fig. 6. However, for source
positions near the microphone array, greater differences in
the estimated source positions are expected, as the case
in Fig. 5.

Calculating SRP maps is computationally expensive, and
the fact that calculating band-limited GCCs, as specified
in (19) and (20), increases such computational cost cannot be
overlooked. To present, several strategies have been proposed
to speed up SRP calculation, such as decomposing the SRP
map in spatial basis functions [24], or look-up tables for
TDOAvalues [25]. These strategies can be extrapolated to the
case of using band-limitedGCCs by running a spatial analysis
before calculating GCCs in order to identify the required
bandwidths, computing and storing GCCs, and using them as
look-up tables when building SRP maps. However, it should
be stressed that implementation issues are beyond the scope
of this research.

VI. EXPERIMENTS AND RESULTS
The procedure proposed in section V to calculate SRP maps
has been incorporated into some simulation experiments in
order to evaluate its potential impact on the source localiza-
tion performance of systems based on SRP maps.

A. AUDIO DATA
The signals used for the simulation experiments corresponded
to several acoustic events included in the Sound event
detection in synthetic audio task of the DCASE 2016 chal-
lenge [26]. Its associated dataset includes audio files cor-
responding to 11 types of sound events. According to the
spectral analysis reported in [27], these types of sound events
can be grouped into several categories taking into account
their spectra. Specifically, the shape of the spectra can be
classified in the following four categories:
• Noisy (non-harmonic) low-pass spectra, which includes
the cases of door slams, opening or closing drawers,
typing, door knocking, and page turning.

• Low-pass spectra with resonances due to the human
vocal tract, as in the case of clearing one’s throat, cough-
ing, laughing, and speaking.

• Noisy flat spectra, which is the case for key dropping
events.

• Harmonic spectra with flat envelope, as in phone
ringing.

In order to cover all the four classes of spectral shape,
one event type from each class was selected for running the
simulations, namely door slams, speaking, key dropping, and
phone ringing. All the 20 recordings corresponding to each
type included in the development dataset of the challenge
were used, which resulted in a total of 80 recordings. In all
cases, the sampling rate was equal to 44.1 kHz and the sound
was sampled with a resolution of 16 bits. The duration of the
recordings ranged from 0.13 s to 3.34 s.

B. EXPERIMENTS
The aforementioned sound events were simulated to happen
in a 8 m× 10 m× 4 m room. Specifically, 1000 source posi-
tions inside the room were randomly selected with uniform
probability distribution. For each source position one audio
recording corresponding to each event type was randomly
selected, thus resulting in a total of 4000 simulated sound
events. The sound propagation between the source positions
and the microphones was simulated by delaying each signal
according to the corresponding propagation distance. The
sound speed was assumed equal to 343 m/s.

Simulations were carried out for two different microphone
arrays. Both of themwere formed by 4microphones placed in
the corners of a regular tetrahedron whose central point was
located at the centre of the room. The length of the tetrahedron
edgeswere 0.5m in one case (small array) and 3m in the other
(large array).

The position of the sound source in each casewas estimated
from the simulated microphone signals according to the algo-
rithm in V. The resolution chosen for generating the SRP
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FIGURE 5. SRP-PHAT maps generated according to the standard procedure (left), applying (19) for limiting the bandwidth of
the GCC (middle), and adding the normalization in (20) (right). Red points indicate the simulated microphone positions,
the filled triangles mark the simulated source position, and the empty triangles show the maximum peaks of the SRP maps,
i.e. the estimated source positions. Anechoic conditions have been assumed, and the audio signal used for simulation is the
same as in fig. 4.

FIGURE 6. Same as fig. 5, but with the simulated source further from the microphone array.

maps was 0.5 m for all experiments except for one performed
with 1 m resolution for the sake of assessing the effect of
increasing resolution. Each experiment involved simulating
all 4000 sound events mentioned before. The signal band-
width was assumed to be between 100 Hz and 6000 Hz.
According to the analysis in [27], the signal-to-noise ratio
beyond 6000 Hz was poor for low-pass signals. The local-
ization error was calculated as the absolute value of the
difference between the estimated source positions and the
actual simulated positions.

Two different acoustic conditions were simulated:
anechoic conditions and reverberant conditions with rever-
beration time equal to 0.6 s, corresponding to a realis-
tic low-reverberant environment [28]. Simulations of the
reverberant room were performed using the image method
proposed by Allen and Berkley [29], as implemented in
Matlab R© by Habets [30].

C. RESULTS
Fig. 7 shows the histograms representing the distributions
of localization errors for the anechoic scenario mentioned
before, and for SRP maps calculated using the standard
GCC (4) (S-SRP), the band limited GCC (19) (B-SRP), and

the normalized band-limited GCC (20) (BN-SRP). The plot
in Fig. 7a shows the histograms for the small array, while
the plot in Fig. 7b corresponds to the large array. At first
sight, the use of the band-limited GCC does not produce
results significantly different to those of the standard GCC.
Furthermore, the normalization proposed in (20) produces
a moderate worsening of the localization performance. But
in the case of the large array (Fig. 7b) the band limitation
in the GCC produces a relevant reduction in localization
error and the magnitude of this reduction is higher when the
normalization in (20) is applied.

Table 1 provides a quantitative description of the distribu-
tions of localization errors. Specifically, the average error for
each case, and the mean deviation of errors are given. It is
apparent from Fig. 7 that distributions cannot be assumed
to be Gaussian (e.g. the distributions of errors for B-SRP is
bimodal). For this reason, nonparametric tests were chosen
to evaluate the statistical significance of differences among
the means and the dispersions (mean deviations) of distri-
butions. Namely, the Wilcoxon test was used to evaluate
differences in the mean values, and a permutation test of
deviances to evaluate differences in the dispersions [31].
For a given distribution of N estimation errors en, the mean
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FIGURE 7. Histograms of localization errors for the small and large arrays.
Results are given as the probability of each interval in the x axis for SRP
maps calculated using the standard GCC (4) (S-SRP), the band-limited
GCC (19) (B-SRP), and the normalized band-limited GCC (20) (BN-SRP).

or average error is defined as:

µe =
1
N

N∑
n=1

en (21)

and the mean deviation is:

δe =
1
N

N∑
n=1

|en − µe| . (22)

Results in Tab. 1 confirm the observations that S-SRP and
B-SRP perform similarly for the small array (non-significant
differences in the mean errors and similar values for disper-
sions) but not for the large array, B-SRP performs better in
that case, and BN-SRP provides a significant performance
improvement for the large array, while it performs poorly for
the small array.

A deeper insight into the previous results can be obtained
if they are segmented by the distance of the simulated sources
to the centre of the array. This can be done using the relative

TABLE 1. Average value and mean deviation of the distributions of
localization errors for the anechoic scenario.

TABLE 2. Average value and mean deviation of the distributions of
localization errors for the anechoic scenario discriminated for three
different distance intervals.

measure r/rm. Table 2 shows the average errors and their
mean deviances discriminated for three intervals: r/rm ≤ 5;
5 < r/rm ≤ 10; and 10 < r/rm. These results indicate that
the performance of all three algorithms is not as dependent
from the array size as from the relative distance between
the source and the array centre. Note that all 1000 simulated
source positions comply with the condition r/rm ≤ 5 in the
case of the large array, while the distribution for the small
array is:
• 40 points in the r/rm ≤ 5 interval,
• 274 points in the 5 < r/rm ≤ 10 interval,
• and 686 points in the 10 < r/rm interval.
It can be observed that the localization error using the

standard GCC diminishes as the distance between the centre
of the array and the source position is increased. The perfor-
mance of the estimator based on the band-limited GCC is also
increased for longer distances, but this estimator differs from
the previous one mainly in two aspects: the average reduction
in the localization error is greater as distance is increased,
and the dispersion of the localization errors is also the lowest
for the longest evaluated distances. The SRP map based on
the band-limited and normalized GCC provides estimations
that behave oppositely with respect to the other two cases.
This method provides better estimations for short distances
between array and sound source, and its performance is neg-
atively affected by increases in these distances.
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TABLE 3. Average value and mean deviation of the distributions of
localization errors for the reverberant scenario discriminated for three
different distance intervals.

TABLE 4. Average value and mean deviation of the distributions of
localization errors for the reverberant scenario and the small array with
coarser map resolution (1 m).

The results of running the same experiments but with rever-
beration time equal to 0.6 s (Tab. 3) indicate that, in general
terms, the presence of reverberation tends to negatively affect
localization results. In fact, all mean errors in Tab. 3 are higher
than the corresponding values in Tab. 2, except for those
relative to S-SRP and B-SRP being applied to the few points
with r/rm ≤ 5 in the small array case. Such increase in aver-
age error happens more prominently for BN-SRP. Another
relevant aspect of these results is that the growth in average
error is less relevant for the most distant sources (10 < r/rm),
and that B-SRP still provides the best performance for this
case in the reverberant scenario.

The effect of changing map resolution on the relative per-
formance of all three options for calculating the GCC was
assessed by running one additional experiment (i.e. 4000 sim-
ulated sound events) with coarser resolution (1 m) in the
reverberant scenario. Considering the poor localization per-
formance for short distances in this scenario (Tab. 3), only the
small array was simulated in this case. Results summarized in
Tab. 4 show that the advantages provided by band-limiting
the GCC, either with or without normalization, are more
noteworhty in this case. In other words, performance of the

SRP based on the standard GCC seems to be more sensitive
to increases in map resolution than that of SRP based on the
band-limited GCC.

VII. DISCUSSION AND CONCLUSION
The analysis presented in sections III and IV was aimed at
calculating SRP maps avoiding the potential aliasing effects
that may happen when sampling the GCC function regardless
the relation between SRP map resolution and GCC band-
width. This analysis led to the sufficient condition (16) that
allows avoiding such aliasing. However, the inequality in (8)
implies that fulfilling this condition is not necessary to avoid
aliasing or, in other words, that by applying this condition
one can limit the bandwidth of the GCC more than what is
strictly necessary. As a consequence, the localization errors
produced by B-SRP may be sometimes larger than those of
S-SRP, as can be noticed in the histogram in Fig. 7a. Accord-
ing to the numerical results summarized in Tabs. 2 and 3, this
worsening of localization performance happens especially for
the shortest distances between microphone array and sound
source position (r/rm ≤ 5).

One possible explanation for the afore-mentioned worsen-
ing of localization performance was hypothesized to be the
reduction in the height of the main peak of the GCC that
is intrinsically linked to bandwidth limitation (see Fig. 4).
As illustrated in Figs. 2 and 3, points near the microphones
are associated to the highest TDOA gradients and, conse-
quently, the calculation of their corresponding SRP values is
affected the most by the bandwidth limitation of the GCC.
This implies a reduction of the height of the main GCC peak
and a corresponding reduction of the SRP value. The GCC
normalization in (20) was proposed to compensate this effect
at the cost of increasing the amplitude of some secondary
GCC peaks (Fig. 4). The inclusion of this normalization
factor in the calculation of SRP maps has shown to have a
very positive impact on localization performance for sound
source positions near or even inside the volume occupied
by the microphone array (see Fig. 7a and Tab. 2). However,
the effect of such normalization on the secondary peaks in
the GCC (Fig. 4) is likely to be a key factor in worsening the
performance of this approach for reverberant environments
(Tab. 3).

For longer source-to-array distances (10 < r/rm), apply-
ing bandwidth limitation to the GCC according to (16) has
shown to consistently provide performance improvements
over the standard approach for calculating SRP without lim-
iting the bandwidth of the GCC (Tabs. 2 and 3). These
improvements involve reductions in both average error and
error dispersion. The reason that justifies the improved per-
formance of B-SRP can be explained by looking back to
Fig. 5. The left map therein shows a typical localization
error of S-SRP maps. This error is mainly caused by two
factors: the calculation of the SRPmapmisses a relevant GCC
peak near the actual source position due to this peak being
narrower than the corresponding map resolution, and some
secondary GCC peaks are added up in a position nearer the
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FIGURE 8. Scatter plots showing the relation of the actual distance between the sound source and the centre of the
microphone array to the distance between the estimated source position and the centre of the array. Plots correspond, left
to right, to S-SRP (SRP based on the standard GCC), B-SRP (SRP based on the band-limited GCC), and BN-SRP (SRP based on
the band-limited normalized GCC).

centre of the array, hence producing a peak in the SRP map
higher than it should be. As illustrated by Fig. 4, limiting
the bandwidth of the GCC has the double effect of widening
the main GCC peak and eliminating some secondary peaks.
This has the consequence of avoiding errors in which the dis-
tance between the sound source and the microphone array is
underestimated.

The left and central scatter plots in Fig. 8 represent the rela-
tion between the real source-to-array distance and the esti-
mated source-to-array distance for both S-SRP and B-SRP in
the case of the reverberant scenario. These plots show that the
previously mentioned consequence of limiting the bandwidth
of the GCC does not only happen in specific points; instead,
it is a general rule for the results of our experiments that
limiting the bandwidth of the GCC according to (16) reduces
the probability of underestimating source-to-array distances.
This explains why the B-SRP performs better for large dis-
tances (Tabs. 2 and 3). When source-to-array distances are

significantly larger than array size, underestimating this dis-
tance is an issue, and B-SRP performs the best for the largest
simulated distances.

A reasoning analogous to the previous one leads to the
conclusion that the GCC normalization in (20) has the effect
of increasing the values of the SRP map in positions near the
centre of the array. Thus, it reduces the chance of overestimat-
ing the source-to-array distance. This effect is confirmed by
the right plot in Fig. 8. However, the presence of reverberation
has a very negative impact on localization performance when
source-to-array distances are in the range of, or even shorter
than the array size (r/rm ≤ 5), which corresponds to the
case where the microphones are more distributed in the room.
Thus, the negative impact of reverberationmasks the potential
benefits of using BN-SRP in reverberant scenarios. Yet, note
that even in this case BN-SRP yields significantly lower error
dispersion for that range of distances than both S-SRP and
B-SRP (Tab. 3) for similar average errors.
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The high computational cost of calculating SRP with fine
spatial resolutions has led several researchers to propose
iterative approaches to sound source localization, consisting
in a step-by-step decrease in map resolution accompanied
by a corresponding reduction in map extent, as mentioned
in the introduction. The analysis presented in this paper
has made no assumption about specific intervals for map
resolution, so it is applicable at any scale in those iterative
or hierarchical approaches. To illustrate this, an additional
experiment was run with map resolution equal to 1 m instead
of 0.5 m. The corresponding results, summarized in Tab. 4,
confirmed all the previously stated conclusions. Furthermore,
the increased map resolution implies the requirement of a
narrower spectrum according to (16) or, from another point of
view, coarser resolutions in SRP maps lead to more relevant
aliasing effects if the bandwidth of the GCC is not limited.
Such increased aliasing leads to a noticeable worsening of
localization results for S-SRP (compare results in Tab. 3 to
those in Tab. 4). However, the impact of the coarser reso-
lution in the performance of B-SRP and BN-SRP is much
lower, to the extent that B-SRP provides significantly better
results than S-SRP even for intermediate distances (5 <

r/rm ≤ 10), which was not the case when the resolution
was 0.5 m.

In conclusion, equations (8) and (15) show that there is a
relation between the bandwidth of acoustic signals and the
resolution of SRP-PHAT maps calculated for localizing their
corresponding source. This relation implies the sufficient
condition for an aliasing-free calculation of the SRP map
specified by (16). Such calculation can be done according
to the algorithm described in section V and limiting the
bandwidth of the GCC as indicated in (19).While the fact that
integrating (i.e. low-pass filtering) theGCC leads to increased
robustness in localization performance of SRP-PHAT maps
was already known [13], the analysis presented before pro-
vides a theoretical justification for such improvement and
an explicit rule that relates GCC bandwidth to the spatial
resolution of SRP-PHAT maps.

The reported experiments show that this approach leads to
improved source localization results for source positions far
from the microphone array, since the probability of under-
estimating the source-to-array distance is reduced. It has
also been tested that the proposed approach is robust against
reverberation, since it provides similar advantages in both
anechoic and reverberant scenarios. Last, it should be stressed
that the use of condition (16) to avoid aliasing effects in
the calculation of SRP maps is fully compatible with hier-
archical localization algorithms in which map resolution is
iteratively changed. Moreover, it should significantly con-
tribute to obtain more robust results at the coarsest resolution
levels.
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