
Universidad Politécnica de

Madrid

Escuela Técnica Superior de Ingenieros Informáticos

Modelo de Estimación de Valor para la Toma de

Decisiones Relacionadas con la Evolución de

Productos Software.

Tesis doctoral

Ing. Carlos Fernández Sánchez

2017

http://www.upm.es
http://www.upm.es
http://www.fi.upm.es
mailto:carlos.fernandez@upm.es




Universidad Politécnica de Madrid

Departamento de Lenguajes y Sistemas Informáticos e Ingenieŕıa de Software

Escuela Técnica Superior de Ingenieros Informáticos

Modelo de Estimación de Valor para la Toma de

Decisiones Relacionadas con la Evolución de

Productos Software.

Ing. Carlos Fernández Sánchez

Supervised by

Dr. Juan Garbajosa

2017

i

http://www.upm.es
http://www.fi.upm.es
mailto:carlos.fernandez@upm.es


Doctoral Thesis Committee

1. President: Juan Jos Moreno Navarro

Universidad Politécnica de Madrid

2. Secretary: Jennifer Prez Bened

Universidad Politécnica de Madrid

3. Member: Mario Piattini Velthuis

Universidad Castilla-La Mancha

4. Member: Rick Kazman

University of Hawaii

5. Member: Carlos E. Cuesta Quintero

Universidad Rey Juan Carlos

PhD. Thesis

©Carlos Fernández Sánchez. Madrid, Spain 2017. This work is subjected to copy-

right. All rights are reserved.

This thesis has been partially supported by: (i) UPM (Technical University of Madrid)

under their Researcher Training program. (ii) The Spanish Ministry of Science and

Innovation (MICINN) through the R&D+i projects INNOSEP (TIN2009-13849) and

i-Smart Software Factory (IPT-430000-2010-038). (iii) The Spanish Ministry of In-

dustry (MITYC) through the R&D project IMPONET (ITEA 2 09030 — TSI-02400-

2010-103). (iv) The Centre for Industrial Technological Development (CDTI) through

R&D projects NEMO&CODED (ITEA2 08022 — IDI-20110864) and Energos (CEN-

20091048). (v) The Spanish Ministry of Economy and Industry (MINECO) through the

R&D+i projects MESC (DPI2013-47450-C2-2-R) and CrowdSaving (TIN2016-79726-

C2-1-R).

ii



Abstract

Most of the software is produced as a result of a continual subsequent evo-

lution. Decisions on software evolution are focused on what new features

to add, improve, or even remove. Additionally, there are decisions about

what part of the software should be improved to increase the capacity of

evolution, what bug have to be solved, or what new technologies should be

included in the product. But to make informed decisions about software

evolution it is necessary to know the value of implementing such decisions.

Traditionally, value-based decisions have been made based on the visible

characteristics of software (external quality). But many decisions can be

focused on improving the capacity of the software product to be changed in

the future without adding visible characteristics (internal quality).

This thesis defines a customer value model that help make decisions in a

context of continuous evolution of software. To do that, this thesis provides

four main contributions: (i) the identification of how changes focused on

improving the internal quality of software add value for the customer; (ii)

the definition of a theoretical framework based on the elements that are

required to define models for managing the evolution of software products;

(iii) the identification of the available methods and strategies to be used

within the model for managing the evolution of software products; (iv) a

model to be used in software projects to manage their evolution considering

the internal and external quality of software.

The model was used in a case study based on the analysis of a large software

project.

Keywords: value-based software engineering, making decisions, technical

debt, technical debt management, estimation model.



Resumen

La mayoŕıa del software se produce como resultado de una serie de con-

tinuas evoluciones. Las decisiones en la evolución del software se centran

en qué nuevas caracteŕısticas añadir, mejorar o incluso eliminar. Además

hay decisiones sobre qué partes del software mejorar para incrementar la

capacidad de evolución del mismo, qué errores corregir o qué nuevas tec-

noloǵıas incluir en el producto. Pero para tomar buenas decisiones sobre

la evolución del software es necesario saber el valor de implementar dichas

decisiones. Tradicionalmente, las decisiones basadas en valor se han hecho

teniendo en cuenta las caracteŕısticas visibles del software (calidad externa).

Pero muchas decisiones pueden estar centradas en mejorar la capacidad del

producto software para ser cambiado en el futuro sin añadir caracteŕısticas

visibles (calidad interna).

Esta tesis define un modelo de valor para el cliente que ayuda a la toma de

decisiones en un contexto de evolución continua del software. Para lograr

esto, esta tesis provee cuatro contribuciones principales: (i) la identificación

de cómo los cambios que tienen como objetivo mejorar la calidad interna

del software añaden valor para el cliente; (ii) la definición de un marco

de trabajo teórico basado en los elementos que son necesarios para definir

modelos para la gestión del la evolución de productos software; (iii) la iden-

tificación de los métodos y estrategias disponibles para ser usados junto con

el modelo de evolución de productos software; (iv) un modelo para ser usado

en proyectos software para gestionar su evolución considerando la calidad

interna y externa del software.

El modelo ha sido usado en un caso de estudio en el que se ha analizado un

proyecto software grande.

Palabras clave: ingenieŕıa del software basada en valor, toma de deci-

siones, deuda técnica, gestión de deuda técnica, modelo de estimación.



A Mabel, mi familia y mis compañeros en la Universidad
Politécnica de Madrid. Ellos han hecho posible este

trabajo.
To Mabel, my family, and my colleagues at Universidad

Politécnica de Madrid. They made this work possible.

“Adde parvum parvo magnus acervus erit.”

“Add little to little and there will be a big pile.”

Publio Ovidio Nasón



Acknowledgements

Me gustaŕıa dar las gracias a Mabel por su constante apoyo. Gracias a ella

el trabajo siempre fue menos duro.

Igualmente quiero dar las gracias a mis padres, Ovidio y Emilia. Ellos son

los que me han inculcado los valores y educación sin los que ni tan siquiera

podŕıa haber comenzado a estudiar.

También quiero recordar al resto de mi familia, en especial a mis hermanas

por su apoyo y a mis abuelos por mostrarme otras formas de ver el mundo.

Quiero especialmente dar las gracias a mi director de tesis Juan Garba-

josa por su orientación y paciencia. Gracias a sus enseñanzas yo he podido

hacer esta tesis, que de otro modo, nunca hubiese completado. Igualmente

muchas gracias al resto de miembros del grupo SYST, los actuales y los que

han pasado por él en los últimos años. Ha sido todo un placer trabajar

con vosotros durante el tiempo que me ha llevado completar esta tesis y es-

pero seguir trabajando con vosotros muchos años más. Sobre todo gracias

a Agust́ın, Jennifer, y Jessica con quienes he trabajado codo con codo en

muchos proyectos y que me han ayudado cuando lo he necesitado. Igual-

mente gracias a Carlos S., Carlos V., Dani e Iria aunque vuestro camino os

ha llevado lejos de SYST, fue un placer trabajar con vosotros. No quiero

olvidarme de los nuevos compañeros con los que espero seguir trabajando

después de esta tesis: Javier, Jorge, Norberto y Héctor. En general gracias

a todos los compañeros, amigos, alumnos y profesores que de una u otra

forma han contribuido a que yo pudiese realizar esta tesis.

Thank you to Prof. Pekka Abrahamsson and Prof. Xiaofeng Wang for their

support, helpful advice and comments during my stay at the Free University

of Bozen-Bolzano.



Contents

List of Figures xi

List of Tables xv

I Introduction 1

1 Introduction 3

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Research Methodologies and Methods . . . . . . . . . . . . . . . 15

1.5.2 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II Identification of how software internal quality increases the cus-

tomer value 21

2 How to Add Value from Software Architecture 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Architecting activities . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Value-Based Software Engineering . . . . . . . . . . . . . . . . . 25

2.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



CONTENTS

2.3.2 Search strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Study selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3.1 Inclusion criteria . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3.2 Exclusion criteria . . . . . . . . . . . . . . . . . . . . . 29

2.3.3.3 Selection process . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Included and excluded studies . . . . . . . . . . . . . . . . . . . . 29

2.3.5 Assessment of study quality . . . . . . . . . . . . . . . . . . . . . 31

2.3.6 Data extraction strategy . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.7 Data synthesis process . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 RQ1: What concepts are involved in the value creation in archi-

tecting activities? . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1.1 RQ1.1 In which architecting activities are value consid-

erations taken into account? . . . . . . . . . . . . . . . 36

2.4.1.2 RQ1.2 What motivations and/or goals have driven the

use value-based approaches in software architecting ac-

tivities? . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1.3 RQ1.3 What architecting techniques are value driven,

and how do they make use of value? . . . . . . . . . . . 39

2.4.1.4 RQ1 Conclusions . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 RQ2: How do architecting activities create value? . . . . . . . . . 42

2.4.2.1 RQ2 Conclusions . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Selected Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Preliminary Case Study on Technical Debt Management 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Modeling Technical Debt Considering the Interest Probability . . . . . . 51

3.4 Case Study Design and Planning . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Case and Subjects Selection . . . . . . . . . . . . . . . . . . . . . 55

3.4.4 Theoretical Frame of Reference . . . . . . . . . . . . . . . . . . . 58

3.4.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.6 Methods, Data Collection, and Selection of Data . . . . . . . . . 61

iv



CONTENTS

3.4.7 Case Study Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.8 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Case Study Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1 RQ1: Does technical debt concept help to reason about the value

of investing in flexibility? . . . . . . . . . . . . . . . . . . . . . . 70

3.6.2 RQ2: What limits could be found in generalizing the propose

presented in this chapter evaluating flexibility investments to any

other project? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

III Identification and definition of the elements that are required

to create models that help make decisions in software evolution 75

4 A Framework for Technical Debt Management 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Methodology and Research Process . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Conduct Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Screening of Papers . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.4 Snowballing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.5 Keywording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.7 Mapping Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Elements of Technical Debt Management . . . . . . . . . . . . . . . . . 82

4.4.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1.1 E1 Technical debt items . . . . . . . . . . . . . . . . . . 83

4.4.1.2 E2 Principal . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1.3 E3 Interest . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1.4 E4 Interest probability . . . . . . . . . . . . . . . . . . 84

4.4.1.5 E5 Technical debt impact . . . . . . . . . . . . . . . . . 84

4.4.1.6 E6 Automated means . . . . . . . . . . . . . . . . . . . 85

4.4.1.7 E7 Expert opinion . . . . . . . . . . . . . . . . . . . . . 86

4.4.1.8 E8 Scenario analysis . . . . . . . . . . . . . . . . . . . . 86

v



CONTENTS

4.4.1.9 E9 Time-to-market . . . . . . . . . . . . . . . . . . . . 87

4.4.1.10 E10 When to implement decisions . . . . . . . . . . . . 87

4.4.1.11 E11 Technical debt evolution . . . . . . . . . . . . . . . 88

4.4.1.12 E12 Technical debt visualization . . . . . . . . . . . . . 88

4.4.2 Grouping of elements according to their use in technical debt

management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Technical Debt Management Elements from the Stakeholders’ Points of

View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Retrospective and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.1 Identification and Definition of the Elements . . . . . . . . . . . 94

4.6.2 Stakeholders’ Points of View with Regard to the Elements . . . . 95

4.6.3 Baseline for a Framework . . . . . . . . . . . . . . . . . . . . . . 95

4.6.4 Technical Debt Management Decision Making . . . . . . . . . . . 96

4.6.5 Implications for Research . . . . . . . . . . . . . . . . . . . . . . 97

4.6.6 Implication for Practitioners . . . . . . . . . . . . . . . . . . . . 98

4.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7.1 Bias in identifying articles . . . . . . . . . . . . . . . . . . . . . . 99

4.7.2 Choosing study biases . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7.3 Obtaining accurate data bias . . . . . . . . . . . . . . . . . . . . 99

4.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Selected Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

IV Identification of tools and strategies that support the elements

identified in Contribution 2 and the lacks in this support 103

5 Tools and Strategies for Technical Debt Management 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Tools and Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Analysis of Tools and Strategies from the Elements for Technical

Debt Management Perspective . . . . . . . . . . . . . . . . . . . 109

5.4.1.1 E1 Technical debt items . . . . . . . . . . . . . . . . . . 109

5.4.1.2 E2 Principal . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1.3 E3 Interest . . . . . . . . . . . . . . . . . . . . . . . . . 110

vi



CONTENTS

5.4.1.4 E4 Interest probability . . . . . . . . . . . . . . . . . . 111

5.4.1.5 E5 Technical debt impact . . . . . . . . . . . . . . . . . 111

5.4.1.6 E6 Automated means . . . . . . . . . . . . . . . . . . . 113

5.4.1.7 E7 Expert opinion . . . . . . . . . . . . . . . . . . . . . 113

5.4.1.8 E8 Scenario analysis . . . . . . . . . . . . . . . . . . . . 113

5.4.1.9 E9 Time-to-market . . . . . . . . . . . . . . . . . . . . 114

5.4.1.10 E10 When to implement decisions . . . . . . . . . . . . 114

5.4.1.11 E11 Technical debt evolution . . . . . . . . . . . . . . . 114

5.4.1.12 E12 Technical debt visualization . . . . . . . . . . . . . 115

5.5 Technical Debt Management in the Industrial Environment . . . . . . . 116

5.6 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 TEDMA Tool: A Tool for Technical Debt Management 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 TEDMA Tool Description . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Overall View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.2 Obtaining information from projects . . . . . . . . . . . . . . . . 123

6.2.3 Processing information from projects . . . . . . . . . . . . . . . . 125

6.2.4 How TEDMA is built . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.4.1 Data Layer . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.4.2 Service Layer . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.5 Integration of third-party tools . . . . . . . . . . . . . . . . . . . 128

6.2.6 TEDMA Tool Roadmap . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

V Identification of how software internal quality increases the cus-

tomer value 133

7 Decision-Making Support Model 135

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Technical debt in the context of software evolution . . . . . . . . 136

vii



CONTENTS

7.2.2 A model for studying the trade-off between time-to-market and

product performance . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 How to use Cohen’s et al. model in software development for managing

technical debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Case study design and planning . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.2 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.3 Case and subject selection . . . . . . . . . . . . . . . . . . . . . . 144

7.4.4 Theoretical frame of reference . . . . . . . . . . . . . . . . . . . . 145

7.4.5 Methods, data collection, and selection of data . . . . . . . . . . 145

7.4.6 Case study protocol . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.7 Ethical considerations . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5 Case study execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5.1 Technical debt items indicators . . . . . . . . . . . . . . . . . . . 148

7.5.2 Principal indicators . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.5.3 Interest and interest probability indicators . . . . . . . . . . . . . 154

7.5.4 Technical debt impact: introducing time-to-market . . . . . . . 155

7.5.5 Scenarios to make decisions: rehearsing for time-to-market . . . 157

7.5.5.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5.5.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5.5.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5.5.4 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.6 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.6.1 About the Cohen et al.’s model . . . . . . . . . . . . . . . . . . . 162

7.6.2 Assumptions and approximations . . . . . . . . . . . . . . . . . . 163

7.6.3 The nature of technical debt management . . . . . . . . . . . . . 164

7.6.4 The view of legacy code as product and as infrastructure . . . . 165

7.6.5 The role of technical debt management approaching internal and

external quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.6.6 Costs and investments in software development . . . . . . . . . . 165

7.6.7 Extending the model . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.6.8 The need for the concept of technical debt points . . . . . . . . . 165

7.6.9 Size of releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.6.10 Combination of anti-patterns . . . . . . . . . . . . . . . . . . . . 166

7.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

viii



CONTENTS

7.9 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 168

VI Conclusion and Further Work 171

8 Conclusions and Future Work 173

8.1 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.1.1 Identification of how software internal quality increases the cus-

tomer value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.1.2 Identification and definition of the elements that are required to

create models that help make decisions in software evolution . . 174

8.1.3 Identification of tools and strategies that support the elements

identified in Contribution 2 and the lacks in this support . . . . 175

8.1.4 Definition of a model for making decisions on software evolution

using the elements identified in Contribution 2 and that inte-

grates tools and strategies identified in Contribution 3 . . . . . . 175

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

References 179

Appendices 193

A Data Extraction Form 195

B Quality Questions 197

C Studies Included in Literature Reviews 201

C.1 Selected Studies in SLR . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C.2 Selected Studies in Systematic Mapping . . . . . . . . . . . . . . . . . . 208

ix



CONTENTS

x



List of Figures

1.1 Research process followed in this thesis . . . . . . . . . . . . . . . . . . . 19

2.1 Study selection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Studies quality distribution . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Synthesis process, inspired from [86] . . . . . . . . . . . . . . . . . . . . 35

2.4 Studies included in the study classified by architecting activity . . . . . 37

2.5 Studies’ goals related to architecture . . . . . . . . . . . . . . . . . . . . 38

3.1 Modeling interest probability using decision trees . . . . . . . . . . . . . 53

3.2 Accumulated interest evolution tree . . . . . . . . . . . . . . . . . . . . 53

3.3 Initial software architecture of Optimeter project (month 1) . . . . . . . 57

3.4 Example of decision tree used to analyze the option of investing in flex-

ibility in software architecture. . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Technical debt interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Scenarios analyzed in the case study . . . . . . . . . . . . . . . . . . . . 66

3.7 Proposed architecture to support the three data storage prototypes in

Optimeter project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Systematic mapping process (adapted from [84]) . . . . . . . . . . . . . 79

4.2 Keywording process (adapted from [84]) . . . . . . . . . . . . . . . . . . 82

4.3 Taxonomy of the identified elements for technical debt management.

Elements are grouped according to its use in technical debt management 91

xi



LIST OF FIGURES

4.4 Mapping of the elements in the stakeholders’ points of view.

All the papers identified in this study are considered in the

mapping. Mapping of the elements to support decision making in man-

aging technical debt versus the engineering, engineering management,

and business organizational management points of view. Each of the

selected papers can include several elements and can be mapped onto

more than one point of view. In each cell, the number in the center

is the number of papers that identify an element from a specific stake-

holders’ point of view. The upper left percentage is the percentage of

papers that identify the element (column) as specific to a point of view

of (row), and the lower right percentage is the percentage of papers with

the specific point of view (row) that identify the element (column). The

first column shows the summary of the papers per stakeholder point of

view, while in the bottom of the figure, there are summaries of papers

per element and per type of element. . . . . . . . . . . . . . . . . . . . . 92

5.1 Mapping of the elements in the stakeholders’ points of view.

Exclusively the papers that defined methods for technical debt

management were considered for this mapping. Mapping of el-

ements to support decision making in managing technical debt versus

the engineering, engineering management, and business organizational

management points of view. Each selected paper can include several el-

ements and can be mapped onto more than one point of view. In each

cell, the number in the center is the number of papers that identify an

element from a specific stakeholder’s point of view. The upper left per-

centage is the percentage of papers that identify the element (column)

as specific to a point of view of (row), and the lower right percentage is

the percentage of papers with the specific point of view (row) that iden-

tify the element (column). The first column shows the summary of the

papers per stakeholder point of view, while in the bottom of the figure,

there are summaries of papers per element and per type of element. . . 108

5.2 Mapping of selected papers with respect to relevance and rigor scores as

defined in Section 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Temporal evolution of the number of papers with respect to the average

relevance and the average rigor scores. . . . . . . . . . . . . . . . . . . 117

xii



LIST OF FIGURES

5.4 Mapping of the elements to stakeholders’ points of view to as-

sess industrial rigor and relevance. Only papers that scored

rigor equal to or more than 2, and relevance equal to 3 or more

were considered. Mapping of elements to support decision making

in managing technical debt versus the engineering, engineering manage-

ment, and business organizational management points of view. Each

selected paper can include several elements and can be mapped onto

more than one point of view. In each cell, the number in the center

is the number of papers that identify an element from a specific stake-

holder’s point of view. The upper left percentage is the percentage of

papers that identify the element (column) as specific to a point of view

of (row), and the lower right percentage is the percentage of papers with

the specific point of view (row) that identify the element (column). The

first column shows the summary of the papers per stakeholder point of

view, while in the bottom of the figure, there are summaries of papers

per element and per type of element. . . . . . . . . . . . . . . . . . . . . 118

6.1 Life cycle of a project in TEDMA . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Basic data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Example of metrics stored by TEDMA and problems detected by the

analyzer that integrates PMD. . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Changed lines in approximately 1500 files in Apache Log4j 2 project over

near 8000 revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Evolution of the number of files with cyclomatic complexity issues in

Apache Log4j 2 project . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6 Modules of TDManger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1 The performance of product in the marketplace over time (source [24]) . 138

7.2 The performance of product in the marketplace over time (source [24]) . 141

7.3 Apache Log4j 2 releases analyzed in this study . . . . . . . . . . . . . . 146

7.4 Examples of how revisions are considered to be in a release . . . . . . . 147

7.5 Identified elements for technical debt management. Source [39]. . . . . . 149

7.6 Linear regression models for file lines, changed lines, change probability,

and expected effort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.7 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.8 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.9 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xiii



LIST OF FIGURES

7.10 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xiv



List of Tables

1.1 Summary of research objectives, results, and publications . . . . . . . . 13

1.2 Summary of the impact of the publications . . . . . . . . . . . . . . . . 14

2.1 Papers selected from each database . . . . . . . . . . . . . . . . . . . . . 31

2.2 Total number of found references . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Architecting activities and the studies where they were found . . . . . . 36

2.4 Goals of the selected studies . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Methods/Techniques used and/or defined. One study can use several

methods and techniques. Different versions of the same method or tech-

nique have been count as the same . . . . . . . . . . . . . . . . . . . . . 40

2.6 Analysis of the evaluation methods used in the selected studies based on

the framework described in [10] . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Analysis of the evaluation methods based on Kazman et al. criteria [61] 43

2.8 Concepts involved in the value creation from the architecting activities . 44

2.9 Actions involved in the value creation from the architecting activities . . 46

3.1 Main storage technologies evaluated by the prototypes of Optimeter . . 56

3.2 Examples of calculus of decision tree nodes using Equation 3.4 . . . . . 69

4.1 Elements of technical debt management identified in the literature. Ev-

ery element identified is included in the column Elements. The references

in which it was identified are shown in the column Sources. The number

of references in which it was identified is shown in the column Count.

The column on the left classifies the elements according to their use in

technical debt management (see Section 4.4.2). . . . . . . . . . . . . . . 90

xv



LIST OF TABLES

7.1 Expected size of change, change probability, and expected change effort

accumulated by technical debt indicators (indicator definitions in [85]).

ESCh: expected size of change in lines of code; ChP : change probabil-

ity; EChE: expected change effort in lines of code; L: average lines of

code per file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Pearson correlation coefficient of size of files in lines with expected changed

lines, Change Probability, and Expected effort. . . . . . . . . . . . . . . 152

xvi



Part I

Introduction

1





Chapter 1

Introduction

3



1. INTRODUCTION

1.1 Research Motivation

In 2002, Lehman and Ramil [67] already pointed out that most of the software is pro-

duced as a result of a continual subsequent evolution. Continuous software engineer-

ing [41, 15] somehow has extended and formalized this way of understanding software

development. To express the concept of evolution, Schmid [98] used the concepts of

external and internal quality. Following Schmid [98], external quality of a software

product is the accumulation of any observable quality of the product at run time (e.g.,

for example, a functionality, and a level of performance); internal quality of a software

product is the accumulation of any non-observable quality of the product at run time

(e.g., code quality, complexity of the code, and number of source files). Schmid [98]

stated that whereas an evolution step can describe any form of change in the external

quality of the product, internal quality changes by themselves are not evolution steps

(e.g., refactoring). Following also Schmid [98], within this thesis, the evolution of a

product is understood as any form of change that leads to an observable effect at a

system level. This thesis is focused on the decisions that have to be made in the context

of this evolution.

Decisions on software evolution are focused on what new features to add, improve,

or even remove. Additionally, there are decisions about what part of the software

should be improved to increase the capacity of evolution, what bugs have to be solved,

or what new technologies should be included in the product. But to make informed

decisions about software evolution in software engineering it is necessary to know the

value of implementing such decisions. The term value can be used with many different

meanings. In this thesis, the term value is used to refer to customer value. Any

other acceptation of value will be explicitly indicated. In software products, value is

mainly added to the products by increasing their external quality. External quality

is the totality of characteristics of the software product from an external view. [1].

That is, the external quality is the quality that is perceived by the users, it is mainly

added by the visible characteristics of the products, and consequently, it is related to

the customer value. But some changes can improve the capacity of the software to

be changed. That is, that kind of changes will make easier to increase the external

quality of the software in the future. This second type of changes increases the internal

quality of the software. Internal quality is the totality of characteristics of the software

product from an internal view [1]. The internal quality is the quality that indicates how

well is constructed a product internally and therefore, it includes the capacity of such

product to be changed and evolved. Thus, decisions about software evolution have to

4



1.1 Research Motivation

consider both internal and external quality of the software. Hence, decisions in software

evolution will be between adding external quality by changes that the customer can

perceive (e.g., new features) and improve the internal quality (e.g., refactoring to add

flexibility) to facilitate future changes, and consequently to make easier to increase the

external quality in the future.

Changes in the evolution of software typically consume about 40 to 80 percent

(60 percent average) of software costs [44]. Of that effort, much is due to adding

new capability [44]. In many cases, software products are evolved over years to adapt

their functionality to the changes in their context. Furthermore, a program that is

used in a real-world environment necessarily must change or become progressively less

useful in that environment [66]. In practice, software usually follows a continuous

evolution to deliver new characteristics [41]. Therefore, decisions about the evolution

of software products have a big impact on the economic performance and success of

software companies.

In the real world, organizations have limited resources to evolve software and there-

fore they have to select what evolution steps are the most profitable. But make these

decisions about software evolution is not an easy task. Many factors have to be taken

into account. In a competitive market, not only the quality added, internal or exter-

nal, is relevant, there is other important factors: time-to-market, competitive products,

type of market where the product will be launch, etc. It is difficult to make decisions

without a holistic view of software development, including business strategy [41].

Software release planning, or road-mapping, has as goal to select an optimum set

of features or requirements to deliver in a release within given constraints [110]. There

are several literature reviews on software release planning models [95][110][7]. These

studies analyzed a total of 45 models for software release planning. For the goal of the

present thesis, it is possible to remark some main findings in those studies. There is a

many models to prioritize requirements and release planning and therefore there is a

large work already done in the prioritization and selection of characteristics for software

evolution focused on the external quality of software [95][110][7]. But on the contrary,

software release planning scientific proposals have not yet reached the maturity required

by industrial contexts [7]. Additionally, these methods do not deal with possible changes

in internal quality together with the implementation of new features. Actually, there

is not a major focus on addressing system constraints [95]. And when the models deal

with technical constraints these constraints are focused on the requirements themselves

and the ability to implement them (e.g., dependencies between requirements) [110].

The models do not deal with possible constraints due to internal quality issues.

5



1. INTRODUCTION

A software has the capacity of being changed, and depending on different internal

attributes, this software will be more or less easy to be changed. Several literature

reviews have analyzed the software capacity for evolution [12], prediction techniques

for software evolution [92], and software architecture evolution [17]. Software evolution

research area is by its nature, due to its complexity, more difficult to be explained

by theoretical principles than by practical experiences; thus, a theoretical foundation

with practical value for software evolution is necessary [17]. Additionally when software

evolves some of the initial design decisions that were made during the system’s creation

may no longer hold, and the architecture may not facilitate certain changes [41]. In this

situations, shortcuts can be made and software decay materializes. Therefore, software

evolution drives to increase the cost of change of software if one does not actively work

against this.

Traditionally, value-based decisions have been made based on external quality, that

is, the value added to the customers due to new or improved functionality. But many de-

cisions can be focused on improving the capacity of the software product to be changed

in the future without adding external quality. That is, decisions have to consider not

only the value added in the present but the possible value that could be added in the

future. Many models deal with the evolution of software from the point of view of ex-

ternal quality [95, 110, 7], whereas techniques and methods that are focused on internal

quality usually do not consider the business point of view [39]. Therefore, there is a

lack in models that consider both points of view.

Therefore, in making decisions about software evolution, it is necessary to consider

both internal and external quality of software, business strategy, and short and long-

term customer value. The achievement of this goal implies to know the capacity for

changes of software and to identify when it is more profitable to invest in increasing

such capacity or when it is better to add more external quality to increase in a direct

way the value for the customer of the product.

1.2 Research Context

This thesis is focused on studying software evolution from a value-based perspective.

Therefore the thesis is framed in the next software engineering areas:

� Value-Based Software Engineering. Value-Based Software Engineering is a

paradigm that uses value as a driver for developing software. We use the defini-

tion provides by Biffl et al’s book Value-Based Software Engineering [13]: “The

value perspective provides a good way of looking at the product development

6



1.2 Research Context

process. The ultimate aim of value propositions in software engineering is to cre-

ate a strategy to achieve long-term profitable growth and sustainable competitive

advantage for software companies. The implication is that software developers

need to consider the key elements of value in terms of how to create value for

current as well as future software products and how to deliver this value to a

customer in the most profitable way. In other words, software developers should

have a better understanding of the implications of the decisions they have made

about the software product, the software development process, and the resources

that they use.”

� Continuous Software Engineering. The ultimate goal of Continuous Software

Engineering is to take a holistic view of a software production entity, whether this

is a single software organization or an ecosystem where different organizations

together deliver a final product [41]. The link between business strategy and

software development ought to be continuously assessed and improved [41]. To

achieve this goal, Fitzgerald and Stol [41] defined several continuous activities

that should be done in software development. This thesis is mainly focused on

the following activities of Continuous Software Engineering:

– Continuous planning. Holistic endeavor involving multiple stakeholders

from business and software functions whereby plans are dynamic open-ended

artifacts that evolve in response to changes in the business environment and

thus involve a tighter integration between planning and execution.

– Continuous evolution. Most software systems evolve during their lifetime.

However, a system’s architecture is based on a set of initial design decisions

that were made during the system’s creation. Some of the assumptions

underpinning these decisions may no longer hold, and the architecture may

not facilitate certain changes. In the last years, there has been increased

focus on this topic. When an architecture is unsuitable to facilitate new

requirements but shortcuts are made nevertheless, technical debt is incurred.

– Continuous delivery. Continuous delivery is the practice of continuously

deploying good software builds automatically to some environment, but not

necessarily to actual users.

� Technical Debt Management. The term technical debt is a metaphor that

refers to the consequences of weak software development [28]. Technical debt

can grow because of the inability of developers to develop high-quality applica-

7



1. INTRODUCTION

tions [114] or as the result of decisions that prioritize functionality over quality.

Moreover, technical debt can evolve because of circumstances that are beyond the

developers’ control: for example, it can arise because of changes in the context

of the application [19], and it is cleared automatically at the end of a system’s

life [20]. Some technical debt is inevitable in a world with finite resources [114]:

it is both, possible and necessary to live with some technical debt. However, sev-

eral studies have highlighted the negative effects of uncontrolled technical debt

on software development [87], including on the developer’s morale, team veloc-

ity, and the quality of the product [114][83]. The problem is that the benefits

of refactoring software to remove technical debt are largely invisible, sometimes

intangible, and usually, long term, whereas the costs of refactoring activities are

significant and immediate [21]. Technical debt management consists of identifying

the sources of the extra costs of software maintenance and determining whether it

is profitable to invest efforts into improving a software system [114]. If technical

debt is not managed could become too high to sustain. The company then will

be compelled to invest all its efforts into keeping the system running, rather than

increasing the value of the system by adding new capabilities [114], which will

seriously damage the company’s profitability and risk the inability to fulfill its

strategic goals. In any case, from a business point of view, reducing technical

debt is a good idea if, and only if, it leads to increased profitability [113]. Thus,

decision-making is essential in technical debt management.

1.3 Research Question

This thesis aims to respond the following research question:

RQ 1 Could one have a model that considers customer value together with the short

and long-term impact of decisions to help support the decision-making process in soft-

ware evolution? What elements would this model be made of?

1.4 Research Contributions

The main contribution of this thesis can be formulated as follows:

“A model oriented to the customer value that helps make decisions in a

context of continuous evolution of software considering internal character-

istics of software and the short and long-term impact of such decisions.”

8



1.4 Research Contributions

This main contribution can be refined in the following more specific contributions

and key publications resulting from this thesis. Publications are described in Sec-

tion 1.4.1.

Contribution 1 Identification of how software internal quality increases the customer

value.

It was found that the technical debt concept, through principal, interest, and in-

terest probability, helps to reason about the value of changes in the internal quality of

software. Technical debt links improvements in the internal quality of software with the

value that could be added to the software in the future. Therefore, technical debt should

be considered for decision making with a value-based software engineering perspective.

Publications: P1, MT1.

Contribution 2 Identification and definition of the elements that are required to create

models that help make decisions in software evolution.

At that point, this thesis was focused on technical debt. Therefore, the elements

of technical debt management were identified. Based on the elements analysis it was

possible to define a framework. That framework could be used to define models for

technical debt management for specific systems with two objectives: to demonstrate

how the elements work in practice and to implement specific technical debt manage-

ment models based on the integration of the tools that are currently available for the

management of technical debt.

In addition to the framework, an important finding of this thesis is that any decision

about software evolution implies a trade-off between software release characteristics and

technical debt removal considering the business constraints.

It is also important to highlight that while time-to-market was one of the least

suggested elements in technical debt management literature, it was probably the most

referenced cause of technical debt. According to [114], it was one of its most relevant

antecedents. This is an interesting paradox and a serious issue because managing

technical debt without considering time-to-market could lead to wrong decisions that

could affect important deadlines in a project.

Publications: P5, P7.

Contribution 3 Identification of tools and strategies that support the elements iden-

tified in Contribution 2 and the lacks in this support.

There is not enough support for all the technical debt management elements. Es-

sential elements are not currently covered, such as time-to-market. Other elements also

9



1. INTRODUCTION

require more support, especially from the business organizational management point

of view. Different strategies for technical debt management are focused on different

elements. And therefore, there are not tools or strategies that support all the ele-

ments. As a consequence, it was necessary to go further in the integration of tools and

strategies to manage effectively technical debt. Consequently, TEDMA Tool has been

implemented. TEDMA is designed to integrate third party tools and techniques. In

fact, TEDMA facilitates the usage of the technical debt management elements in real

projects.

Publications: P4, P7, P9, T1.

Contribution 4 Definition of a model for making decisions on software evolution us-

ing the elements identified in Contribution 2 and that integrates tools and strategies

identified in Contribution 3.

This contribution consists of a model for technical debt management that considers

time-to-market. The model uses the technical debt management framework produced

in Contribution 2 as a guide, which was useful in adapting the time-to-market modeling

framework, which came from a different domain to technical debt management. This

model is a step forward in making decisions in software engineering, especially in the

case of trade-offs of the internal and external quality of software when considering an

economic point of view. It was possible to deploy the model for the technical debt

management in a case study using a large project. For the case study execution, it was

necessary to use the techniques and strategies identified by Contribution 3 as well as

TEDMA Tool. The case study’s execution demonstrates that it is possible to use the

selected time-to-market modeling framework for technical debt management and that

it is necessary a holistic perspective in technical debt management that includes the

business perspective, that is, economic constraints and business goals.

Publications: P2, P3, P8, P9, T1.

1.4.1 Publications

The achievement of the contributions of this thesis has resulted in several publications

and other outcomes (a master thesis and a tool).

They are summarized in Table 1.1 and Table 1.2.

MT 1 Carlos Fernández-Sánchez, Value Considerations in Software Architecture: A

Systematic Literature Review, Master thesis degree on Máster Universitario en Software

y Sistemas, Universidad Politécnica de Madrid, July 2012.

10



1.4 Research Contributions

MT1 focused on how value can be added from the internal quality of software. To

do that, it analyzed the relationship between value and software architecture. One of

its main findings is the possibility of use technical debt management to manage how

value can be added in the software evolution.

P 1 Carlos Fernández, Daniel López, Agust́ın Yagüe, and Juan Garbajosa. Towards

estimating the value of an idea, 2011 Workshop on Managing the Client Value Creation

Process in Agile Projects (VALOIR) in conjunction with the 12th International Con-

ference on Product Focused Software Development and Process Improvement (Profes

’11). ACM, New York, NY, USA, 62-67.

P1 [34] focused on software innovation and how to deal with the value estimation.

This publication was one of the results of the state of the art study about value in

software engineering. It was a preliminary study that pointed out the identification of

sources of innovation in software development and a short list of elements that could

be needed to estimate the value of “new ideas” in software development.

P 2 Fernández Sánchez, Carlos; Dı́az Fernández, Jessica; Garbajosa Sopeña, Juan

y Pérez Bened́ı, Jennifer (2013). A Cost-Benefit analysis model for technical debt

management considering uncertainty and time. Work in progress track at the 39th Eu-

romicro Conference on Software Engineering and Advanced Applications (SEAA 2013)

Santander, Spain, September 4-6, 2013.

P2 [38] sketched some basic concepts that are necessary for cost-benefit analysis

based on technical debt by presenting a new model that allows performing cost-benefit

analysis dealing with the uncertainty of the future changes and considering the time

frame where decisions can be made. In addition, the model helps to reason about the

possible situations that can occur around the system and that can affect the software

evolution.

P 3 C. Fernández-Sánchez, J. Dı́az, J. Pérez and J. Garbajosa, Guiding Flexibility

Investment in Agile Architecting. In proceeding of the 47th Hawaii International Con-

ference on System Sciences, Waikoloa, HI, 2014, pp. 4807-4816, BEST PAPER NOM-

INATION.

P3 [35] used the model defined in P2 in a case study performed in the development

of a software product. The model was integrated into a process within the software

development methodology and used to make decisions about investments in flexibility

(refactorings) in the architecture. The model was satisfactorily used allowing several

11



1. INTRODUCTION

findings that guided the next research steps. The model needed to be adapted to the

context of the software under analysis, the case study was a framed project about a

very specific decision, and therefore, to use the model for more general decisions in any

possible project more adaptations would be required. As a conclusion, it was necessary

to study what elements were required to create models in other projects.

P 4 C. Fernández-Sánchez, J. Garbajosa, C. Vidal and A. Yagüe, An Analysis of

Techniques and Methods for Technical Debt Management: A Reflection from the Archi-

tecture Perspective, 2015 IEEE/ACM 2nd International Workshop on Software Archi-

tecture and Metrics, in conjunction with the 37th International Conference on Software

Engineering, Florence, 2015, pp. 22-28.

P4 [36] showed the methods and techniques that were available to support the

identified elements in the previous study. This allows identifying gaps in the state of

the art and available techniques to be used in the implementation of specific models to

making decisions about software evolution.

P 5 C. Fernández-Sánchez, J. Garbajosa, and A. Yagüe, A framework to aid in de-

cision making for technical debt management, IEEE 7th International Workshop on

Managing Technical Debt (MTD) in conjunction with 31st International Conference

on Software Maintenance and Evolution, Bremen, 2015, pp. 69-76.

P5 [37] identified the elements that had to be considered for creating models to

make decisions about software evolution. This publication presents the first version

of a framework with the goal of guiding in the creation of specific models for specific

projects. It also includes different points of view depending on the stakeholders involved

in the decision-making process.

P 6 Software Startups – A Research Agenda (Michael Unterkalmsteiner, Pekka Abra-

hamsson, XiaoFeng Wang, Anh Nguyen-Duc, Syed Shah, Sohaib Shahid Bajwa, Guido

H. Baltes, Kieran Conboy, Eoin Cullina, Denis Dennehy, Henry Edison, Carlos Fernández-

Sánchez, Juan Garbajosa, Tony Gorschek, Eriks Klotins, Laura Hokkanen, Fabio Kon,

Ilaria Lunesu, Michele Marchesi, Lorraine Morgan, Markku Oivo, Christoph Selig,

Pertti Seppänen, Roger Sweetman, Pasi Tyrvinen, Christina Ungerer, Agust́ın Yagüe),

In e-Informatica Software Engineering Journal, volume 10, 2016.

P6 [116] is a collaboration with other researchers in the field of software startups.

This publication corresponds to one of the exploitation strategies that are planned for

this thesis. One of the fields where the outcomes of this thesis can be used is in making

decisions in software startups. This publication is mainly related to future work.

12



1.5 Research Methodology

Table 1.1: Summary of research objectives, results, and publications

Contribution Result Outcomes

Contribution1 Identification of technical debt management as a mechanism to manage value P1, MT1

Contribution2 A theoretical framework for technical debt management P5, P7

Contribution3 State of the art in methods and techniques for technical debt management P4, P7, P9, T1

Contribution4 A model for technical debt management P2, P3, P8, P9, T1

P 7 Carlos Fernández-Sánchez, Juan Garbajosa, Agust́ın Yagüe, Jennifer Pérez, Iden-

tification and analysis of the elements required to manage technical debt by means of

a systematic mapping study, Journal of Systems and Software, Volume 124, February

2017, Pages 22-38, ISSN 0164-1212.

P7 [39] is an extension of the P5 and P4 publications. This publication included

a revision of the framework defined in P5 and extended the analysis of the techniques

and methods of P4 by analyzing their rigor and industrial impact.

P 8 Carlos Fernández-Sánchez, Juan Garbajosa, Jessica Dı́az, Jennifer Pérez, The

Relationship between Technical Debt Management and Time-to-Market: An Exploratory

Case Study, Submitted to IEEE Transaction on Software Engineering.

P8 (submitted) presents a model for making decisions on software evolution con-

sidering internal and external quality. The model was defined following the framework

defined in P7. Finally, the model was applied to a large project in a case study.

P 9 Carlos Fernández-Sánchez, Juan Garbajosa, Héctor Humanes, Jessica Dı́az, An

Open Tool for Assisting in Technical Debt Management, accepted in Euromicro DS-

D/SEAA 2017.

P9 (accepted) presents TEDMA Tool, the tool that has been developed in this

thesis to use the model defined in P8.

T 1 Carlos Fernández Sánchez, TEDMA Tool, A tool developed for technical debt man-

agement.

1.5 Research Methodology

In this section, the methodology followed in this thesis is described.

Because the research started from an initial stage where no previous research was

performed, an exploratory sequential mixed approach was used following the Creswell’s

13



1. INTRODUCTION

Table 1.2: Summary of the impact of the publications

Publication Journal/Conference/Workshop Impact

P1 [34] Workshop on Managing the Client Value Creation Process in Agile

Projects (VALOIR)

Main conference

CORE B

P2 [38] Work in progress track at the 39th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA)

Main conference im-

pact CORE B

P3 [35] Hawaii International Conference on System Sciences CORE A

P5 [37] IEEE International Workshop on Managing Technical Debt (MTD) in

conjunction with International Conference on Software Maintenance and

Evolution (ICSME)

Main conference

CORE A

P4 [36] IEEE/ACM International Workshop on Software Architecture and Met-

rics, in conjunction with the International Conference on Software Engi-

neering (ICSE)

Main conference

CORE A*

P6 [116] e-Informatica Software Engineering Journal CiteScore 2015: 0.30,

SJR 2015: 0.117,

SNIP 2015: 0.318

P7 [39] Journal of Systems and Software JCR 2016: 1.444

(Q1), CiteScore

2016: 3.10, SJR

2015: 0.897, SNIP

2015: 2.415

P8 (submitted) IEEE Transactions on Software Engineering JCR 2016: 3.272

(Q1), CiteScore

2016: 5.51, SJR

2015: 1.543, SNIP

2015: 4.423

P9 (accepted) Euromicro Conference on Software Engineering and Advanced Applica-

tions (SEAA)

CORE B

14



1.5 Research Methodology

recommendations [26, p. 266-274]. The mixed-methods approach of this research as out-

lined by Creswell [26] requires the use of both qualitative and quantitative data. In this

thesis, qualitative data were extracted mainly from literature reviews and exploratory

case studies. Qualitative data were firstly used to define a theoretical framework of ref-

erence and to identify quantitative measures and techniques to be used in later stages

of the research. Quantitative data were obtained from software tools used to monitor

the development process, the product status, and the code quality. Quantitative data

were used for applying the proposed model in a large software project.

As a consequence, this thesis used several methods to perform different steps in

the research. Each method was selected to achieve specific outcomes in the different

steps of the thesis. In Section 1.5.1 the methodologies and methods used are described.

In Section 1.5.2 the process followed, including each step and the justification of the

methodology used in each step is provided.

1.5.1 Research Methodologies and Methods

Systematic Literature Review. A systematic literature review is a means of iden-

tifying, evaluating and interpreting all available studies relevant to a particular

research question, or topic area, or phenomenon of interest [63]. Its importance is

that it synthesizes existing work in a manner that is fair and seen to be fair [63].

In this thesis, the guideline provided by Kitchenham and Charters [63] for per-

forming systematic literature review in software engineering was used. According

to that guideline, the main characteristics of systematic literature review studies

are:

� The motivation for performing a systematic literature review is to summarize

the existing evidence concerning a treatment or technology.

� It helps to identify any gaps in current research in order to suggest areas for

further investigation.

� It can be used to provide a framework/background in order to appropriately

position new research activities.

� It uses empirical evidence to determine whether the given hypothesis is sup-

ported or contradicted.

Narrative Synthesis. As defined by Popay et al. [86] narrative synthesis refers to an

approach, which can be used within systematic literature reviews, for synthesis

of multiple studies and that relies primarily on the use of words and text to

15



1. INTRODUCTION

summarize and explain the findings of the studies. Whilst narrative synthesis can

involve the manipulation of statistical data, the defining characteristic is that it

adopts a textual approach to the process of synthesis to ‘tell the story’ of the

findings from the included studies. As used here ‘narrative synthesis’ refers to a

process of synthesis that can be used in systematic reviews focusing on a wide

range of questions, not only those relating to the effectiveness of a particular

intervention. In this thesis, a narrative synthesis was used, following the guideline

of Popay et al. [86] for using narrative synthesis in systematic literature reviews.

Systematic Mapping. A systematic mapping study allows the evidence in a domain

to be plotted at a high level of granularity [63]. This allows for the identification

of evidence clusters and evidence deserts to direct the focus of future systematic

reviews and to identify areas for more primary studies to be conducted [63]. A

systematic mapping study provides a structure of the type of research reports and

results that have been published by categorizing them and often gives a visual

summary, the map, of its results [84]. Systematic mapping studies are designed to

provide a broad overview of a research area [84]. A systematic map helps to iden-

tify research gap in a topic area and indications for lack of evaluation or validation

research in certain areas with less effort than a systematic literature review [84].

In this thesis, systematic mapping was performed by following Petersen et al.’s

guide [84].

Constant Comparison (Qualitative Research). One of the differences between

systematic literature reviews and systematic mappings is that the latter do not

require deep reading and synthesis of the analyzed studies [84]. In the present

thesis, the studies selected for the systematic mapping were analyzed in detail to

extract additional information. Specifically, the selected studies were analyzed

using coding and continuous comparison, both techniques used in qualitative re-

search [108]. These techniques were useful to identify common concepts in the

studies and to create definitions of them by gathering all the information provided

by the different studies. This thesis did not use Grounded Theory [108], but it

used some of the techniques used in such methodology.

Rigor and Industrial Relevance. Systematic mapping studies are designed to pro-

vide a broad overview of a research area [84]. In addition to that, in this thesis,

the selected studies in systematic mapping were analyzed in terms of rigor and

industrial relevance. The method defined by Ivarsson and Gorschek [56] was used.

This provided more detailed view of the state of the art of the research area from

16



1.5 Research Methodology

an industrial perspective.

Exploratory Case Study. A case study is an empirical method that investigates con-

temporary phenomena in its natural context [123]. Exploratory case studies are

performed for finding out what is happening, seeking new insights and generat-

ing ideas and hypotheses for new research [94]. In this thesis, the Runesson and

Höst’s [94] guideline for conducting case studies in software engineering was used.

1.5.2 Research Process

Figure 1.1 shows the different steps and methods used in this thesis. This thesis is

mainly an exploratory effort. Therefore, the research started studying the state of the

art of wide scope concepts as software architecture and value (see the outcome of the

first process in Figure 1.1). After some initial finding were found out, a second state

of the art was performed in a more specific topic: technical debt management (see

the outcome of the fourth process in Figure 1.1). Consequently, within this thesis,

two states of the art were analyzed in different stages of the research. In the next

paragraphs, each step is described.

� Initial Exploratory Study. The first phase consist of an exploration about

how to use the concept of value in software

The first step performed in this thesis was a systematic literature review [63] of

value added from decisions in the internal quality of the software. To do that

the systematic literature review was focused on software architecture. Software

architecture is defined by ISO/IEC/IEEE 42010:2011 [2] as system fundamental

concepts or properties of a system in its environment embodied in its elements,

relationships, and in the principles of its design and evolution. The architec-

ture of a system constitutes what is essential about that system, considering its

relationship with its environment. Therefore, software architectures provide high-

level abstractions for representing the structure, behavior, and key properties of

complex software systems [42]. Then, using architecture, this thesis uses a top-

down strategy. This strategy was motivated because there are too many low-level

abstractions in software to be analyzed in terms of internal quality of software

and value in an affordable way. Design, code practices, testing, documentation,

etc. provide many different points of view of the internal quality of software.

The fact that this thesis analyzes value from software architecture does not mean

that these other abstractions levels were not used in other steps. But the initial

step was to analyze how the internal quality of software is related to the value

17



1. INTRODUCTION

of software and therefore it is better to start analyzing the part of software more

related with business, that in this case, it is software architecture [11, ch. 1].

Narrative Synthesis was used to identify the concepts involved in the value cre-

ation in software internal quality in the studies analyzed in the systematic lit-

erature review of the previous process. The motivation to use this method was

due to the studies found in the systematic literature review provide very different

points of view about how value can be created from the software architecture

and this method is suitable to analyze heterogeneous conclusions from different

studies.

One of the main identified concepts that can be used to analyze the value of

internal quality decisions, is technical debt. With the outputs of the systematic

literature review and the synthesis process, a preliminary case study was per-

formed to analyze the applicability of the learned concepts for creating a model

for technical debt management. The main goal of this process was to increase the

knowledge by using available techniques on the field. The main outcomes of this

process were the identification of a set of limits that exists for defining models for

technical debt management, especially the necessity of adapting models for the

context of each project.

� Framework for Technical Debt Management. Thus it was necessary to

go further in the state in the art of technical debt management. To do that

a systematic mapping study on technical debt management was performed to

analyze the state of the art in this topic. A systematic mapping study helps

to identify research gap in a topic area and indications for lack of evaluation or

validation research in certain areas [84]. Therefore it was suitable for the goals of

this step. But to go further than the state of the art on technical debt management

this thesis use coding and constant comparison from qualitative research [108] to

define a framework based on the identification and definition of the elements

that are required for technical debt management. This was a synthesis step were

the studies selected for the systematic mapping study were analyzed to identify

and define the elements required for technical debt management. Thanks to

the identification of the elements a theoretical framework about technical debt

management was defined.

� Method and Techniques for Technical Debt Management. To know the

support of methods and techniques for technical debt management we analyzed

the rigor and industrial relevance of the studies identified in the systematic map-

18



1.5 Research Methodology

Systematic 
Literature 

Review

State of the 
Art Value in 

Software 
Architecture

Narrative 
Synthesis

Value of 
Software 
Internal 
Quality

Preliminary 
Case Study

State of the 
Art Technical 

Debt 
Management

Constant 
Comparison 
(Qualitative 

Data Analysis)

Framework for 
Technical Debt 
Management

Rigor and 
Industrial 
relevance

Methods and 
Techniques for 
Technical Debt 
Management

Exploratory 
Case Study

Model for 
Technical Debt 
Management

Systematic 
Mapping

Limits on 
Technical Debt 
Management

Initial Exploratory Study

Method and Techniques for Technical Debt Management

Framework for Technical Debt Management

Decision Making Support

TEDMA Tool 
Implementation

Process

Outcome

Legend

Figure 1.1: Research process followed in this thesis

ping study. This allowed analyzing the currently available techniques that are

ready to be used in the industry. This provides a deeper understanding of the

current state of the art in technical debt management and to select a set of

techniques to be used in the case study that was performed in the next step and

implemented in the tool that has been implemented within this thesis to integrate

available tools and strategies for technical debt management. The development

of the tool was guided by the outcomes of the analysis of the available techniques

and methods performed in the previous process.

� Decision Making Support.

Finally, using the framework for technical debt management and the available

methods and techniques this thesis includes an exploratory case study [94] where

a specific model for technical debt management was defined from the theoretical

framework to analyze a large software project. To conduct the case study, the

previously implemented software tool, TEDMA Tool, was used to extract and

analyze the data of the project under analysis.

19



1. INTRODUCTION

1.6 Thesis Overview

The remainder of this thesis is structured using the objectives described in Section 1.3.

Therefore, the structure used is:

� Chapter 2 identifies how customer value is added to software from the internal

quality of software. This chapter includes the state of the art of the usage of the

value concept in software architecture.

� Chapter 3 presents a preliminary case study that was performed with the objective

of obtaining further knowledge about how the concepts identified in Chapter 2

can be effectively used in software projects.

� Chapter 4 identifies the entire set of elements that have been used to manage

technical debt. Elements are understood as the concepts used to implement

technical debt management, regardless of their nature. This chapter includes the

state of the art of technical debt management.

� Chapter 5 identifies and analyzes the tools and strategies for technical debt man-

agement that are available to support the elements identified in Chapter 4.

� Chapter 6 presents TEDMA, a tool for technical debt management. TEDMA

implementation responds to the necessity of a tool that facilitates the experimen-

tation with different technical debt management tools and strategies.

� Chapter 7 puts into practice the technical debt management element framework

defined in Chapter 4. To do that a model for technical debt management that

takes into account time-to-market has been defined and used in a case study.

� Chapter 8 presents and analyses the main contributions of this thesis and it also

presents future research.

20



Part II

Identification of how software

internal quality increases the

customer value

21





Chapter 2

How to Add Value from Software

Architecture

The goal of this chapter is to identify how value for the customer is

added to software from the internal quality of software. This chapter is an

excerpt from the following work:

Carlos Fernández-Sánchez, Value Considerations in Software Architec-

ture: A Systematic Literature Review, Master thesis degree on Máster Uni-

versitario en Software y Sistemas, Universidad Politécnica de Madrid, July

2012.

23



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

2.1 Introduction

The first contribution of this thesis, Contribution 1 is Identification of how software

internal quality increases the customer value. As it is said in Section 1.5.2, to achieve

this goal a systematic literature review was performed. Therefore, this chapter follows

the structure recommended by Kitchenham and Charters [63] to report systematic

literature reviews in software engineering.

The remainder of the chapter is organized as follows: Section 2.2 presents the main

concepts involved in the systematic literature review; Section 2.3 details the research

method (i.e., a systematic literature review); Section 2.4 discusses the results; and

Section 2.5 summarizes the outcomes of the systematic literature review in the context

of this thesis.

2.2 Background

2.2.1 Architecting activities

Software architecture is defined as the fundamental concepts or properties of a system in

its environment, which are embodied in its elements, relationships, and in the principles

of its design and evolution [2]. Software systems are constructed to satisfy customers’

and organizations’ business goals. According to Bass, Clements, and Kazman [11, ch. 1],

the path from abstract goals (i.e. business goals) to concrete systems can be complex.

Nevertheless, architecture can help tame this complexity because it is a bridge between

the business goals and the final system.

To achieve the goal described in the introduction, it is necessary to clarify what

“architecting activities” are performed in software architecture: this term represents

the tasks (or activities) that are performed in the entire software life cycle, which are

related to software architecture creation or maintenance. Several authors have used

different terms to describe these activities.

� Gorton uses “determine architectural requirement,” “architecture design,” and

“validation” [45].

� Emery, Hilliard and Rice use “understand program,” “select views,” “analyze each

view,” “integrate views,” “trace views to needs,” and “validate” [32].

� Falessi, Cantone and Kruchten use “requirement analysis,” “decision making,”

and “architectural evaluation” [33].

24



2.2 Background

� Hofmeister et al. use “architectural analysis,” “architectural synthesis,” and “ar-

chitectural evaluation” [48].

Using these previous works as references, in this chapter, architecting activities

are classified as actions that perform work with a software architecture, in which it is

possible to generate value for customers. The actions are defined below:

� Analysis aims to understand the environment where the system will work. This

includes functional and non-functional requirements, schedule restrictions and

business requirements.

� Synthesis or design concerns creating or changing the architecture.

� Evaluation means testing the architecture to ensure that it satisfies the needs

identified in the analysis.

� Documentation of the architecture includes design decisions, the rationale for

such decisions, and management of the knowledge that is relevant to the archi-

tecture.

� Management includes scheduling, tools, methodology, and so on.

2.2.2 Value-Based Software Engineering

In the engineering field “a product or service is generally considered to have good value

if that product or service has appropriate performance and cost” [75]. However, because

value is subjective [29, p. 22], the concept of customer value is widely used, which is

“a customer’s perceived preference for, and evaluation of, those product attributes,

attribute performances, and consequences arising from use that facilitate (or block)

achieving the customer’s goals and purposes in use situations” [120]. Therefore, it is

possible to claim that value depends on the customers’ perceptions and expectations.

Moreover, a product will have value for a customer if it satisfies the value propositions

of that customer, which represent the customer’s expectations. If a product does not

fulfill a minimum number of these value propositions, the product will not have value

for customers or a subset of them. Therefore, the value for the customers is closely

linked to the external quality of the software, that is, the quality that customers can

perceive [98].

In software engineering, Value-Based Software Engineering [13] proposes the use of

value management in software engineering activities. The goal is to use value as a driver

25



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

for developing software. Hence, Boehm [14] recommended that software engineering has

the goal of adding value, including value-based software architecture.

The focus of this chapter is on value-based software architecture, and therefore it

does not investigate the other areas in this field. Value-based architecture involves the

reconciliation of the system’s objectives with achievable architectural solutions [14].

It can be concluded that value is a complex concept that can be seen from different

perspectives. These perspectives have to be taken into account conducting a deep

analysis of value.

2.3 Research Method

The method selected to achieve the goals of this chapter is the Systematic Literature

Review (SLR) [63]. This method was selected because it has been reported to be

useful in identifying and summarizing the existing evidence concerning a treatment or

technology. A systematic literature review helps to identify any gaps in the current

research and suggest areas for further investigation. It also can be used to provide

a framework or background for appropriately positioning new research activities [63].

These capacities match very well the goal of this chapter.

The guide published by Kitchenham and Charters [63] was used. The first step in a

systematic literature review is to define the review protocol. The following subsections

then summarize the protocol used to conduct the literature review.

2.3.1 Research questions

It is necessary to highlight that the objective is focused on internal quality. It was

decided to analyze value and architecture without limiting the search to internal quality

because the most of the publications do not focus on internal or external quality of

software. Therefore, the focus on the internal quality was used in the analysis of the

studies, but not in searching them.

The research questions were:

� RQ1: What concepts are involved in the value creation in architecting activities

(see Section 2.2.1)?

– RQ1.1: In which architecting activities are value considerations taken into

account?

– RQ1.2: What motivations and/or goals have driven the use of value-based

approaches in software architecting activities?

26



2.3 Research Method

– RQ1.3: What architecting techniques are value driven, and how do they

make use of value?

� RQ2: How do architecting activities (see Section 2.2.1) create value?

Following [63], the population, intervention, and outcomes that were used to con-

struct the search string are described below. These three elements helped formulate

the research question within the context of the study. Population refers to the group of

persons under analysis; intervention refers to the activities that are analyzed; outcomes

refers to what results are expected from the studies.

� Population: software architecture practitioners and researchers.

� Intervention: software architecting activities such as synthesis, evaluation, doc-

umentation, and so on.

� Outcomes of relevance: how value is used in the context of software architec-

ture.

2.3.2 Search strategy

The search string used to select the relevant studies was created from the research ques-

tions. The structure of the search string obtained from this first step is the following.

Listing 2.1: Query string structure

(software) and (architecture terms) and (value terms)

To identify the terms used in the final string, a former systematic mapping of value-

based software engineering [57] was used as a starting point. To help extract of the most

relevant terms and inspired by the suggestions about objective search string elicitation

provided by Zhang and Ali Babar [127], a data mining tool (RapidMiner [4]) was

used to analyze the metadata of the references previously identified by that systematic

mapping. The resulting search string can be seen in Listing 2.2. It was necessary

to slightly adapt this string so that it could be used in the search engines of the

following electronic libraries: IEEExplore, ACM Digital library, Scopus, ScienceDirect,

Engineering Village and Web of Knowledge.

Listing 2.2: Query string

((”software”)

AND

(”architecture” OR ”highlevel design” OR

27



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

”abstract design” OR ”solution domain” OR

”description of the system” OR

”system description” OR

”system’s description” OR ”software system” OR

”architectural ”)

AND

(”value” OR ”valuation” OR

” intellectual property valuation” OR

”cost benefit” OR ”benefit realization” OR

”business case analysis” OR ”economic value” OR

”economic profit” OR ”economic−driven” OR

”economic driven” OR ”return on investment” OR

”return investment” OR ”stakeholder win−win” OR

”decision multiple criteria ” OR

”competitive position” OR

”network externalities ” OR

” differentiation value” OR

”value driven” OR ”value−driven” OR

”drive by value” OR ”driven by value” OR

”business value” OR ”business−value” OR

”value for the business” OR

”customer value” OR ”customer−value” OR

”added value” OR ”added−value” OR

”perceived value” OR ”perceived−value”))

To perform the systematic literature review two complementary search processes

were performed. The first one included most of the studies, and the second one was

performed to update the analysis once the main block of studies had been analyzed

previously. Consequently, this review is based on publications to 13 May 2014, which is

the date of the last search. The results of the searches were stored in files using the Bib-

TeX format. Finally, all references were stored in the Mendeley reference manager [3],

which was extensively used in the selection process described below.

2.3.3 Study selection criteria

To select the candidate studies, a set of inclusion and exclusion criteria and a process

of applying them were established.

2.3.3.1 Inclusion criteria

� Study refers to the use of value in software architecting activities.

� Study must be peer reviewed (i.e., published in a journal, conference or workshop).

28



2.3 Research Method

� Study presents evidence or evaluation of the use of value in software architecture.

2.3.3.2 Exclusion criteria

� Study makes reference to the use of value but not in the software architecture

context.

� Study is not accessible in full-text format (electronic or physical).

� Study is not a primary study.

� Study does not have the required quality (see Section 2.3.5).

2.3.3.3 Selection process

To apply these criteria the process shown in Figure 2.1 was followed. The filters in

process correspond to the step of the process in which studies were discarded. Filter1

discards papers duplicated or already analyzed, Filter2 discards papers not peer re-

viewed for publication in journals, workshops, conferences, and so on, or not primary

studies. Filter3 discards papers clearly not related to the subject of the review, and

Filter4 discards papers not related to the research questions. Finally, Filter5 discards

studies that do not have a sufficiently high-quality score, as described in Section 2.3.5.

2.3.4 Included and excluded studies

The first step consisted of using the search string in all the selected digital libraries.

For later consultation, all results were stored in files in the BibTeX format. This

format was selected because it is often used by many reference managers. The BibTeX

format facilitates the usage of the obtained references. All references were then stored

in the reference manager: Mendeley [3]. The next step was to identify publications

selected several times, that is, repeated. A tool provided by Mendeley was very helpful

in this step. After removing duplicates, the complete selection process described in

Figure 2.1 was performed in the remaining studies. All steps were documented using

the tag system provided by the Mendeley reference manager. Tables 2.1 and 2.2 show

the numbers of articles analyzed in each step. Remarkably, in many cases, the same

article was found in more than one library. As Table 2.2 shows, 58 publications were

selected for the systematic literature review.

29



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

Filter 1
Repeated

Filter 2
Selected languages, journals, 
conferences, workshops, etc.

Filter 3
Papers clearly not related to 

the subject

Filter 4
Papers not related to the 

research questions

Included Excluded

Exclusion documented

Filter 5
Papers classified as low 

quality in quality assessment 
step

Exclusion documented

Figure 2.1: Study selection process

30



2.3 Research Method

Table 2.1: Papers selected from each database

Database Found After Filter 1& 2 After Filter 3 After Filter 4 After Filter 5

IEEExplore 1461 1428 166 28 21

ACM Digital library 744 730 111 23 18

Scopus 4218 4072 262 54 41

ScienceDirect 348 331 22 6 6

Engineering Village 2283 2213 206 47 37

ISI Web of Knowledge 1123 1211 143 30 25

Table 2.2: Total number of found references

Found After Filter 1 & 2 After Filter 3 After Filter 4 After Filter 5

10177 6683 410 75 58

2.3.5 Assessment of study quality

The quality of the selected studies is an essential factor, first deciding whether a candi-

date study will be selected, second, it can be used as a tool to assist in the data analysis

and synthesis stages. The data about the quality of the selected studies were obtained

at the same time as the main data extraction activity was performed.

To conduct the most objective analysis of the studies, a set of questions about qual-

ity were chosen and described. These questions were answered using the information

extracted from the studies. Hence, all the studies were evaluated following the same

criteria.

A limitation of this method is that studies could only be evaluated using the in-

formation obtained from the publications. If other additional information, such as

technical reports, web pages and so on was available, it was also used. However, be-

cause of limited space, many publications could not provide all possible information

about the study. Therefore, in practice, this method was an assessment of the available

information, rather than an assessment of the quality of the study performed by the

authors.

The answers to these questions were stored according to each selected study, using

Microsoft Excel documents. These results consist of a score that follows the following

rules. For each secondary question, a score between one and four is assigned. Each

primary question score is composed based on the mean of all the secondary questions

that it includes. Finally, the total score is the sum of all the primary questions. There-

fore, the total score is between 11 and 44 because there are eleven primary questions.

Finally, the higher the score is, the higher the quality of the information provided by

31



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

the selected study, which is determined by the authors of this work.

The questions about quality that are addressed by this study can be seen in the

Annex B.

The quality score of the selected publications was used to discard papers that ob-

tained a low-quality score so that conclusions could be obtained from the publications

having more detailed information. The criteria used considered that studies with scores

lower than 22 did not provide enough information. Scores higher than 33 indicated stud-

ies that provided detailed information. Publications scoring between 22 and 33 were

considered not to have enough information. Figure 2.2 shows the distribution of the

quality score of the publications.

To avoid conclusions based on the data extracted from studies that do not provide

enough detailed information, according to the described grading process, studies with

low-quality scores were discarded in Filter5 of the selection process described in Sec-

tion 2.3.3.3. Fifty-eight primary studies fulfilled the quality criteria and therefore were

used to answer the research questions.

2.3.6 Data extraction strategy

A form for data extraction was created to extract the information that was relevant to

the research questions of this chapter. The goal of this form was to help extract all the

required information from each of the selected studies.

The research questions (Section 2.3.1), are focused on identifying concepts and

techniques related to software architecture that consider value in some way. The data

form used can be seen in Annex A.

Because the selected studies are heterogeneous, they did not follow a common pat-

tern in describing the relationships between value and architecture. Therefore, it was

not always possible to obtain input for all topics on the data form from every study.

When the required data were obtained from the studies, they were used as the start

point in the process of synthesis in order to identify relationships between concepts.

The synthesis process is explained in the next section.

2.3.7 Data synthesis process

A narrative synthesis approach was followed to uncover the concepts used in the ana-

lyzed publications and the relationships between those concepts. A definition of nar-

rative synthesis is given in [86]: “Narrative synthesis refers to an approach to the

systematic review and synthesis of findings from multiple studies that relies primarily

32



2.3 Research Method

on the use of words and text to summarize and explain the findings of the synthesis.

Whilst narrative synthesis can involve the manipulation of statistical data, the defining

characteristic is that it adopts a textual approach to the process of synthesis to ‘tell

the story’ of the findings from the included studies. As used here ‘narrative synthe-

sis’ refers to a process of synthesis that can be used in systematic reviews focusing

on a wide range of questions, not only those relating to the effectiveness of a partic-

ular intervention”. This method was selected because it is suitable for heterogeneous

studies, such as studies included in the present systematic literature review. The use

of narrative synthesis in software engineering was previously reported [27]. Popay et

al. [86] produced a guide for using narrative synthesis in systematic literature reviews.

Although the guide is oriented towards medical studies, it is suitable for software en-

gineering [27]. In the guide, four steps are proposed to perform a narrative synthesis.

These are described below, with suggestions for the possible uses of each:

1. Developing a theory. This section corresponds to an initial description of the

fundamental concepts, processes, and activities that represent the basis of the

studies analyzed.

2. Developing a preliminary synthesis. This is the initial analysis of the studies. The

goal of this stage is to provide a preliminary view of the studies analyzed and to

show factors that could influence the included studies.

3. Exploring relationships within and between studies. Studies are analyzed with the

goal of revealing relationships between the concepts that they use. The goal of

this stage is to show how the concepts are connected and to determine factors

that differentiate the studies. This stage is very important because it reveals the

concepts that underlie all the selected studies.

4. Assessing the robustness of the synthesis. In this part of the synthesis, all the

means that have been used to minimize bias should be described.

Figure 2.3 shows the process followed and the techniques used. The first step

corresponds to the analysis of the main concepts involved in this study, that is, the

analysis of architecting activities and value-based software engineering. The output of

this step is summarized in the background section of this paper. For steps two and

three, several techniques were used to consider which were the most suitable to answer

the research questions. Tabulations and charts were used to show information in a

schematically, making it easier to understand and visualize. Microsoft Excel was used

33



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

High 
5 

Medium 
53 

Low 
17 

Figure 2.2: Studies quality distribution

to apply these techniques. Ideas webbing/conceptual mapping was used to identify the

principal concepts in the studies and to determine the relationships between them,

including the relationships among the concepts identified in different studies. In this

case, Microsoft Visio was used.

Grouping and clustering techniques were used to identify groups of studies and

concepts with common characteristics, allowing the classification of the studies to be

analyzed. This was done by adding labels to the data collected in the Microsoft Excel

sheets that were used to perform the analysis. Textual descriptions were used to discuss

the underlying implications of the discovered concepts and relationships. The output

of steps two and three of the data synthesis are summarized in Section 2.4. Finally,

because of the kind of studies analyzed and their difference from one another (e.g.,

their scopes, contexts, and goals), it was not possible to use techniques proposed to

assess the robustness of narrative synthesis for quantitative studies [86]. Therefore, we

used the quality criteria described in Section 2.3.5 of the systematic literature review

to avoid studies lacking sufficient information to obtain conclusions.

34



2.3 Research Method

 

58 studies selected in the SLR 

Developing a theory 

Developing a preliminary synthesis 

• Tabulation 
• Charts 

Exploring relationships within and between 
studies 

• Ideas webbing/conceptual mapping 
• Grouping and Clustering 
• Textual description 

Assessing the robustness of the synthesis 

Conclusions 

M
ov

em
en

t b
et

w
ee

n 
st

ag
es

 

BEGINNING 
OF 
SYNTHESIS 

END OF 
SYNTHESIS 

Figure 2.3: Synthesis process, inspired from [86]

35



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

Table 2.3: Architecting activities and the studies where they were found

Architecture activities References

Synthesis [S12][S11][S58][S53][S19][S2][S21][S8][S42][S51][S4][S49][S9][S16][S23][S22][S55][S56][S3][S57][S54][S52][S41]

Documentation [S18][S17][S14][S15]

Evaluation [S20][S40][S27][S38][S34][S50][S5][S29][S35][S43][S28][S36][S30][S7][S48][S24][S1][S37][S32][S13][S39][S31][S6]

Design as a whole [S25][S26][S47][S33]

Management [S44][S10][S46][S45]

2.4 Results

In this section, the results obtained for each research question defined in Section 2.3.1

are described.

2.4.1 RQ1: What concepts are involved in the value creation in ar-

chitecting activities?

To answer this question focus was on architecting activities in which the value concept

was used, as well as on techniques used or proposed to support activities using the

value concept. The goal was to obtain a general picture of the current use of value in

software architecture. To answer this question, more specific research questions were

formulated.

2.4.1.1 RQ1.1 In which architecting activities are value considerations taken

into account?

The goal of this question is to identify the architecting activities (see Section 2.2.1)

that consider the concept of value and use it as a driver to perform the activity.

Figure 2.4 shows the distribution of the architecting activities identified in the

selected studies. Table 2.3 shows studies classified by architecting activity.

Studies not focused on concrete activities but on architecting in general were clas-

sified as Architecting as a whole.

The results showed that the most frequent activities in which value was used are

evaluation and synthesis. Nevertheless, it is necessary to emphasize that all studies

involved somehow architectural analysis to a greater or lesser degree; however, this

architectural activity is not the sole activity reported in these studies. As architectural

analysis aims to understand the environment where the system will work, this means

that all the architecting activities take into account the context of software when in

such activities value is considered.

36



2.4 Results

Whole architectural design 
4 

Architectural Synthesis 
23 

Architectural Management 
4 

Architectural Evaluation 
23 

Architectural Documentation 
4 

Figure 2.4: Studies included in the study classified by architecting activity

2.4.1.2 RQ1.2 What motivations and/or goals have driven the use value-

based approaches in software architecting activities?

Several goals were identified as the motivation to use value-based approaches. Figure 2.5

shows the number of studies classified by identified goals. Table 2.4 shows the selected

studies classified by goal. The goals are not bound to a given architecting activity.

As shown, Achieve stakeholders’ concerns is the most frequently cited goal in all the

studies. This goal is common to studies about architectural evaluation or decision

making in architectural synthesis when the effect of architecture characteristics on

stakeholders’ concerns is considered. These studies are focused mainly on external

quality because they are focused on the concerns that can be perceived by stakeholders.

Only if maintainability or flexibility are considered by stakeholders, internal quality

would be considered, but without clearly analyzing the impact of the internal quality

in the future possible changes.

Another goal that is frequently referenced is to assess the value of flexibility. These

studies intend to calculate or estimate the value derived from decisions made about

software architecture through the flexibility that they add to software. These studies

deal with internal quality by analyzing how the flexibility of a system will help to

accommodate future changes, and therefore, it will help to add value for the customers

in the evolution of software.

The third most referenced goal is to assess the value of architectural decisions. In

many cases, the motivation corresponds to the need to choose between different design

37



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

Valuation of architectural decisions 
10 

Reducing waste 
3 

Manage Technical Debt 
3 

Integration of different 
architectures 

1 

Documenting architectural 
decision rationale 

4 Asses the value of flexibility 
13 

Achieve 
stakeholders'concerns 

24 

Figure 2.5: Studies’ goals related to architecture

Table 2.4: Goals of the selected studies

Goals References

Achieve stakeholders’ concerns [S20][S27][S34][S47][S2][S21][S29][S51][S35][S43][S28][S4]

[S36][S30][S48][S9][S24][S1][S37][S55][S56][S13][S31][S54]

Valuation of architectural decisions [S12][S40][S25][S26][S53][S8][S49][S39][S57][S52]

Assess the value of flexibility [S11][S19][S5][S42][S7][S16][S23][S22][S32][S33][S3][S41][S6]

Documenting architectural decision rationale [S18][S17][S14][S15]

Reducing waste [S10][S46][S45]

Integration of different architectures [S58]

Manage Technical Debt [S38][S44][S50]

options. Hence, to calculate or estimate the value of those options will help in making

decisions. The options will have more or less value considering the long-term impact

and depending on possible future change scenarios.

To manage technical debt is very close to flexibility and options. In that case, tech-

nical debt management is focused on analyzing the relationship between internal quality

of the software with future costs and capacity to support future changes. Therefore,

technical debt management helps to manage the internal quality and its degradation

over the project evolution.

Reducing waste and integration of different architectures are special cases of achiev-

ing stakeholders’ concerns.

38



2.4 Results

2.4.1.3 RQ1.3 What architecting techniques are value driven, and how do

they make use of value?

The first step to answer this question was to identify the techniques used in the selected

studies. Some studies used several techniques, while others did not use any. Table 2.5

shows the identified techniques, as well as the references to the studies where they

were identified. It is divided into two main sections, the top one shows the evaluation

methods identified. The bottom section of the table shows the remaining techniques

used in the analyzed studies.

The goal of architecture evaluation is to analyze software architecture to identify

risks and verify that the quality requirements have been addressed in the design of

the architecture [30]. The row I-Evaluation in Table 2.5 shows the identified evalua-

tion methods and techniques. Data have been aggregated. That is, different versions

of the same method or technique were assumed the same. For example, several ver-

sions of the Cost Benefit Analysis Method (CBAM) were used in the studies (e.g.,

CBAM, CBAM2, WinCBAM, CBAM+AHP). In this case, they all have been counted

as CBAM. Two frameworks to analyze architectural evaluation methods were used to

help in the analysis and synthesis of the methods.

The first framework was defined by Babar et al. [10] and is an extension of the

framework defined by Dobrica and Niemela in [30]. The summary of the analysis can

be seen in Table 2.6. It is possible to highlight that:

� Some of the methods (ATAM, Losavio et al., SQUASH, SystEM-PLA, and QuaDAI)

are focused on the assessment of quality attribute. That is, the objective of these

methods is to determine whether architectures will satisfy, to a certain level, dif-

ferent quality attributes (QA). The value is considered by being sure that the

architecture satisfies the stakeholders’ concerns.

� Other methods (CBAM, LiVASAE, CBAM+AHP, CBAM+ANP, WinCBAM,

and REARM) consider return on investment (ROI) in the architecture evaluation.

That is, these methods evaluate the benefits and costs of the different architecture

strategies. These methods are mainly centered on the economic perspective.

� Finally, MORPHOSIS is centered only on maintainability, that is, on future

changes.

The second analysis was performed following the framework defined by Kazman et

al. [61]. The summary of the second analysis is shown in Table 2.7. It is possible to

highlight that:

39



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

Table 2.5: Methods/Techniques used and/or defined. One study can use several methods

and techniques. Different versions of the same method or technique have been count as

the same

Used / Defined Methods No. References

I-
E

va
lu

at
io

n

ATAM 12 [S20][S27][S34][S29][S35][S43]

[S28][S48][S32][S30][S37][S36]

CBAM 6 [S27][S34][S29][S35][S43][S30]

Losavio et al. 2 [S36][S37]

QuaDAI 1 [S20]

REARM 1 [S40]

LiVASAE 1 [S30]

SystEM-PLA 1 [S48]

SQUASH 1 [S24]

SAAM 1 [S1]

MORPHOSIS 1 [S32]

HoPLSAA 1 [S48]

ALMA 1 [S32]

II
-O

th
er

s

Real Options Valuation 12 [S53][S19][S5][S42][S49][S7]

[S16][S22][S3][S52][S41][S6]

DSM 6 [S12][S11][S44][S53][S10][S46]

Technical Debt 5 [S38][S44][S19][S50][S3]

AHP 4 [S34][S2][S30][S56]

GQM 3 [S20][S38][S48]

ArchOptions 3 [S5][S7][S6]

Customer value-in-use 2 [S25][S26]

Lean 2 [S23][S45]

Customer segments 2 [S25][S26]

DMM 2 [S10][S46]

NOV 1 [S11]

Ojala 2008 1 [S47]

ArchDesigner 1 [S2]

Game of involuntary altruism 1 [S8]

PSO 1 [S51]

Andrews et al. 2005 1 [S4]

Diaz-Pace et al. 2013 1 [S14]

NPV 1 [S57]

e3-VALUE 1 [S21]

VSM 1 [S23]

Svahnberg et al. 2003 1 [S56]

ACN 1 [S11]

WinWin 1 [S29]

CloudMTD 1 [S3]

ANP 1 [S34]

40



2.4 Results

Table 2.6: Analysis of the evaluation methods used in the selected studies based on the

framework described in [10]

A
T

A
M

[6
0]

C
B

A
M

[S
27

]
L

os
a v

io
et

al
.

[S
37

]

S
Q

U
A

S
H

[5
1]

L
iV

A
S
A

E
[S

30
]

C
B

A
M

+
A

H
P

C
B

A
M

+
A

N
P

[S
34

]

W
in

C
B

A
M

[S
29

]
M

O
R

P
H

O
S
IS

[S
32

]

S
y
st

E
M

-P
L

A

[S
48

]

R
E

A
R

M
[S

40
]

Q
u
aD

A
I

[S
20

]

M
at

u
ri

t y
st

ag
e

D
ev

el
op

m
en

t
D

ev
el

op
m

en
t

D
or

m
an

t
D

or
m

an
t

D
or

m
an

t
D

or
m

an
t

D
or

m
an

t
D

or
m

an
t

D
or

m
an

t
D

or
m

an
t

D
or

m
an

t

P
ro

ce
ss

su
p
p

or
t

P
ro

ce
ss

d
e-

sc
ri

b
ed

P
ro

ce
ss

d
e-

sc
ri

b
ed

b
ri

efl
y

d
es

cr
ib

ed
P

ro
ce

ss
d
e-

sc
ri

b
ed

B
ri

efl
y

d
es

cr
ib

ed
P

ro
ce

ss
d
e-

sc
ri

b
ed

P
ro

ce
ss

d
e-

sc
ri

b
ed

P
ro

ce
ss

d
e-

sc
ri

b
ed

P
ro

ce
ss

d
e-

sc
ri

b
ed

P
ro

ce
ss

d
e-

sc
ri

b
ed

P
ro

ce
ss

d
e-

sc
ri

b
ed

M
et

h
o
d
’s

ac
ti

v
i-

ti
es

9
ac

ti
v
it

ie
s

in
2

p
h
as

es

P
re

v
io

u
s

A
T

A
M

an
al

y
si

s,
6

st
ep

s

fo
r

tr
ia

ge
an

d
6

st
ep

s
fo

r
d
et

ai
le

d

an
al

y
si

s

8
st

ep
s

2
p
h
as

es
w

it
h

a

to
ta

l
of

7
st

ep
s

P
re

v
io

u
s

A
T

A
M

an
al

y
si

s
&

3

st
ep

s

P
re

v
io

u
s

A
T

A
M

an
al

y
si

s
&

2

p
h
as

es
w

it
h

a

to
ta

l
of

7
st

ep
s

P
re

v
io

u
s

A
T

A
M

an
al

y
si

s
&

C
B

A
M

an
al

y
si

s

&
3

st
ep

s

3
p
h
as

es
,

th
e

fi
rs

t
on

e
h
as

th
e

sa
m

e
st

ep
s

th
at

A
L

M
A

an
al

y
si

s

3
p
h
as

es
,

w
it

h
a

to
ta

l
of

14
st

ep
s

3
p
h
as

es
3

p
h
as

es

M
et

h
o
d
’s

go
al

s
S
en

si
ti

v
it

y
&

T
ra

d
e-

off
an

al
y
-

si
s

R
O

I
ev

al
u
at

io
n

at
ar

ch
it

ec
tu

ra
l

le
ve

l

Q
u
al

it
y

at
-

tr
ib

u
te

ac
h
ie

ve
-

m
en

t

S
el

ec
ti

n
g

th
e

m
os

t
re

le
va

n
t

sc
en

ar
io

s.

R
O

I
ev

al
u
at

io
n

at
ar

ch
it

ec
tu

ra
l

le
ve

l

R
O

I
ev

al
u
at

io
n

at
ar

ch
it

ec
tu

ra
l

le
ve

l

R
O

I
ev

al
u
at

io
n

at
ar

ch
it

ec
tu

ra
l

le
ve

l

E
v o

lu
ti

on
sc

e-

n
ar

io
s

an
al

y
si

s

Q
u
al

it
y

at
-

tr
ib

u
te

s
an

d

st
ru

ct
u
re

an
al

-

y
si

s
of

p
ro

d
u
ct

li
n
e

ar
ch

it
ec

-

tu
re

s

R
O

I
ev

al
u
at

io
n

of
re

fe
re

n
ce

ar
-

ch
it

ec
tu

re

Q
u
al

it
y

at
-

tr
ib

u
te

s
ev

al
u
a-

ti
on

in
so

ft
w

ar
e

p
ro

d
u
ct

li
n
es

Q
u
al

it
y

at
-

tr
ib

u
te

s
ad

-

d
re

ss
ed

M
u
lt

ip
le

at
-

tr
ib

u
te

s

M
u
lt

ip
le

at
-

tr
ib

u
te

s

IS
O

-9
12

6-
1

q
u
al

-

it
y

at
tr

ib
u
te

s

M
u
lt

ip
le

at
-

tr
ib

u
te

s

M
u
lt

ip
le

at
-

tr
ib

u
te

s

M
u
lt

ip
le

at
-

tr
ib

u
te

s

M
u
lt

ip
le

at
-

tr
ib

u
te

s

M
ai

n
ta

in
ab

il
it

y
M

u
lt

ip
le

at
-

tr
ib

u
te

s

R
eu

se
an

d
er

ro
r

co
st

M
u
lt

ip
le

at
-

tr
ib

u
te

s

A
p
p
li
ca

b
le

p
ro

je
ct

st
ag

e

A
ft

er
S
A

/d
e-

ta
il
ed

d
es

ig
n
,

it
er

at
iv

e
p
ro

ce
ss

A
ft

er
A

T
A

M

an
al

y
si

s.

E
ar

ly
ar

ch
it

ec
-

tu
re

d
es

ig
n

B
ef

or
e

ar
ch

it
ec

-

tu
re

d
es

ig
n

A
ft

er
A

T
A

M

an
al

y
si

s

A
ft

er
A

T
A

M

an
al

y
si

s

A
ft

er
A

T
A

M

an
al

y
si

s

S
of

t w
ar

e
m

ai
n
te

-

n
an

ce

A
ft

er
p
ro

d
u
ct

li
n
e

ar
ch

it
ec

tu
re

d
es

ig
n

A
ft

er
re

fe
re

n
ce

ar
ch

it
ec

tu
re

im
p
le

m
en

ta
ti

on

or
d
es

ig
n

A
ft

er
p
ro

d
u
ct

ar
ch

it
ec

tu
re

d
er

iv
at

io
n

or

tr
an

sf
or

m
at

io
n

A
rc

h
it

ec
tu

ra
l

d
es

cr
ip

ti
on

A
rc

h
it

ec
tu

ra
l

v
ie

w
s

re
la

te
d

to
th

e
se

le
ct

ed

sc
en

ar
io

s

L
ef

t
to

p
re

v
io

u
s

A
T

A
M

an
al

y
si

s

L
ef

t
to

u
se

rs
N

o
n
ee

d
ed

L
ef

t
to

p
re

v
io

u
s

A
T

A
M

an
al

y
si

s

L
ef

t
to

p
re

v
io

u
s

A
T

A
M

an
al

y
si

s

L
ef

t
to

p
re

v
io

u
s

A
T

A
M

an
al

y
si

s

It
u
se

s
so

u
rc

e

co
d
e

an
al

y
si

s

It
u
se

s
U

M
L

ar
-

ch
it

ec
tu

re
sp

ec
i-

fi
ca

ti
on

It
is

n
ot

sp
ec

ifi
ed

M
o
d
el

s
d
es

cr
ib

-

in
g

ar
ch

it
ec

tu
ra

l

v
ie

w
s

an
d

v
ie

w
-

p
oi

n
ts

.

E
v a

lu
at

io
n

ap
p
ro

ac
h
es

S
ce

n
ar

io
-b

as
ed

an
al

y
si

s
&

st
ak

eh
ol

d
er

s

co
n
se

n
su

s

S
ce

n
ar

io
-b

as
ed

an
al

y
si

s
&

st
ak

eh
ol

d
er

s

co
n
se

n
su

s
&

co
st

es
ti

m
at

io
n

M
et

ri
cs

an
d

m
ea

su
re

s
of

q
u
al

it
y

at
-

tr
ib

u
te

s

D
efi

n
in

g
q
u
an

-

ti
ta

ti
ve

m
et

ri
cs

fo
r

Q
A

s.

S
ce

n
ar

io
-b

as
ed

an
al

y
si

s
&

st
ak

e-

h
ol

d
er

s
co

n
se

n
-

su
s

(A
H

P
)

&

co
st

es
ti

m
at

io
n

S
ce

n
ar

io
-b

as
ed

&
p
ai

r-
w

is
e

co
m

p
ar

is
on

S
ce

n
ar

io
b
as

ed

&
st

ak
eh

ol
d
er

s

co
n
se

n
su

s

S
ce

n
ar

io
b
as

ed

&
m

ai
n
ta

in
ab

il
-

it
y

m
et

ri
cs

S
ce

n
ar

io
s

&
m

et
-

ri
cs

M
et

ri
cs

M
et

ri
cs

S
ta

ke
h
ol

d
er

s
in

-

vo
lv

ed

A
ll

m
a
jo

r
st

ak
e-

h
ol

d
er

s

A
ll

m
a
jo

r
st

ak
e-

h
ol

d
er

s

N
ot

sp
ec

ifi
ed

A
ll

m
a
jo

r
st

ak
e-

h
ol

d
er

s

A
ll

m
a
jo

r
st

ak
e-

h
ol

d
er

s

A
ll

m
a
jo

r
st

ak
e-

h
ol

d
er

s

A
ll

m
a
jo

r
st

ak
e-

h
ol

d
er

s

A
rc

h
it

ec
ts

&
d
e-

ve
lo

p
er

s

S
ta

ke
h
ol

d
er

s
&

ev
al

u
at

io
n

te
am

p
ro

je
c t

m
an

ag
er

&
ar

ch
it

ec
ts

&

d
ev

el
op

er
s

A
p
p
li
ca

ti
on

en
-

gi
n
ee

r
&

E
va

lu
a-

to
r

&
A

rc
h
it

ec
t

S
u
p
p

or
t

fo
r

n
on

-

te
ch

n
ic

al
is

su
es

It
is

m
ai

n
ly

or
i-

en
te

d
to

te
ch

n
i-

ca
l

is
su

es
(Q

A
s)

It
an

al
y
ze

s

ar
c h

it
ec

tu
re

w
it

h
ec

on
om

ic

p
er

sp
ec

ti
ve

It
is

m
ai

n
ly

or
i-

en
te

d
to

te
ch

n
i-

ca
l

is
su

es
(Q

A
s)

It
an

al
y
ze

s
Q

A
s,

R
is

k
,

an
d

C
os

t.

It
an

al
y
ze

s

ar
ch

it
ec

tu
re

w
it

h
ec

on
om

ic

p
er

sp
ec

ti
ve

It
an

al
y
ze

s

ar
c h

it
ec

tu
re

w
it

h
ec

on
om

ic

p
er

sp
ec

ti
ve

It
an

al
y
ze

s

ar
c h

it
ec

tu
re

w
it

h
ec

on
om

ic

p
er

sp
ec

ti
ve

It
an

al
y
ze

s
ar

-

ch
it

ec
tu

re
w

it
h

m
ai

n
te

n
an

ce

co
st

p
er

sp
ec

ti
ve

It
is

m
ai

n
ly

or
i-

en
te

d
to

te
ch

n
i-

ca
l

is
su

es
(Q

A
s)

,

it
co

n
si

d
er

s
co

st

an
d

ri
sk

It
is

or
ie

n
te

d
to

co
st

es
ti

m
at

io
n
s

It
is

m
ai

n
ly

or
i-

en
te

d
to

te
ch

n
i-

ca
l

is
su

es
(Q

A
s)

M
et

h
o
d
’s

va
li
d
a-

ti
on

U
se

d
in

se
v
er

al

d
om

ai
n
s

U
se

d
in

se
v
er

al

d
om

ai
n
s

O
n
ly

on
e

ex
am

-

p
le

.

O
n
ly

on
e

co
n
te

x
t

O
n
ly

on
e

co
n
te

x
t

O
n
ly

on
e

co
n
te

x
t

O
n
e

co
n
te

x
t

O
n
e

co
n
te

x
t

O
n
e

co
n
te

x
t

O
n
e

co
n
te

x
t

O
n
e

co
n
te

x
t

R
es

ou
rc

es
re

-

q
u
ir

ed

E
va

lu
at

io
n

te
am

&
st

ak
eh

ol
d
er

s

E
va

lu
at

io
n

te
am

&
st

ak
eh

ol
d
er

s

E
va

lu
at

io
n

te
am

.

S
ta

ke
h
ol

d
er

s
&

w
h
o

m
ak

es
th

e

ev
al

u
at

io
n
.

S
ta

ke
h
ol

d
er

s

&
E

va
lu

at
io

n

T
ea

m

S
ta

ke
h
ol

d
er

s
&

E
va

lu
at

io
n

te
am

S
ta

ke
h
ol

d
er

s
&

E
va

lu
at

io
n

te
am

A
rc

h
it

ec
tu

ra
l

d
es

cr
ip

ti
on

&

so
u
rc

e
co

d
e

&

E
va

lu
at

io
n

te
a
m

A
rc

h
it

ec
tu

ra
l

d
es

cr
ip

ti
on

&

fe
at

u
re

s
d
es

cr
ip

-

ti
on

D
ep

en
d
in

g
on

th
e

se
le

ct
ed

m
et

ri
cs

,
it

n
ee

d
s

d
iff

er
en

t
in

p
u
ts

P
ro

d
u
ct

fe
a-

tu
re

s
&

Q
u
al

it
y

at
tr

ib
u
te

s
p
ri

-

or
it

ie
s

&
S
P

L

d
es

ig
n

41



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

� The evaluation methods are mostly based on the evaluation of quality attributes.

The value is considered by being sure that the architecture satisfies the stake-

holders’ concerns.

� Only some of them consider the economic implications (i.e., return on investment)

of architecture strategies (see Table 2.7).

� Only MORPHOSIS and REARM explicitly take into account architecture de-

cisions impact in the long term. MORPHOSIS considers future changes with

regard to the maintainability of the architecture, and REARM considers reuse in

the context of reference architectures.

� Although identifying business goals is key in determining whether an architecture

provides value, several methods do not provide the means to do it.

Out of evaluation of architectures (see row II-Others of Table 2.5), Real Options

Valuation [49] was frequently used in 12 of the selected studies. Real Options is based

on the long-term impact of decisions that are made at architectural level in software

projects. Studies that use Real Options are centered the most often on either i) assessing

the value of different design alternatives (choosing the most suitable for the analyzed

situation) or ii) assessing the value of the flexibility added by the architecture or its

design. In both cases, the motivation for using real options is to have adequate tools,

based on economic aspects, to assess the value of design decisions taking into account

future changes. But it is necessary to decide how much effort is profitable to use for

adding value in the short term (increasing the external quality of products) and in the

long term (providing flexibility to be ready for future changes). The studies that use the

concept of technical debt (see Table 2.5) are mainly focused on this decision. However,

currently, there is no well-established approach to using real options in making decisions

at software architectural level.

2.4.1.4 RQ1 Conclusions

As a final conclusion of the RQ1, it is possible to synthesize the RQ1.1, RQ1.2, and

RQ1.3 in a set of concepts that are involved in the value creation from the architecting

activities. These concepts are summarized in Table 2.8.

2.4.2 RQ2: How do architecting activities create value?

Methods and techniques used to evaluate software architecture (see Tables 2.6 and

2.7) are mainly centered on the relationship between architectural strategies and stake-

42



2.4 Results

Table 2.7: Analysis of the evaluation methods based on Kazman et al. criteria [61]

A
T

A
M

[6
0]

C
B

A
M

[S
2
7]

L
os

av
io

et
al

.

[S
37

]

S
Q

U
A

S
H

[5
1]

L
iV

A
S
A

E

[S
30

]

C
B

A
M

+
A

H
P

C
B

A
M

+
A

N
P

[S
34

]

W
in

C
B

A
M

[S
29

]

M
O

R
P

H
O

S
IS

[S
32

]

S
y
st

E
M

-P
L

A

[S
48

]

R
E

A
R

M
[S

40
]

Q
u
aD

A
I

[S
20

]

C
on

te
x
t

an
d

go
a
l

id
en

ti
fi
ca

-

ti
on

It
h
as

sp
ec

ifi
c

p
h
as

es
to

id
en

-

ti
fy

th
em

L
ef

t
to

p
re

-

v
io

u
s

A
T

A
M

an
al

y
si

s

It
is

fo
cu

se
d

on
Q

A
s

(I
S
O

-

91
26

-1
)

b
u
t

it
d
o
es

n
ot

li
n
k

th
em

w
it

h

b
u
si

n
es

s
go

al
s

q
u
es

ti
on

in
g

to

th
e

st
ak

eh
ol

d
-

er
s

b
u
t

it
is

ve
ry

re
la

te
d

to

Q
A

.

L
ef

t
to

p
re

-

v
io

u
s

A
T

A
M

an
al

y
si

s

L
ef

t
to

p
re

-

v
io

u
s

A
T

A
M

an
al

y
si

s

It
u
se

s
th

e
p
re

-

v
io

u
s

A
T

A
M

an
al

y
si

s
an

d

co
m

p
le

te
it

w
it

h
W

in
W

in

re
q
u
ir

em
en

t

n
eg

ot
ia

ti
on

m
et

h
o
d

It
u
se

s
ev

ol
u
-

ti
on

sc
en

ar
io

s

It
d
efi

n
es

m
et

ri
cs

u
si

n
g

G
Q

M

T
o

d
et

er
m

in
e

th
e

R
O

I
of

a
re

fe
re

n
ce

ar
ch

it
ec

tu
re

It
an

al
y
ze

Q
A

s
in

S
P

L

to
d
et

er
m

in
e

va
ri

at
io

n

p
oi

n
ts

an
d

ar
ch

it
ec

tu
re

tr
an

sf
or

m
a-

ti
on

to
ac

h
ie

ve

th
e

Q
A

s

ex
p

ec
te

d
le

ve
l

F
o
cu

s
an

d

p
ro

p
er

ti
es

u
n
d
er

ex
a
m

i-

n
at

io
n

Q
u
a
li
ty

at
-

tr
ib

u
te

s
an

d

sc
en

ar
io

s
to

an
al

y
ze

th
em

It
m

a
ke

s
re

-

la
ti

on
sh

ip
s

b
e-

tw
ee

n
A

S
s

an
d

Q
A

s
to

ke
ep

th
e

fo
cu

s
on

th
e

at
tr

ib
u
te

s

an
al

y
ze

d

P
ri

or
it

iz
in

g

Q
A

s
(I

S
O

-

91
26

-1
)

h
el

p
s

to
fo

cu
s

on
th

e

m
os

t
re

le
va

n
t

fo
r

th
e

p
ro

je
ct

S
ev

er
al

q
u
al

it
y

at
tr

ib
u
te

s

S
ev

er
al

at
-

tr
ib

u
te

s

It
m

ak
es

re
-

la
ti

on
sh

ip
s

b
e-

tw
ee

n
A

S
s

an
d

Q
A

s
to

ke
ep

th
e

fo
cu

s
on

th
e

at
tr

ib
u
te

s

an
al

y
ze

d

It
m

ak
es

re
-

la
ti

on
sh

ip
s

b
e-

tw
ee

n
A

S
s

an
d

Q
A

s
to

ke
ep

th
e

fo
cu

s
on

th
e

at
tr

ib
u
te

s

an
al

y
ze

d

It
u
se

s
m

ai
n
-

ta
in

ab
il
it

y

ac
co

rd
in

g

to
IS

O
/I

E
C

25
01

0

Q
u
al

it
y

at
-

tr
ib

u
te

s
an

d

sc
en

ar
io

s
to

an
al

y
ze

th
em

R
eu

sa
b
il
it

y

an
d

E
rr

or
s

It
is

fo
cu

se
d

on

an
al

y
zi

n
g

m
u
l-

ti
p
le

Q
A

s

A
n
al

y
si

s
su

p
-

p
or

t

It
u
se

s
sc

en
ar

-

io
s

to
le

ad
th

e

an
al

y
si

s

It
u
se

s
sc

e-

n
ar

io
s

an
d

ar
ch

it
ec

tu
ra

l

st
ra

te
gi

es

to
le

ad
th

e

an
al

y
si

s

It
p
ro

v
id

es

m
et

ri
cs

to

an
al

y
ze

th
e

d
iff

er
en

t
Q

A
s

(I
S
O

-9
12

6-

1)
w

it
h

an

ar
ch

it
ec

tu
re

p
er

sp
ec

ti
ve

It
u
se

s
sc

e-

n
ar

io
s

an
d

m
et

ri
cs

to

an
al

y
ze

Q
A

.

A
n
d

al
w

ay
s

ta
k
in

g
in

to

ac
co

u
n
t

ri
sk

an
d

co
st

.

It
u
se

s
sc

en
ar

-

io
s

an
d

A
H

P

fo
r

ev
al

u
at

in
g

ar
ch

it
ec

tu
re

ag
ai

n
st

Q
A

se
le

ct
ed

.

It
u
se

s
sc

en
ar

-

io
s

an
d

A
H

P
o

A
N

P

It
is

b
as

ed
on

th
e

co
m

b
in

a-

ti
on

of
A

T
A

M
,

C
B

A
M

,
an

d

W
in

W
in

It
u
se

s
co

d
e

m
et

ri
cs

to

m
ea

su
re

m
ai

n
-

ta
in

ab
il
it

y

U
si

n
g

G
Q

M

d
efi

n
es

m
et

ri
cs

fo
r

th
e

Q
A

s

It
u
se

s
m

et
-

ri
cs

fo
r

m
ea

-

su
re

h
is

to
ri

ca
l

d
at

a
an

d
es

ti
-

m
at

io
n
s

fo
r

fu
-

tu
re

si
tu

at
io

n
s

It
is

b
as

ed
on

ar
ch

it
ec

tu
ra

l

v
ie

w
s

an
d

v
ie

w
p

oi
n
ts

.

D
et

er
m

in
in

g

an
al

y
si

s
o
u
t-

co
m

es

R
is

k
s

id
en

-

ti
fi
ed

ar
e

at
ta

ch
ed

to

b
u
si

n
es

s
go

al
s.

A
d
d
in

g
ec

o-

n
om

ic
p

er
-

sp
ec

ti
ve

to

A
T

A
M

o
u
t-

co
m

es
.

li
tt

le
su

p
p

or
t

fo
r

tr
ac

in
g

th
e

eff
ec

ts
of

b
u
si

n
es

s
go

al
s

th
ro

u
gh

an

ar
ch

it
ec

tu
re

an
al

y
si

s

L
it

tl
e

su
p
p

or
t

fo
r

tr
ac

in
g

th
e

eff
ec

ts

of
b
u
si

n
es

s

go
al

s
th

ro
u
gh

ar
ch

it
ec

tu
re

an
al

y
si

s

A
d
d
in

g
ec

o-

n
om

ic
p

er
-

sp
ec

ti
ve

to

A
T

A
M

ou
t-

co
m

es
.

A
d
d
in

g
ec

o-

n
om

ic
p

er
-

sp
ec

ti
ve

to

A
T

A
M

ou
t-

co
m

es
.

A
d
d
in

g
ec

o-

n
om

ic
p

er
-

sp
ec

ti
ve

to

A
T

A
M

ou
t-

co
m

es
.

It
id

en
ti

fi
es

ar
ch

it
ec

tu
re

re
fi
n
em

en
ts

to

im
p
ro

ve
th

e

ca
p
ac

it
y

to

ev
ol

ve
of

an

ar
ch

it
ec

tu
re

It
u
se

s
G

Q
M

to
tr

ac
e

Q
A

s

su
p
p

or
t

w
it

h

co
n
cr

et
e

m
et

-

ri
cs

It
p
ro

v
id

es

ec
on

om
ic

al

in
fo

rm
at

io
n

ab
ou

t
th

e

u
sa

ge
of

a

re
fe

re
n
ce

ar
ch

it
ec

tu
re

It
p
ro

v
id

es

in
fo

rm
at

io
n

ab
ou

t
w

h
en

it
is

n
ec

es
sa

ry

to
cr

ea
te

va
ri

-

at
io

n
p

oi
n
ts

or
p

er
fo

rm

ar
ch

it
ec

tu
ra

l

tr
an

sf
or

m
a-

ti
on

to
ac

h
ie

ve

th
e

q
u
al

it
y

ex
p

ec
te

d
.

43



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

Table 2.8: Concepts involved in the value creation from the architecting activities

Concept RQs Description

Context RQ1.1 To consider value, it is necessary to take into account the context of software

when architecting activities are performed.

Stakeholders’ Con-

cerns

RQ1.2

RQ1.3

The most direct way to add value from architecture is by creating archi-

tectures that satisfy the stakeholders’ concerns. This is deals mainly with

external quality of software

Long-term impact RQ1.2

RQ1.3

The long-term impact of the decisions made in architecture can be used to

analyze the value of internal quality of software

Flexibility RQ1.2

RQ1.3

Flexibility is a concept used to describe the capacity of software to accom-

modate future changes. Therefore, it is related to the internal quality of the

software because it is not perceived by the customers.

Technical debt RQ1.2

RQ1.3

Technical debt can be used to make trade-offs between the internal and

external quality of software

Return on invest-

ment

RQ1.3 To make decisions based on value, decisions have to be driven by return on

investment

Technical and busi-

ness goals

RQ1.3 To use value as a driver, technical and business goals have to be conciliated.

holders’ concerns. This same focus is used in studies on architecture synthesis, which

calculate the benefit of a specific architecture or a change aimed to improve quality

attributes. Stakeholders’ concerns represent the interest of the stakeholders. Only

by satisfying those interests will the system add value to the stakeholders, being the

stakeholders all those who have some interest in the system. Architectural strategies

represent the decisions that are made when the architecture is designed or evolved.

The goal is to determine which architectural strategies are the most relevant with

respect to the stakeholders’ concerns. This information is usually stakeholder-based,

and therefore subjective. Subjectivity adds uncertainty because different stakehold-

ers have different perceptions of the concerns prioritization. Therefore, it could be

necessary to make trade-offs between the concerns of the stakeholders.

However, this does not indicate how an architecture satisfies future value propo-

sitions or changes in the current ones. Brown, Nord, Ozkaya, and Pais, studied the

dependencies between architectural elements and capabilities of the system [S10, S45].

They affirmed that by focusing on generating the maximum value as soon as possible,

higher costs could be generated in the long term because of the need for more refac-

toring tasks. In that perspective on the long-term, Real Options [S52][S6][S5][S7] are

used to value architecture flexibility. They argued that a system with enough flexi-

bility would support changes more easily. The trade-off between short-term value and

long-term costs gives value to flexibility. Therefore decisions have to be made to decide

44



2.4 Results

when it would be profitable to invest in improving flexibility by modifying the system

architecture. That is, to take into account the long term does not mean expending

great effort in development to accommodate future changes, but considering how much

effort to expend.

Several studies used the concept of architectural technical debt to describe the

negative effect that poor architecture has on the future evolution or operation of a

system. In [S44], technical debt was used to identify a better combination of features

to be implemented in a release and the order implementation of such features. In

[S19] technical debt was used to select the most profitable level of flexibility in an

architecture. Hence, it was possible to estimate whether it is profitable to refactor

an architecture or not. In [S38][S50], technical debt was used to ensure the internal

quality of the architecture. That is, the capacity of the architecture to support the

future maintenance and evolution of the system. In general, studies about technical

debt were highly related with the value of being prepared for future changes. In this

sense, technical debt can be used to manage how much effort is necessary to prepare

for future changes. Hence, technical debt should be considered in deciding whether it

is necessary to refactor a software to avoid excessive maintenance costs in the future.

In [S10][S45][S44] techniques for selecting the most optimal release path to develop a

software product are presented. Those techniques are used to select the most worthwhile

release plan taking into account value and cost of change incurred by refactoring the

architecture or by generating technical debt. Hence, those studies showed that in

determining value, it is necessary to take into account the possible future changes and

the capacity to accommodate them (flexibility). The studies showed how that value

at the architectural level has to be considered in not only design decisions but also

issues, such as the order of feature implementations. This order can highly affect the

cost of software development caused by the need to refactor. Therefore, it is necessary

to synchronize the decisions made at the project management level with the available

information about the architecture.

2.4.2.1 RQ2 Conclusions

As a final conclusion of the RQ2, it is possible to synthesize a set of actions that

are involved in the value creation from the architecting activities. These actions are

summarized in Table 2.9.

45



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

Table 2.9: Actions involved in the value creation from the architecting activities

Actions Description

Satisfy stakeholders’

concerns

Prioritization of concern and determination of architectural strategies to satisfy

them

Decisions about flex-

ibility investments

Trade-offs between short and long-term value and costs of changes focused on

improving the changeability of software

2.5 Conclusions

This chapter aimed to determine how value can be created from software architecture.

To accomplish this goal a systematic literature review was performed to analyze ex-

tensively the available studies on the subject. Fifty-eight studies were identified as

considering value at the level of software architecture.

The most direct way to add value is by implementing architectural strategies that

satisfy the stakeholders’ concerns. But this way is mainly focused on adding external

quality to software. Focusing on internal quality, several authors provided evidence

that the order in which architectural strategies for satisfying concerns are implemented

is significant. The order can highly influence the cost of system development because

the amount and complexity of refactoring may increase for future changes.

Also focusing on internal quality, it is essential to consider both short-term and

long-term impact of architectural strategies. Hence, architectures should be analyzed

from the perspective of how they would perform in an uncertain future. This does not

mean that architectures should be implemented to accommodate all possible future

changes. However, it is important to estimate when it would be profitable to develop

architectural strategies that anticipate future changes or to implement the simplest

solutions. In designing an architecture that is open to changes extra costs will usually

be incurred; conversely, the simplest solution usually implies lower costs in the short

term, which is also valuable. That is, decisions about the flexibility of architecture have

to be made. These decisions are based on a trade-off between short-term value and

long-term costs.

Architectural technical debt refers to the cost of internal quality weaknesses at

the level of architectural design. Technical debt should be managed to control the

cost of the maintenance and operation of a system. Therefore, this variable should be

considered in any architecture analysis from a long-term perspective. The extra cost

caused by technical debt may reduce the value of a product in the future. Therefore,

the concept of technical debt helps to identify the value of flexibility.

One way to increase the flexibility is by option creation and Real Option valuation.

46



2.6 Selected Publications

Having options will help deal with future changes. There are several ways to create

options at the architectural level: modularity, variability, and any other way that gen-

erates alternatives for implement different architectural strategies. Having options has

value at the expense of additional cost.

2.6 Selected Publications

See Annex C

47



2. HOW TO ADD VALUE FROM SOFTWARE ARCHITECTURE

48



Chapter 3

Preliminary Case Study on

Technical Debt Management

The goal of this chapter is to put into practice the concepts, identified

in Chapter 2, to add value from the internal quality of software. To do

that, a preliminary case study was performed with the objective of obtain-

ing further knowledge about how these concepts can be effectively used in

software projects. This chapter is an excerpt from the following papers:

� Fernández Sánchez, Carlos; Dı́az Fernández, Jessica; Garbajosa Sopeña,

Juan y Pérez Bened́ı, Jennifer (2013). A Cost-Benefit analysis model

for technical debt management considering uncertainty and time. Work

in progress session at the 39th Euromicro Conference on Software En-

gineering and Advanced Applications (SEAA 2013) Santander, Spain,

September 4-6, 2013. [38].

� C. Fernández-Sánchez, J. Dı́az, J. Pérez and J. Garbajosa, Guiding

Flexibility Investment in Agile Architecting. In proceeding of the 47th

Hawaii International Conference on System Sciences, Waikoloa, HI,

2014, pp. 4807-4816. [35].

Copyright ©2015 IEEE.

49



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

3.1 Introduction

This chapter complements Chapter 2 to complete the first contribution of this thesis:

Contribution 1, Identification of how software internal quality increases the customer

value. This chapter presents a model for making decisions about flexibility investments

taking into account the outcomes of Chapter 2. Once the model was defined, it was used

in a preliminary case study to extract first impressions of its limitations and advantages

for using it in real projects. Therefore, the case study is also presented in this chapter.

The remainder of the chapter is organized as follows: Section 3.2 presents the main

concepts used in the chapter; Section 3.3 presents a model for cost-benefit analysis of

technical debt; Section 3.4 details how a case study to use the model was designed and

planned; Section 3.5 describes the execution of the case study; Section 3.6 discusses the

results; Section 3.7 identifies limitations of the case study; and Section 3.8 summarizes

the outcomes of the case study in the context of this thesis.

3.2 Background

In Chapter 2 several concepts and actions were highlighted for being involved in value

creation in software from architecting activities. These concepts and actions were used

to define a model to perform a cost-benefit analysis of decisions about improving the

internal quality of software.

Focused on software internal quality, the main action that was identified is to make

decisions about flexibility investments (see Table 2.9). That is, it is necessary to make

tradeoffs between short and long term impact of changes focused on improving the

capacity of software to accommodate changes. The main identified concept that is

involved in this tradeoff is technical debt (see Table 2.8).

Technical debt has been used as a useful means for making the intrinsic cost of the

internal software quality weaknesses visible [64]. Specifically, technical debt is expressed

in terms of two main concepts: principal and interest [114]. The principal is the cost of

eliminating (or reducing) the impact of a, so called, technical debt item in a software

system; whereas the interest is the recurring cost, over a time period, of not eliminating

a technical debt item.

Technical debt management consists of identifying the sources of the extra costs of

software maintenance and evolution and determining whether it is profitable to invest

efforts into improving a software system [114]. Therefore for managing technical debt,

it is necessary to estimate the principal and the interest and performing a cost-benefit

analysis considering both. This cost-benefit analysis allows one to determine if to

50



3.3 Modeling Technical Debt Considering the Interest Probability

remove technical debt is profitable and to prioritize which items incurring technical

debt should be fixed first [124].

Thus, by managing technical debt, it is possible to consider the long-term impact

of bad internal quality in future changes as well as the cost of improving the internal

quality. To consider the long term it is necessary to take into account the time frame,

and consequently, the possible evolution of the interest and the uncertainty involved

in that evolution. The time frame refers to the time period under study. This time

frame could be determined by external constraints or deadlines such as legal normative

issues that an application should be bound to, milestones or, availability of resources or

contractual restrictions, among others. Due to the interest is a cost that must be paid

continuously over time, it will cause accumulated costs. Therefore, with enough time

ahead, paying off the principal is always profitable because the accumulated interest

grows and grows. Hence, determining the time frame is important for a realistic cost-

benefit analysis. Considering this it becomes possible to depict a number of probable

future scenarios.

Due to the uncertainty involved in software evolution, the interest, the cost of not

removing technical debt, is associated with a probability of being paid. Interest proba-

bility is the probability that no extra cost is derived from technical debt. For example,

if the interest for a technical debt item is estimated in terms of extra maintenance cost,

but the software system incurring technical debt need not be changed over a period of

time, then no interest has to be paid during this period.

This chapter presents a model to perform cost-benefit analyses that are based on

technical debt and that deals with interest probability and considers the time frame

under analysis. This model has been used in a case study. Findings and conclusions

about how to use technical debt management in projects are presented. Finally, it is

discussed why technical debt has to be considered from a value-based software engi-

neering perspective.

3.3 Modeling Technical Debt Considering the Interest Prob-

ability

This section presents a model to perform a cost-benefit analysis based on the technical

debt concept, including principal, interest, and interest probability in which the time

frame is a model variable. The goal of this model is to be able to use technical debt

in decision making about internal quality of software by considering the long term and

the ROI of such decisions. That goal is derived from the concepts to add value from

51



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

the internal quality of software that were identified in Chapter 2 (see Table 2.8). This

model takes advantage of decision trees [105, 112]. Decision trees are used to estimate

the expected value of the interest considering its probability. Then, to obtain the net

expected value of paying off the principal, the principal is subtracted from the interest

expected value. That is, the principal is considered the cost of removing technical debt,

and the avoided interest is considered the benefit of removing technical debt. Decision

trees have been selected because they facilitate the understanding of the technical debt

of the system under analysis. This is due to the fact that they can be used to illustrate

the possible evolution paths by assigning probabilities to their branches and assigning a

weight to each path. That is, tree branches graphically represent several alternatives for

the interest evolution. As a result, decision trees usage facilitates the understanding of

the technical debt concept of a system under analysis. More complex techniques would

make it harder to understand the technical debt behavior.

Figure 3.1 shows an example of a decision tree, in this case, for simplicity reasons,

a binary decision tree. Decision trees are used in the model for estimating the interest

probability (see Figure 3.1). The tree grows over the time frame under analysis (see

Figure 3.1). The time frame is divided into periods of time, in such a way the interest

can evolve from the current period of time to the next one. Branching coincides with

the time frame events (t0 . . . tn), over which the interest evolves. The root node labeled

as Interest0 represents the current estimated interest at the moment of the analysis. In

Period1, there are two nodes that represent the interest in that moment, one pessimistic

labeled as Interest1,1, and another one optimistic labeled as Interest1,2. The lines

that join the nodes represent the possible paths in the evolution of the interest and are

labeled with the probability of such evolution. For example, there is a line between

the node Interest0 and Interest1,1 that indicates that the interest can evolve following

that path, and the probability p1,1 is the probability of such evolution (see Figure 3.1).

Finally, the number of depth levels of the tree is established by the number of time

periods defined.

To represent the accumulated interest during the time frame under study is also

required. Decision trees are also useful to represent this. From the tree in Figure 3.1,

it is possible to derive a new decision tree with the accumulated interest (AccInt) in

their nodes. This new tree has the same probabilities, periods and structure as the one

shown in Figure 3.1. This tree is named the accumulated interest evolution tree (see

Figure 3.2).

The accumulated interest evolution tree provides a key data for the study; its leaf

nodes represent the possible results of the interest evolution (see Figure 3.2). This

52



3.3 Modeling Technical Debt Considering the Interest Probability

Interest1,1

Interest1,2

Interest0

p1,1

p1,2 = 1-p1,1

p2,3

P2,4 = 1-p2,3

p2,1

p2,2 = 1-p2,1

Period 1 Period n…

Time frame

Interestn,i=1

Interestn,i=2
n

t0 t1 tn-1 tn

Leaf nodes

t2

Interest2,1

Interest2,2

Interest2,3

Interest2,4

Period 2

Figure 3.1: Modeling interest probability using decision trees

AccInt1,1

AccInt1,2

AccInt0

p1,1

p1,2 = 1-p1,1

p2,3

P2,4 = 1-p2,3

p2,1

p2,2 = 1-p2,1

Period 1 Period n…
Time frame

AccIntn,i=1

AccIntn,i=2
n

t0 t1 tn-1 tn

Leaf nodes

t2

AccInt2,1

AccInt2,2

AccInt2,3

AccInt2,4

Period 2

Figure 3.2: Accumulated interest evolution tree

53



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

data is necessary to calculate the expected value (EV ) of paying off the principal by

calculating the expected interest that would be avoided. As a result, net expected value

(NEV ) can be calculated using this data. To calculate the EV , it is necessary to sum

all the leaf nodes of the accumulated interest evolution tree (AccIntn) weighted by

their probability. These probabilities are the combined probability (CP ) of the whole

branch. Let n be the depth of the tree, i the number of the node into a level, and

pn,i the probability that the node AccIntn,i occurs from its parent node, the EV is

calculated with Equations 3.1 and 3.2.

CPn,i = pn,i if n = 1

CPn,i = pn,i ∗ CPn−1, i+imod2
2

if n > 1
(3.1)

EV =

2n∑
i=1

AccIntn,i ∗ CPn,i (3.2)

Finally, the net expected value (NEV ) of paying off the debt is calculated by

subtracting the principal (Principal) to the expected value (EV ) (see Equation 3.3).

NEV = EV − Principal (3.3)

As a result, the cost-benefit analysis model obtains an estimation of the NEV

considering the interest probability, the time frame and the cost of paying off the

principal.

Decision trees seem adequate to model the technical debt of software and to un-

derstand how interest accumulates over time. The model has been formalized using

binary trees for simplicity, but if needed more complex decision trees can be used. To

get experience from the use of the model in large projects, it was used in a case study

that is described in the following sections of this chapter.

3.4 Case Study Design and Planning

This section presents the case study in which the previously defined model was used.

The guide of Runeson and Höst [94] was followed to conduct this exploratory case study.

The next subsections are organized following the recommendation of the mentioned

guide.

54



3.4 Case Study Design and Planning

3.4.1 Objectives

The goal of this case study was to find advantages and limits when managing technical

debt using the model defined in Section 3.3. By putting into practice the model it

was expected to obtain interesting findings and insights to be able to make conclusions

about the applicability of the model in software development projects.

3.4.2 Rationale

The model described in Section 3.3 was intended to be used to perform a cost-benefit

analysis considering the principal, interest, interest probability, and time frame. In this

case study, this model was analyzed in the context of using it for making decisions about

improving the internal quality of software. Specifically, the case study was focused

on improving the flexibility of software. Flexibility is the capacity of a software to

accommodate new changes, and therefore, it is close to technical debt, because technical

debt makes reference to the capacity of software to be maintained and evolved [64].

3.4.3 Case and Subjects Selection

The case study was conducted in an experimental i-smart software factory (iSSF) [74,

111]. The iSSF is a software engineering research and education setting utilized by the

top industrial and research collaborators in Europe [74]. Indra Software Labs leads this

initiative at the corporate level in Spain in conjunction with Universidad Politécnica

de Madrid. The case study was performed within a project to develop a family of

metering data management systems in electric power networks for smart grids [8], called

Optimeter. This project was developed using Scrum methodology [100]. This project

is part of two European ITEA2 projects: IMPONET [55] and NEMO CODED [54].

Smart grids require the ability to manage different resources, from renewal or tra-

ditional energy producers to energy consumers. The case study performed on the

Optimeter project consisted of the development of a family of software systems that

manage meter data from a huge number of these resources. A metering management

system captures meter data from telemetering systems or batch processes, loads these

data into a database, supports data querying and processing, and provides these data

to other systems for billing, forecasting, or purchasing. The customer stated that the

high performance of data access and storage was essential to the success of the prod-

uct. In order to manage meter data with high performance, it was necessary to evaluate

several of the large data storage technologies available in the market (see Table 3.1).

The Optimeter project started with a proof-of-concept to evaluate Oracle NoSQL

55



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

Table 3.1: Main storage technologies evaluated by the prototypes of Optimeter

Prototype 1 Prototype 2 Prototype 3 Prototype 4

Oracle NoSQL Hibernate Hibernate EHCache

Apache Hadoop EHCache Oracle Coherence Apache Pig

Oracle 11g Oracle RAC Apache Hive

Oracle RAC Apache Hadoop

(see Prototype 1 in Table 3.1). Over a one-month period (two sprints, each sprint

implied two weeks), the team developed a product that implemented a solution based

on the data storage technology Oracle NoSQL. Figure 3.3 shows the architecture that

had arisen over that product development. At that time, the architects needed to

decide whether or not to invest in flexibility in order to support the variation of the

data storage technology, i.e., to support a family of products that support the different

variants regarding the data storage technology. This is due to there was a level of

uncertainty regarding a future change of the data storage technology to satisfy the

restrictions of data accessing performance (see Prototypes 2, 3, and 4 in Table 3.1).

In this regard, the architects considered the following expected change scenarios: the

possibility of varying one, two, or the three additional data storage technologies, as

shown in Table 3.1. At that moment, the customer did not know how many of these

candidate data storage technologies had to be evaluated in terms of the performance of

massive data loading and querying; nor did the customer know what other business and

commercial matters needed to be considered. Due to this uncertainty, it was necessary

to obtain information about the ROI for preparing the architecture in order to vary

the data storage technology (i.e., the value of flexibility).

This case was selected because the possible options under analysis were well known.

In the project, four possibilities of evolution were considered. A more complex case with

more complex evolution scenarios would complicate the case study. Due to the main

goal of the case study was to study a first contact of the model defined in Section 3.3

in a software project, a non-complex case made easier to understand how the model

works. Due to the usage of the model implied many data estimations, a case as the

selected, where the possible evolution steps were known, allowed to the development

team to provide the required estimations. Therefore, this case study is about expected

changes in evolution.

56



3.4 Case Study Design and Planning

MeterProcessor

DataLoader DataQuery

Clustering

DBManager

Component Port Attachment

Figure 3.3: Initial software architecture of Optimeter project (month 1)

57



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

3.4.4 Theoretical Frame of Reference

The model described in Section 3.3 was used to show how technical debt can be modeled

using decision trees. In the case study, it was not only necessary to model technical

debt but also to make decisions about flexibility investments. Furthermore, it was

necessary to consider the possibility of delaying the decision of investing in flexibility.

Therefore there are some changes with regard to the previously defined model. Thus,

the first conclusion obtained is that even with a previous model to describe technical

debt, it was necessary to adapt it to the specific decisions that had to be analyzed. The

main difference is that a new type of node (decision node) is used and that, in the new

model, the net value is calculated at the end nodes and the final net expected value is

calculated by folding back the decision tree. The following equation specifies how the

value is calculated for the different types of nodes.


NV = (V ∗ (C + Cf )) − (CoC ∗ C) − (CoCf ∗ Cf ) − CF for leaf nodes,

NEV =
∑n

i=1NVi ∗ pi for change nodes,

NEV = max(NVi, . . . , NVn) for decision nodes,

(3.4)

where

NV is the net value,

V is the value added by the expected changes if they happen,

C is the number of changes implemented before the investment in flexibility,

CoC is the cost of change before the investment in flexibility,

Cf is the number of changes after the investment in flexibility,

CoCf is the cost of change after the investment in flexibility,

CF is the cost of investment in flexibility, it will be 0 if there is not investment,

NEV is the net expected value,

p is the probability of changes,

n is the number of outgoing branches from the node.

As an example, Figure 3.4 graphically shows a cost-benefit analysis of one of this

types of decisions using a decision tree. The shown scenario is an investment in im-

proving the flexibility of a software architecture to deal with a set of expected changes.

Specifically, the software product has to undergo two expected changes over some period

of time, and its software architecture should be ready to deal with those changes.

The decision tree method consists of two main steps. The first step involves the

construction of a tree that represents (i) the evolution of the software product due to

58



3.4 Case Study Design and Planning

expected changes over some period of time, and (ii) the decisions as to whether or not to

invest in preparing the architecture to accommodate the expected changes. Figure 3.4

shows the decision tree over a two-month period. This tree is characterized by three

kinds of nodes: decision nodes, change nodes, and end nodes. Decision nodes, which are

represented by rectangles in Figure 3.4, are points where a decision on architecture has

to be made. Change nodes, which are represented by circles in Figure 3.4, are points

where expected changes of the software product could come. Finally, end nodes, which

are represented by triangles in Figure 3.4, show the final state of the software product

after analyzing all possible scenarios resulting from the expected changes that may or

may not occur and decisions that may or may not be made. These nodes make up

the branches of decision trees that have an associated probability (e.g., the probability

used in this example is 0.33 for all branches, which in this example is assumed that is

given by the opinions of experts; see Figure 3.4).

The second step in this process consists of the assessment of the value of changing

the software (i.e., the value of investing in flexibility). This investment’s net expected

value is computed by folding back the decision tree, starting with the end nodes and

moving toward the root, using Equation 3.4. This step is composed of two activities.

The first activity consists of estimating the net value of end nodes (triangles), that

is, the value of the software product after implementing the expected changes of the

branch under analysis, minus the cost of implementing those changes, and minus the

cost of investing in flexibility, if it is applicable for that node. For example, in Figure 3.4

a scenario is described considering that:

� The value added by an expected change is estimated in e10, 000.

� The cost of investing in flexibility is e2, 000.

� The cost of change with a previous investment in flexibility is e3, 000.

� The cost of a change without a previous investment in flexibility is e6, 000

In this case the end node marked with A has a net value of (e10, 000 ∗ 2changes)−
e2, 000− (e3, 000∗2changes) = e12, 000, while the end node marked with B has a net

value of (e10, 000 ∗ 2changes) − (e6, 000 ∗ 2changes) = e8, 000. The second activity

consists of estimating the net expected value of the decision nodes and the change nodes.

The estimation of the decision nodes (rectangles) consists of selecting the branch with

the highest net value, while the estimation of the change nodes (circles) is the sum of

the net value of the branches weighted by its probability. For example, in Figure 3.4

59



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

D

A

C

B
Investing in flexibility

Not investing in flexibility

Not investing
 in flexibility

Investing in
 Flexibility

Month 1 Month 2

2 Changes

1 Change

0 Change 2 Change 
(No time to
 invest in 

flexibility)

1 Change

1 Change

0 Change

p = 0.33

p = 0.33

p = 0.33

p = 0.33

p = 0.33

p = 0.33

Cost of investing in flexibility = €2000
Cost of change with a previous flexibility investment = €3000
Cost of change without a previous flexbility investment  = €6000
Value added by each change = €10000

€12000

€5000

-€2000 €8000

€5000

€4000

€5000

€0

€4290

€4950

Time

Figure 3.4: Example of decision tree used to analyze the option of investing in flexibility

in software architecture.

the decision node marked with C has a net expected value of max(e5, 000,e4, 000) =

e5, 000 while the change node marked with D has a net expected value of (e8, 000 ∗
0.33) + (e5, 000 ∗ 0.33) + (0 ∗ 0.33) = e4, 290. This activity ends by estimating the

value of the root of the tree (a decision node). This value is used to decide whether or

not to invest in flexibility, and when to do so. In this particular example, the value of

the root is max(e4, 950;e4, 290) = e4, 950. This means that the best decision is to

invest in flexibility from month 1 and not to delay the decision.

The model helps to reason about the possible situations that can occur in the

software and that can affect the evolution of the software interest (interest probability).

With the definition of the new types of nodes, it is possible to model technical debt as in

Section 3.3 and also to consider more complex scenarios about changes in software. The

60



3.4 Case Study Design and Planning

scenario shown in Figure 3.4 represents a project where at month 1 it is not known if

the expected change will happen or not. It does not consider the possible value added

performing a different activity, for example, adding other features tho the software.

However, for a complete analysis, more alternatives could be modeled.

3.4.5 Research Questions

This case study aims to respond to two research questions:

� RQ1: Does technical debt concept help to reason about the value of investing in

flexibility?

� RQ2: What limits could be found in generalizing the propose presented in this

chapter evaluating flexibility investments to any other project?

3.4.6 Methods, Data Collection, and Selection of Data

For the purpose of this case study, a process for technical debt management was defined

to be integrated into the software development process used in Optimeter project. This

section presents the process used to obtain a decision tree model to make decisions

regarding flexibility investment in software architecture. The process was performed

as a part of the backlog grooming sessions [65]. Backlog grooming sessions give agile

teams the opportunity to look further into the future of the product, and can alert

them to technical challenges.

The technical debt management process consists of a set of steps to create a model,

based on decision trees to estimate when to design for flexibility. Each step is described

as follows.

� Step 1: Analysis of expected changes. In this step, the architect identifies

the expected changes that are to be supported through flexibility. In addition to

the expected changes, it is necessary to determine:

1. The time frame in which the expected changes could happen.

2. The probability that the expected changes could happen.

3. The value added by implementing the expected changes.

This information has to be provided by experts. Depending on the expected

changes different actors can be implied in the estimation of the probability of

change. If the changes will depend on new contracts, then the responsible of such

61



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

contracts will be who has the information. If the changes will depend on the

adoption of a new technology, then the responsible of such technical decision will

be who knows the needed information. Therefore, this probability of change will

be subjective. Also, it is possible to use historical data about similar expected

changes to estimate how often changes are made in the software.

� Step 2: Design of alternative architecture solutions to support the

expected changes. In this step, architects propose alternatives with differ-

ent degrees of flexibility (i.e., different amounts of investment) that have to be

analyzed.

� Step 3: Estimation of technical debt for each one of the alternatives.

The goal of estimating technical debt is to make a cost-benefit analysis of imple-

menting or not implementing the flexibility. To estimate the technical debt the

concepts of principal and interest were used.

In this case study, the principal of a technical debt item, derived from the lack

of flexibility, is the cost of improving flexibility. To estimate the principal it is

necessary to detect the weaknesses in the system. Static code analysis has been

previously used for that task. For example, tools such as SonarQube [107] and

PMD [85] can detect architecture anti-patterns in software projects. Knowing the

weaknesses, experts can estimate the cost of solving them by applying commonly

used cost estimation techniques such as COCOMO or Function Point.

In this case study, interest of a technical debt item was derived from the lack of

flexibility in software. That is, interest of a technical debt item was considered

as the additional cost of implementing the expected changes (additional cost of

change) if the item was not previously eliminated; i.e., if the software architecture

is not flexible enough to introduce the expected changes. The interest of an

architecture design solution is the difference between the cost of change of the

ideal solution and the cost of change of the alternatives (see “a” and “a + b”

in Figure 3.5). However, estimating this interest is not easy because there is

not reference for an ideal cost of change; i.e., a solution with zero interest (see

ideal solution line in Figure 3.5). In practice, it is possible to use the comparison

between the cost of change of the different software architecture alternatives (see

“b” in Figure 3.5). This was the approach used in this case study. Finally, Step

2 and Step 3 can be performed iteratively in order to architects can propose

architectures that solve the weaknesses detected in Step 3.

62



3.4 Case Study Design and Planning

C
os

to
f C

ha
ng

e

time

Ideal solution

Architecture
design
solution 2

Architecture
design
solution 1

b

a

a =  Interest of alternative architecture design solution 2
b = Interest difference between alternative architecture design
solutions 1 and 2
a + b = Interest of alternative architecture design solution 1

a + b

Figure 3.5: Technical debt interest

63



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

� Step 4: Construction of the decision tree. In this step, the architect per-

forms the construction of a tree that represents the evolution of the software sys-

tem due to expected changes following the instructions described in Section 3.4.4.

To do that, the following inputs are used:

1. The expected changes, their probability, the time frame, and the value that

these changes add to the software product under analysis (Step 1).

2. Alternative design architecture solutions (Step 2).

3. The constraints imposed by deadlines, resources, and development time

needed to implement the expected changes and prepare the architecture

to support the expected changes (i.e., designing for flexibility). This means

that alternatives that cannot be performed in the time frame, given such con-

straints, are not considered in the decision tree. For example, in Figure 3.4

an end node marked with B has been modeled to represent a scenario in

which sufficient time is not allotted to both invest in flexibility and imple-

ment the expected changes.

The construction of the decision tree requires one to determine the decision nodes,

change nodes, and end nodes.

� Step 5: Assessment of the net expected value of the flexibility invest-

ment. To make this assessment, the following inputs are used:

1. The estimations of the principal and the interest of each of the alternative

architecture design solutions (see Step 3).

2. The decision tree (see Step 4).

In this step the model computes the investment’s net expected value by folding

back the decision tree, starting with the end nodes and moving toward the root

(see Section 3.4.4). This computation consists of:

1. Estimating the net value of the end nodes.

2. Estimating the net expected value of the decision nodes and the change

nodes, until arriving at the root node.

� Step 6: Make the decision. Finally, the final decision consists of choosing the

investment alternative with the higher net expected value from the root node.

The value of the root node is used to decide whether or not to invest in flexibility,

and when to do so. In this regard, it is possible that the model suggests delaying

the decision until more information is available.

64



3.5 Case Study Execution

3.4.7 Case Study Protocol

All data estimations were provided by the development team (developers, project ar-

chitecture, and scrum master). The researchers involved in the case study defined the

model in an excel sheet and used the inputs given by the development team to perform

the cost-benefit analysis.

3.4.8 Ethical Considerations

For confidentiality reasons, the figures showed in this case study have been altered.

They are proportional to the original ones to keep the meaning of decisions and sce-

narios.

3.5 Case Study Execution

During Optimeter execution, the process described in Section 3.4.6 was applied as

follows.

� Step 1: Analysis of the expected changes. The expected change in the

family of metering management systems under analysis is the variation of the data

storage technology (see Table 3.1). Hence, the family of metering management

systems will implement three, two, one, or none of the data storage technologies

variants. The time frame in which the expected change can happen is three

months (the Optimeter project lasted four months, but one month had already

been spent on implementing a solution based on the data storage Prototype 1, see

Table 3.1). The probability of the expected-change scenarios was estimated on

the basis of the customer’s knowledge. This knowledge was based on technical,

business, and strategic factors, and because they have the last word about which

technologies have to be supported. The probabilities can be seen in Figure 3.6.

Finally, the value added by implementing each data storage technology variant

was assessed by the customers. Therefore, customers estimated the value of each

data storage technology that the family was able to support as e60, 000. This

value corresponded with the customer’s utility of having a family that allows

them to vary the data storage technology for different data access performance

requirements.

� Step 2: Design of alternative architecture solutions to support the ex-

pected changes. To provide the software architecture of Figure 3.3 with the

65



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

A

E F

K

In
ve

st
in

g 
in

 fl
ex

ib
ili

ty

N
ot

 in
ve

sti
ng

 in
 fl

ex
ib

ili
ty M

on
th

 2
M

on
th

 3

3 
va

ria
nt

s 
w

ith
 

fle
xi

bi
lit

y

2 
va

ria
nt

s 
w

ith
 

fle
xi

bi
lit

y

0 
va

ria
nt

 w
ith

 
fle

xi
bi

lit
y

p 
= 

0.
1

p 
= 

0.
4

p 
= 

0.
1

€1
13

,0
00

€6
8,

00
0

-€2
2,

00
0

€4
7,

14
5

€4
5,

50
0

M
on

th
 4

p 
= 

0.
4€2

3,
00

0 1 
va

ria
nt

 w
ith

 
fle

xi
bi

lit
y

C
os

t o
f i

nv
es

tin
g 

in
 fl

ex
ib

ili
ty

 =
 €

22
,0

00
C

os
t o

f c
ha

ng
e 

w
ith

 a
 p

re
vi

ou
s f

le
xi

bi
lit

y 
in

ve
st

m
en

t =
 €

15
,0

00
C

os
t o

f c
ha

ng
e 

w
ith

ou
t a

 p
re

vi
ou

s 
fle

xb
ili

ty
 in

ve
st

m
en

t  
= 

€2
9,

50
0

V
al

ue
 a

dd
ed

 b
y 

ea
ch

 c
ha

ng
e 

= 
€6

0,
00

0
3 

va
ria

nt
s 

w
ith

ou
t

 fl
ex

ib
ili

ty
 (t

he
re

 is
 

no
 ti

m
e 

to
 in

ve
st

 
in

 fl
ex

ib
ili

ty
)

p 
= 

0.
1

€9
1,

50
0

It 
is 

ne
ce

ss
ar

y 
to

 im
pl

em
en

t t
he

 3
 

va
ria

nt
s 

of
 d

at
a 

sto
rin

g 
te

ch
no

lo
gi

es

B

It 
is 

ne
ce

ss
ar

y 
to

 im
pl

em
en

t 
2 

va
ria

nt
s 

of
 d

at
a 

sto
rin

g 
te

ch
no

lo
gi

es

C

It 
is 

ne
ce

ss
ar

y 
to

 im
pl

em
en

t a
t l

ea
st 

1 
va

ria
nt

 
of

 d
at

a 
st

or
in

g 
te

ch
no

lo
gi

es

D

A
t t

hi
s m

om
en

t n
o 

m
or

e 
va

ria
nt

s 
of

 d
at

a 
st

or
in

g 
te

ch
no

lo
gi

es

p 
= 

0.
1

p 
= 

0.
3

p 
= 

0.
5

p 
= 

1€6
8,

00
0 2 

va
ria

nt
s 

w
ith

 
fle

xi
bi

lit
y

In
ve

st
in

g 
in

 fl
ex

ib
ili

ty
p 

= 
1€6

1,
00

0 2 
va

ria
nt

s 
w

ith
ou

t 
fle

xi
bi

lit
y

N
ot

 in
ve

sti
ng

 in
 fl

ex
ib

ili
ty

G H JI

In
ve

st
in

g 
in

 fl
ex

ib
ili

ty

N
ot

 in
ve

sti
ng

 in
 

fle
xi

bi
lit

y

€6
8,

00
0

2 
va

ria
nt

s 
w

ith
 

fle
xi

bi
lit

y

€2
3,

00
0 1 

va
ria

nt
 w

ith
 

fle
xi

bi
lit

y

1 
m

or
e 

va
ria

nt
 (t

ot
al

 o
f 2

)

N
o 

m
or

e 
va

ria
nt

 (t
ot

al
 o

f 1
)

€6
1,

00
0 2 

va
ria

nt
s 

w
ith

ou
t 

fle
xi

bi
lit

y

€3
0,

50
0 1 

va
ria

nt
 w

ith
ou

t 
fle

xi
bi

lit
y

1 
m

or
e 

va
ria

nt
 (t

ot
al

 o
f 2

)

N
o 

m
or

e 
va

ria
nt

 (t
ot

al
 o

f 1
)

€6
8,

00
0

2 
va

ria
nt

s 
w

ith
 

fle
xi

bi
lit

y
€2

3,
00

0 1 
va

ria
nt

 w
ith

 
fle

xi
bi

lit
y

-€2
2,

00
0 0 
va

ria
nt

 w
ith

 
fle

xi
bi

lit
y €6

1,
00

0
2 

va
ria

nt
s 

w
ith

ou
t f

le
xi

bi
lit

y
€3

0,
50

0 1 
va

ria
nt

 w
ith

ou
t 

fle
xi

bi
lit

y
€0

0 
va

ria
nt

 w
ith

ou
t 

fle
xi

bi
lit

y

In
ve

st
in

g 
in

 fl
ex

ib
ili

ty

N
ot

 in
ve

sti
ng

 in
 fl

ex
ib

ili
ty

2 
m

or
e 

va
ria

nt
s 

(to
ta

l o
f 2

)

0 
m

or
e 

va
ria

nt
 (t

ot
al

 o
f 0

)

1 
m

or
e 

va
ria

nt
 (t

ot
al

 o
f 1

)

2 
m

or
e 

va
ria

nt
s 

(to
ta

l o
f 2

)

1 
m

or
e 

va
ria

nt
 (t

ot
al

 o
f 1

)

0 
m

or
e 

va
ria

nt
 (t

ot
al

 o
f 0

)

€6
8,

00
0

p 
= 

0.
67

p 
= 

0.
67

p 
= 

0.
33

p 
= 

0.
33

€5
3,

15
0

€5
0,

93
5

€5
3,

15
0

€3
0,

50
0

€2
3,

00
0

€3
0,

50
0

€4
7,

14
5

p 
= 

0.
2

p 
= 

0.
2

p 
= 

0.
2

p 
= 

0.
2

p 
= 

0.
6

p 
= 

0.
6

Figure 3.6: Scenarios analyzed in the case study

66



3.5 Case Study Execution

flexibility that facilitates the variation of the data storage technology, the archi-

tects proposed an alternative design architecture solution (see Figure 3.7). This

architecture makes ready the software product to be flexible through two points

of variation to support the four data storage technologies shown in Table 3.1. Be-

cause a data storage technology is composed of a data manager and a clustering

framework, these variation points are defined through:

– Three optional components that implement the data managers

– A Plastic Partial Component [82], i.e., a special type of component that can

define variability points inside components, that implements the clustering

frameworks.

These components were successfully applied in previous agile projects.

� Step 3: Estimation of technical debt for each one of the alternatives.

The principal, as defined in Section 3.4.6, is the cost of providing the architec-

ture of Figure 3.3 with the flexibility that facilitates the variation of the data

storage technology (i.e., the cost of implementing the variation points shown

in Figure 3.7). Additionally, PMD [85] was used to detect current weaknesses

(searching anti-patterns that have negative impact on flexibility) giving a total

of one GodClass and 10 different coupling problems. The team estimated the

effort of implementing the new architecture that finally was valued at e22, 000.

However, if no investment in flexibility is made, then this cost is e0. The inter-

est, as defined in Section 3.4.6, is the additional cost of change of supporting a

data storage technology variation derived from the lack of flexibility. The cost

of change was estimated in terms of the dependencies and the coupling among

the components that are affected by the expected changes. Dependencies were

obtained from SonarQube [107] and the problems that were detected using PMD

and, in terms of effort, they were estimated by the development team that already

knew the architecture and they have been working implementing the first proto-

type the previous month. The cost of change of the architecture of Figure 3.3

was e29, 500 for each data storage technology that was to be supported by the

Optimeter family, while the cost of change of the architecture of Figure 3.7 is

e15, 000 for each data storage technology. Therefore, the difference in cost of

change between the two alternatives was e14, 500 (i.e., the difference between

e29, 500 and e15, 000).

� Step 4: Construction of the decision tree. The decision tree shown in

67



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

Oracle NoSQL Oracle11g Oracle Coherence

DataLoader DataQuery

MeterProcessorAVP

Clustering

1..1

RealApplicationClusterHadoopClustering

Plastic Partial
Component

Component Optional
Component

Port

Attachment

Connector

Variability
Point

Variant

Figure 3.7: Proposed architecture to support the three data storage prototypes in Op-

timeter project

68



3.5 Case Study Execution

Table 3.2: Examples of calculus of decision tree nodes using Equation 3.4

Nodes Net value Value description

K, end node e113, 000 e113, 000 = (e60, 000 ∗ 3) − e22, 000 − (e15, 000 ∗ 3)

B, decision node e68, 000 e68, 000 = max(e68, 000,e61, 000)

G, change node e53, 150 e53, 150 = (e68, 000 ∗ 0.67) + (e23, 000 ∗ 0.33)

A, root node e47, 145 e47, 145 = max(e54, 500;e47, 145)

Figure 3.6 represents the evolution of the Optimeter family due to the expected

variation of the data storage technology. While we have shortened the decision

tree, it still shows all the relevant information. Concretely, branches that start

in node E have been simplified to reduce the size of Figure 3.6. It is necessary

to highlight that the three analyzed months are labeled as month 2, month 3,

and month 4, because the project started one month before this analysis was

performed (see Section 3.4.3). As the tree represents, the decision of investing

in flexibility could be made at different moments through the decision nodes.

Specifically, it was possible to invest in flexibility in month 2 and month 3 (see

nodes A, B, C, and D in Figure 3.6). The tree shows the expected change

scenarios in which the three data storage technology variants may be or may be

not required (see nodes E, F , G, H, I, and J in Figure 3.6); it also shows the

probability that these expected-change scenarios may or may not occur (see the

arrowheads of output lines from nodes E, F , G, H, I, and J). Finally, the tree

represents the final possible situations as a consequence of the combinations of

decisions and changes (see triangles in Figure 3.6). For example, the end node K

represents the implementation of the three variations of data storage technology

with a probability of 0.1, given the change node E, and as a consequence of

deciding on “investing in flexibility” in the decision node A.

� Step 5: Assessment of the net expected value of the flexibility invest-

ment. In this step, net value is calculated as described in Section 3.4.6. As

a result, the decision tree construction has been completed and reflects all of

the possibilities that could unfold over time and shows the choices that could be

made at each decision node. As example, Table 3.2 details some results of nodes

of Figure 3.6.

� Step 6: Make the decision. The final decision was made on the basis of the

expected net value obtained for the analyzed scenarios (see decision node A in

Figure 3.6). The decision tree indicates that it is better to not invest in flexibility

in month 2 because the value of node marked with F is higher than the value

69



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

of node E; and therefore is more profitable to delay the investment because the

uncertainty could decrease in month 3 (see Figure 3.6). This result is due to

the value gained from waiting for more information about the project. That is,

waiting to resolve uncertainties before deciding whether or not to invest.

3.6 Findings

In this section, the results for each research question formulated in Section 3.4.5 are

described.

3.6.1 RQ1: Does technical debt concept help to reason about the

value of investing in flexibility?

Technical debt was useful to analyze the cost and benefit of flexibility investments.

It helped to reason about the impact of future changes. However, the model used in

this case study might present some challenges to be used in a bigger project where

estimations were more difficult to be obtained.

One of the challenges is derived from the fact that the case study was focused

on expected changes. This simplified the scenario definition and the production of

the estimations. To define architectures for specific expected changes is easier than

to be ready for changes in general. Furthermore, the value of the investment can

be achieved because knowing the expected change it is possible to reason about its

expected value. Therefore, this approach presents limits to be used to assess the value

of flexibility in general, considering non-expected changes. However, the technical debt

concept helped to reason about the cost-benefit analysis considering long-term impact of

possible changes in the future. Thus a deeper study on technical debt will be valuable to

analyze how to use it in more general evolution scenario in software development. It has

special interest to study how to use technical debt with fewer sources of information to

make estimations. Lack of information is a more real scenario in software development

than a scenario with perfect information.

Additionally, technical debt management was integrated into the software develop-

ment process of the project. In this direction, to obtain the input data from models

(principal, interest, and probabilities) in a systematic/automatic way would be a land-

mark. This automation is especially necessary in industrial projects in order not to

disturb the normal project development. Another challenge is extending the model

with more factors, for example, considering alternative developments instead of paying

the principal.

70



3.6 Findings

As the model uses estimated data as input, it will model realistically the technical

debt of the system only if the inputs are correct. Therefore, it is important to obtain

good estimations of such inputs. Decisions are highly influenced by the probability

of the possible evolution paths. These evolution paths affect the interest probabil-

ity. Consequently, methods to estimate interest and interest probability with precision

are required, especially for scenarios where developers, or other stakeholders, can not

provide those estimations.

3.6.2 RQ2: What limits could be found in generalizing the propose

presented in this chapter evaluating flexibility investments to

any other project?

As said before, the proposed model is based on estimations; the more precise are es-

timations, the more precise will be the conclusions from reasoning. The estimations

needed to use the presented model might be difficult to be obtained in big software

projects where many times the knowledge of the project is dispersed, when not lost,

and the size and complexity of software make difficult these estimations. The estima-

tions used in the case study were mainly subjective. But it should be highlighted that

they were intended to support qualitative reasoning, not quantitative; therefore they

should be simply shown the right trend. The project analyzed in the present case study

was a small project and the team was already working on it. Therefore, they had all

the needed knowledge and the expertise to make subjective estimations.

The scenario was simplified by not considering the value of possible alternative

actions that could be implemented by the development team. For a complete analysis,

alternatives in which to spend the effort if it is not done an investment in flexibility

should be considered. However, more information would have required more complex

scenarios that might have complicated the analysis.

Decision trees were found useful in modeling change scenarios. However, even in a

framed scenario like the presented in this case study, the decision tree expanded quickly.

This indicates that this technique, even useful to reason about specific scenarios, could

not be suitable for more complex scenarios where more alternatives, variables, and not

expected changes could be evaluated.

Another simplification was done by estimating the value added of each new tech-

nology with the same value. The same was done with the cost of implementing the

changes. In the present study, the changes were very similar. They consisted in im-

plementing prototypes with the same functionality but with technical differences. In

other projects, different changes might imply different cost and benefit. Therefore,

71



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

these differences in cost and benefit should be considered.

Finally, the technical debt model defined in Section 3.3 had to be adapted to the

specific type of decisions that had to be made in the project. Therefore, it seems that

depending on the type of decisions to be made, different sources of information could

be required. Then, it could be valuable to research what sources of information and

what considerations should be taken into account to manage technical debt.

3.7 Limitations

To improve the internal validity of the results presented, the independent variables that

could influence this case study have been identified as follows: the architects’ experi-

ence, the influence of the project’s size, the architecture’s complexity, and finally the

complexity of the possible expected-change scenarios, which cannot be reduced due to

the inherent nature of case studies, which normally focus on one project. In partic-

ular, we have reduced the complexity of scenarios to guarantee the understandability

of the case study by using the same value to estimate the value added by each data

storage technology. However, if we had estimated the value added by each data storage

technology with different values, the expected-change scenarios would have been more

complex, and consequently, the scenario would be more difficult to be understood. Fi-

nally, it is important to emphasize that if the expected changes are not well-scoped,

then it would be difficult to estimate the cost of change. However, the major limitation

in the case study research concerns external validity because only one case has been

studied. In return, case studies allow one to evaluate a phenomenon, a model, or a pro-

cess in a real setting. This is important in software engineering in which a multitude of

external factors may affect the validation of results, and where other techniques, such

as formal experiments, are not considered to be conducted in controlled settings, even

though formal experiments permit replication and generalization.

3.8 Conclusions

In this chapter, the concepts to add value from the internal quality of software identified

in Chapter 2 were used in a case study to obtain deeper knowledge about them. To

achieve this goal a model to make cost-benefit analysis based on technical debt was

defined. The model was used in a research project in the development of software

prototypes. The model was useful by providing a solution for the flexibility investment

decision making.

72



3.8 Conclusions

Delay decisions can have value in contexts where there is uncertainty. This situation

corresponds with scenarios where the expected benefit of investing today in flexibility

does not compensate the risk that the expected changes do not happen in the future.

The time frame used in the analysis is very important. Depending on the time

frame different decisions could be made. Therefore, it is necessary to study how to

choose the time frame for the analysis. For example, the expected date for retiring the

software or the time-to-market of the next release could be used.

Technical debt concept, through principal, interest, and interest probability, helps

to reason about the value of changes in the internal quality of software. Technical debt

links improvements in the internal quality of software with the value that could be added

to the software in the future. This confirms the conclusions of Chapter 2. Therefore,

technical debt should be considered for decision making with a value-based software

engineering perspective. Thus, a deeper study on technical debt will be valuable to

analyze how to use it in more general evolution scenario in software development. It

has special interest to study how to estimate technical debt in a context with fewer

sources of information, because lack of information is more real scenario in software

development than a scenario with perfect information. It is also necessary to research

what sources of information and what considerations should be taken into account to

manage technical debt.

The challenges that have been described in Section 3.6 have been identified by using

the concept of technical debt in a small project. Therefore, it is required to test the

same concepts in big projects. Therefore, it is necessary to identify what techniques

could be used in big projects to obtain the estimations that are required to make

decision based on technical debt.

73



3. PRELIMINARY CASE STUDY ON TECHNICAL DEBT
MANAGEMENT

74



Part III

Identification and definition of

the elements that are required to

create models that help make

decisions in software evolution

75





Chapter 4

A Framework for Technical Debt

Management

The goal of this chapter is to identify the entire set of elements that

have been used to manage technical debt. Elements are understood as the

concepts used to implement technical debt management, regardless of their

nature. Without a minimum knowledge of these elements, it would not be

possible to define the models or techniques required for general technical

debt management. This chapter is an excerpt from the following articles:

� Carlos Fernández-Sánchez, Juan Garbajosa, Agust́ın Yagüe, Jennifer

Pérez, Identification and analysis of the elements required to manage

technical debt by means of a systematic mapping study, Journal of

Systems and Software, Volume 124, February 2017, Pages 22-38, ISSN

0164-1212. [39].

Copyright ©2016 Elsevier Inc.

� C. Fernández-Sánchez, J. Garbajosa, and A. Yagüe, A framework to

aid in decision making for technical debt management, IEEE 7th Inter-

national Workshop on Managing Technical Debt (MTD) in conjunc-

tion with 31st International Conference on Software Maintenance and

Evolution, Bremen, 2015, pp. 69-76. [37].

Copyright ©2015 IEEE.

77



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

4.1 Introduction

The second contribution of this thesis, Contribution 2, is Identification and definition

of the elements that are required to create models that help make decisions in software

evolution. Previous chapters of this thesis highlight that technical debt links improve-

ments in the internal quality of software with the value that could be added to the

software in the future. Therefore, the technical debt concept was identified as a key

concept for applying value-based software engineering principles to software evolution.

It was also indicated that it is necessary to research what sources of information and

what considerations should be taken into account to manage technical debt. To get a

deeper understanding of how to manage technical debt a systematic mapping study in

technical debt management. The goal is to define a theoretical framework for techni-

cal debt management. The framework will be defined by the elements necessary for

managing technical debt, as well as, by the stakeholders’ possible points of view. The

present chapter shows how the systematic mapping was performed and the outcomes

that were obtained.

The remainder of the chapter is organized as follows: Section 4.2 will discuss previ-

ous related studies. Section 4.3 will present the methodology and the processes used in

this chapter. Section 4.4 will describe the identified elements. Section 4.5 will present

the mapping of the elements according to the stakeholders’ points of view. Section 4.6

will present a retrospective of the findings presented in this study. Finally, threats to

validity, conclusions, and recommendations for future work will be presented in Sec-

tion 4.7 and Section 4.8, respectively.

4.2 Related Work

There are several previous reviews of the literature on technical debt. Tom et al. [114]

performed a multivocal literature review to create a taxonomy of the phenomenon of

technical debt. Alves et al. [5] performed a systematic mapping to create an ontology

of technical debt. Li et al. [69] performed a systematic mapping identifying activities to

perform in technical debt management. Alves et al. [6] performed a systematic mapping

to identify types of technical debt and methods used for technical debt management.

Finally, Ampatzoglou et al. [9] performed a systematic literature review to study the

financial aspects of technical debt. In the literature, several studies have addressed the

phenomenon of technical debt [114, 5, 6, 9], the methods used for technical debt man-

agement [6], and the activities used in performing in technical debt management [69].

The goal of this chapter is different from these previous studies since we are specifically

78



4.3 Methodology and Research Process

Definition of 
Research 
Question

Conduct 
Search

Screening of 
Papers

Keywording
Mapping 
Process

Review 
Scope

Found Papers Relevant 
Papers

Systematic 
Map

Snowballing

Synthesis

Classification 
Scheme

Figure 4.1: Systematic mapping process (adapted from [84])

interested in the elements required to manage technical debt. Therefore it was neces-

sary to perform a new literature review. Some specific differences between the findings

of our study and what can be found in the literature are addressed in Section 4.6.

Finally, Falessi et al. [M17] identified the requirements for the tools utilized to

manage technical debt. We have extended their work by incorporating the ways in

which other authors have considered these requirements.

4.3 Methodology and Research Process

To identify the elements of technical debt management that have been addressed in the

current literature, this study utilized systematic mapping. The systematic mapping

was performed by following Petersen et al.’s guide [84]. Systematic mapping studies

are designed to provide a broad overview of a research area and are consequently

appropriate for the goal of this research, which is, to identify the elements that must

be taken into account to manage technical debt efficiently. All the steps in the process

are shown in Figure 4.1 and described in the following subsections.

4.3.1 Research Questions

RQ1: What elements have to be considered when making decisions concerning tech-

nical debt management in software projects?

79



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

RQ2: What elements are considered from the various stakeholders’ points of view?

To answer these research questions, this study focuses on publications about tech-

nical debt management.

4.3.2 Conduct Search

The research was focused on methods, techniques, and suggestions for technical debt

management. After some trials with the strings “debt” and “technical debt”, the sec-

ond one was select because it returned all the previously known papers, and the string

“debt” led to too many false positives. However, to reduce the risk of leaving out

relevant papers, the search was complemented with the snowballing technique (see Sec-

tion 4.3.4). Therefore, an automatic search method using the term “technical debt”

was used to search for papers about technical debt in the following digital repositories:

IEEE Xplore, ACM, Scopus, ScienceDirect, Web of Science, and SpringerLink. Full-

text search was used when this option was available (IEEE Xplore and SpringerLink),

as well as for searching in metadata in other cases (ACM, Scopus, ScienceDirect, and

Web of Science). The search included all the papers published until and including 2015.

The total number of articles obtained (including duplicates) was 971.

4.3.3 Screening of Papers

The selection process consisted of two levels. In the first one, papers that provided

enough information in their title and abstract to be excluded were eliminated. In the

second one, the full text of the papers was analyzed. To select the articles, the following

inclusion and exclusion criteria were used:

� To be included, the paper had to describe parts, activities, tasks, elements, or

considerations for technical debt management.

� To be included, the paper had to be published in a journal, conference pro-

ceedings, or workshop proceedings. Only book chapters referenced by another

included study were included.

� Papers that failed to address technical debt management in detail were excluded.

� Papers published as abstracts, call for workshops, tutorials, talks, or seminars

were excluded.

At the end of this step, the number of selected relevant papers was 61.

80



4.3 Methodology and Research Process

4.3.4 Snowballing

In order to include all relevant papers, the bibliography of each included paper was

screened by using the snowballing technique. Snowballing refers to using the reference

list of a paper to identify additional papers [117]. This technique is commonly used in

systematic mapping studies [117, 69, 81]. Each new identified relevant paper starts a

new iteration in the snowballing process. When no more relevant papers are found, the

process ends.

At the end of this step the number of selected relevant papers was 63, that is, two

papers were added. The two papers were identified in the first iteration of the snow-

balling process. The second iteration did not lead to more articles, and consequently,

the snowballing process ended. The list of the selected papers is included Annex C.

4.3.5 Keywording

The process used to identify the elements required for technical debt management was

adapted from the “keywording” described by Petersen et al. [84]. Figure 4.2 shows

the steps used in this process. The main difference from [84] is that in the present

study, the process started using the full text of the selected papers instead of the

abstracts. The reason for this decision was that the entire description of the technical

debt management activity was not usually present in the abstracts of the papers. The

process was iterative. After the first classification was obtained, it was refined by

contrasting the various elements found. The classification scheme then was updated

by binding similar elements. This additional step was necessary because it was found

that the same concept (or very similar concepts) was used in different contexts or

with different names. The criteria used to extract the elements corresponded to the

identification of requirements, estimations, analysis, and activities (including inputs

and outputs) in technical debt management that were used or suggested in the selected

papers.

4.3.6 Synthesis

After the keywording step, a synthesis step was performed to refine the classification

scheme previously obtained. In this synthesis, the reasons for and intentions to use

each element were also extracted from the original papers. A method analogous to the

constant comparison used in qualitative data analysis [108] was used to find common-

alities in the intentions of using each element. Following this process, the definitions of

the elements were created. Additionally, three types of elements were identified. The

81



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

Article Keywording
Classification 

Scheme

Update Scheme

Sort Articles into 
Scheme

Systematic 
Map

Figure 4.2: Keywording process (adapted from [84])

types of elements defined are explained in Section 4.4.2. As discussed in Section 4.6,

this synthesis provided a schema that in practice creates a framework for the elements

for technical debt decision making.

4.3.7 Mapping Process

The papers included in the current review were classified using the various elements

found (see Section 4.4) and the points of view (see Section 4.5). It was found that each

paper included several elements and/or points of view.

4.4 Elements of Technical Debt Management

This section addresses the first research question What elements have to be considered

when making decisions concerning technical debt management in software projects? Ta-

ble 4.1 shows the sources that either used or suggested the usage of specific elements for

technical debt management. The elements were identified following the steps described

in Section 4.3.5, and they were defined by following the steps defined in Section 4.3.6.

Section 4.4.1 includes a detailed explanation of the identified elements and Section 4.4.2

shows a categorization of the elements.

82



4.4 Elements of Technical Debt Management

4.4.1 Elements

In this section, the elements are described.

4.4.1.1 E1 Technical debt items

To manage technical debt properly, it is necessary to know the sources that originated

technical debt in the system. This element is basic because if it is not known that a

problem exists, it is not possible to manage it. In fact, to identify technical debt items

is usually the first step in managing technical debt [M12, M53].

The identification of technical debt items can include establishing a list of the bad

practices that create debt [M30, M36] and identifying the potential kinds of technical

debt from the sources of technical debt [M17], as well as determining the part of the

system that must be refactored [M8, M28]. Therefore, there are many potential sources

of technical debt at any time in any system [M6].

4.4.1.2 E2 Principal

In decision-making, it is essential to know the cost that is required to remove a technical

debt item by changing the software. Many authors use the term principal to refer to

this cost. The principal of a technical debt item is the cost to be paid to eliminate

the item [114]. Estimating the principal was a basis of technical debt management

according to most authors (see Table 4.1). It is possible to estimate the principal as a

function of three variables: the “should-fix” items with violations, the hours needed to

fix each violation, and the cost of labor [M12].

An important consideration is that technical debt is context dependent [M54].

Therefore, solving a weakness can cost more or less depending on the project or even the

subsystem within a project [M54]. However, because estimating the principal in terms

of single values is difficult, practitioners seem to think in ranges of values or best-case,

worst-case, and most probable scenarios, rather than single values [M17, M8].

4.4.1.3 E3 Interest

In the decision-making process, to have complete information about technical debt, it

is necessary to know not only the principal of the technical debt items but also the

cost of not removing them. This cost is usually termed the interest. The interest is

the cost to be paid over time if a technical debt item is not eliminated. This cost can

include the extra cost of modifying a component that needs refactoring compared to

the cost of modifying it after refactoring [M6]. Similar to the principal, estimating the

83



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

interest was deemed fundamental by most authors (see Table 4.1). The interest can be

seen in various ways. It is possible that depending on the project and its context, the

interest could be non-linear, or it could have limits, maximums, or minimums [M17].

Similar to the principal, an important consideration is that technical debt is context

dependent [M54]. Hence, the same detected weakness can imply more or fewer future

costs depending on the project or even the subsystem within the project [M54].

4.4.1.4 E4 Interest probability

The interest has a probability of being paid [M53, M17, M6]. That is, it is necessary

to know such probability in order to have a real estimation of the interest. This uncer-

tainty exists because the interest must only be paid under some scenarios [M29]. The

probability of paying the interest will depend on the probability of the occurrence of

future events [M17, M33, M50]. For example, if a technical debt item implies that more

effort is required in maintenance activities but that the item will not be changed over

time, the interest does not need to be paid. Hence, in this example, the probability of

changing this item will parallel the probability of interest. Therefore, the interest is de-

termined by a set of relevant change scenarios [M33], that is, the probable changes that

will occur in the future. These scenarios will include, for example, the addition of new

functionality, changes in the non-functional requirements, the solutions to problems or

bugs in the system.

4.4.1.5 E5 Technical debt impact

The complete technical debt estimation consists of principal and interest estimations,

including the interest probability. To manage technical debt, it is necessary to use

models in which items are prioritized based on their interests and principals [M53].

The aim of ranking technical debt items is to identify which items should be resolved

first, depending on the business’s goals and preferences [M33]. Decisions about technical

debt should be made in terms of cost-benefit analysis [M53, M17]. Thus, cost-benefit

estimations are necessary to make decisions about removing technical debt [M8]. The

business value of conducting any activity lies in the difference between the cash flow

stream of performing the activity and the cash flow stream of not performing it [113].

That is, a technical debt item must be removed when doing so is profitable. The basis of

cost-benefit analysis is to identify the items with the highest amount of technical debt

and consider the cost of fixing them [M53]. Cost-benefit analysis usually includes several

variables. The most obvious are the principal (the cost paid to remove a technical debt

item) and the interest (the cost to be avoided by removing a technical debt item).

84



4.4 Elements of Technical Debt Management

Additional costs items could be considered, such as time-to-market penalizations and

quality issues. Benefits, such as quality improvements and customer satisfaction could

also be considered. Additional information that could be used includes the number of

features that a software release contains, the time required to deliver the release, and

the technical debt that is generated because of forced quick development [M46].

The outcome of technical debt management should be reviewed in terms of its

economic consequences [M17] by taking into account business considerations [M7]. That

is, technical debt must be quantified [M45]. It is not always easy to express technical

debt using economic data. However, without expressing the economic consequences,

it is difficult to quantify the effects of executing or not executing a decision. Tom et

al. [114] classified technical debt costs into four types: morale, productivity, quality,

and risk [114]. However, one problem is that the financial effects of technical debt

are not always direct [114]. For example, technical debt can cause low morale in the

development team resulting in systemic problems, such as developer turnover [114,

83]. Another issue is that it is necessary to balance rigor with the usability of the

estimation method. A very complex and rigorous mathematical estimation model could

be highly precise in its prediction and yield highly reliable results, but it could be

unusable in practice because it is overly complex when it is adapted to real, large

projects [M17]. Finally, some special situations must be considered in cost-benefit

analysis. For example, when a system is “retired”, its technical debt is removed [114].

Another issue is that organizations probably do not have adequate resources to fix

all the identified technical debt items [M30]. In summary, a complete cost-benefit

analysis must take into account all factors. That is, it must consider not only the

principal and interest but also the project constraints, including the deadline, budget,

and effects [M30, M33]. Because of this complexity, techniques that help visualize the

estimated effects of the technical debt (not technical debt itself) could greatly help

decision-making.

4.4.1.6 E6 Automated means

Big projects can generate high volumes of data. Therefore, because of feasibility, it

is necessary to obtain estimates automatically to manage technical debt which avoids

the negative effect of intrusiveness in the normal development process [M45]. However,

the collection of measures is an extra step for developers, who are already overloaded,

and might compromise the success of technical debt management [M54]. Hence, the

source code, a project’s revision history, a project’s bug history, and other similar

data sources can be mined using automatic tools to obtain the information required to

85



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

estimate technical debt automatically [M53, M17] and to propose potential items for

refactoring [M8].

4.4.1.7 E7 Expert opinion

Expert opinions about the system are required to manage technical debt because they

provide knowledge that cannot be obtained from available software information. To-

gether with automated estimates to manage technical debt, the opinions of the people

that know the system deeply are required [M53, M17]. This information can include

new contracts to be signed, expected changes to be made, or new technologies to be

adopted [M20], helping the manager to provide and apply information regarding issues

such as uncertainty about the measures and judgments, the system’s external con-

text, and the knowledge of experts (project managers, architects, etc.) [M8]. Finally,

the goal of technical debt management methods and tools is to provide the necessary

information to human decision-makers [M54].

4.4.1.8 E8 Scenario analysis

In decision-making, it is necessary to estimate the consequences of the decisions made

about the system. Therefore, managing technical debt includes defining and analyzing

multiple potential scenarios [M17]. By analyzing scenarios, managers can acquire in-

formation about the effects of the technical debt if certain events occur in the future,

which is discussed in Section 4.4.1.4. Various possible implementations can be analyzed

to determine which one is the best. In technical debt management, the goals of scenario

analysis are as follows.

� To set targets for debt and specify the level that is acceptable for the project or

organization [M30].

� To identify the effects of non-fixed technical debt issues on multiple releases.

This is performed by using change scenarios [M32, M33, M20]. Change scenarios

represent the probable future changes that the system will accommodate, and

they are used to determine the amount of interest to be paid because of technical

debt [M50].

� To identify when it is profitable either to implement new functionality early (tak-

ing more technical debt because of the quick release or when it is profitable to

release functionality slowly but with less technical debt [M46]. The scenarios to be

analyzed can include the various paths followed to deliver features in the release

86



4.4 Elements of Technical Debt Management

planning [M42], that is, to analyze how much effort to invest in either refactoring,

architecture design, or the addition of new features [M6] by researching various

release scenarios [M25].

� With this information, the manager will be able to choose which decisions to

implement with the highest probability, and he or she will know the other pos-

sible alternatives and the system’s technical debt evolutions. The output of the

technical debt management must be in the form of possible scenarios as well as

the probability of their economic consequences [M17].

� It is necessary to sketch and assess potential alternatives to the benefits and costs

to support choosing the most appropriate for handling the technical debt [M7].

This process includes testing various possible scenarios to analyze the effects of

removing some technical debt items, that is, performing a “what-if” analysis [M8,

M54].

4.4.1.9 E9 Time-to-market

One important constraint to consider is the time-to-market [M17]. This element in-

cludes the resources and constraints involved in achieving a project goal on time. The

solutions to be implemented could be useless if they cannot be implemented within

a certain time. In some situations, it could be necessary to release a product by the

deadline without all its expected characteristics. In certain environments, being the

first to market is vital to obtain customers. In this situation, long-term software prob-

lems are not important because they are not visible to the product’s customers, and

these problems are not very important to the software company. In the long term,

the problems will be relevant only if the product or the sponsors obtain customers in

the short term [114]. To consider fully the costs and benefits of incurring technical

debt, it is necessary to take into account the release planning of the product under

analysis [M42]. In summary, a tradeoff between release characteristics and technical

debt must be made to manage technical debt [M46].

4.4.1.10 E10 When to implement decisions

Managing technical debt requires making the decision either to pay the principal of

technical debt items or to continue to pay the interest on such items. This element is

greatly influenced by the constraints on and the availability of the development team’s

resources. It is necessary to know when to implement this decision [M53, M17]. Some

decisions may include when to implement a feature of a product, or when to refactor

87



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

some part of the system to improve some of its qualities [M42]. Hence, such decisions

affect the release dates and planning [M25].

4.4.1.11 E11 Technical debt evolution

To know how technical debt affects a system it is not enough to have a snapshot of

the technical debt in the system. In order to contrast the technical debt of the system

with changes in the context, it is necessary to know how the technical debt evolves

in the system. Hence, it is necessary to track technical debt over time [M45]. This

tracking requires methods to determine the level of technical debt and its evolution [M6].

Monitoring technical debt consists of keeping track of changes in the costs and benefits

of unresolved technical debt items [M33]. By monitoring technical debt frequently, it

is possible to react quickly [M30]. Thus, monitoring the evolution of the economic

consequences of technical debt [M17] is important. To determine how the system will

perform in the future, it is necessary to consider the time-frame required for such an

analysis [M20]. Because technical debt implies a cost over time, the time-frame will

structure the analysis and enable a cost-benefit analysis. One threshold for the time-

frame could be the date estimated for retiring the software [M46]. Other potential

time-frames could be obtained from the project release plan [M23] or from the project

roadmap.

4.4.1.12 E12 Technical debt visualization

Managing technical debt without the visibility of the technical debt items, and the

software artifacts (files, modules, packages, etc.) in which the items are accumulated

is not possible. Therefore, having the means to see how technical debt affects the

system or the development process is highly recommended [M4]. Defining a visual

language for the entire organization allows for fast and transparent communication

between people and entities [M30]. Hence, it is possible to determine the relative effects

of technical debt with regard to other activities [M45]. However, the visualization

technique must have the ability to summarize the information required for high-level

analysis, and it must include the possibility of analyzing technical debt at lower levels,

such as at the subsystem or component level [M54]. The visualization of technical debt

is especially important in architectural technical debt [M5]. This kind of technical debt

usually implies several source code artifacts, such as classes and configuration files.

Using mechanisms to determine how these artifacts are grouped helps to clarify the

distribution of technical debt throughout the system.

88



4.5 Technical Debt Management Elements from the Stakeholders’ Points
of View

4.4.2 Grouping of elements according to their use in technical debt

management

Figure 4.3 shows the grouping of the identified elements according to their use in tech-

nical debt management, which were found in the literature after applying the synthesis

step describe in Section 4.3.6. In practice, a taxonomy of the elements has been

obtained. The analysis showed that the elements could be classified into three main

groups: basic decision-making factors, cost estimation techniques, and practices and

techniques for decision-making. These are explained in the following paragraphs. T1

basic decision-making factors are elements that represent the necessary information

about the system technical debt. That is, these elements are information that it is

needed to make decisions about managing technical debt. Therefore, these elements

are mainly focused on the identification and measurement of technical debt. T2 cost

estimation techniques are elements focused on how a technical debt management model

should be implemented. The main difference from the basic decision-making factors

is based on the degree of human intervention. Therefore, models can be implemented

using automatic tools, manual processes or a mix of both. Finally, T3 practices and

techniques for decision-making are elements focused on the considerations that must be

taken into account, in addition to the technical debt estimations, to manage technical

debt. Elements of this type indicate requirements to be taken into account in addition

to the basic decision-making factors. These elements draw attention to the fact that

it is not enough to simply identify and measure technical debt. It is also necessary to

integrate technical debt management into the project management process as one of

its activities.

4.5 Technical Debt Management Elements from the Stake-

holders’ Points of View

In this section, the second research question is addressed: What elements are consid-

ered from the various stakeholders’ points of view? Although the findings showed that

various stakeholders are involved in technical debt management, the most appropriate

classification system to use was not evident. Clements et al. proposed, in [23], three

stakeholders’ points of view, namely (software) engineering, technical management, and

organizational management, which were used in the first version of the work. Recently,

in SWEBOK V3 [16], the terms engineering management, and business organizational

were used. This usage reflects an evolution in the understanding of how software prod-

89



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

Table 4.1: Elements of technical debt management identified in the literature. Every

element identified is included in the column Elements. The references in which it was

identified are shown in the column Sources. The number of references in which it was

identified is shown in the column Count. The column on the left classifies the elements

according to their use in technical debt management (see Section 4.4.2).

Elements Sources Count

T
1

B
as

ic
d

ec
is

io
n

-m
a
k
in

g
fa

ct
o
rs

E1 Technical debt

items

[M6] [M8] [M30] [M17] [M11] [M12] [M24] [M23] [M22]

[M27] [M29] [M31] [M33] [M34] [M35] [M36] [M41] [M43]

[M47] [M48] [M49] [M50] [M51] [M52] [M53] [M54] [M55]

[M57] [M59] [M60] [M62] [M63] [M28] [M32] [M9] [M26]

[M19] [M61] [M14] [M44] [M40] [M15] [M1] [M16] [M18]

[M39]

46

E2 Principal

[M6] [M8] [M17] [M3] [M11] [M12] [M20] [M13] [M24] [M23]

[M22] [M27] [M33] [M38] [M41] [M43] [M50] [M51] [M53]

[M54] [M56] [M62] [M63] [M28] [M32] [M9] [M26] [M19]

[M61] [M44] [M40] [M15] [M1] [M16] [M18]

35

E3 Interest

[M6] [M8] [M17] [M3] [M11] [M12] [M20] [M13] [M24] [M23]

[M22] [M27] [M33] [M41] [M43] [M50] [M51] [M53] [M54]

[M56] [M62] [M63] [M28] [M32] [M9] [M26] [M19] [M61]

[M44] [M40] [M15] [M1] [M16] [M18]

34

E4 Interest probabil-

ity

[M6] [M8] [M17] [M20] [M24] [M23] [M22] [M27] [M33]

[M50] [M51] [M53] [M54] [M19] [M14] [M44] [M40] [M1]
18

E5 Technical debt

impact

[M6] [M7] [M45] [M8] [M30] [M10] [M17] [M2] [M3] [M11]

[M12] [M20] [M13] [M24] [M23] [M22] [M27] [M31] [M33]

[M35] [M36] [M37] [M41] [M42] [M43] [M46] [M47] [M48]

[M49] [M51] [M53] [M54] [M57] [M62] [M28] [M58] [M32]

[M9] [M19] [M61] [M44] [M40] [M15] [M1] [M16]

45

T
2

C
os

t
es

ti
m

a-

ti
on

te
ch

n
iq

u
es

E6 Automated

means

[M45] [M8] [M30] [M17] [M12] [M31] [M36] [M38] [M47]

[M49] [M53] [M54] [M55] [M57] [M59] [M28] [M58] [M9]

[M26] [M19] [M14] [M40] [M15] [M16] [M18] [M39]
26

E7 Expert opinion

[M8] [M17] [M20] [M22] [M49] [M51] [M53] [M54] [M28]

[M32] [M26] [M14] [M44] [M40] [M15] [M1] 16

T
3

P
ra

ct
ic

es
an

d
te

ch
-

n
iq

u
es

fo
r

d
ec

is
io

n
-m

ak
in

g E8 Scenario analysis

[M6] [M7] [M8] [M30] [M17] [M3] [M20] [M25] [M27] [M31]

[M33] [M42] [M46] [M47] [M50] [M51] [M54] [M58] [M32]

[M40]

20

E9 Time-to-market [M17] [M23] [M37] [M41] [M42] [M46] [M50] [M51] [M60] 9

E10 When to imple-

ment decisions

[M8] [M17] [M3] [M21] [M24] [M22] [M25] [M29] [M42]

[M47] [M53] [M32] [M9] [M61] [M40] [M15] [M1]
17

E11 Technical debt

evolution

[M6] [M45] [M30] [M17] [M3] [M23] [M22] [M31] [M33]

[M36] [M46] [M47] [M55] [M26] [M61] [M44] [M15] [M39]
18

E12 Technical debt

visualization

[M45] [M8] [M30] [M4] [M5] [M31] [M52] [M54] [M57] [M28]

[M26] [M61] [M14] [M44] [M40] [M15] [M16] [M39]
18

90



4.5 Technical Debt Management Elements from the Stakeholders’ Points
of View

T1 Basic decision-making factors

T2 Cost estimation techniques

T3 Practices and techniques for decision-making

E9 Time-to-
market

E12 Technical 
debt visualizationE10 When to 

implement 
decisions

E8 Scenario 
analysis

E11 Technical 
debt evolution

E1 Technical debt 
items

E3 Interest

E4 Interest 
probability

E2 Principal E5 Technical debt 
impact

E6 Automated 
means

E7 Expert 
opinion

Figure 4.3: Taxonomy of the identified elements for technical debt management. Ele-

ments are grouped according to its use in technical debt management

uct development takes place. Therefore, in this chapter, the final list of stakeholders’

points of view was as follows: (software) P1 engineering, P2 engineering management,

and P3 business organizational management. P1 engineering includes concerns about

processes such as software design and software construction, as well as, software archi-

tecture for some members of the community. P2 engineering management is focused

on process planning and monitoring, including measurement. Finally, P3 business or-

ganizational management is focused on organizational goals, business strategy, time

horizons, risk factors, financial constraints, and tax considerations. These points of

view are aligned with the stakeholders identified by Yli-Huumo et al. [M61] in tech-

nical debt management: development team, software architect (P1 engineering); team

manager (P2 engineering management); and business stakeholder (P3 business orga-

nizational management).

To analyze the elements of technical debt management from the stakeholders’ points

of view mapping was conducted. Figure 4.4 shows the mapping of the identified ele-

ments of technical debt management (see Section 4.4) and the stakeholders’ points of

view, which are described above.

The analysis revealed (see Figure 4.4) that most papers were focused on the T1

basic decision-making factors, that is, on obtaining the necessary information about

the system’s technical debt. In this case, the preponderant points of view were P1

engineering (e.g., the creation of source code, designing, architecting, or testing) and

P2 engineering management (e.g., planning, or product quality management).

91



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

E1
 T

ec
h

n
ic

al
d

eb
t 

it
em

s

E2
 P

ri
n

ci
p

al

E3
 In

te
re

st

E4
 In

te
re

st
p

ro
b

ab
ili

ty

E5
 T

ec
h

n
ic

al
d

eb
t 

im
p

ac
t

E6
 A

u
to

m
at

ed
m

ea
n

s

E7
 E

xp
er

t
o

p
in

io
n

E8
 S

ce
n

ar
io

an
al

ys
is

E9
 T

im
e-

to
-m

ar
ke

t

E1
0

 W
h

en
 t

o
im

p
le

m
en

t
d

ec
is

io
n

s

E1
1

 T
ec

h
n

ic
al

d
eb

t 
ev

o
lu

ti
o

n

E1
2

 T
ec

h
n

ic
al

 d
eb

t
vi

su
al

iz
at

io
n

P1 Engineering

P2 Engineering
Management

P3 Business 
organizational 

management

46

68.00% 44.00% 44.00%

72.50% 60.00% 60.00%

20.00% 52.00%

37.50% 32.50%

20.00% 40.00% 24.00%

27.50% 42,50% 20.00%

27.78% 29.63% 12.96%

24.00% 44.00% 36.00%

37.50% 32.50% 22.50%

27.78% 29.63% 29.63%

36.96%

43 34

31.43% 32.35%

70.59%

93.48% 97.14%

68.57%

27.78% 50.00%

50.00%

88.46%

83.33%

31.25% 50.00% 66.67%

68.75% 85.00% 88.89%

93.75% 80.00% 77.78%

35.29% 61.11%

88.24% 72.22%

88.24% 88.89%

50.00%

50,00%

88.89%

35 34 18 45 26 16 20 9 17 18 18

25

40

54

35

87.50%

77.78%

38

97.06% 84.44%94.44%

63.04%
79.63% 62.96% 61.11% 31.48% 42.59%70.37%

51.11%

92.00%

T1 Basic decision-making factors
T2 Cost estimation 

techniques T3 Practices and techniques for decision-making

17 5 10

15

11

59 32 46

15

23

13 9

24 24

23 5

29 13 11 17 8

15 16 15

11 11 6 6

13 9

33 17 7 16 16

Figure 4.4: Mapping of the elements in the stakeholders’ points of view. All

the papers identified in this study are considered in the mapping. Mapping of the

elements to support decision making in managing technical debt versus the engineering,

engineering management, and business organizational management points of view. Each

of the selected papers can include several elements and can be mapped onto more than one

point of view. In each cell, the number in the center is the number of papers that identify

an element from a specific stakeholders’ point of view. The upper left percentage is the

percentage of papers that identify the element (column) as specific to a point of view of

(row), and the lower right percentage is the percentage of papers with the specific point

of view (row) that identify the element (column). The first column shows the summary

of the papers per stakeholder point of view, while in the bottom of the figure, there are

summaries of papers per element and per type of element.

92



4.5 Technical Debt Management Elements from the Stakeholders’ Points
of View

The papers included in P1 engineering and P2 engineering management strongly

highlighted all the identified technical debt management elements. Conversely, this

was not the case for P3 business organizational management, apart from E9 time-to-

market, E11 Technical debt evolution, and E6 automated means elements. This finding

indicated a business requirement for technical debt management, which could include

the following: to quantify the impact of technical debt; to estimate technical debt

automatically to avoid extra effort in the developments process; to know the effects of

technical debt in the delivery capacity of the team putting at risk the ability to meet

the projects’ deadlines; and to control the evolution of technical debt over time. This

finding, however, should be assessed in future studies.

Concerning the E9 time-to-market element, an interesting finding was that it is

hardly ever taken into account by the current technical debt management tools and

methods as discussed in [36]. This is an interesting paradox and a serious issue: whereas

E9 time-to-market is one of the least referenced, used, and suggested T3 practices and

techniques in decision-making, it is probably the most referenced cause of technical

debt and according to [114] one of its most relevant antecedents. Therefore, managing

technical debt without considering E9 time-to-market could lead to wrong decisions

that could affect important deadlines in a project.

Most of the studies analyzed focused on T1 basic decision-making factors. This

finding may indicate that technical debt management is still in an initial phase. It

also means that data estimation techniques and metrics for the technical information

normally extracted from source code, repositories, or tracking systems have not yet

been developed, or, at least, they have not yet been made available to the software

engineering community. Whereas T1 basic decision-making factors seem to be concep-

tually close to the project P1 engineering activities, T3 practices and techniques for

decision-making are not far from the decision-making process and are therefore closer

to P2 engineering management and P3 business organizational management than to

P1 engineering. Whereas P1 engineering is focused on finding project’s technical prob-

lems, P2 engineering management and P3 business organizational management extract

information from sources such as strategic decisions about the architecture, product re-

lease dates, new contract signatures, budgets, or technologies provided by partners, in

the areas of management and strategy. It is worthwhile to highlight that E5 Techni-

cal debt impact was the only highly referred element, regardless of the point of view

that was considered. Therefore, E5 Technical debt impact was found to link the three

points of view in addressing technical debt management concerns. This finding suggests

that quantifying the effects of technical debt could form an excellent communication

93



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

channel among the different stakeholders in a project. Moreover, this finding supports

the previous conclusion about the importance of the E5 Technical debt impact element

(Section 4.4.1.5).

Finally, the elements of E6 automated means and E7 expert opinion fit the type

T2 cost estimation techniques. These two elements are complementary: E6 automated

means element refers to extracting the required data without disturbing the normal

activity of developers, whereas E7 expert opinion refers to using experts to provide the

information that cannot be automatically extracted and to make decisions based on

estimations.

4.6 Retrospective and Discussion

4.6.1 Identification and Definition of the Elements

This review study performed a systematic mapping of the current literature on techni-

cal debt management. Sixty-three papers were analyzed and 12 elements of managing

technical debt were identified. The elements were classified into three types: T1 basic

decision-making factors; T2 cost estimation techniques; and T3 practices and techniques

for decision-making. This classification allowed us to use a top-down hierarchical ap-

proach. Previous contributions to the literature addressed topics that were considered

necessary to manage technical debt, but it was not clear how these contributions could

fit an overall view of the research. The present review study provided a taxonomy of

the elements.

The elements and types of elements, even when they were related, differed from

the activities identified by Li et al. [69]. Although the activities mentioned in [69]

represented the steps that have to be performed to manage technical debt, elements

are used during activities as inputs, outputs, or mechanisms.

Alves et al. [6] identified several management strategies. These strategies referred

to concrete methods or techniques used to manage technical debt. These methods

included some the sources in which the elements of the present review were identified.

Therefore, the goals of the studies are different. Alves et al. identified the current

methods for technical debt management, whereas the present review identified what

these methods took into account in order to manage technical debt.

These relationships are interesting for studying how to integrate technical debt

management into a software product roadmap similar to that described in [109]. Part of

this roadmap is the software development process or the strategic planning. Therefore,

a more detailed study of such relationships should be addressed in a future work.

94



4.6 Retrospective and Discussion

4.6.2 Stakeholders’ Points of View with Regard to the Elements

The identified elements were mapped to three different stakeholders’ points of view

(see Figure 4.4). These points of view comprise the activities involved in the software

product development enterprise: P1 engineering, P2 engineering management, and P3

business organizational management.

This mapping allowed us to determine how different stakeholders considered the

same elements. Other stakeholders sometimes considered different elements but in all

cases from a different point of view.

The first finding showed that the business organizational perspective was neglected

in the literature, which was a serious obstacle from the point of view of enterprise

management. More papers were focused on P1 engineering and P2 engineering man-

agement than on P3 business organizational management. Companies make products

either to sell to customers or to consume internally. In all cases, products must make

sense from a business point of view as well as from a technical point of view.

The second finding was related to an important issue: communication among stake-

holders. As described in Section 4.5, the element of E5 Technical debt impact was the

only element that was highly referred to, regardless of the point of view considered.

This finding suggests that quantifying the effects of estimating technical debt could

be an excellent communication channel among different stakeholders. This opens the

issue of how estimating the effects of technical debt could be represented so that stake-

holders with different technical backgrounds could understand estimation of the effects

and could discuss them effectively with each other.

Another remarkable finding was that E9 time-to-market was hardly ever taken into

account in the methods used to manage technical debt. However, from the point of

view of P3 business organizational management, only E9 time-to-market, E11 Technical

debt evolution, and E6 automated means elements were highly considered. This finding

is consistent with the results reported in previous studies [6] [36], which present an in-

teresting paradox: whereas E9 time-to-market was one of the least referenced elements

of technical debt management, it was one of the most relevant antecedents of technical

debt [114]. Therefore, the lack of support for time-to-market in the current technical

debt management literature could lead to wrong decisions.

4.6.3 Baseline for a Framework

The analysis described in sections 4.4 and 4.5 provides a baseline for defining what

could be considered a framework for technical debt management. This framework would

95



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

consist of a bi-dimensional schema at a high level of granularity. The dimensions would

be groups of elements and stakeholders’ points of view. At a second level of granularity,

the schema could be considered to have six dimensions that corresponded to the three

groups of elements (basic decision-making factors, cost estimation techniques, and the

practices and techniques used in decision making) and the three Stakeholders’ points of

view (engineering, engineering management, and business organizational management).

This framework would represent technical debt management as an integral job of the

enterprise.

The application of this framework could be twofold: first, it would be possible to

define purpose-oriented models for technical debt management (which elements are

required for managing technical debt according to different objectives), when dimen-

sions and groups were decided according to specific goals. A second application would

be to determine how specific methods (or models) that were built outside framework

guidelines could be applied according to their characteristics when they were analyzed

according to the framework.

The use of this framework could show that some elements have special relevance

whereas not always support of methods can be found in the literature. This is the case of

E9 time-to-market (see Section 4.4.1.9 and Section 4.5). Scenario analysis is important

because technical debt management depends on the context (see Section 4.4.1.2 and

Section 4.4.1.3).

4.6.4 Technical Debt Management Decision Making

In the present review study, the main finding concerning technical debt management

decision making was that it is context dependent (see Section 4.4.1.2 and Section 4.4.1.3,

and the considerations below in the current section). The consequence of such context

dependence is that without a clear solid definition of context and precise estimations

of technical debt, estimations of effects are of little use.

From the point of view of decision making in technical debt management, the find-

ings showed that the elements of type T3 Practices and techniques for decision-making

were the most relevant. These elements are required to make informed decisions. It

is necessary to identify and analyze different possible decisions (E8 Scenario analysis)

in order to realize the possible consequences of such decisions. Therefore, in making

decisions about technical debt it is not enough to have an overall picture of the system’s

technical debt. Without data about the evolution and trend in the amount of technical

debt (E11 Technical debt evolution), decisions will be made without enough informa-

tion. By analyzing the trend in the amount of technical debt, it would be possible to

96



4.6 Retrospective and Discussion

estimate when to invest in removing technical debt before the debt becomes too high

to be managed. Both E8 Scenario analysis and E11 Technical debt evolution imply

that a future time-frame is required to perform the analysis.

In practice, the complete picture is more complex because time is also a constraint.

This was particularly highlighted by E9 Time-to-market, E10 When to implement de-

cisions, and E11 Technical debt evolution. These elements imply that based on the

constraint of time, more or less effort should be made to remove technical debt. For

example, a scenario in which a startup is in a race to be the first to release a product

in a market is different from a scenario in which a consolidated company has a product

that leads the market, and therefore, it is possible to delay a new release to remove

technical debt. Therefore, any decision made in technical debt management implies a

trade-off between software release characteristics and technical debt removal.

Finally, even with effective tools and practices that identify, measure, and esti-

mate the effects of technical debt, without the means to make such debt visible (E12

Technical debt visualization) it would be difficult for companies to understand the real

situation of their software products. Visualization techniques are a means of providing

fast and transparent communication. If decision-makers do not obtain technical debt

information in a format that they understand, they could make wrong decisions.

4.6.5 Implications for Research

The results of the present study have several implications for the research on the man-

agement of technical debt, including the following:

� Further research is needed to integrate automatic data extraction with expert

knowledge for technical debt management.

� Advancements are required to make trade-offs between new product characteris-

tics and technical debt removal in new releases.

� Because a time frame is required to perform some analyses (E8 Scenario analysis

and E11 Technical debt evolution, it is necessary to determine the appropriate

time frame that considers all the related issues.

� There is a lack of research on the business perspective of technical debt. Further

studies in this direction would make valuable contributions to the literature.

� There is a need to determine how to define contexts, and to use them in estima-

tions.

97



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

� Visualization techniques are required to estimate technical debt and its effects.

These techniques should be designed and built specially to take into account the

different backgrounds of stakeholder.

� Research is required on the integration of technical debt management into the

roadmap of the software product.

4.6.6 Implication for Practitioners

The results of the present study have several implications for practitioners, such as the

following:

� A guide to study specific cases of technical debt management in relation to the

identified elements should be produced. This issue pertains to technology transfer

or standardization rather than research.

� Using the defined framework, organizations could create models of technical debt

management by using the elements identified in this study.

� Practitioners could identify factors that have to be taken into account in making

decisions about technical debt management.

� Organizations could compare their current practices in technical debt manage-

ment with the elements of the described framework to identify gaps in their

technical debt management process.

� Practitioners should consider that technical debt management is relevant to their

work whenever they are working on a software product roadmap.

4.7 Threats to Validity

This section addresses potential biases and the actions taken to minimize their effects.

To analyze potential biases in a more systematic way, in this section all the potential

biases in systematic reviews were analyzed following the definitions given in [115].

According to these definitions, there are three main groups of biases: bias in identifying

articles, bias in choosing studies, and bias in obtaining accurate data. In the following

subsections, the biases in each group are analyzed.

98



4.8 Conclusions and Future Work

4.7.1 Bias in identifying articles

Several factors can affect the identification of articles: the criteria of the reviewers and

editors of journals or conferences, industry-sponsored research in some areas, place of

publication, biased indexing studies in literature databases, inadequate or incomplete

searches, articles that are cited more often than others are, and studies that generate

multiple publications. In the present review, several different literature databases were

used to include the maximum number of sources and to minimize the impact of the

above-mentioned biases. Because of the complications involved in identifying that

several publications are in fact results of the same study, no action was taken to merge

publications. This is a minor risk because few papers included in this study were

authored by the same researcher.

4.7.2 Choosing study biases

The process used to select the papers was conducted following the steps provided by

Petersen et al. [84]. The inclusion and exclusion criteria could also be influenced by the

personal biases of the author. The a priori definition of the criteria helped to minimize

this potential bias.

4.7.3 Obtaining accurate data bias

In a literature review, the poor quality of sources can lead to inaccurate conclusions. To

mitigate this potential bias, the selected papers were published in journals, conference

proceedings, or workshop proceedings according to a peer-review process. To include all

relevant studies about technical debt management, some book chapters were included.

Because these were few in number compared to the other selected papers, the effect

on the quality of the results was low. The author had to interpret the papers in

order to classify them as being about engineering, engineering management, or business

organizational management. This classification could be influenced by personal bias or

by the information given in the papers, and this classification should be confirmed in

subsequent research, such as by conducting interviews with practitioners.

4.8 Conclusions and Future Work

This chapter reports the findings, and conclusions of an analysis of the current literature

on technical debt management. The focus of the chapter was to identify the elements

of technical debt management. The research method used systematic mapping [84] and

99



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

some synthesis activities. This chapter analyzed how current approaches supported the

identified elements.

Based on the mapping conducted in this review study, one conclusion is that it

was possible to define a framework. This framework could be used to produce specific

decision-making models and methods or to assess existing ones (see Section 4.6.3). In

contrast to the majority of the current approaches to technical debt management, the

framework was not constrained by a concrete type of technical debt.

Another important conclusion is that technical debt is context dependent (see Sec-

tion 4.6.4). This means that the context, which is difficult to define, must be part of

the estimation model, includes issues such as the history of the product development,

prospects, or time to market.

Introducing the business organizational perspective allowed to identify that most

of the previous studies focused on the elements with engineering and engineering man-

agement points of view whereas the business organizational perspective was neglected.

Within an industrial or government environment, this is a serious issue. It is important

to highlight that while E9 time-to-market was one of the least suggested elements, it

was probably the most referenced cause of technical debt. According to [114], it was

one of its most relevant antecedents. This situation could lead to wrong decisions that

could affect important deadlines in a project.

There were some indications that E5 Technical debt impact could be effective

in allowing communication between the different stakeholders in a project (see Sec-

tion 4.6.2). This would require both quantifying and visualizing the effects of technical

debt.

The elements identified in the present review could be used to define models for

technical debt management for specific systems with two objectives: to demonstrate

how the elements work in practice; to implement specific technical debt management

models based on the integration of the tools that are currently available for the man-

agement of technical debt.

In addition to the framework, an important finding of this chapter is, as is explained

in Section 4.6.4, any decision about software evolution implies a trade-off between

software release characteristics and technical debt removal.

Finally, to use the framework is necessary to know what is the support of tools for

each framework’s element. This is addressed in the following chapter.

100



4.9 Selected Publications

4.9 Selected Publications

See Annex C

101



4. A FRAMEWORK FOR TECHNICAL DEBT MANAGEMENT

102



Part IV

Identification of tools and

strategies that support the

elements identified in

Contribution 2 and the lacks in

this support

103





Chapter 5

Tools and Strategies for

Technical Debt Management

The goal of this chapter is to identify and analyze the tools and strategies

for technical debt management that are available to support the elements

identified in Chapter 4. To do that the systematic mapping study presented

in Chapter 4 has been extended to analyze the tools and strategies proposed

in the literature. This chapter is an excerpt from the following articles:

� C. Fernández-Sánchez, J. Garbajosa, C. Vidal and A. Yagüe, An Anal-

ysis of Techniques and Methods for Technical Debt Management: A

Reflection from the Architecture Perspective, 2015 IEEE/ACM 2nd

International Workshop on Software Architecture and Metrics, in con-

junction with the 37th International Conference on Software Engineer-

ing, Florence, 2015, pp. 22-28. [36].

Copyright ©2015 IEEE.

� Carlos Fernández-Sánchez, Juan Garbajosa, Agust́ın Yagüe, Jennifer

Pérez, Identification and analysis of the elements required to manage

technical debt by means of a systematic mapping study, Journal of

Systems and Software, Volume 124, February 2017, Pages 22-38, ISSN

0164-1212. [39].

Copyright ©2016 Elsevier Inc.

105



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

5.1 Introduction

This chapter extends the systematic mapping described in Chapter 4 by analyzing the

selected studies that present tools or strategies used in technical debt management.

The goal of this chapter is to identify the support of tools and strategies for using the

framework described in Section 4.6.3.

The structure of this chapter is as follows: Section 5.2 presents the methodology

used in this chapter. Section 5.3 presents some previous related studies and the differ-

ences with the present one. Section 5.4 presents the support of tools and strategies for

using the identified elements described in Chapter 4. Section 5.5 shows the analysis of

the rigor and relevance for the industry of the found tools and techniques. Section 5.6

discusses the results. And finally, Section 5.7 summarizes the outcomes of the case

study in the context of this thesis.

5.2 Methodology

As mentioned above, this chapter extends a previously described systematic mapping.

The details of the steps performed to conduct that systematic mapping can be seen in

Chapter 4.

As part of the extension of the systematic mapping, the scientific rigor and the

industrial relevance of the analyzed paper were assessed. The goal of this step was to

know how the identified elements were supported in the currently available tools and

techniques used in technical debt management from an industrial perspective.

The quality assessment of the reviewed papers is not covered by the systematic

mapping approach [84]. We used the method proposed by Ivarsson and Gorschek [56]

which was previously used with systematic mapping studies in the software engineering

domain [81]. The model provides a set of rubrics to measure rigor and relevance for

industry. Rigor refers to the precision or exactness of the research method used and

how the study is presented. The model in [56] defines three aspects used to measure

rigor: context described, study design described, and validity discussed. Each aspect is

scored by 0, 0.5, or 1. Consequently, the total rigor score of a paper will be between 0

and 3: 0 is the worst score, and 3 the best score. A detailed explanation of the criteria

used to assign each score is provided in [56].

Relevance refers to the realism of the environment in which the results are obtained

and the degree to which the research method facilitates the transference of results to

practitioners. The model defines four aspects that are scored by 0 or 1. Therefore, the

total relevance score of a paper is between 0 and 4: 0 is the worst score, and 4 is the

106



5.3 Background and Related Work

best score. A detailed explanation of the criteria used to assign each score is provided

in [56].

5.2.1 Research questions

RQ1: What elements have been considered in the tools and strategies proposed to

manage technical debt?

RQ2: What is the current support in industrial environments for the elements re-

quired in decision making in technical debt management in the form of tools and

strategies?

5.3 Background and Related Work

Li et al. [69] identified tools for technical debt management whereas Alves et al. [6]

identified technical debt indicators and strategies for technical debt management (ap-

proaches, methods, and models). The goal of the present chapter is different. The

objective here is to analyze how tools and strategies of technical debt management

support (or not) the elements required for technical debt management identified and

defined in Chapter 4. Additionally, the rigor and relevance for the industry of the

studies where those tools and strategies are presented were analyzed.

5.4 Tools and Strategies

To respond the first research question, a new mapping of the elements and stakeholders’

points of view was performed. In that case using the papers that introduced one

or several elements of technical debt management, and proposed tools or strategies

to manage technical debt. Papers that simply introduced elements of technical debt

management were excluded. Figure 5.1 shows this new mapping. The comparison of

Figure 4.4 and Figure 5.1, shows an obvious difference in the number of papers on each

element and point of view. As long as the set of papers used in Figure 5.1 was a subset

of the set of papers used in Figure 4.4 the obtained difference in the number of papers

could be expected. Nonetheless, the percentage of elements introduced with respect to

the three points of view were proportional to those obtained in the entire selection of

papers (see subsection 4.5).

This finding allowed us to conclude that the identified elements were not simply

suggestions made by the authors but a set of elements used by those authors to define

107



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

E1
 T

ec
h

n
ic

al
d

eb
t 

it
em

s

E2
 P

ri
n

ci
p

al

E3
 In

te
re

st

E4
 In

te
re

st
p

ro
b

ab
ili

ty

E5
 T

ec
h

n
ic

al
d

eb
t 

im
p

ac
t

E6
 A

u
to

m
at

ed
m

ea
n

s

E7
 E

xp
er

t
o

p
in

io
n

E8
 S

ce
n

ar
io

an
al

ys
is

E9
 T

im
e-

to
-m

ar
ke

t

E1
0

 W
h

en
 t

o
im

p
le

m
en

t
d

ec
is

io
n

s

E1
1

 T
ec

h
n

ic
al

d
eb

t 
ev

o
lu

ti
o

n

E1
2

 T
ec

h
n

ic
al

 d
eb

t
vi

su
al

iz
at

io
n

P1 Engineering

P2 Engineering
Management

P3 Business 
organizational 

management

28

73.33% 46.67% 46.67%

69.57% 65.22% 65.22%

26.67% 66.67%

39.13% 30.43%

20.00% 53.33% 13.33%

30.43% 52.17% 17.39%

30.30% 30.30% 6.06%

20.00% 46.67% 40.00%

39.13% 34.78% 21.74%

27.27% 33.33% 33.33%

39.29% 35.00% 33.33%

71.43%

92.86% 95.00%

75.00%

36.36% 58.82%

41.18%

88.24%

81,82%

27.27% 57.14% 50.00%

63.64% 85.71% 100%

90.91% 71.43% 50.00%

27.27% 58.33%

81.82% 66.67%

81.82% 91.67%

50.00%

41.67%

91.67%

20 21 11 28 17 11 14 4 11 12 12

15

23

33

91.30%

75.00%

95.24% 82.14%90.91%

57.14%

78.79% 57.58% 60.61% 30.30% 45.45%69.70%

50.00%

93.33%

T1 Basic decision-making factors
T2 Cost estimation 

techniques T3 Practices and techniques for decision-making

36 23 30

11 47 7 14 10 8 7 63 2 3

16 15 15 9 21 7 7 12 4 9 8 5

26 19 20 10 23 15 10 10 2 9 11 11

Figure 5.1: Mapping of the elements in the stakeholders’ points of view. Ex-

clusively the papers that defined methods for technical debt management were

considered for this mapping. Mapping of elements to support decision making in

managing technical debt versus the engineering, engineering management, and business

organizational management points of view. Each selected paper can include several ele-

ments and can be mapped onto more than one point of view. In each cell, the number in

the center is the number of papers that identify an element from a specific stakeholder’s

point of view. The upper left percentage is the percentage of papers that identify the

element (column) as specific to a point of view of (row), and the lower right percentage

is the percentage of papers with the specific point of view (row) that identify the element

(column). The first column shows the summary of the papers per stakeholder point of

view, while in the bottom of the figure, there are summaries of papers per element and per

type of element.

concrete techniques for technical debt management. This second mapping was also

useful to identify the coverage of the elements. It, therefore, was possible to determine

some gaps in the current methods regarding elements that were not addressed to manage

technical debt. The main shortcoming was the insufficient support shown for E4 Interest

probability, E7 Expert opinion, E9 time-to-market, E10 When to implement decisions,

E11 Technical debt evolution, and E12 Technical debt visualization. Based on this

finding, it can be concluded that additional methods or improvements to the currently

available methods are required to support these elements. Especially to take into

account the business organizational management point of view.

108



5.4 Tools and Strategies

5.4.1 Analysis of Tools and Strategies from the Elements for Technical

Debt Management Perspective

5.4.1.1 E1 Technical debt items

Approaches to identifying items of technical debt are mainly focused on code debt and

architectural debt. Approximately 65% of all code anomalies were related to 78% of all

architecture problems [72]; therefore it could be thought that these techniques overlap.

However, Zazworka et al. [M63] show that different techniques (modularity violations,

code smells, grime, and automatic static analysis [ASA] issues) do not overlap. That

is, they point different technical debt items with regard to maintainability including

code and architectural debt.

Focusing on code technical debt, Nugroho et al. [M43] propose a method based on

lines of code, code duplication, McCabe’s cyclomatic complexity, parameter counts, and

dependency counts to score software on the basis of its maintainability. This approach

calculates the total technical debt in a system but does not identify concrete technical

debt items. Other methods, use the combination of code metrics and thresholds to

define detection strategies [M36], rules [M12], or quality requirements [M30].

One of the techniques analyzed by Zazworka et al. [M62] is focused on detecting

code smells (e.g., God and brain code smells). As in the study of Zazworka et al.,

other studies show that a correlation exists between classes with code smells (or some

of them) and change-prone, change size, change frequency, or error-prone classes [68,

62, 79, 80, 99, 125].

To identify architectural technical debt, Cai et al. [M8] use modularity violation

detection (design rule violation) and rare class analysis to detect architectural debt

items. For modularity violation detection, they use a tool called Clio [118] that allows

one to detect files that change together when they are not supposed to be coupled.

This tool uses a clustering technique to identify the system’s modules, thus allowing

one to analyze the modules’ dependencies [119]. For rare class analysis, they use an

algorithm to classify the files, considering their participation in patches created to fix

detected bugs. A more recent tool, based on the same concepts of Clio, is Titan [122]

which is based on the concept of design rule spaces [121]. Titan was used by Kazman

et al for technical debt management [M28].

5.4.1.2 E2 Principal

Studies reveal two main strategies to estimate the principal. The first one is based on

having a repository of similar changes and projects. Based on this accumulated knowl-

109



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

edge, it is assumed that a similar problem in a similar project will imply the same effort

to solve the problem. Following these criteria, in [M43] and [M13] a function of the es-

timated percentage of lines of code to be changed and an estimation of effort per line of

code are used. Both variables are estimated using statistical information collected from

other projects using the same technology. Curtis et al. [M12] detect code and archi-

tectural violations and use information obtained from several projects to estimate the

effort needed to solve these kinds of violations, considering the programming language.

An important consideration is that technical debt is context dependent [M54]. There-

fore these approaches, based on statistical information collected from other projects,

might introduce imprecision in the principal estimation.

The second strategy consists of detecting technical debt items and utilizing the

typical effort estimation that the organization uses [M23, M20, M8, M62].

5.4.1.3 E3 Interest

For the interest estimation, some studies use an estimated maintenance effort based

on information collected from other projects using the same technology [M43][M13].

Similar to the principal, an important consideration is that technical debt is context

dependent [M54]. Therefore, due to these approaches use information collected from

other projects, they might add imprecision in the interest estimation.

Others use defect likelihood and change likelihood to estimate the technical debt

items’ impact on system quality, for example, focusing on classes with the God class

code smell [M62]. They calculate the defect likelihood on the basis of the times a tech-

nical debt item is changed to solve defects. Similarly, they calculate change likelihood

on the basis of the number of changes performed in the technical debt item over time.

In [M63], the analysis is extended to 30 indicators including modularity violations, sev-

eral code smells and size to detect and analyze whose correlation with maintainability

(defect likelihood and change likelihood).

Specifically focused on architectural debt, Cai et al. [M8] use variations in the cost-

per-change and cost-per-defect to estimate the interest. They propose three proxy

measures of effort for estimating the cost: actions, the number of commits/patches;

churn, the number of lines changed in a file; and discussions, the number of textual

comments about a file in the developers’ discussions. They demonstrate that these

three proxy measures of effort are valid, analyzing their correlation with other metrics

that other authors have previously studied [71, 22]. However, they do not provide a

concrete way of transforming the proxies’ measure variations into maintenance effort

variations.

110



5.4 Tools and Strategies

Another proxy used to estimate interest is to monitor developers activity [M56].

Collecting metrics about the activities with the development environment that devel-

opers perform when they are working with classes shows the difference in maintenance

efforts.

5.4.1.4 E4 Interest probability

Several studies propose assigning a probability to the interest estimation. In this way,

the interest can be estimated as expected interest. Cai et al. [M8] use triangular

distribution for the interest estimation that is, a pessimistic value, an optimistic value,

and a most-likely value for the interest estimation. Several studies use the probability of

change scenarios to model the interest probability [M33, M51, M20]. However, they do

not provide concrete methods to estimate such values. In these methods, this estimation

is delegated to project managers or architects. Therefore, it is a challenge how to

estimate the probability distribution of interest to manage architectural technical debt.

5.4.1.5 E5 Technical debt impact

This section incorporates techniques that focus on the economic consequences of tech-

nical debt, perform some cost-benefit analysis on the basis of principal and interest,

and/or provide ways for ranking technical debt items considering their impact on the

system.

One strategy used to estimate technical debt’s economic consequences is oriented

to provide a big picture of the whole system without providing low-level detail of how

technical debt is distributed in the system. Nugroho et al. [M43] propose a method

based on code metrics (lines of code, code duplication, McCabe’s cyclomatic complex-

ity, parameter counts, and dependency counts) to score software on the basis of its

maintainability. This same approach can be seen in [M13]. Based on the accumulated

data of more than 170 systems, they provide estimations of the cost of change in order

to increase the software’s score in the ranking. Nevertheless, it only estimates the eco-

nomic consequences at the whole-system level, while it does not identify the modules or

components in which technical debt has accumulated and consequently, the technical

debt distribution over the system.

Curtis et al. [M12] use average effort—considering the programming language—per

type of code or architectural violation detected and the cost per hour to estimate the

principal cost. This provides a general view of the system’s technical debt, but they do

not consider the interest or other aspects in their estimations. Similar to this solution,

Letouzey and Ilkiewicz [M30] assign a remediation cost and a non-remediation index

111



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

per each type of quality requirement (i.e., type of technical debt item) defined in their

technical debt management model.

For architectural debt, Cai et al. [M8] use three file metrics to measure maintenance

efforts. They use churn (lines of code changed in each change), actions (commits in

which the file has been involved), and discussions (a metric based on the text mining

of different sources, such as discussion forums and commit descriptions). They demon-

strate that these three metrics are correlated with maintenance effort and proposed

them to estimate the benefit of refactoring. However, a clear way of transforming the

three metrics’ values into a refactoring benefit is not shown. They also use the cost to

solve defects and the defect rate as variables. Finally, they use real options to combine

the different variables, performing an economic analysis of the future costs and benefits

of the system. Similarly, Alzaghoul and Bahsoon [M2] analyze Web service selection

using real options. They consider the technical debt generated when the selected web

services do not have enough scalability to support the system’s future growth, but

they also consider the importance of not wasting resources due to excess of scalability

capabilities.

Several authors use cost-benefit analysis to estimate technical debt’s impact. The

basic way to perform a cost-benefit analysis is to compare the cost of removing technical

debt (principal) with the benefit obtained (normally, the avoided cost due to not having

interest) [M24, M30, M28].

Some of these methods are oriented to release planning [M42]. Their goal is to

identify when it is more profitable to initially invest in architecture or when it is better

to release functional features as soon as possible. That is, this method is oriented to

decide when it is better to incur technical debt by adding features as soon as possible

or when it is better to add features later.

Some authors add time as a variable to be considered in the analysis. Therefore,

they take into account technical debt’s possible evolutions over time [M23, M43, M13].

Other authors use real options to perform the analysis [M8, M40], in this case using

a valuation technique based on Monte Carlo simulations. Also, considering the time

frame, other authors use decision trees to perform the cost-benefit analysis [M20].

Authors use the estimated cost-benefit ratio to perform a ranking [M62][M30]. This

ranking is useful when it is necessary to solve the technical debt items with the highest

priority. The ranking is dependent on the cost-benefit analysis method. Therefore, only

the variables considered in such a method are used to perform the ranking. Another

method that Guo and Seaman use [M24] consists of applying a model based on the

portfolio approach. Portfolio management comes from the finance domain and focuses

112



5.4 Tools and Strategies

on selecting the assets that maximize return on investment or minimize investment

risk [M24].

Several challenges persist. In order to have a realistic cost-benefit analysis, it is

necessary to evaluate more than just principal and interest. Many times, authors

point out that technical debt is originated when time-to-market restrictions are present.

Therefore, the costs of delaying a functionality or release in order to remove technical

debt have to be considered. Additionally, the team’s capacity to perform tasks should

be considered because it is limited.

5.4.1.6 E6 Automated means

Many authors use tools for automatically detecting sources of technical debt (see Sec-

tion 5.4.1.1). Also, historical data can be used to estimate the interest for a specific

organization or project [M17]. Some authors define code and file metrics used to esti-

mate interest that can be extracted automatically from source code (see Section 5.4.1.3).

Usually, automated estimates include code/file metrics, effort measures, and the files’

evolutionary history over the system’s different versions [M8, M28].

Two approaches can be identified: one based on having a historical repository of

projects with similar characteristics and a second based on mining a project’s available

resources (source code, control version systems, etc).

5.4.1.7 E7 Expert opinion

Almost all of the authors suggest the need to use expert knowledge to add information

that cannot be estimated in another way. Also, Cai et al. [M8] propose a decision-

support system for architectural refactoring decisions. Their goal is to give refactoring

recommendations to experts (the project manager or the architect). Then, the ex-

pert could analyze different scenarios on the basis of the estimations to decide which

recommendation to follow.

5.4.1.8 E8 Scenario analysis

The authors use different kinds of scenarios: (1) scenarios to analyze technical debt

goals and estimate the effort required to achieve them [M30]; (2) release scenarios

to analyze the most profitable release path based on the architectural technical debt

incurred [M42][M25]; (3) what-if scenarios used to provide managers or architects with

the possibility of seeing the estimated impact of different decisions regarding refactoring

113



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

the architecture in order to improve the software’s modularity [M8]; (4) and change

scenarios to analyze the possible evolution of the technical debt in the system [M20].

None of the proposed methods analyze several types of scenarios. Furthermore, the

methods that use scenarios as part of their analyses focus on concrete kinds of technical

debt or use different detection strategies that make them difficult to integrate. Further

effort is needed to define methods for estimating architectural debt that allow one to

combine all of the types of scenarios.

5.4.1.9 E9 Time-to-market

Some studies consider time-to-market as a restriction when they define scenarios and

as a potential benefit of incurring technical debt [M23, M42, M51]. However, they do

not provide explicit methods for considering time-to-market in order to manage tech-

nical debt. Time-to-market is essential to the success of many projects and products.

Therefore, it should be considered explicitly in making a decision about when to delay

groups of features or when to remove technical debt.

5.4.1.10 E10 When to implement decisions

Several authors identify release planning as the step during which decisions about

technical debt management can be executed [M24][M42][M25]. Two different decisions

have been identified. The first consists of determining when it is necessary to reduce

technical debt [M24]. The second is oriented to decide whether it is better to implement

features as soon as possible (this implies future reworks due to adaptations) or expend

some time in architectural tasks and then implement the features. [M42].

Real options can help with deciding when refactoring is profitable [M8]. If the

case is an option-based approach some important estimations are usually required:

data inferred from evolution history and the prediction of future changes and cost

estimations [M8]. Other authors have suggested using portfolio theory with the same

objective [M24].

5.4.1.11 E11 Technical debt evolution

Many articles use project’s historical data to estimate the interest (see Section 5.4.1.3)

based on the evolution of some code or file metrics. However, only a few consider

technical debt’s evolution over time. Some authors analyze technical debt’ evolution

over the project releases [M23, M39, M55]. Also, Marinescu [M36] defines an indica-

tor for tracking technical debt’s evolution over the project releases. These indicators

114



5.5 Technical Debt Management in the Industrial Environment

Figure 5.2: Mapping of selected papers with respect to relevance and rigor scores as

defined in Section 5.2.

provide information about how technical debt is rising or not rising in the system, but

they do not provide information about whether or not accumulating technical debt has

additional consequences.

5.4.1.12 E12 Technical debt visualization

In general, few methods exist for visualizing technical debt. Most studies show charts

featuring the relationship among principal, interest, and/or time. Other studies use

design structure matrix (DSM) to show different kinds of relationships between the

software modules [M5, M28], or dashboards in order to make visible the proportion of

lines of code that exceed the quality requirement established [M30, M39]. Finally, some

studies show the components more affected by technical debt [M4, M14]

115



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

5.5 Technical Debt Management in the Industrial Envi-

ronment

The method described in Section 5.2 was applied to analyze the extent to which the

current techniques used for technical debt management are relevant in an industrial

environment. This method provides two scores to quantify the rigor and the relevance

of the studies from an industrial perspective. The method used to score rigor and

relevance (see Section 5.2) focused on measuring whether the techniques and methods

have been validated. Therefore, papers that did not provide data about the validation

of technical debt management methods obtained low scores.

Figure 5.2 shows the scores of the analyzed papers. Most papers did not provide

enough details about the methods or techniques to be relevant to the industry. That

is, they did not provide enough details to allow an independent company to use the

method proposed. However, as shown in Figure 5.3, in recent years, the trend has been

that the average rigor and relevance of the research on technical debt management has

increased. Therefore, the technical debt research community is aware of this lack of

rigor and relevance in the industry, and it is working to improve the situation.

Figure 5.4 shows the mapping of the elements and points of view in which papers

that presented methods or techniques for technical debt management that had rigor

and relevance greater than a threshold were considered. In the present analysis, the

threshold for rigor is equal to 2, that is, only papers with a rigor score of 2 or more were

considered. This value was chosen so that only papers with a score at least equal to the

half-maximum possible score were included. Following the same criteria, the threshold

for relevance was set at 3. Many of the elements counted on having only two or three

methods with enough rigor and relevance for industry. The elements E1 Technical debt

items and E5 Technical debt impact were outstanding because they had a consistent

support that was independent of the point of view.

Therefore, based on these findings, it can be concluded that more tools and strate-

gies, or more detailed reports of the current ones, are necessary to support their use by

software companies in managing technical debt.

5.6 Findings

The elements are used in tools and strategies. Therefore, they are not simply sugges-

tions, but considerations used when managing technical debt. However, there are not

tools or strategies that support all the elements. Hence, it is necessary to study how

116



5.6 Findings

Figure 5.3: Temporal evolution of the number of papers with respect to the average

relevance and the average rigor scores.

117



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

E1
 T

ec
h

n
ic

al
d

eb
t 

it
em

s

E2
 P

ri
n

ci
p

al

E3
 In

te
re

st

E4
 In

te
re

st
p

ro
b

ab
ili

ty

E5
 T

ec
h

n
ic

al
d

eb
t 

im
p

ac
t

E6
 A

u
to

m
at

ed
m

ea
n

s

E7
 E

xp
er

t
o

p
in

io
n

E8
 S

ce
n

ar
io

an
al

ys
is

E9
 T

im
e-

to
-m

ar
ke

t

E1
0

 W
h

en
 t

o
im

p
le

m
en

t
d

ec
is

io
n

s

E1
1

 T
ec

h
n

ic
al

d
eb

t 
ev

o
lu

ti
o

n

E1
2

 T
ec

h
n

ic
al

 d
eb

t
vi

su
al

iz
at

io
n

P1 Engineering

P2 Engineering
Management

P3 Business 
organizational 

management

12

100.00% 60.00% 60.00%

85.71% 85.71% 85.71%

20.00% 80.00%

42.86% 42.86%

20.00% 20.00% 20.00%

42.86% 42.86% 14.29%

38.46% 23.08% 7.69%

20.00% 30.00% 20.00%

42.86% 42.86% 0.00%

23.08% 38.46% 15.38%

41.67% 42.86% 42.86%

85.71%

100% 100%

85.71%

33.33% 57.14%

42.86%

100%

100%

20.00% 33.33% 100%

60.00% 100% 100%

100% 100% 100%

33.33% 60.00%

100% 60.00%

100% 100%

50.00%

0.00%

100%

7 7 3 10 7 5 3 1 3 5 2

5

7

13

100.00%

70.00%

100% 100%100%

50.00%

92.31% 53.85% 53.85% 23.08% 53.85%76.92%

40.00%

80.00%

T1 Basic decision-making factors
T2 Cost estimation 

techniques T3 Practices and techniques for decision-making

13 10 10

5 1 13

12

6

103 3 3

7

3 4 4 1 3 1

6 6 3 3 3 3 1

1 1

3 3

7 7 7 5 1 5 2

Figure 5.4: Mapping of the elements to stakeholders’ points of view to assess

industrial rigor and relevance. Only papers that scored rigor equal to or more

than 2, and relevance equal to 3 or more were considered. Mapping of elements

to support decision making in managing technical debt versus the engineering, engineering

management, and business organizational management points of view. Each selected paper

can include several elements and can be mapped onto more than one point of view. In

each cell, the number in the center is the number of papers that identify an element from a

specific stakeholder’s point of view. The upper left percentage is the percentage of papers

that identify the element (column) as specific to a point of view of (row), and the lower

right percentage is the percentage of papers with the specific point of view (row) that

identify the element (column). The first column shows the summary of the papers per

stakeholder point of view, while in the bottom of the figure, there are summaries of papers

per element and per type of element.

118



5.7 Conclusion

to integrate tools and strategies to work together.

To determine the relevance for the industry of the studies with regard to technical

debt management each paper was analyzed using the method described in Section 5.2.

The results showed that most papers did not introduce methods or techniques in enough

detail to be relevant to the industry. Nevertheless, in recent years, the relevance and

rigor of the papers about technical debt management have increased. By analyzing the

mapping of papers with high rigor and relevance (see Figure 5.4), it was possible to

determine that more methods, or more detailed reports of the current tools and strate-

gies, are necessary to support software companies for using them to manage technical

debt. Some elements required more support in the tools and strategies used for tech-

nical debt management: E4 interest probability, E7 expert opinion, E9 time-to-market,

E10 When to implement decisions, E11 Technical debt evolution, and E12 Technical

debt visualization. This finding was particularly apparent in E12 Technical debt visual-

ization, which is consistent with the results in Alves et al. [6]. Finally, as can be seen in

Figure 5.4, business organizational management is less supported than the engineering

and engineering management points of view.

5.7 Conclusion

The available techniques for technical debt management identified in the current liter-

ature have been analyzed.

This analysis shows that further studies are necessary to fully support technical

debt management and also essential elements not currently covered, such as E9 time-

to-market. Other elements as E4 interest probability, E7 expert opinion, E10 When to

implement decisions, E11 Technical debt evolution, and E12 Technical debt visualization

also require more support, especially from the business organizational management

point of view.

Different strategies are focused on different elements. There are not tools or strate-

gies that support all the elements. Therefore, it is necessary to go further in the

integration of tools and strategies to manage effectively technical debt.

However, there is not evidence of how the different tools and strategies can be

integrated. Therefore, any effort in this direction has to consider the possibility of

experimenting with different strategies and tools to analyze the benefit of using them.

119



5. TOOLS AND STRATEGIES FOR TECHNICAL DEBT
MANAGEMENT

120



Chapter 6

TEDMA Tool: A Tool for

Technical Debt Management

This chapter presents TEDMA Tool, a tool for technical debt manage-

ment. TEDMA implementation responds to the necessity of a tool that fa-

cilitates the experimentation with different technical debt management tools

and strategies. Therefore, TEDMA facilitates the integration of third-party

tools and the definition of models for technical debt management. This ne-

cessity was identified as a finding of the analysis of the tools and strategies

for managing technical debt performed in Chapter 5. This chapter is an

excerpt from the following paper:

Carlos Fernández-Sánchez, Juan Garbajosa, Héctor Humanes, Jessica

Dı́az, An Open Tool for Assisting in Technical Debt Management, submitted

to Euromicro DSD/SEAA 2017.

121



6. TEDMA TOOL: A TOOL FOR TECHNICAL DEBT MANAGEMENT

6.1 Introduction

Chapter 5 analyzes the support of tools and strategies for technical debt management

elements identified in Chapter 4. The present chapter presents TEDMA, a tool imple-

mented with the goal of integrating existing tools to be able to use the framework based

on the technical debt management elements in real projects. To do that, TEDMA has

as the main goal to facilitate the integration of different tools and strategies to use

their outcomes to manage technical debt. In that way, TEDMA provides a platform

for empirical experimentation of techniques for technical debt management. TEDMA

capabilities are important in this thesis to be able to perform the case study described

in Chapter 7.

The remainder of the chapter is organized as follows: Section 6.2 will describe

TEDMA. Section 6.3 will analyze TEDMA with other existing tools for technical debt

management. Section 6.4 will discuss some of the goals achieved by TEDMA. And

finally, Section 6.5 will presents the conclusions of the chapter.

6.2 TEDMA Tool Description

6.2.1 Overall View

To understand the architecture of the TEDMA tool it firstly may help to describe the

process to analyze a project. Figure 6.1 depicts the life cycle of a project in TEDMA. A

project has to be added to the tool by providing a name, a description, and the location

of the source code repository (local or remote). This creates a project-core that allows

us to work with the project. After that, the next step is to load the basic project data

into the tool’s database. This information is mainly source code data about changes

in files over the evolution of the project. Once this basic information is obtained, the

project can be analyzed by any of the available analyzers. An analyzer is an abstraction

of any tool or technique used to obtain relevant data for technical debt management.

When new changes are uploaded to the repository, those changes can be loaded into

the tool and analyzed. At any moment a project can be removed from TEDMA for

releasing the resources used in the databases.

Figure 6.2 depicts how the information is stored in TEDMA. TEDMA stores infor-

mation for each revision and for each file in each revision. Finally, for each file, several

metrics are stored. Examples of metrics are basic size metrics of each file as size in

bytes, the number of lines, and, if the file has changed, the type and size of the change.

Depending on the analyzers executed, different metrics can be stored. Each analyzer

122



6.2 TEDMA Tool Description

Created
Project

Loaded 
Project 

Analyzed 
Project 

Project creation Analysis

New 
changes New changes

Other 
services 
execution

Delete Delete Delete

Load

Figure 6.1: Life cycle of a project in TEDMA

prescribes how its output is stored. For example, the current implementation of the

PMD analyzer [85], one of the tools integrated, adds a problem for each file in which

PMD detects problems. Figure 6.3 shows examples of the information stored.

Additionally, TEDMA ensures that any change or action over the files is considered

just one time. This is important in merging revisions where changes could be considered

twice if they are not carefully checked.

6.2.2 Obtaining information from projects

Currently, TEDMA can gather information about the evolution of each file in a project,

and this information is mainly obtained from git repositories [43], PMD [85] detected

code smells, and Findbugs [40] detected problems. TEDMA can analyze and store

information using PMD and Findbugs [40] to analyze each revision of the projects.

Both, PMD and Findbugs analyzers are limited to analyze Java projects. In the case of

Findbugs, each release has to be compiled, so it is necessary to have installed additional

software to build the project, for example, Maven and Gradle. Other metrics have

been directly implemented, for instance, the probability of change and expected size

of change as are defined in [126]. Therefore, the current information managed by

TEDMA is mainly based on Git, PMD detected code smells, and Findbugs detected

problems. Data are collected for all the releases of the projects so that metrics evolution

can be analyzed. Figure 6.4 shows an example of the data that is generated, in that

case, using R [89] to generate the graphical representation using the data exported by

TEDMA. R is a free software environment for statistical computing and graphics. R

and its libraries implement a wide variety of statistical and graphical techniques. In the

following sections, it is explained how R has been used for other purposes in TEDMA.

123



6. TEDMA TOOL: A TOOL FOR TECHNICAL DEBT MANAGEMENT

r1 r2 r5

r3

r4

fr1 fr2

fr4

fr5

fr3

metrics 
Fr1

metrics 
Fr2

metrics 
Fr4

metrics 
Fr5

metrics 
fr3

rn : revision n
frn : file f of revision n
metrics frn : set of metrics of file f in revision n

Figure 6.2: Basic data structure

DESCRIPTION De method getClassLoader() has an Npath
complexity of 750

RULE NPathComplexity

ANALIZER_NAME es.upm.citsem.syst.td.tdmetrics.
codeAnalyzers.PMD.PMDSequentialAnalyzer

LINE 59

DESCRIPTION Potential violation of Lay of Demeter (object
not created locally)

RULE LawOfDemeter

ANALIZER_NAME es.upm.citsem.syst.td.tdmetrics.
codeAnalyzers.PMD.PMDSequentialAnalyzer

LINE 209

file: log4j-core/src/main/java/org/apache/logging/log4j/core/util/Loader.java
revision:  a18968757e8644d2b0c3356f16d35a555138657e

Example of problems detected by the analyzer using PMD

LINES 325

NAME log4j-core/src/main/jave/org/apache/
logging/log4j/core/útil/Loader.java

REVISION_AND_ a18968757e8644d2b0c3356f16d35a555138657e:
NAME log4j-core/src/main/jave/org/apache/

logging/log4j/core/útil/Loader.java

ISSUES 0

LIFETIME 5705

BYTES 14035

Figure 6.3: Example of metrics stored by TEDMA and problems detected by the analyzer

that integrates PMD.

124



6.2 TEDMA Tool Description

Figure 6.4: Changed lines in approximately 1500 files in Apache Log4j 2 project over

near 8000 revisions

Figure 6.4 shows a graphical representation of several time series. Each time series

represents the number of lines changed in a file. This kind of graphic representation is

useful to see how the behavior of the project changes and to identify outliers.

Figure 6.5 shows the evolution of one metric, in this case, the number of files with at

least a method with a cyclomatic complexity issue as it is detected by the default PMD

configuration in Apache Log4j 2 project. This type of time series provides information

about how some problems are evolving in the analyzed projects. In this case, it seems

that the project is getting more complex over time. This type of analysis can help to

identify potential technical debt problems over the evolution of projects.

6.2.3 Processing information from projects

Currently, the TEDMA core components are already implemented. TEDMA is being

used to analyze open source projects on GitHub that are widely used in the software

development industry. Examples of already analyzed projects are Spring-Framework,

Karaf, Log4j 2, Hbase, and Hadoop. Thanks to these analyses and that projects are

really big, it was possible to test the capabilities of TEDMA. In this sense, TEDMA

has proved helpful to investigate metrics and models for technical debt management.

Currently, it is been used with that goal. It provides empirical data obtained from real

projects used in the software development industry. This kind of tools is necessary be-

cause it allows the experimentation with research findings in development environments

125



6. TEDMA TOOL: A TOOL FOR TECHNICAL DEBT MANAGEMENT

Figure 6.5: Evolution of the number of files with cyclomatic complexity issues in Apache

Log4j 2 project

and assists the collection of evidences to support further research [102].

The tool provides access to data at different abstraction levels that can be combined

when needed. The most abstract level is the entity level (project, revision, file, change,

etc.). At that level of abstraction, the programmer can manage all these concepts

without thinking in the source code repository or the database. If it is needed, the

TEDMA API supports the direct usage of the Neo4j [76] API to manage the graph

database and the JGit [58] API to manage the Git repository.

6.2.4 How TEDMA is built

In this section, we describe the main modules of TDManger and the role that they have

in the tool. Figure 6.6 shows the main modules of TEDMA.

6.2.4.1 Data Layer

TEDMA uses several means to obtain and store projects data. The main data source

is the source code repository. Currently, TEDMA only supports Git repositories. For

each project, TEDMA clones the source code repository to be used in the whole life

cycle of the project technical debt management.

After the source code repository, the most relevant data are stored is the graph

database. For each project, TEDMA creates and maintains a graph database that

represents the whole project evolution, including all the project files evolution. This

126



6.2 TEDMA Tool Description

Data Layer

Source Code 
Repository1

1. Currently only Git repositories are supported.
2. Partially implemented
3. Not yet implemented

Graph Database
Massive Data 

Storage2

Service Layer

Data Loader1 Data Analyzer

Java 
Analyzers

R 
Analyzers2

External 
Analyzers2

Visualization2Reports3 Statistics2 TDM 
Models2

Third Party Data 
Storage3

Figure 6.6: Modules of TDManger

graph allows accessing the information following the evolution paths of the project.

Therefore it can be traversed using releases, revisions, and files following any combina-

tion of the stored relationships of such nodes. In fact, the graph database acts as an

index for the rest of the information. If any node requires a large amount of data to

be stored, an additional storage is used to avoid overcharging the graph with data that

it is only required in specific analysis or reports. Additionally, it is planned to provide

means to use third-party data storage by including extensions for other data sources,

for example, external metrics databases.

6.2.4.2 Service Layer

TEDMA provides a set of services that can be used in the technical debt management

process. The first service is Data Loader. This service is, in fact, the service that

incorporates a project to the tool to be analyzed. This service is part of the core of

TEDMA because it has the responsibility of cloning project repositories and creating

graph databases with the basic project data that are required for the remaining services.

The data analyzer service allows to implement and execute different analyzers in

the projects. As it was said before, an analyzer is an abstraction of any tool or tech-

nique used to obtain relevant data for technical debt management. The analyzers

can be implemented using Java and R. Currently, two analyzers are available to use

PMD [85] and Findbugs [40] to analyze projects. Other metrics have been directly

implemented, for instance, the probability of change and expected size of change as are

defined in [126]. All these implementations were done to demonstrate the integration

127



6. TEDMA TOOL: A TOOL FOR TECHNICAL DEBT MANAGEMENT

capacity of TEDMA.

Reports service, which is not currently available, will be focused on the elaboration

of automatic reports to show the results of the analyses. The reports will be oriented

to different stakeholders roles.

Visualization service is in charge of showing dashboards and graphical representa-

tions of the results. It is related to the reports service but focused on interactive means

of visualization of the information. This service is currently under development.

Statistics service is based on the integration of R in the core of the TEDMA. This fa-

cilitates the usage of R scripts and incorporates all the power of R to perform statistical

analysis over the collected metrics. Currently, this service is under development. R can

be used into the TEDMA using two different approaches, renjin [91] and Rserve [93].

Renjin is an interpreter of R that runs in the Java Virtual Machine. Therefore, due

to TEDMA is implemented in Java the integration is easier and the communication

between TEDMA and Renjin is more efficient. Unluckily, Renjin does not support

some important libraries of R because they have to be implemented in Java. Rserve is

a TCP/IP server which allows other programs to use facilities of R. In that case, the

communication is less efficient than with Renjin but Rserve supports more R libraries

than Renjin. However, Renjin is being continuously improved by its community. Hence,

in the future, it is probably that Rserve will be not used by TEDMA.

Technical debt management models service corresponds with the goal of testing and

developing technical debt management models that help make decisions about technical

debt. Models can be defined in Java or R languages. Currently, a model for technical

debt management is implemented in R, but not completely integrated into TEDMA.

To be used it is necessary to export project data from TEDMA using an ad-hoc export

module, and after that, it is possible to use the model from R directly. When the

integration of R into TEDMA is complete, this will be done directly into TEDMA

reducing the steps required.

6.2.5 Integration of third-party tools

To be extended, TEDMA provides one API to manage all the information stored in the

Data Layer. The API allows working with git repositories using internally JGit [58].

The graph database is implemented using Neo4j [76]. The API provided by TEDMA

uses internally Neo4j and it has different levels of abstractions that allow working with

files, revisions, projects, etc., including the usage of queries using CYPHER language.

This provides a big flexibility when new extensions have to be created. If it is needed,

the TEDMA API allows using the Neo4j and JGit APIs directly.

128



6.2 TEDMA Tool Description

This API can be used to extend any of the services provided by TEDMA or imple-

ment new ones. The API can also be used to export data or sets of data in the desired

format to be used by external tools, for example, for statistical analysis or data mining

purposes. Currently, to provide services it is necessary to implement some Java inter-

faces or to inherit from the abstract classes that implement the common functionality.

The level of external tools integration will depend on the characteristics of the tools

to be integrated. For example, PMD and Firebugs were integrated using APIs that

they provide.

6.2.6 TEDMA Tool Roadmap

The great advantage of TEDMA is that it can be integrated with other tools to obtain

metrics from many different sources. At the moment TEDMA is used to analyze

projects with thousands of revisions and thousands of files in each revision. This

demonstrates that the core of TEDMA is ready for the analysis of real projects to

extract metrics over their evolution.

The next planned integration is with SonarQube to take advantage of the great

number of metrics that this tool can obtain. Additionally, SonarQube is widely used

in software development industry, so this integration will help to use TEDMA in any

development environment where SonarQube is currently been used.

Summing up, in the next months it is planned to extend TEDMA to implement all

the modules described in Figure 6.6. The next specific features that will be included

in TEDMA are:

� Support for SVN source code repository.

� Integration with SonarQube.

� Full integration of R.

� Visualization service.

� Report service.

When all these features are implemented TEDMA will be released. At that point,

TEDMA will provide much more value for software development organizations by al-

lowing them to use already implemented technical debt management models and by

allowing them to implement their own models. The goal is to have a tool that can be

used to generate reports and dashboards without a deeper knowledge of how TEDMA

is working internally.

129



6. TEDMA TOOL: A TOOL FOR TECHNICAL DEBT MANAGEMENT

6.3 Related Work

To the knowledge of the authors, there is not another tool with the goal of integration

of technical debt management tools. The available tools are focused on implementing

metrics, specific techniques for technical debt management, or both of them. Techniques

and tools for technical debt have been analyzed in literature reviews previously [37, 69,

39].

The goal of this tools is not to be a quality tool that implement metrics to keep the

code quality. TEDMA pursues to manage technical debt by integrating other available

tools that implements those metrics or technical debt strategies.

One of the most used tools to analyze code is SonarQube [107]. This tool integrates

many code metrics and is widely used in software projects. It is based on the static

analysis of source code. The goal of the tool presented in this paper is to analyze the

evolution of code and to compare different techniques to analyze software. Therefore,

one of our future work will include the integration with SonarQube to use it as another

source of metrics for TEDMA.

Another tool, Titan [59], which provides mechanisms to estimate technical debt

and that also provides a framework to make decisions based on that calculus, could be

also integrated on TEDMA. Titan [59] is mainly focused on the analysis of modularity

violations, similar to Clio [118], and a model for technical debt management. As the

goal of TEDMA is to integrate both metrics and management models, the integration

of a tool as Titan could be a good example of the capabilities of TEDMA.

6.4 Discussion

TEDMA is a tool to analyze software projects with a perspective of evolution. It is

thought to work with projects with thousands of revisions and thousands of files per

revision. To do that, it supports the integration of third-party tools for technical debt

management in order to use them in the analysis of the evolution of technical debt of

projects. It can be extended to include additional tools or to implement specific metrics.

With these capabilities, TEDMA is a useful tool for researching using empirical data

extracted from software projects. Currently, it is been used to analyze big projects in

the execution of several case studies.

TEDMA provides a way to experiment with different metrics required for techni-

cal debt management. Currently, there are several approaches to measure technical

debt, but it is not clear in literature which ones should be used or how to use them

together [126]. TEDMA helps to analyze how these different techniques work in specific

130



6.5 Conclusions

projects. This is important for software developers because it allows them to analyze

which of all the available tools that calculate metrics for technical debt management

are the most useful for their projects. Additionally, TEDMA stores all the information

in databases that can be exploited externally by other tools of the organizations.

The expected evolution of TEDMA will make it useful for software development

industry. Using TEDMA, organizations will be able to manage the technical debt of

their projects by selecting the tools and indicators that are the most important for

them.

6.5 Conclusions

TEDMA provides the required support to use the technical debt management elements

defined in Chapter 4 in real projects. In fact, TEDMA creates a platform to experiment

with technical debt tools and strategies. TEDMA is thought to integrate third-party

tools. Thanks to TEDMA, a case study, which is described in Chapter 7, could be

performed in a big software project. In the future, more empirical studies will be

performed using TEDMA.

This chapter complements the Chapter 5 to accomplish the Contribution 3: Iden-

tification of tools and strategies that support the elements identified in Contribution 2

and the lacks in this support. The analysis of the support of tools and strategies for

the technical debt management elements indicated the necessity of integrating several

different techniques. TEDMA responds to that necessity by providing a tool that is

designed to integrate third-party tools. In fact, TEDMA facilitates the usage of the

technical debt management elements in real projects.

131



6. TEDMA TOOL: A TOOL FOR TECHNICAL DEBT MANAGEMENT

132



Part V

Identification of how software

internal quality increases the

customer value

133





Chapter 7

Decision-Making Support Model

The goal of this chapter is to put into practice the technical debt man-

agement element framework defined in Chapter 4. To do that a model for

technical debt management that takes into account time-to-market has been

defined and used in a case study.

This chapter is an excerpt from the following papers:

� Carlos Fernández-Sánchez, Juan Garbajosa, Jessica Dı́az, Jennifer Pérez,

The Relationship between Technical Debt Management and Time-to-

Market: An Exploratory Case Study, Submitted to IEEE Transaction

on Software Engineering.

135



7. DECISION-MAKING SUPPORT MODEL

7.1 Introduction

The last main contribution of this thesis, Contribution 4, is Definition of a model for

making decisions on software evolution using the elements identified in Contribution 2

and that integrates tools and strategies identified in Contribution 3. Previous chapters

identified methods for technical debt management. The identified methods and strate-

gies for technical debt management do not consider time-to-market; this situation can

lead to wrong decisions. The present chapter takes advantage of the outputs of the

previous contributions to define a model for technical debt management that consid-

ers time-to-market. This chapter uses the framework defined in Chapter 4 to define

the model, the methods and strategies identified in Chapter 5 to implement different

elements of technical debt management, and TEDMA tool, which is described in Chap-

ter 6, to obtain data to apply the model in a case study using a large software project.

Therefore, this chapter presents the model proposed and a case study where the model

was used.

The remainder of the chapter is organized as follows: Section 7.2 will present the

theoretical foundation of the study. Section 7.3 will present the model proposed in this

paper for technical debt management when considering time-to-market. Section 7.4

will describe the case study design. Section 7.5 will present the exploratory case study

execution. Section 7.6 will discuss the outcomes that were found out in the case study.

Section 7.7 will discuss the limitations of this study. Section 7.8 will discuss previous

related studies. Finally, conclusions and recommendations for future work will be

presented in Section 7.9.

7.2 Background

In this section, the theoretical foundation of this chapter is presented. According to

Runeson and Höst [94], in a case study, it is necessary to define the frame of reference

of the study to make the context of the case study’s research clear and to help both

those conducting the research and those reviewing the results of it.

7.2.1 Technical debt in the context of software evolution

As was defined in previous chapters of this thesis, the term technical debt is a metaphor

that refers to the consequences of weak software development. Technical debt manage-

ment consists of identifying the sources of the extra costs of software maintenance and

evolution, and determining whether it is profitable to invest efforts into improving a

136



7.2 Background

software system [114]. A technical debt item is a weakness in software that can cause

internal quality problems [64]. In this chapter, technical debt is defined in terms of

principal and interest [19]. The principal of a technical debt item is the cost of fix-

ing the weakness associated with the technical debt item. The interest of a technical

debt item is the extra cost of software maintenance and evolution that is caused by a

non-optimal system structure and realization. The Chapter 4 identified and described

technical debt management elements, some of which are principal and interest.

Lehman and Ramil [67] already pointed out that most of the software is produced

because of a continual, subsequent evolution. Continuous software engineering has ex-

tended and formalized this way of understanding software development [41, 15]. Soft-

ware typically is delivered as a sequence of releases. According to [104], more than

75% of organizations deliver software updates at least once a month and 44.7% do so

monthly. Therefore, software is more often developed under an evolution paradigm.

It is in the context of this continuous evolution where technical debt should be

managed. To express the concept of evolution, Schmid [98] used the concepts of ex-

ternal and internal quality. Following Schmid [98], the external quality of a software

product is the accumulation of any observable quality of the product at run time (e.g.,

a functionality or a level of performance); the internal quality of a software product is

the accumulation of any non-observable quality of the product at run time (e.g., code

quality, complexity of the code, or number of source files). Schmid [98] stated that

although an evolution step can describe any form of change in the external quality of

the product, internal quality changes alone are not evolution steps (e.g., refactoring).

Following also Schmid [98], within this paper, the evolution of a product is understood

as any form of change that leads to an observable effect at the systems level.

Although there is a large number of models for release planning in the literature,

these models have not yet reached the maturity required by industrial contexts and do

not yet deal with possible changes in internal quality together with the implementation

of new features [96, 110, 7].

7.2.2 A model for studying the trade-off between time-to-market and

product performance

For the purpose of this thesis, a product development process model that could consider

time-to-market was required. In particular, it is the model described by Cohen et

al. [24] for new product development, the term used in innovation management for the

development of products, because a model that was specifically produced for software

development could not be found. The software evolution paradigm fits very well with

137



7. DECISION-MAKING SUPPORT MODEL

TTP

Q0

Q1

New Product

Existing Product

Product
Performance

Time

Figure 7.1: The performance of product in the marketplace over time (source [24])

the new product development paradigm: a release (or a set of releases) maps to a

new version of the product under development; in fact, more often, software release

management and new product development management are considered together, as

was recently the case in [70].

Engineering management has considered time-to-market a key issue for years now.

Cohen, Eliasberg, and Ho published a seminal modeling framework for studying the

trade-off between time-to-market and product performance in new product develop-

ment [24]. This modeling framework was later extended in [25] to include in the trade-

off the level of resource intensity employed during the development process.

Cohen et al.’s modeling framework was defined by a set of formulas for a context

depicted in Figure 7.1. This context describes a scenario in which a new product is

planned so that it could replace an existing product in such a way that the product

performance is increased by including new characteristics (see Figure 7.1). In this

context, performance means value to customers. In Figure 7.1, TP is the launching time

of the new product, and T is the estimated end of life of the new product. Therefore,

TP and T define a time frame in which the analysis can be performed.

The performance of the new product at its launching time, Q(TP ), is described as

follows:

Q(TP ) = Q1 = Q0 +K ∗ Lα ∗ TP , (7.1)

where

TP = launching time of the new product

Q1 = new product performance

Q0 = previous product version performance

138



7.2 Background

L = size of the development team

α = resource productivity parameter (there are diminishing returns to resource

input, thus 0 < α < 1)

K = is the constant of proportionality for the speed of performance improvement.

It is proportional to the level of capital investment in the development of technology.

Equation 7.1 models the performance (value to customers) of a new product that

replaces an old version of the same product. The performance of the new product

depends on the performance of the old version (Q0), the effort spent (Lα and TP ), and

the capacity to add value to the product by the company (K).

The total development cost of the new product, TC(TP ), is described as follows:

TC(TP ) = W ∗ L ∗ TP , (7.2)

where

W = labor cost

L = size of the development team

TP = launching time of the new product

The total net revenues of the new product, TR(TP ), is described as follows:

TR(TP ) = M ∗m0 ∗
Q0

Q0 +Qc
∗ TP +M ∗m1 ∗

Q1

Q1 +Qc
∗ (T − TP ), (7.3)

where

M = product category demand rate

m0 = margin of the existing product

m1 = margin of the new product

Q0 = previous product version performance

Q1 = new product performance

Qc = competitive product performance

TP = launching time of the new product

T = end of the time window

Thus, the firm’s cumulative profit, TΠ(TP ), is described as follows:

TΠ(TP ) = TR(TP ) − TC(TP ), (7.4)

where

TR(TP ) = total net revenues

TC(TP ) = total development cost

The framework has the capacity to describe more complex scenarios. Nevertheless,

Cohen et al.’s modeling framework, as described in this paper, is sufficient for our

139



7. DECISION-MAKING SUPPORT MODEL

objectives: it can be advantageously used to perform several analyses, including opti-

mal time-to-market and product performance. Moreover, these analyses also consider

market factors such as competition and margin of the product.

7.3 How to use Cohen’s et al. model in software develop-

ment for managing technical debt

Cohen et al.’s [24] modeling framework is focused on product markets characterized

by a short and fixed window of opportunity, a high rate of product obsolescence, and

customers who understand and respond to product performance improvements. This

market is similar to the software market in which (i) software products must be de-

veloped in a time frame to be competitive with regard to competitors, (ii) software

products must be replaced by new versions in very short time periods, and (iii) cus-

tomers usually choose the products with the best functionality for their necessities, as

explained in [110]. Cohen et al.’s modeling framework can be used with a constant or

variable size of the development team [25]. Here, a constant size was used, which does

not imply that the variable approach cannot be used as well. The constant size can

perfectly describe a real situation in a product development scenario.

The original modeling framework presented by Cohen et al. [24] allows for modeling

complex scenarios in which the product development can be split into several steps (e.g.,

design and development steps). Nevertheless, Cohen et al. developed their framework

in [24] using two steps (design and process); in our case, we follow a very similar

scheme. Within this paper, the development of a new product will be modeled in

two sequential stages: (1) removing technical debt and (2) developing new features

to include them into the product. Once the development is finished, a new release is

produced. Because refactoring is the most used approach to repay technical debt [69],

in this study, removing technical debt is considered a refactoring process. For the

purpose of this study, refactoring will be performed before development to include new

features. The stages are defined by TR, the time for removing technical debt, and by

TP , the time for launching the new product. Therefore, the time frame is described by

TP , TR, and T , where T is the expected retirement of the new release of the product.

The context of this model follows the scenario described in Figure 7.2, in which the

current release will be replaced by a new one.

Following the definition of technical debt provided in Section 7.2.1, removing tech-

nical debt is implemented as a refactoring process in which the internal quality of the

product is improved without adding external quality. Thus, the product performance

140



7.3 How to use Cohen’s et al. model in software development for
managing technical debt

TTP

Qr0 = Q(TR)

New release

Product
Performance

Time

Qr1 = Q(TR,TP)

TR
Removing 

Technical Debt
Adding Features

Market

Current Release

Launching new release
Development

Exploitation

Figure 7.2: The performance of product in the marketplace over time (source [24])

(value for the customers) is not increased by removing technical debt, but it is consid-

ered a capital investment in the development of technology, that is, an improvement in

the production capacity by investing in the internal quality. Therefore, we consider the

effort in removing technical debt as a capital investment in the development of technol-

ogy for the product; therefore, it will directly impact the K constant in Equation 7.1
1.

The model for managing technical debt that takes into account time-to-market

is defined by a set of formulas derived from Equations 7.1, 7.2, 7.3, and 7.4. The

only change was that the development process was split into two steps: (1) removing

technical debt and (2) development for including new features. The formulas were

adapted following the same approach used by Cohen et al. [24] so that the model could

be used as a development process split into two stages.

Using Equation 7.1, the performance of removing technical debt, Q(TR), can be

modeled as follows:

Q(TR) = Qr0 , (7.5)

where

TR = time at the end of the removing technical debt stage

Qr0 = previous product version performance

1Similarly, other investments could be made, for example, acquiring new development tools or

workstations. Our model is only focused on refactoring the code. Other types of investments are left

for future research.

141



7. DECISION-MAKING SUPPORT MODEL

This equation means that because removing technical debt does not improve the

external quality of the product Q(TR), it does not increase the performance of Qr0
1.

Using Equation 7.1, the performance of the new product at its launching time,

Q(TP ), is described as follows:

Q(TR, TP ) = Qr1 = Qr0 +K ∗ Lα ∗ (TP − TR), (7.6)

where

TP = launching time of the new product

TR = time at the end of removing technical debt stage

Qr1 = new product performance

Qr0 = previous product version performance

L = size of the development team

α = resource productivity parameter (there are diminishing returns to resource

input, thus 0 < α < 1)

K = the constant of proportionality for the speed of performance improvement. It

is proportional to the level of capital investment in the development of technology.

Using Equation 7.2, the total development cost of the new product, TC(TR, TP ), is

described as follows:

TC(TR, TP ) = W ∗ L ∗ TR +W ∗ L ∗ (TP − TR), (7.7)

where

W = labor cost

L = size of the development team

TP = launching time of the new product

TR = time at the end of removing technical debt stage

Using Equation 7.3, the total net revenues, TR(TR, TP ), is described as follows:

TR(TR, TP ) = M ∗m0 ∗
Q0

Q0 +Qc
∗ TP +M ∗m1 ∗

Q1(TR, TP )

Q1(TR, TP ) +Qc
∗ (T − TP ), (7.8)

where

M = product category demand rate

m0 = margin of the existing product

m1 = margin of the new product

1It might be possible that refactoring the software would generate problems that decrease the

external quality (e.g., adding bugs), in such cases Q(TR) <= Qr0 . Within this study, we have not

considered such situations.

142



7.4 Case study design and planning

Qr0 = previous product version performance

Qr1 = new product performance

Qc = competitive product performance

TP = launching time of the new product

TR = time at the end of removing technical debt stage

T = end of the time window

Using Equation 7.4, the firm’s cumulative profit, TΠ(TR, TP ), is described as follows:

TΠ(TR, TP ) = TR(TR, TP ) − TC(TR, TP ), (7.9)

where

TR(TR, TP ) = total net revenues

TC(TR, TP ) = total development cost

The primary decision consists of choosing the values for TR and TP to obtain the

maximum profit. Other decisions about team size or time window can be made. The

model allows for making trade-offs between time-to-market and performance (value

for the customers), taking into account other market information such as competitive

performance and margin of the new product. Therefore, this model can be used to

support technical debt management, including technical and business points of view.

7.4 Case study design and planning

In this section, we present the case study in which the previously defined model was

used. We followed the guide of Runeson and Höst [94] to conduct this exploratory case

study. The next subsections are organized following their guide.

7.4.1 Objectives

The goal of this study was to explore technical debt management in large software

projects while considering time-to-market to discover the constraints and limits that

should be considered. Because there are not enough industrial relevant studies that

use all the required elements for technical debt management [39], we performed an

exploratory case study to seek new insights and generate ideas and hypotheses for new

research. Specifically, we are interested in technical debt management in projects with

low data availability and in the study of the limitations that can arise in such kind of

situations and how these limitations can be addressed.

Examples of project contexts in which we were interested are open source projects

that provide access to the source code but do not provide extra documentation about

143



7. DECISION-MAKING SUPPORT MODEL

the software architecture, design decisions, and so forth. This information is difficult to

be obtained, especially if the original team left the project. Other examples are legacy

projects without documentation and without access to the original development team.

It is not the goal of this study to discuss which methods perform better than others

in measuring or estimating technical debt. As explained in Section 7.5, different meth-

ods for technical debt estimation that were previously used in other studies were used

in the current case study to use the model defined in this paper.

7.4.2 Rationale

Fernández-Sánchez et al. [39] studied the elements required to manage technical debt.

One result of this study is that time-to-market is not used widely in technical debt

management [39], even though it is one of the most widely mentioned causes of techni-

cal debt [114]. The case study described in this paper was performed to explore how to

integrate time-to-market in technical debt management. Therefore, we studied how to

use the currently defined modeling framework for product management (described in

Section 7.2.2), and took into account time-to-market, in software development. Specifi-

cally, we used such a modeling framework in technical debt management. Additionally,

we followed the framework described in [39] as a guide for technical debt management.

7.4.3 Case and subject selection

Because of the wide use of the Java language for constructing systems1 and because the

experience of the authors was broader in Java programming than in other languages,

the project used to produce this exploratory study was a Java project. This was done

so that in case code inspection was needed, it could be better performed. Java was also

selected because the authors were, at the time of producing the study, more familiar

with the tools to analyze Java projects. Working with known tools reduces the risk

attached to working with unfamiliar technologies, such as a misunderstanding of the

tools’ outputs.

An open source project was selected so that access to the project source code repos-

itory could be granted. The authors agreed that the selected project should be large

enough to incorporate complex scenarios. Following these considerations, the project

selected was the Apache Log4j 2 2. This project has more than 1,000 files and more

than two years of development after its first release.

1http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages checked

March 18, 2017
2https://logging.apache.org/log4j/2.0/ checked March 15, 2017

144



7.4 Case study design and planning

Apache Log4j 2 is a well-known project by the Java community, and it has been

used previously in several research studies, for instance in [88, 77]. When conducting

this case study, Apache Log4j 2’s development team was working on release 2.7. The

project had evolved over nearly two and a half years, and it contained almost 1,500

Java files. In this way, as part of this exploratory study, the analysis of the project was

performed by the researchers, who did not have knowledge about how the project had

been developed. The only available data sources were the source code repository1 and

the ticket repository used by Apache Log4j 2.

How the authors of this paper face the exploratory study is similar to the scenario in

which development teams have to start a project, not having much information about

the existing code except for the code itself. Probably, the Apache Log4j 2 team will

have such information internally, and it could even be shared publicly, but for the sake

of the study, we decided to only use the information provided by the Apache Log4j 2

track tool, JIRA2

7.4.4 Theoretical frame of reference

The theoretical framework of this study was formed by the available studies about tech-

nical debt that were analyzed in [39], [6], [9], [69], and [114]. In the literature, several

techniques had been used to implement specific parts of technical debt management. In

this study, some of these techniques were adapted to be used in the analyzed project. In

the context of product development and time-to-market, Cohen et al.’s studies [24, 25]

were used as the reference of how time-to-market is considered in management science.

More detail about the theoretical background of the study is provided in Section 7.2.

7.4.5 Methods, data collection, and selection of data

To analyze the data of the Apache Log4j 2 project, we used releases as points of stable

states of the project. For this, the information was extracted from the JIRA track

tool. We obtained the data revision by revision and accumulated them into releases.

To do this, we developed a tool for mining source code repositories. This tool for

extracting the information can track all the renames of the files over the entire history

of the project, so no data were missed by changes in the name or by moving a file to

a different directory. Once the project is mined, it is possible to follow the history of

each file. Because we were focused on the project’s evolution, we did not include data

about the first release of the project (release 2.0).

1https://github.com/apache/logging-log4j2
2https://issues.apache.org/jira/browse/LOG4J2/, checked March 15, 2017

145



7. DECISION-MAKING SUPPORT MODEL

R2.0.2

R2.2 R2.4 R2.5

R2.6.2

R2.1 R2.3

R2.4.1

R2.6

R2.6.1

Data for R2.1 Data for R2.2 Data for R2.3 Data for R2.4 Data for R2.5 Data for R2.6

Revisions not analyzed Revisions analyzed

Apache Log4j 2 releases

Major releases

Bug Fix releases*

* For the analysis, bug fix releases were considered as part of their major release  

Figure 7.3: Apache Log4j 2 releases analyzed in this study

We extracted data from six consecutive major releases: 2.1, 2.2, 2.3, 2.4, 2.5, and

2.6. To avoid a distortion of the data with the different granularity of the releases, that

is, releases focused on fixing bugs and adding small improvements and releases adding

new functionalities, bug fix releases were considered a part of their major release. This

does not avoid that different major releases have different sizes (one release can imply

more functionality and effort than others), but at least we avoided comparing known

small releases with known large releases. Therefore, we analyzed the evolution of the

project from release 2.0.2 (we considered it a part of the release 2.0) until release 2.6.2

(considered a part of the release 2.6). Figure 7.3 shows the releases used in the analysis.

At this point, it is necessary to highlight that several releases can be developed in a

parallel way. For example, in Figure 7.4 and the example with two branches, releases

r1 and r2 have developments in a parallel way, specifically, revisions rev3 and rev4 are

developed in a parallel way. This was solved as it is shown in Figure 7.4. The main

consideration was that the method that accumulates revisions on releases was guided

by the branches and merges involved in the history of the releases, not by the age of

the revisions. This guarantees that the changes included in a revision were only in one

release and that they were accumulated in the correct release.

7.4.6 Case study protocol

Data extraction was performed in an automatic way; therefore, the procedures for data

extraction were documented within the source code of the tool developed for mining

source code repositories. Furthermore, the tool used for data extraction is an excellent

way for replication of the data extraction. The data extracted were stored in a database

in which standard query languages can be used to extract or consult data. All the data

analyses were performed using R. Consequently, all the process in the analysis were

written in R functions that allowed the replication of the analysis. This facilitated the

146



7.4 Case study design and planning

rev8rev8

One branch Two or more 
branches

rev7

rev6

rev5

rev4

rev3

rev2

rev1

rev7

rev6

rev5

rev4

rev3

rev2

rev1

r2 r2

r1 r1

Revision

Release

Ti
m

e

Figure 7.4: Examples of how revisions are considered to be in a release

147



7. DECISION-MAKING SUPPORT MODEL

revision of the analysis by all the researchers involved.

7.4.7 Ethical considerations

We are not describing the quality of the project analyzed or the quality of the develop-

ment team. We are just analyzing the impact of some anti-patterns (common to most

software projects) in the technical debt of the project. Furthermore, these patterns

could be known by the development team, and they could be not removed by informed

design decisions. We decided to use only source code repository and ticket repository

as data inputs. This does not mean that the analyzed project does not have more

documentation sources.

7.5 Case study execution

We used a framework that identifies the elements required for technical debt manage-

ment [39] (see Figure 7.5). This framework identifies the minimum data required for

basic technical debt decision making. We did not integrate the technical debt manage-

ment process into the software development process. Because we were external to the

project team, our approach was more similar to “computer forensics” of the project. To

integrate this analysis with a software development process, the activities for technical

debt management identified by Li et al. [69] might be used as a guide. Based on the

framework for technical debt management (see Figure 7.5), the following subsections

report some of the studied technical debt elements. This includes the definition of a

number of indicators for some of the elements (Sections 7.5.1, 7.5.2 and 7.5.3.), the anal-

ysis of the technical debt impact element in the function of, though not exclusively, the

time-to-market element (Section 7.5.4), and finally the analysis of the results through

a scenario analysis (Section 7.5.5).

Over the execution of the case study, because we decided to use only the source code

repository and the track tool, there were several adaptations of the model described in

Section 7.3. All the adaptations were motivated to adapt the model to a context with

few information sources. The adaptations are described in the following subsections.

In the next subsections, the required information for technical debt management

and how it was obtained are explained.

7.5.1 Technical debt items indicators

Technical debt item identification (see Figure 7.5 element E1), was the first element

tackled. This required, first, to analyze this element in the context of the study and,

148



7.5 Case study execution

T1 Basic decision-making factors

T2 Cost estimation techniques

T3 Practices and techniques for decision-making

E9 Time-to-
market

E12 Technical 
debt visualizationE10 When to 

implement 
decisions

E8 Scenario 
analysis

E11 Technical 
debt evolution

E1 Technical debt 
items

E3 Interest

E4 Interest 
probability

E2 Principal E5 Technical debt 
impact

E6 Automated 
means

E7 Expert 
opinion

Figure 7.5: Identified elements for technical debt management. Source [39].

second, to define a number indicators necessary to estimate the technical debt of the

Apache Log4j 2 project. A technical debt item is a weakness in software that can

cause internal quality problems. In the present study, we used the term technical debt

item to refer to a file with technical debt indicators. There are several approaches to

identify technical debt items [39]. It is not the goal of this paper to discuss which

methods perform better than others. Furthermore, as studied in [126], it seems that

different methods could point to different technical debt items. So these different

methods are, in some way, complementary. In any case, it was not the goal of the

study to compare different technical debt identification techniques. Thus, we chose

one indicator frequently used in other studies because there is no clear evidence of

what technical debt indicators, among all the ones studied, should be used in technical

debt management. In the literature, several code smells and anti-patterns that cause

maintainability issues have been used as indicators of technical debt [126, 103, 73,

101]. Therefore, we decided to use the code smells that the tool PMD [85] detects as

potential problems in maintenance. This includes some code smells as the God Class

that has been widely used in technical debt management. Nevertheless, the use of

some code smells in some projects does not guarantee that those code smells will be

valid indicators in other projects. This situation made it necessary to select which

code smells were the most accurate for identifying technical debt items in the Logj4

2 project. A way to analyze if technical debt indicators are identifying items with

technical debt is comparing the cost of changing files with the technical debt potential

indicators and the cost of changing files without such indicators [126]. Based on this,

149



7. DECISION-MAKING SUPPORT MODEL

we considered that an indicator of technical debt was valid if files with such an indicator

required more effort in the evolution of the software than files without the technical

debt indicator. Thus, it became necessary to define a condition that the set of valid

indicators should fulfill, as follows:

Condition 1 Files with technical debt indicators have higher values in effort indicators

than files without technical debt indicators.

This condition requires an effort metric that can be estimated when the condition

is applied to verify if a technical debt indicator is valid. If we have access to the Git

repository and if the website does not provide any effort estimation, we had to find a

workaround, similar to what happens in industrial projects whenever effort data are

not carefully collected, not an uncommon situation, and effort data are not associated

at file level [59]. To identify which technical debt indicators fulfill Condition 1, we

followed a similar strategy to the one followed by Kazman et al. in [59] and introduced

two typical effort metrics used in the literature for technical debt management: changed

lines and change probability [126]. We defined these two indicators as follows:

Definition 1 ChPf is the change probability of file f . It is the probability that file f

will change in the next release. It is calculated by dividing the number of releases in

which the file has changed by the total number of releases analyzed in which the file f

exists. As a probability, it will take values between 0 and 1.

Definition 2 ESChf is the expected size of change for file f . It is the expected number

of lines that will change in the next release. It is calculated as the average number of

lines changed (added, removed, or modified) in file f over the releases analyzed.

Combining the previous two metrics, we can define the expected change effort as

follows:,

Definition 3 EChEf is the expected change effort of file f , and it is the result of

multiplying the ESChf and ChPf . It represents the expected effort in lines that will be

changed in file f over the next release considering both the size and probability of the

change.

We used EChEf because it includes the other two indicators.

At this point, we used these metrics to determine if the Apache Log4j 2 technical

debt indicators satisfy Condition 1. Table 7.1 shows the values of ChP , ESCh, and

EChE measured in the files of the Apache Logj4 2 project and accumulated by technical

150



7.5 Case study execution

Table 7.1: Expected size of change, change probability, and expected change effort

accumulated by technical debt indicators (indicator definitions in [85]). ESCh: expected

size of change in lines of code; ChP : change probability; EChE: expected change effort

in lines of code; L: average lines of code per file.

TD indicator ESCh ChP EChE L Files

with Excessive Public Count 575.86 0.75 471.53 919.72 12

with Excessive Parameter List 385.10 0.84 378.25 451.97 53

with God Class 294.94 0.77 264.88 553.56 51

with N Path Complexity 259.85 0.66 248.21 382.59 62

with Excessive Method Length 197.55 0.68 184.88 577.22 18

with Too Many Methods 203.39 0.69 179.29 343.60 137

with ANY TD Indicator 145.60 0.65 128.31 300.26 253

with Cyclomatic Complexity 115.15 0.57 104.13 320.48 99

ALL FILES 46.14 0.45 38.25 119.70 1456

without TD Indicators 31.73 0.43 26.40 87.97 1255

with Too Many Fields - - - - 0

debt indicators. Because the values were accumulated, they were calculated as average

values. For example, the ChP of files with a God Class anti-pattern was calculated as

the average of the change probability of all the files with God Class. No file with the

Too Many Fields anti-pattern was found. Table 7.1 also includes rows for the values

of all the files in the Apache Logj4 2 project, files with any TD indicator, and files

without technical debt indicators. The table is ordered by EChE. As can be seen, files

with technical debt indicators had a bigger EChE (¿= 104.13 lines of code) than files

without technical debt indicators (26.40 lines of code). Thus, it could be concluded

that the indicators satisfied Condition 1 and that these technical debt indicators seemed

valid to be used in the context of the Logj4 2 project.

In Table 7.1, ESCh, ChP , and EChE are based on the number of changes in the

files and the size of changes in the files. There is a controversy about if metrics should

be normalized by the size of the files [126, 124]. As highlighted in [126], to normalize

by the number of lines would make sense if there was a linear dependency between

the metrics used and the size of the files. Table 7.2 shows the Pearson coefficient

for the variables used in Table 7.1 and the size of the files. Once the coefficient is

known, it would be possible to interpret a linear relationship. To analyze this possible

relationship, we used linear regression. We created models using the variable file lines

151



7. DECISION-MAKING SUPPORT MODEL

Table 7.2: Pearson correlation coefficient of size of files in lines with expected changed

lines, Change Probability, and Expected effort.

Pearson correlation

Expected changed lines 0.6805006

Change probability 0.3190039

Expected effort 0.6444562

as a predictor for the other variables. The first row of Figure 7.6 shows the scatter plots

and the linear regression. The second row shows the residual of the regression. As can

be seen, the residuals show patterns instead of showing random values; therefore, the

regression models were invalid for prediction. This means that only the number of

lines could not explain the other variables, that is, there were other variables that also

influenced the size of change, probability of change, and, consequently, expected effort.

Therefore, the decision of not normalizing using the size of files was made.

We observed that some combinations of technical debt indicators pointed to bigger

expected change effort. For example, in Table 7.1, it can be seen that the 51 files

with God Class had an average of 264.88 EChE, and the 137 files with Too Many

Methods had an average of 179.29 EChE. Making the intersection, the files with

both anti-patterns (29 files) had an average of 341.78 EChE. That is, the subset of

files with the two indicators seemed to have larger and more frequent changes than

files with only one of the indicators. This behavior happened frequently but not with

all indicators and combinations. Therefore, it is necessary to study this finding to

extract deeper conclusions. But it seems that it could be possible to identify patterns

of indicators that would point to the most problematic files in terms of technical debt.

The most extreme case was the combination of God Class, Excessive Parameter List,

and Excessive Public Count. Files with this combination of anti-patterns had 4752.67

EChE, more than ten times the expected change effort of all the files with Excessive

Public Count (the individual indicator with the biggest expected change effort).

7.5.2 Principal indicators

The principal was the second element to be addressed (see Figure 7.5 element E2). It

is the effort required to remove technical debt from the files with technical debt items.

In software engineering, the estimation of a project’s range of effort can be determined

using methods such as expert judgment or analogy, and as long as historical size and

effort data exist, using a calibrated estimation model is possible [106, page 7.6].

152



7.5 Case study execution

0 500 1000 1500 2000

0
50

0
10

00
15

00

Lines

C
ha

ng
ed

 li
ne

s

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lines

C
ha

ng
e 

pr
ob

ab
ili

ty

0 500 1000 1500 2000

0
50

0
10

00
15

00

Lines

E
xp

ec
te

d 
ef

fo
rt

 in
 li

ne
s

0 500 1000 1500 2000

−
50

0
0

50
0

10
00

Lines

R
es

id
ua

l

0 500 1000 1500 2000

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Lines

R
es

id
ua

l

0 500 1000 1500 2000

−
50

0
0

50
0

10
00

Lines

R
es

id
ua

l

Figure 7.6: Linear regression models for file lines, changed lines, change probability, and

expected effort.

153



7. DECISION-MAKING SUPPORT MODEL

If the team analyzing technical debt has deep knowledge about the project, accurate

estimations about development effort can be provided. But as discussed by Schmid,

cost estimation generates large uncertainty in software engineering in general and in

technical debt management in particular [98]. As the knowledge on the Apache Logj4 2

project was not available, to perform estimations, a strategy aligned with what followed

in Section 7.5.1 was applied. In this case, the assumption was that refactoring a file

with technical debt implied a change in all its lines. This was a conservative assumption

because it is probable that many refactorings could be done without changing the file

completely.

7.5.3 Interest and interest probability indicators

Interest and interest probability were the two following elements to be considered (see

Figure 7.5 elements E3 and E4). Interest is the extra effort that is used in modifying the

files with technical debt. In the literature, expected change size [59] was used as interest

indicator. This estimation can be obtained by analyzing the evolution of a project

repository to see all the changes over the history of a project. The same approach was

used for estimating the expected size of the change, represented by ESCh. That is,

for a file with technical debt and with an expected size of change (ESCh), removing

its technical debt should return a decrease in its expected size of change (ESCh). In

Section 7.5.1, ESCh was estimated as the expected number of lines that a file will

change in the next release.

It is necessary to highlight that in technical debt, the interest is not always paid.

The probability of paying the interest depends on the probability of the occurrence of

future events [64]. Because we focused on evolution, this probability can be estimated

as the probability of change of the technical debt items. The change proneness or

change probability has also been used in the literature as a metric of the interest of

technical debt items [126]. As for interest, it can be estimated from historical data. As

shown in Section 7.5.1, the change probability of a file ChPf is the probability that

the file f will change in the next release. It was calculated by dividing the number of

releases in which the file f had been modified by the total number of releases analyzed

in which the file f existed. To combine the interest and interest probability, we used

the expected change effort EChE, as described in Definition 3.

Therefore, following the same approach that Schmid followed in [98] to define tech-

nical debt, we defined the interest in terms of variations of interest between different

alternatives.

154



7.5 Case study execution

Definition 4 The change of interest of a file with a technical debt indicator is ∆If =

EChEf,r −EChEf ′,r, EChEf,r is the expected change effort of file f for the release r.

f ′ is an alternative of f , being f ′ = refactor(f).

To estimate the expected change effort of the alternative f ′, expressed by EChEf ′,r,

we followed the same approach used by Kazman et al. [59]. Kazman et al. estimated

the expected change effort EChE of a refactored file, making the assumption that after

refactoring, the file will have an EChE equal to the project’s average. This estimation

was conservative because project expected change effort EChE average already includes

files with technical debt indicators that inflated the average. Though, in this study,

the assumption was that when a technical debt item is removed, the expected change

effort EChE is reduced to double of the project average, considering only the files with

changes. Therefore, our assumption is even more conservative than that of Kazman et

al. in [59].

In practice, the previous paragraphs lead to the conclusion that to properly manage

technical debt, it is necessary to estimate the positive impact of a refactoring in future

changes.

A final remark: to use proxies of effort, such as lines changed instead of “real

measures” of effort, could introduce more uncertainty in the interest estimation. But

even having measures of the real effort, they could not be precise because typically, they

are recorded manually by developers. Furthermore, if they are not directly assigned to

the technical debt items (in our case, at the file level) they are unsuitable for technical

debt management [59].

7.5.4 Technical debt impact: introducing time-to-market

Technical debt impact was another element to address (see Figure 7.5 element E5).

This element allowed us to relate technical debt and time-to-market. This relation was

further elaborated in the element Scenarios to make decisions in Section 7.5.5.

In technical debt management, decisions consist of determining when it is profitable

to remove technical debt items considering principal, interest, and interest probability.

It is possible to consider more elements, which is the case with time-to-market.

With this objective of determining when it is profitable to remove technical debt

when considering, though not exclusively, time-to-market, the model presented in Sec-

tion 7.3 was refined to be expressed with the indicators defined in Sections 7.5.1, 7.5.2,

and 7.5.3 as terms of the equations.

To use the performance of the new product (Qr1), described by Equation 7.6, the

155



7. DECISION-MAKING SUPPORT MODEL

production capacity of the development team was needed. These data were not avail-

able. Therefore, the production capacity was approximated as the number of features

per day of the project. Hence, Equation 7.6 can be simplified to the following:

Q(TR, TP ) = Qr1 = Qr0 + K̂ ∗ Lα ∗ (TP − TR) (7.10)

We estimated the team production capacity (K̂ ∗ Lα) using the last project release.

This was because the last release was the nearest in time when producing the study,

and it represented the project production capacity at that moment. Revision r2.6 lasted

approximately six months, and it added 64 new features and improvements. Using an

equivalence of 30 days per month, we estimated the production capacity of the project:

K̂ ∗ Lα = 64
6∗30 = 0.356feature/day.

To use the total development cost described by Equation 7.7, some approximations

were also needed. The equation consists of two parts. The first one (W ∗ L ∗ TR)

represents the cost of refactoring, that is, the principal of the technical debt items

fixed. For this part, we used the principal estimation, as was described in Section 7.5.2.

The second part (W ∗L ∗ (TP − TR)) represents the cost of adding new features to the

product. We did not know the labor cost nor the size of the development team. Thus,

as with the principal, the cost was approximated using effort instead of monetizing it.

Therefore, as long as the changed lines of code were used as a proxy for effort, the

changed lines were applied as an estimation of cost (Ŵ ∗ L). Therefore, Equation 7.7

was refined to express total development cost in the study case with the following

equation:

TC(TR, TP ) = principal(TR) + Ŵ ∗ L ∗ (TP − TR) (7.11)

For revision r2.6, with 76,118 changed lines, it was calculated as: Ŵ ∗ L = 76118
6∗30 ≈

423lines/day

Finally, we refined Equation 7.8. The variable M refers to the demand rate of

the market for the type of product under development; variables m0 and m1 represent

the margin of the existent and the new product, respectively, and variable Qc is the

competitive performance. To measure or estimate the value of these variables implies to

perform a market study and valuation of the business goals of the product. To obtain

that estimations would have taken the study far from its objectives. Therefore, to

represent the benefit, we used the performance of the new product, that is, Q(TR, TP ).

Consequently, the total net revenues, described by Equation 7.8, was simplified as

156



7.5 Case study execution

follows:

TR(TR, TP ) = Q1(TR, TP ) (7.12)

7.5.5 Scenarios to make decisions: rehearsing for time-to-market

This is the last element of the framework (see Figure 7.5 element E8) that was con-

sidered within this case study. In decision making, it is necessary to estimate the

consequences of the decisions made about the system. By analyzing scenarios, man-

agers can acquire information about the effects of the technical debt in the future.

Developing this element helped us start to understand how technical debt management

and time-to-market are related.

In this section, several scenarios are presented. As a first step, several scenarios in

the context of the case study were defined; these scenarios are presented below. The

scenarios were created based on the equations described in the previous sections. We

defined a context based on the historical data of the project. Using this context, we

defined different scenarios by changing some of the variables implied. The context to

define the scenarios was set as follows:

� For principal estimations, we used the method described in Section 7.5.2.

� For estimating the interest and the interest avoided, we used the method described

in Section 7.5.3.

� We used the estimations explained in Section 7.5.4, that is, K̂ ∗ Lα = 0.356feature/day

(team production capacity) and Ŵ ∗ L ≈ 423lines/day (development cost).

� The number features or improvements that were implemented in the product at

the end of r2.6 was 302. Therefore, we defined Q0 = 302 (current performance of

the product). This information was extracted from the JIRA track tool.

We chose the team production capacity and the development cost based on the last

release analyzed because it was assumed that the context would be similar in the next

release.

Using this information and equations described in Section 7.5.4, we analyzed the

amount of effort to be invested in reducing technical debt that would yield a profit.

At this stage, the only missing task was to select which technical debt items would

be removed. Once the items were identified, we needed to prioritize them. This was

done by calculating a ratio of interest avoided (benefit) and the principal that should be

157



7. DECISION-MAKING SUPPORT MODEL

paid (cost) if the item was removed. Depending on the time dedicated for refactoring,

more or less technical debt items could be fixed and, more principal would be paid

and, consequently, more interest would be avoided in the next release. Nevertheless,

the more time there was for refactoring, the less time there would be for adding new

features, and consequently, less value would be added for the customer.

7.5.5.1 Scenario 1

The first scenario, showed in Figure 7.7, shows a scenario where the time-to-market

(TP ) was fixed to 180 days (a similar duration than release r2.6). As can be seen,

refactoring those files with a higher cost-benefit ratio has a positive impact on the final

product performance (Q1(TR, TP )), even in the subsequent release. But if the time for

refactoring (TR) is more than 25 days, the performance (Q1(TR, TP )) of the subsequent

release will be lower than if there was no refactoring. Therefore, if all the features

planned were mandatory and we wanted to reduce more technical debt, this reduction

on technical debt would have an impact on the time-to-market. In this situation, it is

necessary to make a decision about if to release all the planned features, extend the

time-to-market, or continue accumulating technical debt.

7.5.5.2 Scenario 2

In this scenario, shown in Figure 7.8, we fixed the time-to-market (TP ) to 90 days (a

similar duration to release r2.3). In this case, because of the short duration of the

release, any reduction on technical debt has a direct impact on the performance of

the product (Q1(TR, TP )). Therefore, in that case, to reduce technical debt implies to

deliver fewer features, and consequently, less external quality. This scenario shows how

time-to-market is a relevant technical debt antecedent, supporting the findings of Tom

et al. [114]. Following the present scenario, if the product needs to be released in 90

days with the maximum number of features, no technical debt would be removed, and

probably more would be created. If the analysis was extended to more releases instead

of only one, the refactoring could be valuable for further releases, but accepting that

to achieve the time-to-market (TP ), fewer features should be implemented in the first

release.

7.5.5.3 Scenario 3

Thanks to the use of Cohen et al.’s model, we were able to analyze what the minimum

value for TP (time-to-market) to implement a fixed number of features is. Figure 7.9

158



7.5 Case study execution

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

302

312

322

332

342

352

362

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

In
te
re
st
 a
vo

id
ed

: l
in
es

 o
f c

od
e

Q
(T
R,
TP

): 
fe
at
ur
es

TR (time spent in refactoring): days

Q(TR,TP) (product performance) Interest avoided

Figure 7.7: Scenario 1

159



7. DECISION-MAKING SUPPORT MODEL

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

302

312

322

332

342

352

362

0 10 20 30 40 50 60 70 80 90

In
te
re
st
 a
vo

id
ed

: l
in
es

 o
f c

od
e

Q
(T
R,
TP

): 
fe
at
ur
es

TR (time spent in refactoring): days

Q(TR,TP) (product performance) Interest avoided

Figure 7.8: Scenario 2

160



7.5 Case study execution

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

In
te
re
st
 a
vo

id
ed

: l
in
es
 o
f c

od
e

TP
 (t
im

e‐
to
‐m

ar
ke

t)
: d

ay
s

TR (time spent in refactoring): days

TP (time‐to‐market) Interest avoided

Figure 7.9: Scenario 3

shows the analysis, considering a goal of a product performance of 400 (Q1(TR, TP ) =

400) for the next release. As can be seen in Figure 7.9, the shorter time-to-market is to

use 260 days for development, using 30 for refactoring (TR). This allows one to choose

the time-to-market based on the number of features to add, considering the benefit of

removing the technical debt items that have bigger impact.

7.5.5.4 Scenario 4

This scenario, shown in Figure 7.10, is similar to Scenario 3, but in this case, the goal

for product performance is 326 (i.e., to add 24 features as in release r2.1). In this case,

any time dedicated for refactoring (TR) has a negative impact on the time-to-market

(TP ).

Analyzing Scenario 2 and 4 together, it seems that short releases encourage technical

debt to remain. This does not mean that it is better to have large releases. A long-term

perspective is very important in technical debt management, short releases can lead to

losing the long-term perspective, but if it is considered, for example, by analyzing

several short releases in the roadmap of the product, this can be avoided. Furthermore,

161



7. DECISION-MAKING SUPPORT MODEL

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

In
te
re
st
 a
vo

id
ed

: l
in
es
 o
f c

od
e

TP
 (t
im

e‐
to
‐m

ar
ke

t)
: d

ay
s

TR (time spent in refactoring): days

TP (time‐to‐market) Interest avoided

Figure 7.10: Scenario 4

analyzing the four scenarios presented here, it seems that to remove the technical

debt items with more impact in each release could be enough to keep technical debt

under control, even increasing the product performance on a similar level than without

removing technical debt.

7.6 Findings

7.6.1 About the Cohen et al.’s model

Cohen et al.’s model [24, 25] has been adapted to be used in a software development con-

text, specifically for technical debt management. The model has been used in a project

where only code and a track issue repository were available. This was done deliberately

because this is the most restrictive context where technical debt management can be

done. To be adapted to this project, we had to make some simplifications that would

not be required with more information. These simplifications helped the applicability

of the model, but at the same time, this prevented the model from producing more de-

tailed analysis of the technical debt of the software. In fact, to consider time-to-market

162



7.6 Findings

in more detail, in technical debt management, several data are required: effort; value of

new features; cost and benefit of refactoring that link technical debt management with

software project management area; and the time frame for new products, performance

of the product in the market, and performance of the competitive products that link

with business management.

In a previous study [39], it was found that technical debt could be useful when taking

into account different stakeholders with different points of view: business organizational

management, engineering management, and engineering. As shown in Section 7.5.4, the

model uses technical data, but also business data; this is evidence that technical debt

management helps bring together different stakeholders’ points of view.

The model is oriented toward trade-offs that have been useful for this study and

have potential for future applications in the industry. Different versions of the product

can be assimilated for new releases. It would be possible to consider different stages

if we wanted to model more complex processes. However, this simple process model

(adaptable to a specific team, product and, project constraint) allowed to reason about

technical debt management and time-to-market. Therefore, technical debt management

has been comfortably introduced as a process in software development.

The concept of product performance can be defined in terms of requirements prior-

itization and valuation, one of the drivers for release management [7].

7.6.2 Assumptions and approximations

The execution of the case study showed that it is necessary to perform many estimations

for technical debt management. Those estimations are sources of uncertainty. The lack

of data sources may make this situation worse. As discussed in Section 7.4.3, this is

often the case when a team must start a project for which the team does not know

either the code or the tools used to produce the code. As shown in the present study,

many times, direct estimations are not available, and it is necessary to use proxies (see

Section 7.5.4). This exacerbates the uncertainty of estimations and increases the risk of

making decisions based on bad assumptions. Some of the required estimations are the

positive impact of a refactoring in future changes, the cost of adding new features and

refactoring, the value for the customers of the features, and the team capacity. The

goal of the present study was not to analyze estimation methods. We used methods

that were previously used by other authors in technical debt management studies. The

model is independent of the estimation methods used so that other techniques, even

future techniques, could be used. Also, to establish a means with which to validate

the estimations performed in the context of specific projects would help the process of

163



7. DECISION-MAKING SUPPORT MODEL

technical debt management. This implies future studies focused on obtaining empir-

ical evidences, validations of metrics, and estimation methods. We used conservative

approaches in the estimation of principal and interest (see Section 7.5.2 and 7.5.3) to

reduce the risk of identification of unnecessary refactorings, that is, false positives. We

preferred to let a technical debt item in the product to recommend unnecessary changes.

Refactoring incorporates its own risks in the possibility of adding bugs. Additionally,

the effort spent in refactoring is subtracted from the available effort to add new func-

tionality. Nevertheless, many times, more detailed data are subjective information. For

example, effort is many times collected manually by developers. This means that these

data could be imprecise. In this study, we have made some estimations that could also

be imprecise, but they are based on objective data obtained from the source code.

When the team and managers have more experience, more accurate estimations can

be performed. All these approximations have been based on ones found in the litera-

ture when the authors faced similar situations. Another assumption is that no business

model is used. Whereas this may seem strange when a new product is developed, the

finding reported by Hacklin and Wallnöfer [47] should be considered: the application

of business models can be useful, but participants should be trained in advance. Oth-

erwise, estimations may lead to wrong conclusions. Therefore, the application of the

model to reason about technical debt management and time-to-market can be used as

a first approximation. More accurate approximations could be obtained when more

experience is gained from working with the product.

In the present case study, the model was adapted to be used in a context of few

sources of information; if more information was available, the model could be used as

defined in Section 7.3.

7.6.3 The nature of technical debt management

This work contributes by providing more input on the nature of technical debt man-

agement. The investment in infrastructure is represented by the parameter K in Equa-

tion 7.6, where K was the constant of proportionality for the speed of performance

improvement. As mentioned, when this equation was described, K is proportional to

the level of capital investment in the development technology. It was interpreted that

the effort spent in fixing technical debt was invested in improving infrastructure, which

makes sense because if legacy code is improved, productivity will also improve. From a

business perspective, software refactoring can be seen as any other capital investment in

the development technology of the software product process, for example, investments

in tools or workstations that increase the team’s development capacity.

164



7.6 Findings

7.6.4 The view of legacy code as product and as infrastructure

A final issue to highlight is that the source code not only be part of the current product

software, but also a part of the infrastructure for the next releases. Actually, the

investment in a current product to reduce technical debt can be assimilated to invest

in the infrastructure to make the next version of this product. This interpretation of

legacy code both as infrastructure and as a product version can be controversial but is

valid from an economic perspective. This should be further investigated.

7.6.5 The role of technical debt management approaching internal

and external quality

Technical debt management worked as a link between internal quality and external

quality. Whereas internal and external quality were defined previously, no link between

them was provided. Therefore, it was difficult to estimate how an improvement in

internal quality could impact external quality, and as a result, it was difficult to justify

how much should be invested to improve internal quality. This work provides a baseline

with which to change this issue.

7.6.6 Costs and investments in software development

Although traditionally software development has been bound to an estimation of the

cost associated with product development, this work provides a baseline for different

costs, depending on how much technical debt is removed. Therefore, there could be

different costs depending on this issue. If costs and investments (and the expected

return on investment) are discussed together, it may help to better justify the job to be

taken on and how much of an investment may make sense in reducing technical debt.

7.6.7 Extending the model

Cohen et al.’s model has been applied in two stages: technical debt management and

development. However, Cohen et al.’s model could be applied in more stages. For

the sake of the case study, it was not required, but when applying this model to the

industry, it may help to have additional stages, such as testing.

7.6.8 The need for the concept of technical debt points

It was required to define and follow some conventions to interpret technical debt in

the context of the releases. When the presented model is applied in industry, these

165



7. DECISION-MAKING SUPPORT MODEL

conventions should be standardized within a company, and beyond. This is similar to

what happened to function points: there may exist several conventions, for instance for

function points we have several such as [53] and [52], but it is important to know which

one is being used. Therefore, we realized that it is necessary to measure the “technical

debt points” and identify the adopted convention.

7.6.9 Size of releases

It seems that short release planning could hinder the removal of technical debt. This

does not mean that it is better to have large releases. A long-term perspective is very

important in technical debt management, but short releases can lead to losing the

long-term perspective; but if it is considered, for example, by analyzing several short

releases in the roadmap of the product, this can be avoided. As shown in Section 7.5.5,

few items are responsible for the most changes in the analyzed project. This indicates

that focusing the effort in small refactorings could keep technical debt under control.

This can provide insight into how to integrate technical debt management into software

development processes.

7.6.10 Combination of anti-patterns

In Section 7.5.1, it is shown that combinations of some anti-patterns pointed to items

with more technical debt than the individual anti-patterns. This is an interesting

finding for technical debt identification. Nevertheless, there is no clear indication of

what technical debt indicator to use; therefore, research should be performed on this

topic. It is necessary to identify a set of technical debt indicators (not limited to

anti-patterns) that allows for analysis of all possible causes of technical debt.

7.7 Limitations

Case studies allow us to evaluate a phenomenon, a model, or a process in a real setting.

This is important in software engineering, in which a multitude of external factors may

affect the validation results and where other techniques, such as formal experiments,

are not considered to be conducted under controlled settings, even though formal ex-

periments permit replication and generalization. In this sense, the major limitation

concerns external validity because only one software product was considered. However,

the objective was not to study the software product, but rather to explore a new way

to model the relation between technical debt management and time-to-market under

166



7.7 Limitations

economic constraints to support decision making about how much technical debt must

be removed and its economic consequences.

As part of the exploration, we reduced the problem to the analysis of technical debt

in Java files in a well-known open source project. If other types of files were causing

problems in that project, they were not considered. As a result, the outcomes of this

study cannot be used to make decisions on the used project, but they can be used as a

first input. Again, the objective of the exploratory study was not to study a software

product, but rather to explore a new model. A complete analysis of all the files together

with the knowledge of the developers would be necessary to make formed decisions.

Furthermore, the tools used for identifying problems can produce false negatives or

false positives. Therefore, the results can be affected by the effectiveness of the tools

used.

In addition, it was found that files with technical debt indicators have a bigger than

expected size of change than files without them. But this could be produced by any

other file characteristic, for instance, files that implement a functionality that changes

periodically. These risks could be reduced by contrasting the identified problems with

the development team.

Additionally, as discussed in Section 7.6.2, to develop the model and put it in

practice, several estimation and simplifications were done, specifically cost estimations,

following approximations already used in the literature. This simplification might lead

to the wrong results when using the model. Though, it should be noted that in software

engineering, cost estimations are typically imprecise [63]; therefore, because of the high

degree of uncertainty that exists in software cost estimations, it seems reasonable to

use simplifications in the model, even if they might reduce the accuracy of the provided

results.

Because we did not have market information, we had to simplify the modeling

framework used. This often is the case when a team starts to work with legacy code

without further background, something occurring frequently in software engineering

projects. So we could not establish a fixed time frame, including the exploitation phase

of the product. For more complete analyses, this information would be required.

Finally, some of the elements for technical debt management were not used in this

study. We did not analyze “When to implement decisions”, “Technical debt evolution”,

“Technical debt visualization, and “Expert opinion”. These elements are more focused

on actively managing technical debt over the project’s development. As our goal was

to analyze the integration of the time-to-market modeling framework in a real large

project, we analyzed just a snapshot of the project as the first step.

167



7. DECISION-MAKING SUPPORT MODEL

7.8 Related Work

There are several studies about decision making in technical debt management. For

example, Brown et al. [18] provided an approach to make decisions about when to

improve the software architecture in the context of iterative release planning. They

described a trade-off involving architectural investment versus the delivery of end-user

valued capabilities. However, they do not consider time-to-market in the trade-off.

Another method is provided by Kazman et al. [59] to locate architectural sources of

technical debt, quantify them, and quantify the ROI of removing these debts. Never-

theless, they do not consider time-to-market as a restriction to calculate the impact of

removing technical debt.

As we showed in [39], only some studies have considered time-to-market in technical

debt management. Guo et al. used time-to-market as a constraint, but they did not

use it actively in their model to make decisions [46]. That is, it was considered as

a fixed constraint while we used it as a parameter that can be changed to achieve

the different goals of the project. In other studies, for example, Nord et al. [78] and

Ramasubbu and Kemerer [90], time is used to model a time frame in which it is possible

to analyze the cost and benefit of technical debt. The time frame can be established

based on the retirement time of the software. We used the same approach but also

used time-to-market in making decisions about how much debt is beneficial to pay off.

We used Schmid’s technical debt model [97][98] as a starting point; by using its

definition of internal quality, external quality, evolution, and refactoring. Nevertheless,

Schmid’s model does not consider time-to-market.

7.9 Conclusions and future work

This chapter presents a model for technical debt management that considers time-

to-market. The methodology used, with the goal of finding constraints and limits

that should be considered when using the model, was an exploratory case study. The

model uses a technical debt management framework as a guide, which was useful in

adapting the time-to-market modeling framework, which came from a different domain,

to technical debt management.

This model is a step forward in making decisions in software engineering, especially

in the case of trade-offs of internal and external quality of software when considering an

economic point of view. It was possible to deploy the model for the technical debt man-

agement in a large project. The case study’s execution demonstrates that it is possible

to use the selected time-to-market modeling framework for technical debt management

168



7.9 Conclusions and future work

and that it is necessary a holistic perspective in technical debt management that in-

cludes the business perspective, that is, economic constraints and business goals. This

holistic perspective was clear when we had to make simplifications in the model because

we did not have the business strategy information. So we could not establish a fixed

time frame for the analysis, including the exploitation phase of the product. For more

complete analyses, this information would be required. The model can be used in any

other projects to manage technical debt. For those projects in which a team has to

work with legacy code without further background and little or none productivity and

market information, this paper provides the approximations for applying the model in

a systematic fashion. This lack of information occurs frequently in software engineering

projects.

The findings of this study (see Section 7.6) open new research opportunities that can

be extended in the future. Further research is necessary in several topics: to analyze

the relationships between internal and external quality of software; to study the effect

of combinations of technical debt indicators in the same files; to study the paradox

of source code not only being part of the current product software, but also being

part of the infrastructure for the next releases; to define the methods for measuring

the “technical debt points”; and to integrate technical debt management into software

development processes.

As for future work, it is planned to apply the model to more projects with the same

available information, that is, with only access to the source code repository and the

track tool; this will be done to obtain more knowledge on the model’s variables and

parameters. With the same model and more information, a more complex scenario

analysis can be performed. Therefore, we also intend to study products for which we

have more information about, including team size, labor cost, and market data, so that

we can work with more complex scenarios. In this case, methods such as Monte Carlo

could help to simulate these complex scenarios with multiple variables. We are also

working to have new case studies that include the participation of development teams.

This will also require tuning the model to represent the inputs from the development

team.

169



7. DECISION-MAKING SUPPORT MODEL

170



Part VI

Conclusion and Further Work

171





Chapter 8

Conclusions and Future Work

This chapter presents and analyses the main contributions of this thesis

and it also presents future research to extend results that have already been

obtained. Conclusions are framed respecting to the objectives proposed at

the beginning of the research and formulated as research questions.

173



8. CONCLUSIONS AND FUTURE WORK

8.1 Research contributions

This thesis answers the RQ 1: Could one have a model that considers customer value

together with the short and long-term impact of decisions to help support the decision-

making process in software evolution? What elements would this model be made of? by

providing a model oriented to the value for the customer that helps make decisions in a

context of continuous evolution of software taking into account internal characteristics

of software and the short and long-term impact of such decisions. This model has been

created following a theoretical framework that identifies the elements that are necessary

to consider in the model definition.

The specific contributions are described in the following subsections.

8.1.1 Identification of how software internal quality increases the cus-

tomer value

The value for the customer that is added by internal quality of software consists of the

possible future value that could be added over the evolution of software. Good levels

of internal quality will imply that external quality might be added easily in future

evolution. Therefore, value is affected by the probability of future changes and the

time frame in which those changes can happen.

Technical debt concept, through principal, interest, and interest probability, helps

reason about the value of changes in the internal quality of software considering the

probability of change and the time frame. Therefore, technical debt management is a

key factor to make decisions in changes in software with a value-based perspective.

Delaying decisions may have value in contexts where there is much uncertainty.

Therefore, not only principal, interest, and interest probability, but also other factors,

as the better moment to implement the decisions, have to be considered when managing

technical debt.

8.1.2 Identification and definition of the elements that are required

to create models that help make decisions in software evolution

The elements that are required to effectively manage technical debt have been identified

and defined. These elements define a framework and this framework could be used to

produce specific decision-making models and methods or to assess existing ones.

In addition to the framework, an important finding of this chapter is that any

decision about software evolution implies a trade-off between software release char-

acteristics and technical debt removal (increasing internal quality). Additionally, the

174



8.1 Research contributions

technical debt impact might be effective in allowing communication between the differ-

ent stakeholders in a project to reason about this trade-off.

Another important conclusion is that technical debt is context dependent. This

means that the context, which is difficult to define, must be part of the estimation

model, includes issues such as the history of the product development, prospects, or

time to market.

8.1.3 Identification of tools and strategies that support the elements

identified in Contribution 2 and the lacks in this support

The available techniques for technical debt management identified in the current lit-

erature have been analyzed. This analysis shows that further studies are necessary

to fully support technical debt management and also essential elements not currently

covered, such as time-to-market. Other elements as E4 interest probability, E7 expert

opinion, E10 When to implement decisions, E11 Technical debt evolution, and E12

Technical debt visualization also require more support, especially from the business

organizational management point of view.

Different strategies are focused on different elements. There are not tools or strate-

gies that support all the elements. Therefore, it is necessary to go further in the

integration of tools and strategies to manage effectively technical debt. In this regard,

in this thesis, a tool named TEDMA has been implemented. TEDMA provides the

required support to use the technical debt management elements defined in Chapter 4

in real projects. In fact, TEDMA creates a platform to experiment with technical debt

tools and strategies. The analysis of the support of tools and strategies for the techni-

cal debt management elements indicated the necessity of integrating several different

techniques. TEDMA responds to that necessity by providing a tool that is designed to

integrate third party tools. In fact, TEDMA facilitates the usage of the technical debt

management elements in real projects.

8.1.4 Definition of a model for making decisions on software evolu-

tion using the elements identified in Contribution 2 and that

integrates tools and strategies identified in Contribution 3

This contribution consists of the definition of a model oriented to the value for the

customer that helps make decisions in a context of continuous evolution of software

considering the internal quality of software and the short and long-term impact of

these decisions. The model uses the technical debt management framework defined in

175



8. CONCLUSIONS AND FUTURE WORK

Contribution 2 as a guide, which was useful in adapting the time-to-market modeling

framework, which came from a different domain, to technical debt management.

This model is a step forward in making decisions in software engineering, especially

in the case of trade-offs of internal and external quality of software when considering

an economic point of view. It was possible to use the model for the technical debt man-

agement in a case study using a large project. The case study’s execution demonstrates

that it is possible to use the selected time-to-market modeling framework for techni-

cal debt management and that it is necessary a holistic perspective in technical debt

management that includes the business perspective, that is, economic constraints and

business goals. This holistic perspective was clear when we had to make simplifications

in the model because we did not have the business strategy information.

8.2 Future Work

Technical debt helps reason about the value of changes in the internal quality of soft-

ware. This thesis provides a theoretical framework that helps to manage technical

debt. Following this framework, this thesis presents model for technical debt man-

agement considering one of the elements that did not have enough support by the

available techniques and tools for technical debt management. But models for techni-

cal debt management should have the capacity to deal with all the elements. Therefore,

new models, or an extension of the model presented in Chapter 7, have to be defined

to achieve this goal.

It is planned to use the model presented in Chapter 7 in more case studies to find

out more empirical evidences about the advantages and the limits of using the model for

technical debt management. For example, it is planned to apply the model presented

in this thesis to more projects with the same available information, that is, with only

access to the source code repository and the track tool; this will be done to obtain more

knowledge on the model’s variables and parameters. With the same model and more

information, a more complex scenario analysis can be performed. Therefore, we also

intend to study products for which we have more information about, including team

size, labor cost, and market data, so that we can work with more complex scenarios. In

this case, methods such as Monte Carlo could help to simulate these complex scenarios

with multiple variables. We are also working to have new case studies that include

the participation of development teams. This will also require tuning the model to

represent the inputs from the development team.

To do that, TEDMA, the tool presented in Chapter 6 will be extended to incorporate

176



8.2 Future Work

new strategies and tools for technical debt management. Currently, TEDMA is useful

for experimenting in technical debt management using empirical data. The expected

evolution of TEDMA will make it useful for software development industry. Using

TEDMA, organizations will be able to manage the technical debt of their projects by

selecting the tools and indicators that are the most important for them.

The findings of using the model presented in Chapter 7 in this thesis open new re-

search opportunities that can be extended in the future. Further research is necessary

in several topics: to extend the analysis of the relationships between internal and exter-

nal quality of software; to study the effect of combinations of technical debt indicators

in the same files; to study the paradox of source code not only being part of the current

product software, but also being part of the infrastructure for the next releases; to de-

fine the methods for measuring the “technical debt points”; and to integrate technical

debt management into software development processes.

From software industry perspective it is possible to extend this work to three inter-

esting domains:

� Software startups. This is an interesting domain where this thesis can be ex-

tended. In the software startup context, it may be vital to be the first to market

in order to obtain customers. Since software startups also lack resources, quality

assurance is often largely absent [2]. However, long-term problems will only be

relevant if the product obtains customers in the short term [33]. This short-term

vision may produce software code with low internal quality and that is difficult

to change, compelling the company to invest all of its efforts into keeping the

system running, rather than increasing its value by adding new capabilities [33].

Scaling-up the system may become an obstacle, which will prevent the company

from gaining new customers. Finding a viable trade-off between time-to-market

demands and evolution needs is thus vital for software startups. The approach

presented in this thesis can be used to perform this trade-off. The first step in

this direction was performed by collaborating in one article to define a software

startup research agenda [116].

� Internet of Things. By extending the research to Internet of Things domain it will

be possible to identify new challenges about how technical debt management can

be integrated into a domain where concurrent hardware and software engineering

is performed.

� DevOps. Devops is about aligning the incentives of everybody involved in deliv-

ering software, with a particular emphasis on developers, testers, and operations

177



8. CONCLUSIONS AND FUTURE WORK

personnel [50]. Studying how technical debt management might be integrated

into this new development paradigm will allow going further in technical debt

management and how it can be integrated into contexts where software is con-

tinuously delivered.

178



References

[1] “Iso/iec 25000 - software engineering - software product quality requirements and

evaluation (square) - guide to square,” tech. rep., ISO/IEC, 2005. 4

[2] “Iso/iec/ieee 42010:2011 systems and software engineering – architecture descrip-

tion,” tech. rep., 1 2011. 17, 24

[3] “Mendeley,” June 2012. http://www.mendeley.com/. 28, 29

[4] “Rapidminer,” June 2012. http://www.rapidminer.com/. 27

[5] Alves, N. S. R., Ribeiro, L. F., Caires, V., Mendes, T. S., and Sṕınola,

R. O., “Towards an ontology of terms on technical debt,” in International Workshop

on Managing Technical Debt (MTD), 2014. 78

[6] Alves, N. S., Mendes, T. S., de Mendona, M. G., Spnola, R. O., Shull, F.,

and Seaman, C., “Identification and management of technical debt: A systematic

mapping study,” Information and Software Technology, vol. 70, pp. 100 – 121, 2016.

78, 94, 95, 107, 119, 145

[7] Ameller, D., Farré, C., Franch, X., and Rufian, G., “A survey on soft-

ware release planning models,” in Proceedings of the Internantional Conference on

Product-Focused Software Process Improvement, PROFES, pp. 48–65, 2016. 5, 6,

137, 163

[8] Amin, S. M. and Wollenberg, B. F., “Toward a smart grid: power delivery for

the 21st century,” IEEE Power and Energy Magazine, vol. 3, pp. 34–41, Sept 2005.

55

[9] Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., and Avgeriou,

P., “The financial aspect of managing technical debt,” Inf. Softw. Technol., 2015.

78, 145

179



REFERENCES

[10] Babar, M., Zhu, L., and Jeffery, R., “A framework for classifying and compar-

ing software architecture evaluation methods,” in Software Engineering Conference,

2004. Proceedings. 2004 Australian, pp. 309 – 318, 2004. xv, 39, 41

[11] Bass, L., Clements, Paul, and Kazman, K., Software Architecture in Practice,

Third Edition. Addison-Wesley Professional, 2012. 18, 24

[12] Benestad, H. C., Anda, B., and Arisholm, E., “Understanding software main-

tenance and evolution by analyzing individual changes: a literature review,” Jour-

nal of Software Maintenance and Evolution: Research and Practice, vol. 21, no. 6,

pp. 349–378, 2009. 6

[13] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., and Grnbacher, P., Value-

Based Software Engineering. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,

2005. 6, 25

[14] Boehm, B., “Value-based software engineering: Overview and agenda,” in Value-

Based Software Engineering (Biffl, S., Aurum, A., Boehm, B., Erdogmus, H.,

and Grnbacher, P., eds.), pp. 3–14, Springer Berlin Heidelberg, 2006. 26

[15] Bosch, J., ed., Continuous Software Engineering. Springer, 2014. 4, 137

[16] Bourque, P. and Fairley, R. E., Guide to the Software Engineering Body of

Knowledge - SWEBOK v3.0. IEEE CS, 2014 version ed., 2014. 89

[17] Breivold, H. P., Crnkovic, I., and Larsson, M., “A systematic review of

software architecture evolution research,” Information and Software Technology,

vol. 54, no. 1, pp. 16 – 40, 2012. 6

[18] Brown, N., Nord, R. L., Ozkaya, I., and Pais, M., “Analysis and management

of architectural dependencies in iterative release planning,” in 2011 Ninth Working

IEEE/IFIP Conference on Software Architecture, pp. 103–112, June 2011. 168

[19] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim,

E., MacCormack, A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C.,

Sullivan, K., and Zazworka, N., “Managing technical debt in software-reliant

systems,” in Proceedings of the FSE/SDP Workshop on Future of Software Engi-

neering Research, FoSER ’10, (New York, NY, USA), pp. 47–52, ACM, 2010. 8,

137

[20] Buschmann, F., “To pay or not to pay technical debt,” IEEE Software, vol. 28,

pp. 29–31, Nov 2011. 8

180



REFERENCES

[21] Cai, Y., Kazman, R., Silva, C. V., Xiao, L., and Chen, H.-M., “Chapter 6

- a decision-support system approach to economics-driven modularity evaluation,”

in Economics-Driven Software Architecture, 2014. 8

[22] Carriere, J., Kazman, R., and Ozkaya, I., “A cost-benefit framework for

making architectural decisions in a business context,” in Proceedings of the 32Nd

ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE

’10, (New York, NY, USA), pp. 149–157, ACM, 2010. 110

[23] Clements, P. and Northrop, L., Software Product Lines: Practices and Pat-

terns. Addison-Wesley Professional, 2001. 89

[24] Cohen, M. A., Eliasberg, J., and Ho, T.-H., “New product development:

The performance and time-to-market tradeoff,” Management Science, vol. 42, no. 2,

pp. 173–186, 1996. xiii, 137, 138, 140, 141, 145, 162

[25] Cohen, M. A., Eliasberg, J., and Ho, T.-H., “An analysis of several new

product performance metrics,” Manufacturing & Service Operations Management,

vol. 2, no. 4, pp. 337–349, 2000. 138, 140, 145, 162

[26] Creswell, J., Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches. SAGE Publications, 2014. 15

[27] Cruzes, D. S. and Dyb̊a, T., “Research synthesis in software engineering: A

tertiary study,” Inf. Softw. Technol., vol. 53, pp. 440–455, May 2011. 33

[28] Cunningham, W., “The wycash portfolio management system,” SIGPLAN

OOPS Mess., vol. 4, pp. 29–30, Dec. 1992. 7

[29] den Ouden, E., Innovation Design - Creating Value for People, Organizations

and Society. Springer London Dordrecht Heidelberg New York, 2012. 25

[30] Dobrica, L. and Niemela, E., “A survey on software architecture analysis meth-

ods,” Software Engineering, IEEE Transactions on, vol. 28, pp. 638 – 653, jul 2002.

39

[31] Dyb̊a, T. and Dingsøyr, T., “Empirical studies of agile software development:

A systematic review,” Inf. Softw. Technol., vol. 50, pp. 833–859, August 2008. 197

[32] Emery, D., Hilliard, RichardF., I., and Rice, T., “Experiences applying a

practical architectural method,” in Reliable Software Technologies Ada-Europe ’96

181



REFERENCES

(Strohmeier, A., ed.), vol. 1088 of Lecture Notes in Computer Science, pp. 471–

484, Springer Berlin Heidelberg, 1996. 24

[33] Falessi, D., Cantone, G., and Kruchten, P., “Do architecture design methods

meet architects’ needs?,” in Software Architecture, 2007. WICSA ’07. The Working

IEEE/IFIP Conference on, p. 5, jan. 2007. 24

[34] Fernández, C., López, D., Yagüe, A., and Garbajosa, J., “Towards esti-

mating the value of an idea,” in Proceedings of the 12th International Conference

on Product Focused Software Development and Process Improvement, Profes ’11,

(New York, NY, USA), pp. 62–67, ACM, 2011. 11, 14

[35] Fernández-Sánchez, C., D́ıaz, J., Pérez, J., and Garbajosa, J., “Guid-

ing flexibility investment in agile architecting,” in 2014 47th Hawaii International

Conference on System Sciences, pp. 4807–4816, Jan 2014. 11, 14, 49

[36] Fernández-Sánchez, C., Garbajosa, J., Vidal, C., and Yagüe, A., “An

analysis of techniques and methods for technical debt management: A reflection

from the architecture perspective,” in 2015 IEEE/ACM 2nd International Work-

shop on Software Architecture and Metrics, pp. 22–28, May 2015. 12, 14, 93, 95,

105

[37] Fernández-Sánchez, C., Garbajosa, J., and Yagüe, A., “A framework to aid

in decision making for technical debt management,” in 2015 IEEE 7th International

Workshop on Managing Technical Debt (MTD), pp. 69–76, Oct 2015. 12, 14, 77,

130

[38] Fernández-Sánchez, C., D́ıaz, J., Garbajosa, J., and Pérez, J., “A cost-

benefit analysis model for technical debt management considering uncertainty and

time,” in Work in Progress Track at the Thirty Ninth Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), 2013. 11, 14, 49

[39] Fernández-Sánchez, C., Garbajosa, J., Yagüe, A., and Perez, J., “Iden-

tification and analysis of the elements required to manage technical debt by means

of a systematic mapping study,” Journal of Systems and Software, vol. 124, pp. 22

– 38, 2017. xiii, 6, 13, 14, 77, 105, 130, 143, 144, 145, 148, 149, 163, 168

[40] FindBugs, “Findbugs web project.” 123, 127

[41] Fitzgerald, B. and Stol, K.-J., “Continuous software engineering: A roadmap

and agenda,” vol. 123, pp. 176 – 189, 2017. 4, 5, 6, 7, 137

182



REFERENCES

[42] Garlan, D., Formal Modeling and Analysis of Software Architecture: Compo-

nents, Connectors, and Events, pp. 1–24. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2003. 17

[43] Git, “Git web page.” 123

[44] Glass, R. L., “Frequently forgotten fundamental facts about software engineer-

ing,” IEEE Software, vol. 18, pp. 112–111, May 2001. 5

[45] Gorton, I., Essential Software Architecture, second edition. Springer-Verlag,

2011. 24

[46] Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., da Silva,

F., Santos, A., and Siebra, C., “Tracking technical debt: An exploratory case

study,” in ICSM, 2011. 168

[47] Hacklin, F. and Wallnöfer, M., “The business model in the practice of strate-

gic decision making: insights from a case study,” Management Decision, vol. 50,

no. 2, pp. 166–188, 2012. 164

[48] Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., and

America, P., “Generalizing a model of software architecture design from five in-

dustrial approaches,” in Proceedings of the 5th Working IEEE/IFIP Conference

on Software Architecture, WICSA ’05, (Washington, DC, USA), pp. 77–88, IEEE

Computer Society, 2005. 25

[49] Hull, J. C., Options, Futures, and Other Derivatives. Prentice Hall, seventh ed.,

2009. 42

[50] Humble, J. and Molesky, J., “Why eenterprise must adopt devops to enable

continuous delivery,” vol. 24, no. 8, pp. 6 – 12, 2011. 178

[51] Ionita, M., America, P., Obbink, H., and Hammer, D., “Quantitative archi-

tecture usability assessment with scenarios,” in CLOSING THE GAPS: Software

Engineering and Human-Computer Interaction workshop, INTERACT 2003, 2003.

41, 43

[52] ISO, “Information technology — systems and software engineering — fisma 1.1

functional size measurement method,” ISO 19761:2011, International Organization

for Standardization, Geneva, Switzerland, 2011. 166

183



REFERENCES

[53] ISO, “Software engineering. a functional size measurement method,” ISO

19761:2011, International Organization for Standardization, Geneva, Switzerland,

2011. 166

[54] ITEA, “08022 nemo coded.” 55

[55] ITEA, “09030 imponet.” 55

[56] Ivarsson, M. and Gorschek, T., “A method for evaluating rigor and industrial

relevance of technology evaluations,” Empirical Software Engineering, vol. 16, no. 3,

pp. 365–395, 2011. 16, 106, 107

[57] Jan, N. and Ibrar, M., “Systematic mapping of value-based software engineering

- a systematic review of value-based requirements engineering,” Master’s thesis,

School of Computing at Blekinge Institute of Technology, 2010. 27

[58] JGit, “Jgit web project.” 126, 128

[59] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., Fedak, V.,

and Shapochka, A., “A case study in locating the architectural roots of techni-

cal debt,” in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 2, pp. 179–188, May 2015. 130, 150, 154, 155, 168

[60] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., and

Carriere, J., “The architecture tradeoff analysis method,” in Engineering of

Complex Computer Systems, 1998. ICECCS ’98. Proceedings. Fourth IEEE Inter-

national Conference on, pp. 68 –78, aug 1998. 41, 43

[61] Kazman, R., Bass, L., Klein, M., Lattanze, T., and Northrop, L., “A basis

for analyzing software architecture analysis methods,” Software Quality Journal,

vol. 13, pp. 329–355, 2005. 10.1007/s11219-005-4250-1. xv, 39, 43

[62] Khomh, F., Penta, M. D., and Gueheneuc, Y. G., “An exploratory study

of the impact of code smells on software change-proneness,” in 2009 16th Working

Conference on Reverse Engineering, pp. 75–84, Oct 2009. 109

[63] Kitchenham, B. and Charters, S., “Guidelines for performing systematic liter-

ature reviews in software engineering,” Tech. Rep. EBSE 2007-001, Keele University

and Durham University Joint Report, 2007. 15, 16, 17, 24, 26, 27, 167

184



REFERENCES

[64] Kruchten, P., Nord, R. L., and Ozkaya, I., “Technical debt: From metaphor

to theory and practice,” IEEE Software, vol. 29, pp. 18–21, Nov 2012. 50, 55, 137,

154

[65] Leffingwell, D., Agile Software Requirements: Lean Requirements Practices for

Teams, Programs, and the Enterprise. Addison-Wesley Professional, 1st ed., 2011.

61

[66] Lehman, M. M. and Belady, L. A., eds., Program Evolution: Processes of

Software Change. San Diego, CA, USA: Academic Press Professional, Inc., 1985. 5

[67] Lehman, M. M. and Ramil, J. F., “Software evolution and software evolution

processes,” Ann. Softw. Eng., vol. 14, pp. 275–309, Dec. 2002. 4, 137

[68] Li, W. and Shatnawi, R., “An empirical study of the bad smells and class error

probability in the post-release object-oriented system evolution,” J. Syst. Softw.,

vol. 80, pp. 1120–1128, July 2007. 109

[69] Li, Z., Avgeriou, P., and Liang, P., “A systematic mapping study on technical

debt and its management,” Journal of Systems and Software, vol. 101, pp. 193 –

220, 2015. 78, 81, 94, 107, 130, 140, 145, 148

[70] MacCormack, A., Crandall, W., Henderson, P., and Toft, P., “Do you

need a new product-development strategy?,” Research-Technology Management,

vol. 55, no. 1, pp. 34–43, 2012. 138

[71] MacCormack, A., Rusnak, J., and Baldwin, C. Y., “Exploring the structure

of complex software designs: An empirical study of open source and proprietary

code,” Manage. Sci., vol. 52, pp. 1015–1030, July 2006. 110

[72] Macia, I., Arcoverde, R., Garcia, A., Chavez, C., and von Staa, A., “On

the relevance of code anomalies for identifying architecture degradation symptoms,”

in 2012 16th European Conference on Software Maintenance and Reengineering,

pp. 277–286, March 2012. 109

[73] Marinescu, R., “Assessing technical debt by identifying design flaws in software

systems,” IBM Journal of Research and Development, vol. 56, pp. 9:1–9:13, Sept.

2012. 149

[74] Martin, J., Yague, A., Gonzalez, E., and Garbajosa, J., “Making soft-

ware factory truly global: the smart software factory project,” Software Factory

Magazine, p. 19, 2010. 55

185



REFERENCES

[75] Miles, L., Techniques of value analysis and engineering. New York [etc.] ::

McGraw-Hill,, 1972. 25

[76] Neo4j, “Neo4j web project.” 126, 128

[77] Nistor, A., Chang, P.-C., Radoi, C., and Lu, S., “Caramel: Detecting and

fixing performance problems that have non-intrusive fixes,” in Proceedings of the

37th International Conference on Software Engineering - Volume 1, ICSE ’15, (Pis-

cataway, NJ, USA), pp. 902–912, IEEE Press, 2015. 145

[78] Nord, R., Ozkaya, I., Kruchten, P., and Gonzalez-Rojas, M., “In search

of a metric for managing architectural technical debt,” in WICSA/ECSA, 2012. 168

[79] Olbrich, S., Cruzes, D. S., Basili, V., and Zazworka, N., “The evolution

and impact of code smells: A case study of two open source systems,” in 2009

3rd International Symposium on Empirical Software Engineering and Measurement,

pp. 390–400, Oct 2009. 109

[80] Olbrich, S. M., Cruzes, D. S., and Sjberg, D. I. K., “Are all code smells

harmful? a study of god classes and brain classes in the evolution of three open

source systems,” in 2010 IEEE International Conference on Software Maintenance,

pp. 1–10, Sept 2010. 109

[81] Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T.,

and Abrahamsson, P., “Software development in startup companies: A system-

atic mapping study,” Information and Software Technology, vol. 56, no. 10, pp. 1200

– 1218, 2014. 81, 106

[82] Perez, J., Diaz, J., Costa-Soria, C., and Garbajosa, J., “Plastic partial

components: A solution to support variability in architectural components,” in 2009

Joint Working IEEE/IFIP Conference on Software Architecture European Confer-

ence on Software Architecture, pp. 221–230, Sept 2009. 67

[83] Peters, L., “Technical debt: The ultimate antipattern - the biggest costs may

be hidden, widespread, and long term,” in 2014 Sixth International Workshop on

Managing Technical Debt, pp. 8–10, Sept 2014. 8, 85

[84] Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M., “Systematic

mapping studies in software engineering,” in EASE, 2008. xi, 16, 18, 79, 81, 82, 99,

106

186



REFERENCES

[85] PMD, “Pmd web project.” xvi, 62, 67, 123, 127, 149, 151

[86] Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers,

M., Britten, N., Roen, K., and Duffy, S., “Guidance on the conduct of narra-

tive synthesis in systematic reviews,” tech. rep., ESRC Methods Programme, 2006.

xi, 15, 16, 32, 33, 34, 35

[87] Power, K., “Understanding the impact of technical debt on the capacity and

velocity of teams and organizations: Viewing team and organization capacity as a

portfolio of real options,” in 2013 4th International Workshop on Managing Tech-

nical Debt (MTD), pp. 28–31, May 2013. 8

[88] Qu, Y., Guan, X., Zheng, Q., Liu, T., Wang, L., Hou, Y., and Yang, Z.,

“Exploring community structure of software call graph and its applications in class

cohesion measurement,” Journal of Systems and Software, vol. 108, pp. 193 – 210,

2015. 145

[89] R, “The r project for statistical computing.” 123

[90] Ramasubbu, N. and Kemerer, C., “Towards a model for optimizing technical

debt in software products,” in International Workshop on Managing Technical Debt

(MTD), 2013. 168

[91] Renjin, “Renjin web project.” 128

[92] Riaz, M., Mendes, E., and Tempero, E., “A systematic review of software

maintainability prediction and metrics,” in Proceedings of the 2009 3rd Interna-

tional Symposium on Empirical Software Engineering and Measurement, ESEM

’09, (Washington, DC, USA), pp. 367–377, IEEE Computer Society, 2009. 6

[93] Rserve, “Rserve web project.” 128

[94] Runeson, P. and Höst, M., “Guidelines for conducting and reporting case study

research in software engineering,” Empirical Softw. Engg., vol. 14, pp. 131–164, Apr.

2009. 17, 19, 54, 136, 143

[95] Saliu, O. and Ruhe, G., “Supporting software release planning decisions for

evolving systems,” in 29th Annual IEEE/NASA Software Engineering Workshop,

pp. 14–26, April 2005. 5, 6

187



REFERENCES

[96] Saliu, O. and Ruhe, G., “Software release planning for evolving systems,” In-

novations in Systems and Software Engineering, vol. 1, no. 2, pp. 189–204, 2005.

137

[97] Schmid, K., “On the limits of the technical debt metaphor some guidance on

going beyond,” in MTD workshop, 2013. 168

[98] Schmid, K., “A formal approach to technical debt decision making,” in Pro-

ceedings of the 9th International ACM Sigsoft Conference on Quality of Software

Architectures, QoSA ’13, (New York, NY, USA), pp. 153–162, ACM, 2013. 4, 25,

137, 154, 168

[99] Schumacher, J., Zazworka, N., Shull, F., Seaman, C., and Shaw, M.,

“Building empirical support for automated code smell detection,” in Proceedings of

the 2010 ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement, ESEM ’10, (New York, NY, USA), pp. 8:1–8:10, ACM, 2010.

109

[100] Schwaber, K. and Beedle, M., Agile Software Development with Scrum. Pren-

tice Hall, 2002. 55

[101] Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y.,

and Vetro, A., “Using technical debt data in decision making: Potential decision

approaches,” in MTD Workshop, 2012. 149

[102] Shull, F., Falessi, D., Seaman, C., Diep, M., and Layman, L., “Technical

debt: Showing the way for better transfer of empirical results,” in Perspectives on

the Future of Software Engineering (Münch, J. and Schmid, K., eds.), pp. 179–

190, Springer Berlin Heidelberg, 2013. 126

[103] Siebra, C., Cavalcanti, A., Silva, F., Santos, A., and Gouveia, T., “Ap-

plying metrics to identify and monitor technical debt items during software evolu-

tion,” in ISSREW, 2014, pp. 92–95, Nov 2014. 149

[104] Skytap, “2015 software development survey,” tech. rep., 2015. 137

[105] Smith, J. E. and Nau, R. F., “Valuing risky projects: Option pricing theory

and decision analysis,” Manage. Sci., vol. 41, pp. 795–816, May 1995. 52

[106] Society, I. C., Bourque, P., and Fairley, R. E., eds., Guide to the Software

Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. Los Alamitos, CA,

USA: IEEE Computer Society Press, 3rd ed., 2014. 152

188



REFERENCES

[107] SonarQube, “Sonarqube web project.” 62, 67, 130

[108] Strauss, A., Corbin, J., and others, Basics of qualitative research, vol. 15.

Newbury Park, CA: Sage, 1990. 16, 18, 81

[109] Suomalainen, T., Salo, O., Abrahamsson, P., and Simil, J., “Software

product roadmapping in a volatile business environment,” Journal of Systems and

Software, vol. 84, no. 6, pp. 958 – 975, 2011. 94

[110] Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B.,

and Shafique, M. U., “A systematic review on strategic release planning models,”

Information and Software Technology, vol. 52, no. 3, pp. 237 – 248, 2010. 5, 6, 137,

140

[111] Taibi, D., Lenarduzzi, V., Ahmad, M. O., Liukkunen, K., Lunesu, I.,

Matta, M., Fagerholm, F., Munch, J., Pietinen, S., Tukiainen, M.,

Fernandez-Sanchez, C., Garbajosa, J., and Systa, K., “Free innovation en-

vironments: Lessons learned from the software factory initiatives,” in ICSEA 2015,

The Tenth International Conference on Software Engineering Advances, 2015. 55

[112] Tockey, S., Return On Software: Maximizing The Return On Your Software

Investment. Addison-Wesley Professional, 2005. 52

[113] Tockey, S., “Chapter 3 - aspects of software valuation,” in Economics-Driven

Software Architecture (Mistrik, I., Bahsoon, R., Kazman, R., and Zhang, Y.,

eds.), pp. 37 – 58, Boston: Morgan Kaufmann, 2014. 8, 84

[114] Tom, E., Aurum, A., and Vidgen, R., “An exploration of technical debt,”

Journal of Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013. 8, 9, 50, 78,

83, 85, 87, 93, 95, 100, 137, 144, 145, 158

[115] Tricco, A. C., Tetzlaff, J., Sampson, M., Fergusson, D., Cogo, E.,

Horsley, T., and Moher, D., “Few systematic reviews exist documenting the

extent of bias: a systematic review,” Journal of Clinical Epidemiology, vol. 61,

no. 5, pp. 422 – 434, 2008. 98

[116] Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A.,

Shah, S., Bajwa, S., Baltes, G., Conboy, K., Cullina, E., Dennehy,

D., Edison, H., Fernandez-Sanchez, C., Garbajosa, J., Gorschek, T.,

Klotins, E., Hokkanen, L., Kon, F., Lunesu, I., Marchesi, M., Morgan,

189



REFERENCES

L., Oivo, M., Selig, C., Seppnen, P., Sweetman, R., Tyrvinen, P., Un-

gerer, C., and Yage, A., “Software startups-a research agenda,” E-Informatica

Software Engineering Journal, vol. 10, no. 1, pp. 89–123, 2016. cited By 1. 12, 14,

177

[117] Wohlin, C., “Guidelines for snowballing in systematic literature studies and a

replication in software engineering,” in Proceedings of the 18th International Con-

ference on Evaluation and Assessment in Software Engineering, EASE ’14, (New

York, NY, USA), pp. 38:1–38:10, ACM, 2014. 81

[118] Wong, S., Cai, Y., Kim, M., and Dalton, M., “Detecting software modularity

violations,” in 2011 33rd International Conference on Software Engineering (ICSE),

pp. 411–420, May 2011. 109, 130

[119] Wong, S., Cai, Y., Valetto, G., Simeonov, G., and Sethi, K., “Design rule

hierarchies and parallelism in software development tasks,” in 2009 IEEE/ACM

International Conference on Automated Software Engineering, pp. 197–208, Nov

2009. 109

[120] Woodruff, R., “Customer value: The next source for competitive advan-

tage,” Journal of the Academy of Marketing Science, vol. 25, pp. 139–153, 1997.

10.1007/BF02894350. 25

[121] Xiao, L., Cai, Y., and Kazman, R., “Design rule spaces: A new form of archi-

tecture insight,” in Proceedings of the 36th International Conference on Software

Engineering, ICSE 2014, (New York, NY, USA), pp. 967–977, ACM, 2014. 109

[122] Xiao, L., Cai, Y., and Kazman, R., “Titan: A toolset that connects software

architecture with quality analysis,” in Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE 2014, (New

York, NY, USA), pp. 763–766, ACM, 2014. 109

[123] Yin, R. K., Case Study Research. SAGE Publications Inc., fourth edition ed.,

2009. 17

[124] Zazworka, N., Seaman, C., and Shull, F., “Prioritizing design debt invest-

ment opportunities,” in Proceedings of the 2Nd Workshop on Managing Technical

Debt, MTD ’11, (New York, NY, USA), pp. 39–42, ACM, 2011. 51, 151

[125] Zazworka, N., Shaw, M. A., Shull, F., and Seaman, C., “Investigating the

impact of design debt on software quality,” in Proceedings of the 2Nd Workshop

190



REFERENCES

on Managing Technical Debt, MTD ’11, (New York, NY, USA), pp. 17–23, ACM,

2011. 109

[126] Zazworka, N., Vetro’, A., Izurieta, C., Wong, S., Cai, Y., Seaman,

C., and Shull, F., “Comparing four approaches for technical debt identification,”

Software Quality Journal, vol. 22, pp. 403–426, Sept. 2014. 123, 127, 130, 149, 150,

151, 154

[127] Zhang, H. and Ali Babar, M., “On searching relevant studies in software

engineering,” 2010. 27

191



Declaration

I herewith declare that I have produced this paper without the prohibited

assistance of third parties and without making use of aids other than those

specified; notions taken over directly or indirectly from other sources have

been identified as such. This paper has not previously been presented in

identical or similar form to any other Spanish or foreign examination board.

The thesis work was conducted under the supervision of Dr. Juan Garbajosa

at Universidad Politécnica de Madrid.

Madrid, May 17st, 2017



Appendices

193





Appendix A

Data Extraction Form

This is the data extraction form used in the systematic literature review described in

Chapter 2.

1. General information: basic information about the study analyzed.

(a) Id

(b) Analysis Date

(c) Research type

(d) Type of article

(e) Are results described? (No, author statements, qualitative, quantitave,

both)

2. Architecture: how the studies use the concept of software architecture is recorded.

(a) Type of architecture

(b) Architecture activity where the study is focus on

(c) Definition of architecture if it is given

3. Product: Similar to the previous one, but in this case centered on the software

product.

(a) Type of product

(b) Definition of product/system if it is given

4. Environment: where the study was performed.

(a) Business area

195



A. DATA EXTRACTION FORM

(b) Methodology

(c) Technology

(d) Country

(e) Type of organization

5. Stakeholders: stakeholders identified by the studies.

(a) Stakeholders identified

(b) All stakeholders are taken into account?

6. Value: what type of value is used, when a study uses the concept of value?

(a) Identified value

(b) Levels and Perspectives

(c) How value is measured or estimated?

(d) Definition of value if it is given

7. Concerns: which concerns the study deals with, if any.

(a) Is the study centered on some specific concerns?

(b) What concerns are treated?

(c) Definition of used concerns if it given

196



Appendix B

Quality Questions

Quality questions, based on a systematic literature review performed by Tore Dyb̊a

and Torgeir Dingsøyr [31], were used for the systematic literature review presented in

Chapter 2.

1. Is this a research paper?

(a) Is the paper based on research (or is it merely a “lessons learned” report

based on expert opinion?

2. Is there a clear statement of the aims of the research?

(a) Is there a rationale for why the study was undertaken?

(b) Is there a clear statement of the study’s primary outcome (i.e., time-to-

market, cost, or product or process quality)?

3. Is there an adequate description of the context in which the research was carried

out?

(a) The industry in which products are used (e.g., banking, telecommunications,

consumer goods, travel, etc.)

(b) The nature of the software development organization (e.g. in-house depart-

ment or independent software supplier)

(c) The skills and experience of software staff (e.g, with a language, a method,

a tool, an application domain)

(d) The type of software products used (e.g., a design tool, a compiler)

(e) The software processes used (e.g., a company standard process, the quality

assurance procedures, the configuration management process)

197



B. QUALITY QUESTIONS

4. Was the research design appropriate to address the aims of the research?

(a) Has the researcher justified the research design (e.g., have they discussed

how they decided which methods to use)?

(b) Is the research design appropriate for the research goals?

5. Was the recruitment strategy appropriate to the aims of the research?

(a) Has the researcher explained how the participants or cases were identified

and selected?

(b) Are the cases defined and described precisely?

(c) Were the cases representative of a defined population?

(d) Have the researchers explained why the participants or cases they selected

were the most appropriate to provide access to the type of knowledge sought

by the study?

(e) Was the sample size sufficiently large?

6. Was there a control group with which to compare treatments?

(a) How were the controls selected?

(b) Were they representative of a defined population?

7. Were the data collected in a way that addressed the research issue?

(a) Were all measures clearly defined (e.g., units and counting rules)?

(b) Is it clear how data were collected (e.g., semi-structured interviews, focus

groups etc.)?

(c) Has the researcher justified the methods that were chosen?

(d) Has the researcher made the methods explicit (e.g., is there an indication of

how interviews were conducted; did they use an interview guide)?

(e) Whether the form of the data is clear (e.g., tape recording, video material,

notes etc.)

(f) Whether quality control methods were used to ensure completeness and ac-

curacy of data collection

8. Were the data analysis sufficiently rigorous?

(a) Was there an in-depth description of the analysis process?

198



(b) Has sufficient data been presented to support the findings?

(c) To what extent has contradictory data been taken into account?

(d) Were quality control methods used to verify the results?

9. Has the relationship between researcher and participants been considered ade-

quately?

(a) Did the researcher critically examine their own role, potential bias and influ-

ence during the formulation of the research questions, sample recruitment,

data collection, analysis, and the selection of data for presentation?

10. Is there a clear statement of the findings?

(a) Are the findings explicit (e.g., magnitude of effect)?

(b) Has an adequate discussion of the evidence, both for and against the re-

searcher’s arguments, been demonstrated?

(c) Has the researcher discussed the credibility of the findings (e.g., triangula-

tion, respondent validation, more than one analyst, etc.)?

(d) Are the limitations of the study discussed explicitly?

(e) Are the findings discussed in relation to the original research questions?

(f) Are the conclusions justified by the results?

11. Is the study of value for research or practice?

(a) Does the researcher discuss the contribution the study makes to existing

knowledge or understanding (e.g., Do they consider the findings in relation

to current practice or relevant research-based literature)?

(b) Does the research identify new areas in which research is necessary?

(c) Does the researcher discuss whether or how the findings can be transferred

to other populations and consider other ways in which the research can be

used?

199



B. QUALITY QUESTIONS

200



Appendix C

Studies Included in Literature

Reviews

C.1 Selected Studies in SLR

[S1] Abowd, G., Pitkow, J., and Kazman, R., “Analyzing differences between

Internet information system software architectures,” in Proceedings of ICC/SU-

PERCOMM ’96 - International Conference on Communications, vol. 1, pp. 203–

207, IEEE, June 1996.

[S2] Al-Naeem, T., Gorton, I., Babar, M. A., Rabhi, F., and Benatallah,

B., “A quality-driven systematic approach for architecting distributed software

applications,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th In-

ternational Conference on, pp. 244–253, May 2005.

[S3] Alzaghoul, E. and Bahsoon, R., “CloudMTD: Using real options to man-

age technical debt in cloud-based service selection,” in 2013 4th International

Workshop on Managing Technical Debt (MTD), pp. 55–62, IEEE, May 2013.

[S4] Andrews, A., Mancebo, E., Runeson, P., and France, R., “A Framework

for Design Tradeoffs,” Software Quality Journal, vol. 13, no. 4, pp. 377–405,

2005.

[S5] Bahsoon, R., Emmerich, W., and Macke, J., “Using real options to select

stable middleware-induced software architectures,” IEE Proceedings - Software,

vol. 152, no. 4, pp. 167–186, 2005.

201



C. STUDIES INCLUDED IN LITERATURE REVIEWS

[S6] Bahsoon, R. and Emmerich, W., “ArchOptions: A Real Options-Based

Model for Predicting the Stability of Software Architecture,” in Proceedings

of the Fifth Workshop on Economics-Driven Software Engineering Research,

EDSER 5, held in conjunction with the 25 th International Conference on Soft-

ware Engineering, 2003.

[S7] Bahsoon, R. and Emmerich, W., “An economics-driven approach for valuing

scalability in distributed architectures,” in 7th IEEE/IFIP Working Conference

on Software Architecture, WICSA 2008, (Vancouver, BC, Canada), pp. 9–18,

2008.

[S8] Baldwin, C. Y. and Clark, K. B., “The architecture of participation: Does

code architecture mitigate free riding in the open source development model?,”

Management Science, vol. 52, no. 7, pp. 1116–1127, 2006.

[S9] Berry, D., Hungate, C., and Temple, T., “Delivering expected value to

users and stakeholders with User Engineering,” IBM Systems Journal, vol. 42,

no. 4, pp. 542–567, 2003.

[S10] Brown, N., Nord, R. L., Ozkaya, I., and Pais, M., “Analysis and Man-

agement of Architectural Dependencies in Iterative Release Planning,” in 2011

Ninth Working IEEE/IFIP Conference on Software Architecture, (Boulder,

CO), pp. 103–112, IEEE, June 2011.

[S11] Cai, Y. and Sullivan, K., “A formal model for automated software modular-

ity and evolvability analysis,” ACM Transactions on Software Engineering and

Methodology, vol. 21, pp. 1–29, Nov. 2012.

[S12] Carriere, J., Kazman, R., and Ozkaya, I., “A cost-benefit framework for

making architectural decisions in a business context,” in Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering - ICSE

’10, vol. 2, (New York, New York, USA), p. 149, ACM Press, May 2010.

[S13] Cortellessa, V., Marinelli, F., and Potena, P., “An optimization frame-

work for build-or-buy decisions in software architecture,” Computers &amp;

Operations Research, vol. 35, no. 10, pp. 3090–3106, 2008.

[S14] Diaz-Pace, J. A., Nicoletti, M., Schiaffino, S., Villavicencio, C.,

Sanchez, L. E., Andres Diaz-Pace, J., and Emiliano Sanchez, L., “A

Stakeholder-Centric Optimization Strategy for Architectural Documentation,”

202



C.1 Selected Studies in SLR

Model and Data Engineering, Medi 2013, vol. 8216, pp. Univ Calabria, Diparti-

mento Ingegneria Informatica, 2013.

[S15] Eklund, U. and Arts, T., “A classification of value for software architec-

ture decisions,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6285

LNCS, pp. 368–375, Aug. 2010.

[S16] Engel, A. and Browning, T. R., “Designing systems for adaptability by

means of architecture options,” Systems Engineering, vol. 11, no. 2, pp. 125–

146, 2008.

[S17] Falessi, D., Cantone, G., and Kruchten, P., “Value-Based Design De-

cision Rationale Documentation: Principles and Empirical Feasibility Study,”

in Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA

2008), (Vancouver, BC), pp. 189–198, IEEE, Feb. 2008.

[S18] Falessi, D., Capilla, R., and Cantone, G., “A value-based approach for

documenting design decisions rationale: A replicated experiment,” in Proceed-

ings - International Conference on Software Engineering, (Leipzig), pp. 63–69,

2008.

[S19] Fernandez-Sanchez, C., Diaz, J., Perez, J., Garbajosa, J., Fernández-

Sánchez, C., D́ıaz, J., and Pérez, J., “Guiding Flexibility Investment in

Agile Architecting,” in 2014 47th Hawaii International Conference on System

Sciences, HICSS ’14, (Washington, DC, USA), pp. 4807–4816, IEEE, Jan. 2014.

[S20] Gonzalez-Huerta, J., Insfran, E., Abrahão, S., and Scanniello, G.,

“Validating a Model-Driven Software Architecture Evaluation and Improve-

ment Method: A Family of Experiments,” Information and Software Technology,

no. 0, pp. –, 2014.

[S21] Gordijn, J., Akkermans, H., and Van Vliet, H., “Value based require-

ments creation for electronic commerce applications,” in Proceedings of the 33rd

Annual Hawaii International Conference on System Sciences, vol. vol.1, (Maui,

USA), p. 10, IEEE Comput. Soc, 2000.

[S22] Gustavsson, H. k. and Axelsson, J., “Evaluating Flexibility in Embedded

Automotive Product Lines Using Real Options,” in 2008 12th International

Software Product Line Conference, (Limerick), pp. 235–242, IEEE, Sept. 2008.

203



C. STUDIES INCLUDED IN LITERATURE REVIEWS

[S23] Gustavsson, H. and Axelsson, J., “Improving the System Architecting Pro-

cess through the Use of Lean Tools,” Picmet 2010: Technology Management For

Global Economic Growth, p. Natl Sci Technol & Innovation Policy Off (STI); Si,

2010.

[S24] Ionita, M., America, P., Hammer, D., Obbink, H., and Trienekens,

J., “A scenario-driven approach for value, risk, and cost analysis in system

architecting for innovation,” in Proceedings. Fourth Working IEEE/IFIP Con-

ference on Software Architecture (WICSA 2004), pp. 277–280, IEEE Comput.

Soc, 2004.

[S25] Ivanovic, A. and America, P., “Customer value in architecture decision mak-

ing,” in Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6285 LNCS,

(Copenhagen, Denmark), pp. 263–278, 2010.

[S26] Ivanovic, A., America, P., and Snijders, C., “Modeling customer-centric

value of system architecture investments,” Software and Systems Modeling,

vol. 12, pp. 369–385, May 2013.

[S27] Kazman, R., Asundi, J., and Klein, M., “Quantifying the costs and benefits

of architectural decisions,” in Proceedings of the 23rd International Conference

on Software Engineering. ICSE 2001, (Toronto, Ont), pp. 297–306, IEEE Com-

put. Soc, May 2001.

[S28] Kazman, R., Barbacci, M., Klein, M., Carrière, S. J., and Woods,

S. G., “Experience with performing architecture tradeoff analysis,” in Proceed-

ings - International Conference on Software Engineering, (Los Angeles, CA,

USA), pp. 54–63, IEEE, Los Alamitos, CA, United States, 1999.

[S29] Kazman, R., In, H. P., and Chen, H.-M., “From requirements negotiation to

software architecture decisions,” Information and Software Technology, vol. 47,

pp. 511–520, June 2005.

[S30] Kim, C.-K., Lee, D.-H., Ko, I.-Y., and Baik, J., “A Lightweight Value-based

Software Architecture Evaluation,” in Eighth ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking, and Parallel/Dis-

tributed Computing (SNPD 2007), vol. 2, (Qingdao), pp. 646–649, IEEE, July

2007.

204



C.1 Selected Studies in SLR

[S31] Koziolek, A., “Research preview: Prioritizing quality requirements based on

software architecture evaluation feedback,” in Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 7195 LNCS, pp. 52–58, 2012.

[S32] Koziolek, H., Domis, D., Goldschmidt, T., Vorst, P., and Weiss, R. J.,

“MORPHOSIS: A lightweight method facilitating sustainable software architec-

tures,” in Proceedings of the 2012 Joint Working Conference on Software Archi-

tecture and 6th European Conference on Software Architecture, WICSA/ECSA

2012, (Helsinki, Finland), pp. 253–257, 2012.

[S33] Langdon, C. S., “Designing information systems capabilities to create business

value: A theoretical conceptualization of the role of flexibility and integration,”

Journal of Database Management, vol. 17, no. 3, pp. 1–18, 2006.

[S34] Lee, J., Kang, S., and Kim, C.-K., “Software architecture evaluation methods

based on cost benefit analysis and quantitative decision making,” Empirical

Software Engineering, vol. 14, no. 4, pp. 453–475, 2009.

[S35] Lee, Y. and Choi, H.-J., “Experience of combining qualitative and quanti-

tative analysis methods for evaluating software architecture,” in Fourth An-

nual ACIS International Conference on Computer and Information Science

(ICIS’05), pp. 152–157, IEEE, 2005.

[S36] Losavio, F., Chirinos, L., Matteo, A., Lévy, N., and Ramdane-Cherif,

A., “ISO quality standards for measuring architectures,” Journal of Systems

and Software, vol. 72, no. 2, pp. 209–223, 2004.

[S37] Losavio, F., Chirinos, L., Lévy, N., and Ramdane-Cherif, A., “Quality

characteristics for software architecture,” Journal of Object Technology, vol. 2,

no. 2, pp. 133–150, 2003.

[S38] Marinescu, R., “Assessing technical debt by identifying design flaws in soft-

ware systems,” IBM Journal of Research and Development, vol. 56, pp. 9:1–9:13,

Sept. 2012.

[S39] Mart́ınez-Fernández, S., Ayala, C., Franch, X. X., Marques, H.

M. H., Ameller, D. D., and Martinez-Fernandez, S., “A framework for

software reference architecture analysis and review,” in CIbSE 2013: 16th Ibero-

American Conference on Software Engineering - Memorias del 10th Workshop

205



C. STUDIES INCLUDED IN LITERATURE REVIEWS

Latinoamericano Ingenieria de Software Experimental, ESELAW 2013, (Mon-

tevideo, Uruguay), pp. 89–102, 2013.

[S40] Martinez-Fernandez, S., Ayala, C., Franch, X., and Marques, H. M.,

“REARM: a reuse-based economic model for software reference architectures,”

in 13th International Conference on Software Reuse, ICSR 2013, Pisa, June

18-20. Proceedings: LNCS 7925, vol. 7925 LNCS, pp. 97–112, 2013.

[S41] Mavridis, A., Ampatzoglou, A., Stamelos, I., Sfetsos, P., and Deli-

giannis, I., “Selecting Refactorings: An Option Based Approach,” in 2012

Eighth International Conference on the Quality of Information and Communi-

cations Technology, pp. 272–277, IEEE, Sept. 2012.

[S42] McGregor, J. D., Monteith, J. Y., and Zhang, J., “Quantifying value

in software product line design,” in 15th International Software Product Line

Conference, SPLC’11, (Munich, Germany), pp. Siemens; Hitachi – Inspire the

Next; Pure–Systems;, 2011.

[S43] Moore, M., Kaman, R., Klein, M., and Asundi, J., “Quantifying the

value of architecture design decisions: lessons from the field,” in 25th Inter-

national Conference on Software Engineering, 2003. Proceedings., (Portland,

OR), pp. 557–562, IEEE, May 2003.

[S44] Nord, R. L., Ozkaya, I., Kruchten, P., and Gonzalez-Rojas, M., “In

Search of a Metric for Managing Architectural Technical Debt,” in 2012 Joint

Working IEEE/IFIP Conference on Software Architecture and European Con-

ference on Software Architecture, pp. 91–100, IEEE, Aug. 2012.

[S45] Nord, R. L., Ozkaya, I., and Sangwan, R., “Making Architecture Visible

to Improve Flow Management in Lean Software Development,” IEEE Software,

vol. 29, pp. 33–39, Sept. 2012.

[S46] Nord, R. L., Ozkaya, I., and Sangwan, R. S., “Analysis of Dependencies

during Software Release Planning to Guide Architectural Decision Making Amid

Competing Interests in Value and Cost,” Journal of Systems and Software, pp. –,

Sept. 2012.

[S47] Ojala, P., “Developing Value Assessment for SW Architecture,” in Sev-

enth Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),

pp. 245–248, IEEE, Feb. 2008.

206



C.1 Selected Studies in SLR

[S48] Oliveira Junior, E., Gimenes, I., Maldonado, J., Masiero, P., and

Barroca, L., “Systematic evaluation of software product line architectures,”

Journal of Universal Computer Science, vol. 19, no. 1, pp. 25–52, 2013.

[S49] Ozkaya, I., Kazman, R., and Klein, M., “Quality-Attribute Based Economic

Valuation of Architectural Patterns,” in 2007 First International Workshop

on the Economics of Software and Computation, (Minneapolis, MN), pp. 5–5,

IEEE, May 2007.

[S50] Schwanke, R., Xiao, L., and Cai, Y., “Measuring architecture quality by

structure plus history analysis,” in Proceedings - International Conference on

Software Engineering, pp. 891–900, 2013.

[S51] Ssaed, A. A. A., Wan Kadir, W. M. N., and Hashim, S. Z. M., “Cost

benefits maximization using discount cost function for embedded system archi-

tecture optimization,” International Journal of Software Engineering and its

Applications, vol. 6, no. 4, pp. 47–68, 2012.

[S52] Sullivan, K. J., “Software design: The options approach,” in International

Software Architecture Workshop, Proceedings, ISAW, (New York, NY, United

States), pp. 15–18, 1996.

[S53] Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B., “The struc-

ture and value of modularity in software design,” in Proceedings of the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, (Vienna),

pp. 99–108, University of Virginia, 2001.

[S54] Sutcliffe, A., “Bridging users’ values and requirements to architecture,” in

2013 3rd International Workshop on the Twin Peaks of Requirements and Ar-

chitecture, TwinPeaks 2013 - Proceedings, pp. 15–21, 2013.

[S55] Sutcliffe, A., “The socio-economics of software architecture,” Automated

Software Engineering, vol. 15, no. 3-4 SPEC. ISS., pp. 343–363, 2008.

[S56] Svahnberg, M., Wohlin, C., Lundberg, L., and Mattsson, M., “A

Quality-Driven Decision-Support Method for Identifying Software Architecture

Candidates,” International Journal of Software Engineering and Knowledge En-

gineering, vol. 13, no. 05, pp. 547–573, 2003.

[S57] Wesselius, J. H., “Modeling architectural value: Cash flow, time and uncer-

tainty,” Lecture Notes in Computer Science (including subseries Lecture Notes

207



C. STUDIES INCLUDED IN LITERATURE REVIEWS

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3714 LNCS,

pp. 89–95, 2005.

[S58] Yuan, S.-T. and Lu, M.-R., “An value-centric event driven model and ar-

chitecture: A case study of adaptive complement of SOA for distributed care

service delivery,” Expert Systems with Applications, vol. 36, pp. 3671–3694, Mar.

2009.

C.2 Selected Studies in Systematic Mapping

[M1] Akbarinasaji, S., “Toward measuring defect debt and developing a recom-

mender system for their prioritization,” vol. 1469, pp. 15–20, 2015.

[M2] Alzaghoul, E. and Bahsoon, R., “Cloudmtd: Using real options to manage

technical debt in cloud-based service selection,” in International Workshop on

Managing Technical Debt (MTD), 2013.

[M3] Alzaghoul, E. and Bahsoon, R., “Evaluating technical debt in cloud-based

architectures using real options,” in ASWEC 2014, 2014.

[M4] Bohnet, J. and Döllner, J., “Monitoring code quality and development ac-

tivity by software maps,” in International Workshop on Managing Technical

Debt (MTD), 2011.

[M5] Brondum, J. and Zhu, L., “Visualising architectural dependencies,” in Inter-

national Workshop on Managing Technical Debt (MTD), 2012.

[M6] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P.,

Lim, E., MacCormack, A., Nord, R., Ozkaya, I., Sangwan, R., Seaman,

C., Sullivan, K., and Zazworka, N., “Managing technical debt in software-

reliant systems,” in FSE/SDP Workshop, 2010.

[M7] Buschmann, F., “To pay or not to pay technical debt,” Software, IEEE, vol. 28,

pp. 29–31, Nov 2011.

[M8] Cai, Y., Kazman, R., Silva, C. V., Xiao, L., and Chen, H.-M., “Chapter 6 -

a decision-support system approach to economics-driven modularity evaluation,”

in Economics-Driven Software Architecture, 2014.

208



C.2 Selected Studies in Systematic Mapping

[M9] Chatzigeorgiou, A., Ampatzoglou, A., Ampatzoglou, A., and Amana-

tidis, T., “Estimating the breaking point for technical debt,” in Managing

Technical Debt (MTD), 2015 IEEE 7th International Workshop on, pp. 53–56,

Oct 2015.

[M10] Codabux, Z. and Williams, B., “Managing technical debt: An industrial case

study,” in International Workshop on Managing Technical Debt (MTD), 2013.

[M11] Codabux, Z., Williams, B., and Niu, N., “A quality assurance approach to

technical debt,” in SERP, 2014.

[M12] Curtis, B., Sappidi, J., and Szynkarski, A., “Estimating the principal of an

application’s technical debt,” Software, IEEE, vol. 29, pp. 34–42, Nov 2012.

[M13] de Groot, J., Nugroho, A., Back, T., and Visser, J., “What is the

value of your software?,” in International Workshop on Managing Technical

Debt (MTD), 2012.

[M14] Eliasson, U., Martini, A., Kaufmann, R., and Odeh, S., “Identifying and

visualizing architectural debt and its efficiency interest in the automotive do-

main: A case study,” in Managing Technical Debt (MTD), 2015 IEEE 7th In-

ternational Workshop on, pp. 33–40, Oct 2015.

[M15] Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., and Gorton, I.,

“Measure it? manage it? ignore it? software practitioners and technical debt,”

in Proceedings of the 2015 10th Joint Meeting on Foundations of Software En-

gineering, ESEC/FSE 2015, (New York, NY, USA), pp. 50–60, ACM, 2015.

[M16] Falessi, D. and Reichel, A., “Towards an open-source tool for measuring and

visualizing the interest of technical debt,” in Managing Technical Debt (MTD),

2015 IEEE 7th International Workshop on, pp. 1–8, Oct 2015.

[M17] Falessi, D., Shaw, M., Shull, F., Mullen, K., and Keymind, M., “Prac-

tical considerations, challenges, and requirements of tool-support for managing

technical debt,” in International Workshop on Managing Technical Debt (MTD),

2013.

[M18] Falessi, D. and Voegele, A., “Validating and prioritizing quality rules for

managing technical debt: An industrial case study,” in Managing Technical Debt

(MTD), 2015 IEEE 7th International Workshop on, pp. 41–48, Oct 2015.

209



C. STUDIES INCLUDED IN LITERATURE REVIEWS

[M19] Falessi, D. and Kruchten, P., “Five reasons for including technical debt

in the software engineering curriculum,” in Proceedings of the 2015 European

Conference on Software Architecture Workshops, ECSAW ’15, (New York, NY,

USA), pp. 28:1–28:4, ACM, 2015.

[M20] Fernández-Sánchez, C., D́ıaz, J., Pérez, J., and Garbajosa, J., “Guiding

flexibility investment in agile architecting,” in HICSS, 2014.

[M21] Griffith, I., Taffahi, H., Izurieta, C., and Claudio, D., “A simulation

study of practical methods for technical debt management in agile software de-

velopment,” in WSC 2014, 2014.

[M22] Guo, Y., Sṕınola, R., and Seaman, C., “Exploring the costs of technical debt

management a case study,” Empirical Software Engineering, 2014.

[M23] Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., da Silva,

F., Santos, A., and Siebra, C., “Tracking technical debt: An exploratory

case study,” in ICSM, 2011.

[M24] Guo, Y. and Seaman, C., “A portfolio approach to technical debt manage-

ment,” in International Workshop on Managing Technical Debt (MTD), 2011.

[M25] Ho, J. and Ruhe, G., “When-to-release decisions in consideration of technical

debt,” in MTD workshop, 2014.

[M26] Holvitie, J. and Leppnen, V., “Examining technical debt accumulation in

software implementations,” International Journal of Software Engineering and

its Applications, vol. 9, no. 6, pp. 109–124, 2015.

[M27] Izurieta, C., Rojas, G., and Griffith, I., “Preemptive management of model

driven technical debt for improving software quality,” in QoSA 2015, 2015.

[M28] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., Fedak,

V., and Shapochka, A., “A case study in locating the architectural roots of

technical debt,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, vol. 2, pp. 179–188, May 2015.

[M29] Kruchten, P., Nord, R., and Ozkaya, I., “Technical debt: From metaphor

to theory and practice,” Software, IEEE, vol. 29, pp. 18–21, Nov 2012.

[M30] Letouzey, J. and Ilkiewicz, M., “Managing technical debt with the sqale

method,” Software, IEEE, vol. 29, pp. 44–51, Nov 2012.

210



C.2 Selected Studies in Systematic Mapping

[M31] Letouzey, J.-L., “The sqale method for evaluating technical debt,” in Inter-

national Workshop on Managing Technical Debt (MTD), pp. 31–36, June 2012.

[M32] Li, Z., Liang, P., and Avgeriou, P., “Architectural technical debt identifi-

cation based on architecture decisions and change scenarios,” in Software Ar-

chitecture (WICSA), 2015 12th Working IEEE/IFIP Conference on, pp. 65–74,

May 2015.

[M33] Li, Z., Liang, P., and Avgeriou, P., “Chapter 9 - architectural debt manage-

ment in value-oriented architecting,” in Economics-Driven Software Architecture

(Mistrik, I., Bahsoon, R., Kazman, R., and Zhang, Y., eds.), pp. 183 –

204, Boston: Morgan Kaufmann, 2014.

[M34] Li, Z., Liang, P., Avgeriou, P., Guelfi, N., and Ampatzoglou, A., “An

empirical investigation of modularity metrics for indicating architectural techni-

cal debt,” in QoSA 2014, 2014.

[M35] Lim, E., Taksande, N., and Seaman, C., “A balancing act: What software

practitioners have to say about technical debt,” Software, IEEE, vol. 29, pp. 22–

27, Nov 2012.

[M36] Marinescu, R., “Assessing technical debt by identifying design flaws in soft-

ware systems,” IBM Journal of Research and Development, vol. 56, pp. 9:1–9:13,

Sept 2012.

[M37] Martini, A., Bosch, J., and Chaudron, M., “Architecture technical debt:

Understanding causes and a qualitative model,” in SEAA 2014, 2014.

[M38] Mayr, A., Plosch, R., and Korner, C., “A benchmarking-based model for

technical debt calculation,” in QSIC 2014, 2014.

[M39] Mendes, T., Almeida, D., Alves, N., Spnola, R., Novais, R., and Men-

dona, M., “Visminertd: An open source tool to support the monitoring of the

technical debt evolution using software visualization,” vol. 2, pp. 457–462, 2015.

[M40] Naedele, M., Chen, H.-M., Kazman, R., Cai, Y., Xiao, L., and Silva,

C. V., “Manufacturing execution systems: A vision for managing software de-

velopment,” Journal of Systems and Software, vol. 101, pp. 59 – 68, 2015.

[M41] Naedele, M., Kazman, R., and Cai, Y., “Making the case for a ”manufac-

turing execution system” for software development,” Commun. ACM, 2014.

211



C. STUDIES INCLUDED IN LITERATURE REVIEWS

[M42] Nord, R., Ozkaya, I., Kruchten, P., and Gonzalez-Rojas, M., “In search

of a metric for managing architectural technical debt,” in WICSA/ECSA, 2012.

[M43] Nugroho, A., Visser, J., and Kuipers, T., “An empirical model of techni-

cal debt and interest,” in International Workshop on Managing Technical Debt

(MTD), 2011.

[M44] Oliveira, F., Goldman, A., and Santos, V., “Managing technical debt in

software projects using scrum: An action research,” in Agile Conference (AG-

ILE), 2015, pp. 50–59, Aug 2015.

[M45] Power, K., “Understanding the impact of technical debt on the capacity and

velocity of teams and organizations: Viewing team and organization capacity as

a portfolio of real options,” in International Workshop on Managing Technical

Debt (MTD), 2013.

[M46] Ramasubbu, N. and Kemerer, C., “Towards a model for optimizing technical

debt in software products,” in International Workshop on Managing Technical

Debt (MTD), 2013.

[M47] Ramasubbu, N. and Kemerer, C., “Managing technical debt in enterprise

software packages,” Software Engineering, IEEE Transactions on, vol. 40,

pp. 758–772, Aug 2014.

[M48] Ramasubbu, N., Kemerer, C., and Woodard, C., “Managing technical

debt: Insights from recent empirical evidence,” Software, IEEE, vol. 32, pp. 22–

25, Mar 2015.

[M49] Reimanis, D., Izurieta, C., Luhr, R., Xiao, L., Cai, Y., and Rudy, G.,

“A replication case study to measure the architectural quality of a commercial

system,” in ESEM 2014, 2014.

[M50] Schmid, K., “On the limits of the technical debt metaphor some guidance on

going beyond,” in MTD workshop, 2013.

[M51] Schmid, K., “A formal approach to technical debt decision making,” in QoSA,

2013.

[M52] Schwanke, R., Xiao, L., and Cai, Y., “Measuring architecture quality by

structure plus history analysis,” in ICSE, 2013.

212



C.2 Selected Studies in Systematic Mapping

[M53] Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., and

Vetro, A., “Using technical debt data in decision making: Potential decision

approaches,” in MTD Workshop, 2012.

[M54] Shull, F., Falessi, D., Seaman, C., Diep, M., and Layman, L., “Technical

debt: Showing the way for better transfer of empirical results,” in Perspectives

on the Future of Software Engineering (Münch, J. and Schmid, K., eds.),

pp. 179–190, Springer Berlin Heidelberg, 2013.

[M55] Siebra, C., Cavalcanti, A., Silva, F., Santos, A., and Gouveia, T.,

“Applying metrics to identify and monitor technical debt items during software

evolution,” in ISSREW, 2014, pp. 92–95, Nov 2014.

[M56] Singh, V., Snipes, W., and Kraft, N. A., “A framework for estimating

interest on technical debt by monitoring developer activity related to code com-

prehension,” in International Workshop on Managing Technical Debt (MTD),

2014.

[M57] Skourletopoulos, G., Bahsoon, R., Mavromoustakis, C., Mastorakis,

G., and Pallis, E., “Predicting and quantifying the technical debt in cloud

software engineering,” in CAMAD, 2014, pp. 36–40, Dec 2014.

[M58] Skourletopoulos, G., Mavromoustakis, C. X., Mastorakis, G., Ro-

drigues, J. J. P. C., Chatzimisios, P., and Batalla, J. M., “A fluctuation-

based modelling approach to quantification of the technical debt on mobile cloud-

based service level,” in 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6,

Dec 2015.

[M59] Sneed, H., “Dealing with technical debt in agile development projects,” Lecture

Notes in Business Information Processing, 2014.

[M60] Yli-Huumo, J., Maglyas, A., and Smolander, K., “The sources and ap-

proaches to management of technical debt: A case study of two product lines

in a middle-size finnish software company,” Lecture Notes in Computer Science,

2014.

[M61] Yli-Huumo, J., Maglyas, A., and Smolander, K., “How do software devel-

opment teams manage technical debt? - an empirical study,” Journal of Systems

and Software, 2015.

213



C. STUDIES INCLUDED IN LITERATURE REVIEWS

[M62] Zazworka, N., Seaman, C., and Shull, F., “Prioritizing design debt invest-

ment opportunities,” in MTD workshop, 2011.

[M63] Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C.,

and Shull, F., “Comparing four approaches for technical debt identification,”

Software Quality Journal, vol. 22, no. 3, pp. 403–426, 2014.

214


	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Research Motivation
	1.2 Research Context
	1.3 Research Question
	1.4 Research Contributions
	1.4.1 Publications

	1.5 Research Methodology
	1.5.1 Research Methodologies and Methods
	1.5.2 Research Process

	1.6 Thesis Overview


	II Identification of how software internal quality increases the customer value
	2 How to Add Value from Software Architecture
	2.1 Introduction
	2.2 Background
	2.2.1 Architecting activities
	2.2.2 Value-Based Software Engineering

	2.3 Research Method
	2.3.1 Research questions
	2.3.2 Search strategy
	2.3.3 Study selection criteria
	2.3.3.1 Inclusion criteria
	2.3.3.2 Exclusion criteria
	2.3.3.3 Selection process

	2.3.4 Included and excluded studies
	2.3.5 Assessment of study quality
	2.3.6 Data extraction strategy
	2.3.7 Data synthesis process

	2.4 Results
	2.4.1 RQ1: What concepts are involved in the value creation in architecting activities?
	2.4.1.1 RQ1.1 In which architecting activities are value considerations taken into account?
	2.4.1.2 RQ1.2 What motivations and/or goals have driven the use value-based approaches in software architecting activities?
	2.4.1.3 RQ1.3 What architecting techniques are value driven, and how do they make use of value?
	2.4.1.4 RQ1 Conclusions

	2.4.2 RQ2: How do architecting activities create value?
	2.4.2.1 RQ2 Conclusions


	2.5 Conclusions
	2.6 Selected Publications

	3 Preliminary Case Study on Technical Debt Management
	3.1 Introduction
	3.2 Background
	3.3 Modeling Technical Debt Considering the Interest Probability
	3.4 Case Study Design and Planning
	3.4.1 Objectives
	3.4.2 Rationale
	3.4.3 Case and Subjects Selection
	3.4.4 Theoretical Frame of Reference
	3.4.5 Research Questions
	3.4.6 Methods, Data Collection, and Selection of Data
	3.4.7 Case Study Protocol
	3.4.8 Ethical Considerations

	3.5 Case Study Execution
	3.6 Findings
	3.6.1 RQ1: Does technical debt concept help to reason about the value of investing in flexibility?
	3.6.2 RQ2: What limits could be found in generalizing the propose presented in this chapter evaluating flexibility investments to any other project?

	3.7 Limitations
	3.8 Conclusions


	III Identification and definition of the elements that are required to create models that help make decisions in software evolution
	4 A Framework for Technical Debt Management
	4.1 Introduction
	4.2 Related Work
	4.3 Methodology and Research Process
	4.3.1 Research Questions
	4.3.2 Conduct Search
	4.3.3 Screening of Papers
	4.3.4 Snowballing
	4.3.5 Keywording
	4.3.6 Synthesis
	4.3.7 Mapping Process

	4.4 Elements of Technical Debt Management
	4.4.1 Elements
	4.4.1.1 E1 Technical debt items
	4.4.1.2 E2 Principal
	4.4.1.3 E3 Interest
	4.4.1.4 E4 Interest probability
	4.4.1.5 E5 Technical debt impact
	4.4.1.6 E6 Automated means
	4.4.1.7 E7 Expert opinion
	4.4.1.8 E8 Scenario analysis
	4.4.1.9 E9 Time-to-market
	4.4.1.10 E10 When to implement decisions
	4.4.1.11 E11 Technical debt evolution
	4.4.1.12 E12 Technical debt visualization

	4.4.2 Grouping of elements according to their use in technical debt management

	4.5 Technical Debt Management Elements from the Stakeholders' Points of View
	4.6 Retrospective and Discussion
	4.6.1 Identification and Definition of the Elements
	4.6.2 Stakeholders' Points of View with Regard to the Elements
	4.6.3 Baseline for a Framework
	4.6.4 Technical Debt Management Decision Making
	4.6.5 Implications for Research
	4.6.6 Implication for Practitioners

	4.7 Threats to Validity
	4.7.1 Bias in identifying articles
	4.7.2 Choosing study biases
	4.7.3 Obtaining accurate data bias

	4.8 Conclusions and Future Work
	4.9 Selected Publications


	IV Identification of tools and strategies that support the elements identified in Contribution 2 and the lacks in this support
	5 Tools and Strategies for Technical Debt Management
	5.1 Introduction
	5.2 Methodology
	5.2.1 Research questions

	5.3 Background and Related Work
	5.4 Tools and Strategies
	5.4.1 Analysis of Tools and Strategies from the Elements for Technical Debt Management Perspective
	5.4.1.1 E1 Technical debt items
	5.4.1.2 E2 Principal
	5.4.1.3 E3 Interest
	5.4.1.4 E4 Interest probability
	5.4.1.5 E5 Technical debt impact
	5.4.1.6 E6 Automated means
	5.4.1.7 E7 Expert opinion
	5.4.1.8 E8 Scenario analysis
	5.4.1.9 E9 Time-to-market
	5.4.1.10 E10 When to implement decisions
	5.4.1.11 E11 Technical debt evolution
	5.4.1.12 E12 Technical debt visualization


	5.5 Technical Debt Management in the Industrial Environment
	5.6 Findings
	5.7 Conclusion

	6 TEDMA Tool: A Tool for Technical Debt Management
	6.1 Introduction
	6.2 TEDMA Tool Description
	6.2.1 Overall View
	6.2.2 Obtaining information from projects
	6.2.3 Processing information from projects
	6.2.4 How TEDMA is built
	6.2.4.1 Data Layer
	6.2.4.2 Service Layer

	6.2.5 Integration of third-party tools
	6.2.6 TEDMA Tool Roadmap

	6.3 Related Work
	6.4 Discussion
	6.5 Conclusions


	V Identification of how software internal quality increases the customer value
	7 Decision-Making Support Model 
	7.1 Introduction
	7.2 Background
	7.2.1 Technical debt in the context of software evolution
	7.2.2 A model for studying the trade-off between time-to-market and product performance

	7.3 How to use Cohen's et al. model in software development for managing technical debt
	7.4 Case study design and planning
	7.4.1 Objectives
	7.4.2 Rationale
	7.4.3 Case and subject selection
	7.4.4 Theoretical frame of reference
	7.4.5 Methods, data collection, and selection of data
	7.4.6 Case study protocol
	7.4.7 Ethical considerations

	7.5 Case study execution
	7.5.1 Technical debt items indicators
	7.5.2 Principal indicators
	7.5.3 Interest and interest probability indicators
	7.5.4 Technical debt impact: introducing time-to-market 
	7.5.5 Scenarios to make decisions: rehearsing for time-to-market
	7.5.5.1 Scenario 1
	7.5.5.2 Scenario 2
	7.5.5.3 Scenario 3
	7.5.5.4 Scenario 4


	7.6 Findings
	7.6.1 About the Cohen et al.'s model
	7.6.2 Assumptions and approximations
	7.6.3 The nature of technical debt management
	7.6.4 The view of legacy code as product and as infrastructure
	7.6.5 The role of technical debt management approaching internal and external quality
	7.6.6 Costs and investments in software development
	7.6.7 Extending the model
	7.6.8 The need for the concept of technical debt points
	7.6.9 Size of releases
	7.6.10 Combination of anti-patterns

	7.7 Limitations
	7.8 Related Work
	7.9 Conclusions and future work


	VI Conclusion and Further Work
	8 Conclusions and Future Work
	8.1 Research contributions
	8.1.1 Identification of how software internal quality increases the customer value
	8.1.2 Identification and definition of the elements that are required to create models that help make decisions in software evolution
	8.1.3 Identification of tools and strategies that support the elements identified in Contribution 2 and the lacks in this support
	8.1.4 Definition of a model for making decisions on software evolution using the elements identified in Contribution 2 and that integrates tools and strategies identified in Contribution 3

	8.2 Future Work

	References
	Appendices
	A Data Extraction Form
	B Quality Questions
	C Studies Included in Literature Reviews
	C.1 Selected Studies in SLR
	C.2 Selected Studies in Systematic Mapping



