
IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020 10189

Continuous Delivery of Customized SaaS Edge
Applications in Highly Distributed IoT Systems

Ramón López-Viana, Jessica Díaz , Member, IEEE, Vicente Hernández Díaz , and José-Fernán Martínez

Abstract—Edge computing is a reality for the current IoT
systems that need fast processing and quick response time to
make real-time decisions and IoT systems without permanent
connectivity to the cloud (e.g., car manufacturing, precision agri-
culture, or cattle raising). Additionally, these industries are facing
the need for rapid and continuous innovation by accelerating the
delivery of over-the-air (OTA) software updates in edge devices.
DevOps promotes collaboration between development and oper-
ation teams and automation at all steps of software construction
to achieve continuous delivery (CD) of business value. Although
DevOps has demonstrated numerous successful cases in the Web
domain, in the IoT domain and, more specifically, at the edge,
there are few reported cases. This work presents a success case
of CD of customized software as a service software as a service
(SaaS) updates at the IoT Edge. This may enable new business
models at the IoT Edge. This article presents an architectural
model of a highly distributed (cloud and edge) IoT system and
a CD process flow for customized SaaS applications in edge
nodes. Both the architectural model and the CD process flow
are instantiated in a case study for precision agriculture.

Index Terms—Continuous delivery (CD), DevOps, edge com-
puting, IoT systems, software as a service (SaaS).

I. INTRODUCTION

INTERNET of Things is revolutionizing traditional busi-
nesses, such as precision agriculture, cattle raising, car

manufacturing, etc. IoT systems that support such revolution
are highly distributed, which often integrate cloud, edge, and
fog computing approaches depending on where intelligence
and processing capabilities are allocated. Initially, cloud com-
puting was the natural candidate to support the exponential
growth of data generated by thousands or even millions of
“things” [1], [2]. However, in some domains, these systems
also require fast processing and quick response time to make
real-time decisions [3], which is difficult due to cloud latency
or is not possible due to connectivity problems. To deal with
these challenges, edge computing brings the services and
utilities of cloud computing closer to the devices and, thus,

Manuscript received October 14, 2019; revised February 13, 2020 and June
18, 2020; accepted July 13, 2020. Date of publication July 16, 2020; date of
current version October 9, 2020. This work was supported in part by the
AFARCLOUD European Project (Aggregate Farming in the Cloud), the latter
supported in part by the ECSEL JU under Grant 783221-AFarCloud-H2020-
ECSEL-2017-2, and in part by the Spanish Ministry of Science, Innovation
and Universities under Grant PCI2018-092965; and in part by the crowdsaving
under Grant TIN2016-79726-C2-1-R. (Corresponding author: Jessica Díaz.)

The authors are with the Universidad Politécnica de Madrid, 28031 Madrid,
Spain (e-mail: ramon.lopez.viana@alumnos.upm.es; yesica.diaz@upm.es;
vicente.hernandez@upm.es; jf.martinez@upm.es).

Digital Object Identifier 10.1109/JIOT.2020.3009633

to end users [4] (edge intelligence). Edge computing pro-
vides fast processing, quick application response time, and
low latency to delay-sensitive applications [4]. Furthermore,
it does not require permanent connectivity to the cloud [5].

Unlike the cloud paradigm in which only a few players
gained the market share, edge computing is generating oppor-
tunities for a wide variety of industries and is having an
important economic and societal impact [3]. In the same way,
as software as a service (SaaS) is the cloud business and the
operating,1 edge computing may adopt this successful model
to deliver managed applications by third-party vendors to their
users. In this sense, edge computing can be considered a way
to extend cloud as hybrid clouds in which public clouds and
on-premise infrastructure work together.

One of the keys to the success of the SaaS model is the abil-
ity to frequently deliver the value, much reliably and quickly,
and DevOps promotes this. DevOps can be defined as an
organizational and cultural approach to improve and accel-
erate the delivery of the business value by making dev and
ops teams’ collaboration effective and automating all steps of
software construction [6]. DevOps is usually adopted by Web
companies [7]; however, for IoT and embedded systems, the
domain is harder [8]. The IoT industry is facing this chal-
lenge, specifically the need to deliver innovation fast, which
means decrease time to market and deliver software updates to
edge devices continuously [9]. A lot of IoT companies—e.g.,
Bosch Software Innovations and the Toyota Research Institute,
among others—are approaching how to deliver over-the-
air (OTA) software updates in edge devices, which is a starting
point for an automated and continuous delivery (CD), and
thus, continuous experimentation. To deal with these chal-
lenges, leading software cloud providers, such as Microsoft
Azure and Amazon Web Services, are facing the adoption of
these DevOps practices and principles at the edge. However,
as this industry grows, more and more complex issues emerge,
such as how to deliver large-scale software updates to these
edge devices—e.g., the case of car manufacturing and the
autonomous vehicle [9]—and how to customize SaaS for dif-
ferent users of these edge devices (e.g., based on different
levels of subscription or preconfigured user preferences).

This work faces the challenge of applying CD of customized
SaaS updates at the IoT Edge. In this article, CD at the IoT
edge means that, on top of having automated building and
testing of software modules for edge devices (versus field

1Source: Gartner (April 2019) https://www.gartner.com/en/newsroom/press-
releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g.

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6738-9370
https://orcid.org/0000-0002-7793-6232
https://orcid.org/0000-0002-7635-4564

10190 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

devices such as sensors), we also have automated the release
process and can deploy these modules at any point of time
by clicking on a button. To that end, this article presents an
architectural model of a highly distributed (cloud and edge)
IoT system and a CD process flow for customized SaaS appli-
cations in edge nodes. In this way, software vendors can offer
their own software services on demand (SaaS) through cloud
providers, and both installations and configurations of soft-
ware at the edge are managed through a set of pipelines we
have defined.

Both the architectural model and the CD flow are instanti-
ated in a case study for precision agriculture in which various
technologies are integrated: low-power devices, LoRaWAN
platform, ARM-based edge devices, AMD-based edge devices,
containers, Node-RED, and Azure cloud services, such as
Azure DevOps, Azure IoT, Azure IoT Edge, device provision-
ing, functions, queues, storage, and Power BI.

This article is structured as follows. Section II introduces the
concepts of edge computing and DevOps. Section III describes
related work. Section IV presents an architecture model for
highly distributed IoT systems and a CD process flow for
customized SaaS applications in edge nodes. Its instantia-
tion is described through a case study in Section V. Finally,
conclusions are described in Section VI.

II. EDGE COMPUTING AND DEVOPS

Under the umbrella of edge computing, there is a plethora of
paradigms related to the processing of data out of the cloud,
such as fog computing and mobile-edge computing, that brings
some of the processing capabilities previously provided by the
cloud closer to the data sources [10], [11]. This new paradigm
is the response to the emerging problems related to the adop-
tion of IoT. Some of these problems are the increasing number
of IoT devices, the bandwidth required to transmit the gener-
ated data, the network latency, the network availability, and
the security threats associated with the data travelling from
the IoT devices to the cloud. There are many platforms avail-
able for building edge solutions [12], both commercial (AWS
Greengrass, Microsoft Azure IoT Edge, etc.) and opensource
(Fiware Fogflow, Eclipse Kura, etc.). The main contenders are
AWS Greengrass and Microsoft Azure IoT as stated in the
2018 Gartner Magic Quadrant for IaaS.2

As the IoT edge industry grows, it demands fast innovation
and requires the adoption of new organizational capabili-
ties to develop, release, and learn from software in rapid
cycles (rapid software development [13]). The European clus-
ter SE4SA emphasizes that “managing the development com-
plexity and risks in both design and runtime phases is
considered crucial, in order to increase QoS, reduce the time
needed to move new releases in the operation environment
and enable the constitution of new and more effective coop-
eration processes between the development and the operation
team” [14]. This assertion was made in 2016 in a context
defined to identify new challenges of software engineering for
smart systems and applications, specifically in domains such
as IoT, cyber–physical systems (CPSs), cloud, and big data.

2Magic Quadrant for Cloud Infrastructure as a Service, Worldwide.

Silos between development and IT operation, which cur-
rently exist in most technology companies, make early and
frequent releases in production more complex, which means
less business innovation and lower capability to compete
in the market [14]. DevOps is an emerging approach that
promotes collaboration to break silos and automation for
fast speed in releases and quick response time to customer
demands [6]. The automation of the building, testing, and
deploying processes, enables good practices such as contin-
uous integration (CI) and CD, and thus, speeds release up.
The CD of a SaaS model based on preconfigured customer
preferences may enable new business models at the IoT edge.
However, the adoption of such a model at the edge requires
to deal with some challenges [8], [9].

1) Customization: More and more customers require to
adopt IoT solutions to their needs, being necessary the
ability to customize and release software updates at any
time by automating software integration and delivery
processes.

2) Connectivity: The Internet connectivity can vary depend-
ing on the environment where the solution is deployed.
Internet connectivity is not the same in all countries or
in all areas in the same country. Even when the avail-
able bandwidth or the network quality is poor, the edge
devices must be able to receive updates and provide most
of the expected services.

3) Resilience: The downtime due to updates and after errors
should be as short as possible, by implementing the
required procedures to recover the status of the system.

III. RELATED WORK

This section reports the related work about CD and
other (DevOps) practices concerning the automation of soft-
ware delivery in the IoT. As the application of these practices
to IoT is relatively new and recently supported by IT compa-
nies, few related works were found. Specifically, few imple-
mentations or successful cases and experiences have been
reported. Some researches try to explain this fact. Hence,
Lwakatare et al. [8] and Mattos et al. [9] applied system-
atic literature review and multiple-case study, respectively, to
identify the main challenges to adopt DevOps to the embed-
ded systems domain in contrast to its widespread use in the
Web domain.

The few IoT use cases implementing DevOps that were
found [15]–[20] were analyzed with the aim of identi-
fying if CD was applied for edge devices and if the
above-mentioned challenges were addressed. Karapantelakis
et al. [15] described a system for automated lifecycle man-
agement of IoT applications requiring cellular network access.
This system supports DevOps by automating the deployment
pipeline of IoT applications, i.e., the system automates allo-
cation and deallocation of network and cloud resources based
on the information provided by a monitoring infrastructure—
network, CPU, and memory status. Bae et al. [16] described
the automation of the CI and the deployment of IoT cloud
services using containers. Syed and Fernandez [17] described
a cloud ecosystem to support both IoT—fog computing—and

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ-VIANA et al.: CONTINUOUS DELIVERY OF CUSTOMIZED SaaS EDGE APPLICATIONS IN HIGHLY DISTRIBUTED IoT SYSTEMS 10191

DevOps—automated management of infrastructure—but not
explicitly together. All those works aim to automate the deliv-
ery of IoT applications, but none of them focuses on edge
devices.

Moore et al. [18] presented a system to collect and examine
the use of stored solar energy within a home and an electric
vehicle. This work focuses on applying containerization tech-
nologies to build systems that scale from one user to many, i.e.,
deploying software in a scalable way, ostensibly, on devices.
However, as this is a short article, neither CI nor delivery
workflows are described.

Bae et al. [16] described the CI and automated deployment
of a microservice-based IoT cloud solution for a smart lab
energy management. Recently, Banijamali et al. [19] described
a specific solution for OTA CD of software updates in the
automotive domain. Bae et al. and Banijamali et al. show the
growing concern in the IoT community about CI/CD and both
are similar to the contribution presented here, i.e., automated
delivery of software. However, these papers do not describe
an architectural model and a CD process flow for a generic
IoT highly distributed solution (cloud + edge) as we do.
Banijamali et al. [19] described the CD of software updates in
an automotive cloud platform but it does not describe the auto-
mated deployment in the in-vehicle platform. We explicitly
describe in detail the services and the process flow for deploy-
ing new software in edge devices. Bae et al. [16] described the
automated deployment of containers on Raspberry Pi devices.
However, none of them address the above-mentioned chal-
lenges that edge faces as this article does: 1) the customization
of SaaS at the edge for readily deploying new building blocks
for providing new capabilities on farmer’s demand, which may
enable new business models at the IoT Edge; 2) connectivity
restrictions typical of the precision agriculture domain; and
3) resilience in terms of low downtime and status recovery
(prevent message loss).

IV. ARCHITECTURAL MODEL AND CD FLOW FOR

CUSTOMIZED SAAS APPLICATIONS IN EDGE DEVICES

The architectural model and CD flow for highly distributed
IoT systems we present aims: 1) to deliver customizable
IoT solutions to user requirements based on the concept of
SaaS; 2) to provide CD of business value through the auto-
mated deployment of software updates in edge devices based
on preconfigured delivery policies; 3) to implement most of the
intelligence required by the system without requiring a con-
stant connection to the Internet (edge computing); and 4) to
provide the required execution environment in edge devices to
deliver and execute resilient services.

Fig. 1 shows a three-tier architecture model for highly
distributed systems: 1) the cloud layer is composed by
IoT-related cloud services, such as ingestion, hot and batch
processing, storing, visualization, etc., as well as DevOps-
related services and tools for automating the building and
deployment of software updates both in the cloud and the
edge; 2) the edge layer is composed of edge devices that pro-
vide the capability of processing data, managing IoT devices,
and communicating devices with the cloud layer through
a runtime; and 3) the sensor network layer is composed of IoT

Fig. 1. Three-tier architectural model for highly distributed IoT systems.

Fig. 2. Edge device runtime.

devices, which are responsible for sensing and/or actuating
the surrounding environment. In most cases, these elements
do not have processing capabilities and often may require
a gateway to translate the communication protocol from IoT
devices to edge devices. Especially, solutions that require
energy efficiency also require low power or ultralow-power
wireless sensor networks (WSNs [19]) for wide areas through
the use of networking technologies, such as Sigfox, LoRa,
and NB-IoT. This article focuses on the description of the
first two top layers.

A. Edge Layer

Edge devices require a collection of services to run code at
the edge (also known as modules), receive modules to run at
the edge, manage and monitor the health of the device, and
enable security and communication. This collection of services
and programs that turns a device into an IoT edge device
is commonly named an IoT edge runtime. It is especially
important for this article that the runtime supports software
updates to leverage a SaaS model using a DevOps lifecycle.
Fig. 2 shows the services that an edge device runtime must
provide the following.

1) The management and monitoring services monitor the
status of the devices, provide metrics about devices’

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

10192 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

Fig. 3. CD process flow: cloud components and tools.

behavior and performance, and apply configuration
changes to the devices.

2) The security service guarantees a trust relationship
between the edge devices and the cloud platform by
providing the required components for ensuring the
security of the communications, the devices’ identity,
and the provenance of the modules to be deployed on
the edge devices. This may require using the hardware
security model (HSM), signature access service (SAS),
or digital certificates and the required protocols.

3) The device provisioning service automatically enrolls
edge devices without requiring user intervention, which
is crucial due to the number and heterogeneity of the
devices involved in this type of systems. So, the device
must be preconfigured with the required information.

4) The container service enables the deployment of the
modules that implement the business logic to be executed
at the edge. Containerization provides a way to package
and isolate the modules that implement the logic in
the edge with all their dependencies. Each module has
a defined responsibility that can be stopped, started, or
modified as required independently of other modules.

5) The middleware enables the communication between
modules, a device to cloud, and cloud to device. Edge
devices should be able to work disconnected from
the cloud (e.g., in areas with connectivity restrictions).
Thus, it is necessary to consider protocols, like MQTT,
that support devices can be disconnected most of the
time, event-driven behavior, and the capability of storing
events until these are processed.

B. Cloud Layer

The cloud layer provides, additional to ingestion, pro-
cessing, and storing services, the required infrastructure to
implement IoT DevOps lifecycles. Thus, it supports CI and
deployment, with special emphasis devices’ scalability, con-
nectivity, and platform heterogeneity, typical of highly dis-
tributed IoT systems. Fig. 3 shows the components and tools
that support the DevOps lifecycle and their relation.

1) Version control systems manage code changes and con-
figuration management practices.

2) Development environments ensure that the code
(packaged as modules) works in production-like
environments.

3) CI/CD servers mainly implement build, test, and release
pipelines for committed code changes and report the
results.

4) Build agents are used during build pipelines to compile,
test, and create container images of modules.

5) Container registries store modules images that are the
result of build/test pipelines and provide a way to access
the modules images as part of a distribution/release.

6) Testing environments ensure quality, performance, avail-
ability, security, etc., of code through acceptance tests.

7) Release agents are used during release pipelines to
deploy container images into edge devices. The cloud
platform must support build/release agents for different
devices’ platforms that may make up an IoT system. If
the cloud is not able to host the agent platform of a tar-
get device, then the cloud must provide a mechanism to
create and connect external agents in the pipeline. For
example, the cloud provider may only host agents for
AMD (Ubuntu or Windows), whereas the target device
platform is ARM. In this case, the cloud provider has to
offer a mechanism to connect with a remote agent for
ARM to be executed during the build/release pipeline.

8) Deployment managers apply delivery policies for
deploying new modules into edge devices. These poli-
cies are described in a deployment descriptor and allow
release managers to define the policies to customize
the services to be deployed in a device. These policies
include: a) the conditions that an edge device must meet
to be a target of a new deployment; b) the device target
properties to check the deployment status; c) the mod-
ules (version, configuration, etc.) to be deployed on the
edge devices; d) the communication definition for both
module-to-module and module-to-cloud and the reten-
tion time applied to the messages processed in the device
that enables to recover the state of the service after
a restart or when the device recovers the online con-
dition after a disconnection from the cloud; and e) the
metrics to monitor the edge device.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ-VIANA et al.: CONTINUOUS DELIVERY OF CUSTOMIZED SaaS EDGE APPLICATIONS IN HIGHLY DISTRIBUTED IoT SYSTEMS 10193

Fig. 4. CD process flow for customized SaaS applications at the edge.

9) Device managers supervise the information and status of
edge devices. A device registry enables automatic device
provisioning (i.e., negotiation of device enrollment and
identification) and provides a way to identify devices as
targets of deployments through tags.

10) Monitoring managers monitor edge devices as well as
the deployment process to guarantee the expected result
based on preconfigured metrics.

C. CD Flow for Customized SaaS in Edge Devices

This section defines a CD process flow that implements the
integration and delivery of customized SaaS applications at
the edge. Fig. 4 shows this flow. Developers build and test the
modules’ code locally and manage code changes into a version
control system (see the column named development in Fig. 4).
Then, code changes are integrated with the existing modules
in a CI server. The CI server can be configured to pull, build,
and test the code every time a change is committed (see the
column named integration in Fig. 4). This building process is
performed by the build agents, which are based on the charac-
teristics of the target edge devices. If the result is successful,
the generated artifacts are published in a container registry.
Finally, the build pipeline reports the result to the interested
parties (e.g., release managers).

Once the build pipeline ends successfully, the release agent
checks if the delivery of a release is required, e.g., if it
is required to deploy modules updates into production or
production-like edge devices based on the content of a deploy-
ment descriptor (see the column named deployment in Fig. 4).
The release pipeline can be customized based on the target
device platform, the preconfigured preferences in the deploy-
ment descriptor, and the status of the edge devices (e.g.,
a device temporarily unavailable). The agent that executes
the release pipeline requests the edge devices to apply the
changes when these are available. Finally, the edge devices
can be monitored for obtaining information about their status
and the status of the modules deployed into them to apply
corrective actions if errors are detected. On the contrary, if

a deployment is successful, the information regarding the new
status is stored in the device registry for future processing.

This CD process flow supports the customization of SaaS
applications in the edge through an additional mechanism that
allows release managers to tag the edge devices. Then, the
release manager can configure both the release pipeline and
the deployment descriptor to specify which modules have to
be deployed in which edge devices.

V. CASE STUDY

The case study in which the architectural model and the CD
process flow described in the previous section is instantiated
is a prototype for a precision agriculture. Precision agriculture
is a challenging domain due to the lack of a public com-
munications network in some areas in the world, low-energy
consumption constraints for deployed devices, and the hetero-
geneity of environmental conditions that impact crop raising.
The case study focuses on the monitoring and management
of crop fields in isolated areas and the main challenge to
be addressed is to provide a customized solution according
to farmers’ requirements following a SaaS model. This case
study allows us to validate if the architectural model and the
CD flow satisfy the requirements to support the customization
of SaaS applications for precision agriculture in isolated areas.

A. Technical Requirements

The solution for this prototype should be flexible enough to
adapt to farmers’ requirements’ changes in the shortest pos-
sible time. Whenever a farmer switches the crop type, new
software may be deployed in the edge devices (if the necessary
sensors and actuators exist). Next, the technical requirements
that have been used for validating the prototype are described
as follows.

1) To provide a SaaS model in which new software mod-
ules can be added, increasing the catalog of services
available for their deployment, and thus, increasing the
value of the solution.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

10194 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

Fig. 5. Architecture deployment for a precision agriculture solution.

2) To update modules and deploy new ones automati-
cally, without a disruptive effect on the operation (zero
downtime).

3) To minimize the bandwidth required for a service update
or upgrade.

4) To implement most of the intelligence required by the
system without requiring a permanent connection to the
cloud, thus optimizing the bandwidth consumption.

5) To supply advanced processing capabilities using self-
managed cloud services (ingestion, batch processing,
and visualization).

The research question that this case study is meant to answer
is: do the architectural model and the CD process flow we
defined, meet the requirements here described? To that end,
the solution needs to consider at least the following elements:
1) the IoT devices to be deployed on the crop field; 2) the
WSN to support the communication of the IoT devices; 3) the
edge devices and the modules for processing the IoT device
data; 4) the cloud services to manage and monitor the solution;
and 5) the cloud services required for provisioning the SaaS
model and the CD process flow.

The description of the case study focuses on the edge
devices and the services that are needed to support the auto-
matic deployment of customized SaaS applications at the
edge, although a summary of other required elements is
described too.

B. Overall Architecture of the Precision Agriculture
Prototype

Fig. 5 shows the architecture of the solution. The IoT
devices are deployed in the farmer’s facilities or crop fields
for sensing and actuating on the surrounding environment.
Two prototypes of IoT devices have been built using a cheap
device such as the ESP32 with a LoRa communication
module and a set of sensors (for a detailed description,
see http://github.com/rlopezv/aaas/aaas-device-esp32). These

Fig. 6. IoT device prototypes.

prototypes are depicted in Fig. 6. The one on the left works as
a weather station and the other on the right works as a plant
monitoring station.

These devices have been programmed using the Arduino
framework and the bidirectional communication has been
achieved by piggybacking the LoRa ACK messages sent by
the gateway. The LoRa server is a specialized IoT device
that supports the use of LoRa communications. It is com-
posed of a LoRa gateway and a LoRa app server, which are
responsible for the communication between the IoT devices
and the edge devices. Among the communication class types
available for LoRa communications (A, B, and C—see sec-
tion LoRaWAN MAC layer in [21]), the selected one has
been A, which supports bidirectional communication between
a device and a gateway with the lowest power requirements,
very important in a context like the one selected. Nonetheless,
the drawback of communication class type A is that the down-
link communication from the gateway can only be done shortly
after the end device has sent an uplink transmission. For
enrolling the IoT devices, the selected mechanism has been
OTA activation (OTAA), instead of activation by personal-
ization (ABAP), which provides a more secure way when
establishing the connection between the gateway and the IoT
device since it requires to perform a join-procedure with the
gateway, during which a dynamic DevAddr is assigned and
security keys are negotiated with the device. Both OTAA

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ-VIANA et al.: CONTINUOUS DELIVERY OF CUSTOMIZED SaaS EDGE APPLICATIONS IN HIGHLY DISTRIBUTED IoT SYSTEMS 10195

Fig. 7. Architecture design of edge devices.

and ABAP are technological solutions that provide means
for deploying and undeploying software modules in wire-
lessly connected devices. The LoRa server is composed
of the RAK831 Lora radio front-end module from RAK
Wireless [22] running on a Raspberry Pi 3B with the open-
source loraserver.io [23] platform installed that provides all
the required services in a LoRaWAN network.

The edge devices (see Fig. 5) are deployed in the farmer’s
facilities and host the runtime described in Fig. 2 (see
Section IV). In this prototype, we selected the Azure Edge run-
time environment [24], which contains the software services
that turn a computing device into an edge device using
Microsoft Azure platform. The edge devices execute the mod-
ules to provide the services selected by the farmers on this
runtime. The runtime also enables IoT edge devices to receive
modules to be deployed or updated and executed at the edge
as well as to communicate the results. The edge devices can
be any kind of device able to run the Azure Edge runtime
environment. For this prototype, we used a Raspberry Pi 3B
with Raspbian Stretch and a virtualized AMD64.

Finally, the cloud platform (see Fig. 5) is mainly respon-
sible for the management of the infrastructure required for
the proposed solution that supports the required functionalities
that guarantee the correct application of the CI/CD practices
in order to provide a service based on the SaaS model.

The following sections describe in detail the architecture of
the edge devices, the cloud services, and the CD flow.

C. Architecture Design of Edge Devices

Fig. 7 shows the most relevant components deployed and
installed in the edge devices of the prototype. We selected the
Azure SDK for Node.js, which fits well with a constrained
device such as the Raspberry Pi and developed several mod-
ules for processing the messages from both the devices and the
cloud. Each device offers different services based on the mod-
ules that are selected during the deployment. Since the same

SDK has been used for developing the modules, the images to
be deployed on the devices share some resources. This reduces
the image’s size because the container engine can detect the
shared resources and reuse them without downloading them
again. These modules are as follows.

1) Message Dispatcher Module: This module processes
the messages received from the LoRa gateway by the
integration module. It stores and routes the received mes-
sage to a queue for further processing in the configured
modules.

2) Plant Module: This is a basic module that reports to
the cloud the last available measure from a plant for
a configured period, by default every 15 min.

3) Plant Premium Module: This module is an alternative to
the previous one. It continuously notifies the measures
and applies a simple algorithm to notify the irrigation
requirements depending on the defined properties.

4) Weather Module: This is a basic module that reports
to the cloud the last measure available from a weather
station for a configured period, by default every 15 min.

5) Weather Premium Module: This module is an alternative
to the previous one. It continuously notifies weather-
related measurements and applies a simple algorithm to
foresee weather changes.

6) Status Module: This module processes the status mes-
sages received from the IoT edge devices concerning
the sensors’ status. In addition to these modules, two
modules have been included without using the Azure
SDK.

7) Node-RED Module: This module creates a Node-
RED [25] engine that implements some customized
flows to communicate with the LoRa gateway
and generates some dashboards based on the
data received from the cloud and the IoT devices
(see https://github.com/rlopezv/aaas/tree/master/aaas-
edge-nodered-module). Although the LoRa gateway
supports several protocols, such as MQTT, HTTP,

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

10196 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

Fig. 8. Communication between the cloud layer and the edge layer to enable
the automatic deployment of modules into edge devices.

and gRPC, the selected one for this case study has
been MQTT, which allows defining the QoS to ensure
the delivery of the messages in a simple way and is
supported by both the edge device and the Node-RED
framework.

8) Persistence Module: This module is based on the image
provided by PostgreSQL that is used for storing the
data received from the IoT devices and the cloud for
further processing, such as the dashboard described
previously. Since one of the objectives was to pro-
vide a SaaS service based on the farmer’s selection,
two service models were defined: a) a premium model,
which includes the common modules and those named
premium (plant and weather premium modules) and
b) a basic model, which includes the common modules
and the standard modules (weather and plant modules).

Finally, the services for provisioning, management, and
communication described in Section IV are provided by the
edge agent and the edge runtime which are part of the Azure
IoT Edge runtime.

D. Cloud Services

The release of the modules to be deployed on the edge
devices is automatically managed by the Azure IoT hub (see
Fig. 8). The Azure IoT hub is the main service for connect-
ing edge devices and the cloud. The main service it provides
for this case study is the automatic deployment service (see
Fig. 8) that automates deployments in a secure way and allows
release engineers to define a set of conditions that devices
must meet to receive the modules. In this case, the configu-
ration of the deployments is based on a tag defined by the
edge devices that identifies the service level, premium, or
basic. Both conditions and modules to be deployed are spec-
ified in the deployment descriptor. This way, including a new
module or changing a deployed one only requires modifying
the deployment descriptor to configure the release. Once the
device is enrolled, the Azure IoT hub deploys the modules in
the container engine installed on the device.

Additionally, the device provisioning service (see Fig. 8) has
been used since it supports zero-touch, just-in-time device
provisioning to the right Azure IoT hub without requiring
human intervention, enabling customers to provision devices
in a secure and scalable way. Although this can be done using

both X.509 and TPM-based identities, we used symmetric keys
for prototyping purposes. It also allows release engineers to
tag the devices for management and provides a way to moni-
tor and configure the devices individually, which is used when
selecting the modules to be deployed into the device.

The modules to be deployed in the edge devices are defined
and configured in the deployment descriptor for the defined
SaaS models (see Section IV). This file contains the following.

1) The Modules to be Deployed Into the Device: It includes
the container image hosted in a container registry, such
as Docker Hub or Azure Container Registry, along with
the required credentials and the instructions for creating
and managing every module. Some of the properties are
related to the edge runtime environment and others are
related to the customization of the docker image that
contains the module.

2) The Routes for Communicating the Modules Among
Them or With the Cloud: Their behavior is similar to
a queue, allowing to define multiple routes for the same
deployment. The retention policy applied for these mes-
sages can also be defined so that the messages cannot
be lost whenever a module restarts or reconnects to the
cloud platform.

3) The Desired Properties for Each Module Deployed in
the IoT Edge Device: These properties are reported in
the module twin and can be used for configuring and
monitoring the module in the device.

Code 1 shows an excerpt of the deployment descriptor used
for the premium service (in bold the most relevant elements).

E. Azure DevOps

The CD process flow described in Section IV-C is instanti-
ated using the Azure DevOps platform. It requires connecting
to any source control, such as GitHub, and can release
changes continuously to edge devices. The created pipelines
are based on Azure IoT Edge for Azure Pipelines exten-
sion that allows to setup CI/CD pipelines for edge devices
on Azure DevOps. It provides “build” and “push” tasks for
CI and a “deploy to IoT edge devices” task for CD. The
pipelines extract the source code from a GitHub repository
(http.//github.com/rlopezv/aaas-edge-modules), build the mod-
ule images, and publish them to a container registry that
hosts the images to be deployed in the edge devices (see
Code 2). Finally, the deployment in the edge devices has been
automatized with the IoT Edge automatic deployment service
described previously.

Since one of the target platforms is ARM and Azure
DevOps only provides hosted agents for amd64 and
windows-amd64, a remote agent for building the modules
hosted in a Raspberry Pi was created and configured (see
https://github.com/rlopezv/aaas/aaa-azure). The agent executes
the tasks in the hosted remote ARM agent, which has the
characteristics described in Code 3.

Finally, a release pipeline for automatically deploying the
modules in edge devices was defined (see Code 4). This
pipeline mimics the functionality of the IoT hub deployment
service looking for target devices and deploying the modules

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ-VIANA et al.: CONTINUOUS DELIVERY OF CUSTOMIZED SaaS EDGE APPLICATIONS IN HIGHLY DISTRIBUTED IoT SYSTEMS 10197

Code 1 Deployment Descriptor in JSON
“id”: “aaas_premium_service,”
“schemaVersion”: null,
“labels”: {

“service”: “premium”
},
“content”: {

“modulesContent”: {
[. . .]

“postgres”: {
“settings”: {

“image”: “postgres:9.6,”
“createOptions”: “{ HIDDEN }”

},
[. . .]

“messagedispatchermodule”: {
“settings”: {

“image”: “containerregistry.azurecr.io/ messagedispatcher
module:latest,”

“createOptions”: “{ HIDDEN }”
},

“type”: “docker,”
“status”: “running,”
“restartPolicy”: “always,”
“version”: “1.0”

},
[. . .]
“premiumweathermodule ”: {

“settings”: {
“image”: “containerregistry.azurecr.io/ premiumweather

module:latest,”
“createOptions”: “{ HIDDEN }”

},
“type”: “docker,”
“status”: “running,”
“restartPolicy”: “always,”
“version”: “1.0”

},
[. . .]

“$edgeHub”: {
“properties.desired”: {

“routes”: {
“mesageDispatcherModuleToPremiumWeatherModule”: “FROM

/messages/modules/messagedispatchermodule/outputs/weather INTO
BrokeredEndpoint(\“/modules/premiumweathermodule/inputs/data\”),”
[. . .]

“targetCondition”: “service =‘premium’,”
[. . .]

Code 2 CI Pipeline Description in YAML
pool:

name: ARM
steps:
- task: AzureIoTEdge@2

displayName: ‘Azure IoT Edge - Build module images’
inputs:

defaultPlatform: arm32v7
- task: AzureIoTEdge@2

displayName: ‘Azure IoT Edge - Push module images’
inputs:

action: ‘Push module images’
azureSubscriptionEndpoint: ‘HIDDEN’
azureContainerRegistry: ‘{HIDDEN}’
defaultPlatform: arm32v7

based on the preconfigured target conditions and using
a deployment descriptor like the one described previously.

F. Results & Lessons learnt

This section includes the aggregated results of executing
the release pipeline on the agriculture prototype for a first
deployment of all modules and for a second deployment

Code 3 ARM Agent Properties
Agent.Name
rpi-agent
Agent.Version
2.153.2
_
/home/pi/devops/bin/Agent.Listener
Agent.ComputerName
rpi-azure-basic
Agent.HomeDirectory
/home/pi/devops
Agent.OS
Linux
Agent.OSArchitecture
ARM

Code 4 CD Pipeline Description in YAML
pool:

name: ARM
steps:
- task: AzureIoTEdge@2

displayName: ‘Azure IoT Edge - Generate deployment manifest’
inputs:

action: ‘Generate deployment manifest’
defaultPlatform: arm32v7

steps:
- task: AzureIoTEdge@2

displayName: ‘Azure IoT Edge - Deploy to IoT Edge devices’
inputs:

action: ‘Deploy to IoT Edge devices’
azureSubscription: ‘HIDDEN’
iothubname: ‘aaas-iothub’
deviceOption: ‘Multiple Devices’
targetcondition: ‘service =“premium”’

TABLE I
CI PIPELINE TIMES

of a two-modules update. The steps to be executed are:
1) a release manager executes the build pipeline; 2) the build
process is executed in an ARM agent node; 3) the generated
images of the modules are pushed in an Azure container reg-
istry; 4) an edge device is associated with an Azure IoT hub;
5) the IoT hub pulls the images of the modules and automati-
cally deploys the modules in the edge device as specified in the
deployment descriptor. Next, two modules are updated (code
is changed), so the following steps are executed: 6) the build
pipeline is automatically executed and the new version for the
modules images are uploaded to the container registry; 7) the
IoT hub pulls the images of the modules that have changed and
automatically deploys and replaces the modules with the new
versions; and 8) the new modules start working by retrieving
pending messages from the queue.

The collected performance data are about CI pipeline
execution time, module image size, and deployment and start-
ing/restarting time. Hence, Table I shows execution time for
the CI pipelines, specifically the first time that the pipeline is
executed, and subsequent executions after updates. Although
the CI pipeline requires some time to detect the available
agents, the pipeline is almost instantaneous. The first execution
of the CI pipeline requires much more time than later execu-
tions because the first execution populates a cache used for

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

10198 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

TABLE II
MODULES IMAGE SIZE & START/RESTART TIMES

TABLE III
IMAGES LAYERS

building the module images. This cache stores images com-
posed of layers. As the modules share many layers among
them, the process of building later images is quite much faster
due to the use of this cache.

Table II shows the size of modules deployed in the edge
devices and the time for starting them up (the first time) and
for restarting the modules after an update which is almost
instantaneous. During the first deployment, the most demand-
ing modules were those that are not developed using the Azure
SDK (i.e., the Node-RED and Postgres modules). Their images
were also the largest and the most complex, although response
times of almost all modules were quite fast, as Table II shows.

Table III shows the pieces of codes (layers) that make up
a module and the layers that a module shares with other mod-
ules. In an upgrade, not all the layers are updated. The last
columns show the number of layers to be updated and the
size of these noncached layers, and thus, the kb to be deployed
due to an upgrade of that module. The weathermodule and the
Node-RED modules were changed, thus only four layers were
built, cached, and then deployed. Hence, the time required is
shorter since only the layers not previously cached are rebuilt,
which speeds up the integration and the delivery processes.

It can be concluded that the prototype for precision agri-
culture based on the architecture model and the CD process
flow here described show the feasibility of releasing resilient
software updates at any time, in a readily way, fostering
the modernization of that economical sector. The case study
showed changes (code updates, shutdowns, and restarts) at
the edge without affecting other services and without farmer’s
participation. Moreover, due to the selected protocol for com-
municating the LoRa gateway and the edge device, as well as
the retention policy defined in the edge device, no messages
were lost during the tests, even when connectivity outages
were forced.

G. Limitations

CD in the IoT edge shows some limitations regarding
testing. Testing is a critical part of the CD pipelines, but
edge poses a significant challenge as it sounds unlikely to

have a staging environment (i.e., a second farm). Replicating
production-like environments is not an easy and cheap task in
edge computing, even in certain Web domains that depend on
large on-premise infrastructure. Some solutions could address
the configuration of CD pipelines to deploy in some segments
of the production environment using some well-known deploy-
ment patterns, such as canary releasing, feature switches or
feature toggling, dark feature, and A/B testing. More case stud-
ies are necessary to evaluate the feasibility and effectiveness
of these patterns in the edge.

The devices used in the above-described prototype have
been selected considering not only they meet the required
capabilities but also their low cost. Thus, the deployment of
the hardware infrastructure of this approach could be afford-
able for farmers or for farming solution providers, who could
even plan to hire such infrastructure to farmers. This approach
enables a flexible infrastructure that can run different appli-
cations for the different farming activities changing over the
seasons. Nonetheless, the cost effectiveness of this solution
has not been measured or compared to others.

VI. CONCLUSION

Although DevOps has demonstrated numerous successful
cases in the Web domain, in the IoT domain, there are few
reported cases that adopt CI/CD practices in the edge. This
work presented a success case of CD in the IoT edge by apply-
ing a SaaS model that allows release engineers to customize
these edge applications.

This article presented an architectural model and a CD flow
for the customized deployment of SaaS solutions in the edge
and demonstrated its feasibility in an IoT-based agriculture
prototype. The instantiation is based on the Microsoft Azure
platform and validated the adoption of CI/CD practices in
highly distributed IoT systems using edge devices with a run-
time as defined in this article. The architecture and the CD flow
defined the services and components required for; 1) fetching
software updates from version control systems; 2) building
software and creation of the container images; 3) publishing
the images to a container repository, and finally; and 4) the
deployment of these images in the edge devices. A key issue
is that we enable the customization of SaaS applications—
packaged as modules—based on a set of defined parameters
—e.g., user preferences, payment, etc.

The prototype for precision agriculture provides a solution
for the edge devices that is flexible enough to support different
communication protocols with IoT devices and to operate in
areas without requiring the existence of a public communica-
tion network, solving the issue with the help of a gateway and
using the nonlicensed spectrum for creating its own private
network.

The architectural model and the CD flow may enable
the development of user-friendly applications for nontechni-
cal users of the prototype. Farmers could eventually decide
which services are required and deploy them in edge devices,
once the edge devices are connected to the cloud. In this
way, farmers configure the most suitable solution for the
crop type at each moment of a season. As future work,
we also plan to extend our solution to provide firmware

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

LÓPEZ-VIANA et al.: CONTINUOUS DELIVERY OF CUSTOMIZED SaaS EDGE APPLICATIONS IN HIGHLY DISTRIBUTED IoT SYSTEMS 10199

OTA (FOTA) updates in field devices (sensors). One approach
to this could be the development of the edge modules capable
of managing FOTA updates at field devices.

APPENDIX

The source code of the prototype is available in a public git
repository located in https://github.com/rlopezv/aaas that con-
tains the components used for the prototype with information
about their content. Additionally, a video demonstrating part of
the work done is available on https://youtu.be/gCkv7YQ9RoQ.

REFERENCES

[1] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and Internet of Things: A survey,” Future Gener.
Comput. Syst., vol. 56, pp. 684–700, Mar. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2015.09.021

[2] E. Cavalcante et al., “On the interplay of Internet of Things
and cloud computing: A systematic mapping study,” Comput.
Commun., vols. 89–90, pp. 17–33, Sep. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2016.03.012

[3] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The role of
edge computing in Internet of Things,” IEEE Commun. Mag., vol. 56,
no. 11, pp. 110–115, Nov. 2018.

[4] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed,
“Edge computing: A survey,” Future Gener. Comput. Syst.,
vol. 97, pp. 219–235, Aug. 2019, [Online]. Available:
https://doi.org/10.1016/j.future.2019.02.050

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[6] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and DevOps,” in Proc. IEEE/ACM 3rd Int. Workshop
Release Eng., Florence, Italy, 2015, p. 3.

[7] J. Díaz, J. Pérez, A. Yague, A. de Antona, and A. Villegas,
“DevOps in practice—A preliminary analysis of two multina-
tional companies,” in Proc. 20th Int. Conf. Product Focused
Softw. Process Improvement, 2019, p. 8. [Online]. Available:
https://easychair.org/publications/preprint/Z7Zv

[8] L. E. Lwakatare et al., “Towards DevOps in the embedded systems
domain: Why is it so hard?” in Proc. 49th Hawaii Int. Conf. Syst. Sci.
(HICSS), Koloa, HI, USA, Jan. 2016, pp. 5437–5446.

[9] D. Mattos, J. Bosch, and H. Holmstrom, “Challenges and strategies for
undertaking continuous experimentation to embedded systems: Industry
and research perspectives,” in Agile Processes in Software Engineering
and Extreme Programming. Cham, Siwitzerland: Springer, May 2018.
doi: 10.1007/978-3-319-91602-6_20

[10] H. Bangui, S. Rakrak, S. Raghay, and B. Buhnova, “Moving to
the edge-cloud-of-things: Recent advances and future research direc-
tions,” Electronics, vol. 7, no. 11, p. 309, 2018. [Online]. Available:
https://doi.org/10.3390/electronics7110309

[11] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
Internet of Things applications,” IEEE Internet Things J., vol. 5, no. 1,
pp. 439–449, Feb. 2018.

[12] A. Baktayan and A. Zahary, “A review on cloud and fog comput-
ing integration for IoT: Platforms perspective,” EAI Endorsed Trans.
Internet Things, vol. 4, no. 14, p. e5, 2018. [Online]. Available:
http://dx.doi.org/10.4108/eai.20-12-2018.156084

[13] B. Fitzgerald and K. J. Stol, “Continuous software engineering: A
roadmap and agenda,” J. Syst. Softw., vol. 123, pp. 176–189, Jan. 2017.

[14] G. Casale et al., “Current and future challenges of software engineer-
ing for services and applications,” Procedia Comput. Sci., vol. 97,
pp. 34–42, Jan. 2016, doi: 10.1016/j.procs.2016.08.278.

[15] A. Karapantelakis et al., “DevOps for IoT applications using cellular
networks and cloud,” in Proc. IEEE 4th Int. Conf. Future Internet Things
Cloud (FiCloud), Vienna, Austria, 2016, pp. 340–347.

[16] J. Bae, C. Kim, and J. Kim, “Automated deployment of SmartX IoT-
cloud services based on continuous integration,” in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Jeju, South Korea, 2016,
pp. 1076–1081.

[17] M. Syed and E. Fernandez, “Cloud ecosystems support for Internet
of Things and DevOps using patterns,” in Proc. IEEE 1st Int. Conf.
Internet Things Design Implement. (IoTDI), Berlin, Germany, 2016,
pp. 301–304.

[18] J. Moore, G. Kortuem, A. Smith, N. Chowdhury, J. Cavero, and
D. Gooch, “DevOps for the urban IoT,” in Proc. 2nd Int. Conf. IoT
Urban Space (Urb-IoT), New York, NY, USA, 2016, pp. 78–81.

[19] A. Banijamali, P. Jamshidi, P. Kuvaja, and M. Oivo, “Kuksa: A cloud-
native architecture for enabling continuous delivery in the automotive
domain,” in Product-Focused Software Process Improvement (PROFES)
(Lecture Notes in Computer Science), vol. 11915. Cham, Switzerland:
Springer, 2019.

[20] T. Abirami and B. Bhuvaneswari, “Energy efficient wireless sen-
sor network for precision agriculture,” Int. J. Sci. Res. Sci. Eng.
Technol., vol. 6, no. 2, pp. 98–105, 2019. [Online]. Available:
https://doi.org/10.32628/IJSRSET196220

[21] P. Lea, Internet of Things for Architects. Birmingham, U.K.: Packt Publ.,
2018.

[22] RAK831—RAK The Middleware from RAK Enable IoT. Accessed:
Jul. 02, 2019. [Online]. Available: https://www.rakwireless.com/en/
WisKeyOSH/RAK831

[23] LoRa Server, Open-Source LoRaWAN Network-Server. Accessed:
Jul. 02, 2019. [Online]. Available: https://www.loraserver.io/

[24] IoT Edge Microsoft Azure. Accessed: Jul. 02, 2019. [Online]. Available:
https://azure.microsoft.com/enus/services/iot-edge/

[25] Node-RED. Accessed: Jul. 02, 2019. [Online]. Available: https://nodered.
org/

Ramón López-Viana received the B.S. and M.S.
degrees in telecommunication engineering from the
Universidad Politécnica de Madrid (UPM), Madrid,
Spain, in 1995 and 2000, respectively, and the M.S.
degree in Internet of Things from UPM in 2019.

Since 2000, he has been working in software
development in different areas mainly in the con-
text of Enterprise Applications. His current interests
are focused in Internet of Things, edge computing,
cloud computing, and microservices and DevOps.

Jessica Díaz (Member, IEEE) received the Ph.D.
degree in computer science from the Universidad
Politécnica de Madrid (UPM), Madrid, Spain, in
2012.

She is an Associate Professor with UPM,
E.T.S. Ingeniería de Sistemas Informáticos). Since
April 2003, she has been a Researcher with the
System and Software Technology Research Group
and is participating in several European and national
projects related to Software Engineering on Internet
of Things and Smart Systems. Her research interests

are focused on DevOps and rapid application development, cloud computing,
software architectures, software product lines, and model-driven development.

Dr. Díaz was received the best thesis Award from UPM.

Vicente Hernández Díaz received the M.Sc. degree
in electronic engineering from UAH, Huntsville, AL,
USA, in 2013.

He is an Associate Professor with the Universidad
Politécnica de Madrid, E.T.S. de Ingeniería y
Sistemas de Telecomunicacion, Madrid, Spain. Since
2005, he has been a Member of the Research Group
of Next-Generation Networks and Services. He has
participated in several European research projects,
and recently in AFARCloud (Precision Agriculture)
and SWARMS (underwater collaborative robots).

His research activities are focused on ubiquitous computing, Internet of
Things, and network resilience.

José-Fernán Martínez received the Ph.D. degree
in telematics engineering from the Universidad
Politécnica de Madrid (UPM), Madrid, Spain, in
2001.

He is an Associate Professor with UPM, E.T.S. de
Ingeniería y Sistemas de Telecomunicacion. He is
the Head of the Research Group of Next-Generation
Networks and Services. He has participated in
several European research projects, he is leading
AFARCloud (Precision Agriculture) and has led
SWARMS (underwater collaborative robots), both of

them large European research projects. His research activities are focused on
ubiquitous computing, Internet of Things, underwater cooperating robotics,
new advanced services for WSAN, and resilient systems.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:35:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-3-319-91602-6_20
http://dx.doi.org/10.1016/j.procs.2016.08.278

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

