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A B S T R A C T

Neural Radiance Fields (NeRF) demonstrate impressive capabilities in rendering novel views of specific scenes
by learning an implicit volumetric representation from posed RGB images without any depth information. View
synthesis is the computational process of synthesizing novel images of a scene from different viewpoints, based
on a set of existing images. One big problem is the need for a large number of images in the training datasets
for neural network-based view synthesis frameworks. The challenge of data augmentation for view synthesis
applications has not been addressed yet. NeRF models require comprehensive scene coverage in multiple views
to accurately estimate radiance and density at any point. In cases without sufficient coverage of scenes with
different viewing directions, cannot effectively interpolate or extrapolate unseen scene parts. In this paper, we
introduce a new pipeline to tackle this data augmentation problem using depth data. We use MPEG’s Depth
Estimation Reference Software and Reference View Synthesizer to add novel non-existent views to the training
sets needed for the NeRF framework. Experimental results show that our approach improves the quality of the
rendered images using NeRF’s model. The average quality increased by 6.4 dB in terms of Peak Signal-to-Noise
Ratio (PSNR), with the highest increase being 11 dB. Our approach not only adds the ability to handle the
sparsely captured multiview content to be used in the NeRF framework, but also makes NeRF more accurate

and useful for creating high-quality virtual views.
1. Introduction

The performance of deep learning models is highly dependent on
the quantity, and diversity of the datasets used for training. This
dependency is particularly noticeable in the field of 3D neural ren-
dering, where each unique scene requires individualized training. As
a result, when training images are scarce, the resulting models tend
to underperform. Unfortunately, acquiring or constructing large, and
high-quality datasets is a challenging task.

Conventional data augmentation methods [1–3], including rota-
tion, noise addition, shearing, translation, and color modifications,
are mainly designed for 2D image processing and have demonstrated
their effectiveness in tasks such as object detection and segmenta-
tion [4,5]. These data augmentation techniques fall short of addressing
the complexities of 3D reconstruction and view synthesis [6,7]. The
inherent challenges posed by the three-dimensional nature of the data
in applications like Neural Radiance Fields (NeRF) [8] framework for
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3D rendering [9–11], require the development of novel augmentation
strategies that can effectively enhance data diversity considering the
specific requirements of 3D scene reconstruction.

The proposed depth-aware augmentation technique specifically tar-
gets the gap in data augmentation for 3D environments by focusing on
depth perception and realistic view synthesis. It is particularly designed
for scenarios where there are not plenty of images covering the scene,
and conventional augmentation methods prove insufficient for realistic
3D scene generation. (C1.R2.S1)

The most important challenge to train neural rendering models is
the lack of a sufficient number of available sparse images for training
in each scene. In such cases, NeRF fails to train or fails to render
high-quality novel views. The reasons for such a failure are (C1.R2.S2):

• Coverage of viewing angles: NeRF models estimate the radi-
ance and density at any given point in space by integrating
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information across multiple views. If the training images do not
sufficiently cover the scene, the model cannot accurately interpo-
late or extrapolate the unseen parts of the scene.

• Detail preservation: Without enough images, NeRF struggles to
capture fine details, leading to blurry or inaccurate reconstruc-
tions. This is particularly evident in areas where complex textures
or occlusions occur (shown in Section 7).

• Generalization and overfitting: With limited data, NeRF mod-
els tend to overfit to the available views, failing to generalize
well to new viewpoints. This results in poor performance when
generating novel views that differ significantly from the training
images.

To address this challenge, the authors propose an approach of aug-
mentation techniques adapted for NeRF, which leverages techniques for
iew synthesis and depth maps to enrich the training data significantly.
he introduction of depth-aware augmentation and the integration of
 view synthesizer software are highlighted as enhancements that sub-

stantially improve the quality and robustness of the NeRF model. Depth
stimation software, with its ability to generate accurate depth maps (in
ase of the datasets without high-quality depth maps available), and on
he other hand a powerful view synthesizer software, lead to a pool of

training datasets with more images and more diversity. It also enables
NeRF models to generate photorealistic scenes even when constrained
by sparse data. This approach not only broadens the quantity in the
dataset but also maintains consistency to the 3D spatial and perspective
complexity essential for accurate scene rendering.

The experiments demonstrate that our depth-aware augmentation
mproves the fidelity of rendered images by up to 30% in scenar-
os with sparse viewpoints. It also enhances the model’s ability to
eneralize to new views by a significant margin, confirming the ef-
ectiveness of integrating depth information into the NeRF training

process.(C1.R2.S3)
DA4NeRF further explores the impact of data augmentation for

NeRF models and boosts results for neural rendering and the crucial
role of data augmentation for using NeRF in creating realistic 3D
scenes from limited sparse viewpoints. It emphasizes the importance
of quality and quantity of the available data for the accuracy of NeRF
models and positions the proposed methodology as an advancement in
overcoming the limitations posed by limited sparse data. By integrating
depth information and employing a view synthesizer within the NeRF
framework, the authors aim to synthesize novel views that significantly
enhance model quality.

This research represents a contribution to improve the available
imited datasets in the number of images and diversity for training
he NeRF framework. It offers a detailed exploration and analysis of
he proposed methodology, demonstrating its effectiveness through
onducting several experiments on different datasets. The integration of
epth information and the view synthesizer augments the dataset and
mproves the neural rendering’s training procedure and its inference.
xperimental evaluations using structured captured datasets, as well as
eRF Real datasets [8,12], show the effectiveness of our approach in
nhancing synthesis quality with a limited number of training views.

2. Preliminaries

This section reviews the significant contributions and methodologies
f structure-from-motion (COLMAP), Depth Estimation Reference Soft-
are (DERS), Reference View Synthesizer Software (RVS), and Neural
adiance Fields for view synthesis (NeRF), highlighting their unique
pproaches and intersections in the field.

2.1. COLMAP

COLMAP [13] is a leading software platform for performing Struc-
ture from Motion (SfM) [14] and Multi-View Stereo (MVS) [15],
2

r

widely recognized for its effectiveness in reconstructing 3D models
from unordered image datasets. It distinguishes itself through advanced
features such as automatic camera calibration, image matching, and
dense point cloud generation [16,17], facilitating accurate 3D modeling
cross diverse applications. With its robust algorithmic foundation,
OLMAP has contributed significantly to the advancement of pho-
ogrammetry [18] and computer vision fields, enabling precise spatial

analysis and visualization. Moreover, its open-source nature allows
or extensive customization and integration, making it a valuable tool

for researchers and professionals seeking to leverage the latest in 3D
econstruction technology.

2.2. Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS) [19] is a tool
in the context of 3D video processing and multimedia applications,
developed by the Moving Picture Experts Group (MPEG). This software
plays a crucial role in the generation of depth maps [20–22], which are
essential for creating stereoscopic (3D) and multi-view video content.
Depth maps represent the distance between the camera and the objects
in a scene, providing vital information that allows for the simulation of
three-dimensional spaces in 2D images. DERS uses advanced algorithms
to analyze 2D video frames and estimate the depth of various elements
within the scene, facilitating the creation of more immersive and
realistic 3D video experiences. This technology has broad applications
in virtual reality (VR) environments. As 3D content continues to gain
popularity, the importance of efficient and accurate depth estimation
software like DERS grows, driving innovation and improvements in the
field of immersive and 3D multimedia.

2.3. Reference View Synthesizer (RVS)

The MPEG Reference View Synthesizer (RVS) [23] is an advanced
tool designed to enhance the field of 3D video production and virtual
reality applications. Developed by MPEG, RVS is helpful in synthesizing
new viewpoints from existing views, a process critical for creating
multi-view video and 3D displays. By leveraging depth information
often generated by tools like DERS, RVS can interpolate or extrapo-
late new views between the original camera positions. This capability
is crucial for producing content for glasses-free 3D displays, virtual
reality environments, and augmented reality applications, where the
perspective needs to be adjusted in real-time according to the viewer’s
position.

2.4. Neural Radiance Fields (NeRF)

Neural Radiance Fields (NeRF) [8] have emerged as an approach in
he synthesis of photorealistic scenes, offering significant advancements
n the realm of computer vision. This technique models the volumetric
cene function using a fully connected deep neural network [24], which

maps 3D coordinates to color and density, enabling highly detailed and
continuous reconstructions of complex scenes from a sparse set of im-
ges. Since its introduction, NeRF has inspired plenty of related works
iming to address its limitations and expand its applicability. These
fforts include improving the rendering speed through more efficient
ata structures and algorithms, enhancing the quality of reconstructions
n challenging lighting conditions, and extending the framework to
ynamic scenes. Furthermore, variations of NeRF have been developed
o incorporate semantic segmentation, enabling more nuanced scene
nderstanding and manipulation. Other notable directions include in-
egrating NeRF with traditional computer graphics techniques for more
calable scene representations and exploring its potential in virtual
nd augmented reality applications. The continuous evolution of NeRF-
elated technologies underscores their potential to revolutionize how
e capture, recreate, and interact with digital representations of the
eal world.
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In this technology, a static scene is represented as a continuous 5D
unction that outputs the radiance emitted in each direction (𝜃 , 𝜙) at

each point (𝑥, 𝑦, 𝑧) in space and a density at each point which acts like
a differential opacity controlling how much radiance is accumulated
y a ray passing through (𝑥, 𝑦, 𝑧). This method optimizes a deep fully-
onnected neural network without any convolutional [25] layers (often

referred to as a multilayer perceptron or MLP) to represent this function
by regressing from a single 5D coordinate (𝑥, 𝑦, 𝑧, 𝜃 , 𝜙) to a single
volume density and view-dependent RGB color (𝜎, 𝑐).

Recent studies have embraced Neural Radiance Fields for their
straightforward design and superior rendering capabilities, applying
them to diverse enhancements including generative adversarial net-
works [26,27], video synthesis [28,29], relighting [30,31], and scene
editing [32,33], among others.

3. Related works

NeRF-based techniques typically require numerous images from
arying viewpoints to facilitate training. To mitigate the substantial

data requirements of NeRF, several approaches have been developed
hat leverage existing training data [34,35], employ meta-learning

strategies [36], and incorporate additional supervision [37,38]. Pixel-
eRF [35] uses training images during test-time rendering, a feature
ot considered by traditional NeRF. It projects the convolutional fea-
ures of training images onto rays from novel viewpoints, serving as
 conditional embedding for MLP inference. Similarly, IBRNet [34]
mploys a comparable approach but integrates an additional ray trans-

former to enhance density estimation. MetaNeRF [36] suggests initializ-
ing the MLP weights through pre-training on a comprehensive dataset,
ollowed by scene-specific fine-tuning. DietNeRF [37] introduces a
airwise loss that enhances multi-view consistency by minimizing the

cosine distance between high-level semantic features across different
viewpoints. RegNeRF [39] synthesizes image patches from unobserved
amera positions and enforces consistency in the RGB values using
 trained normalizing flow model, while also applying a smoothness
oss to the density values. DSNeRF [40] leverages sparse depth data

produced by COLMAP [13] as direct supervision for the rendered depth
aps. Our approach aligns with DSNeRF in using depth information as

a supervisory signal, yet we innovate by using this data to create novel
training samples through view synthesis technologies. In this study, we
focus on enhancing depth maps derived from external depth estimation
methods to augment data, noting that our methodology is compatible
with all NeRF-based models. In this paper, we contrast our findings
with DSNeRF, highlighting the efficiency of our method.

4. Proposed approach

In this section, we elaborate on a methodology designed to augment
atasets for NeRF models, particularly when the number of available
mages is insufficient for comprehensive training. Our approach in-
olves the addition of virtually synthesized images named augmented
mages to the training dataset through a Depth Image-based Rendering
DIBR) [41] process.

As mentioned in Section 1, the efficiency of NeRF models is signifi-
antly influenced by the quantity and diversity of input training images.

A rich dataset, characterized by a wide range of angles, positions,
ighting conditions, and distances, contributes to a more detailed and
ccurate 3D representation. Such diversity is essential for training

models like NeRF to generalize effectively across unseen views, which
enhances the accuracy and robustness of 3D reconstructions and ren-
derings. On the other hand, a training dataset lacking in diversity or
uantity may affect the model’s ability to be overfitted on the available
iews and fail to reconstruct unseen scenes accurately. In our previous
tudies [42,43], we demonstrated that adding more images contributes
o an enhancement in the quality of the NeRF model.
3

Algorithm 1 Depth-aware Data Augmentation for NeRF (C2.R2.S2)
1: Input: Original dataset
2: Output: Enhanced NeRF model trained on original and augmented

data
3: function CalibrateDataset(dataset)
4: return cameraParameters(dataset)
5: end function
6: function CreateSubset(data, size)
7: return extractSubset(data, size)
8: end function
9: function TrainNeRF(data)

10: model ← initializeNeRFModel()
11: model.train(data)
12: return model
13: end function
14: function SynthesizeViews(model, test_set)
15: return model.generateViews(test_set)
16: end function
17: function ExtractDepthMaps(data)
18: return depthEstimation(data)
19: end function
20: function SynthesizeMissingImages(images, depth_maps)
21: return synthesizeImages(images, depth_maps)
22: end function
23: function AugmentData(original, augmented)
24: return original + augmented
5: end function
6: dataset ← LoadDataset
7: subsets ← [4, 3, 2]
8: for size in subsets do
9: subset ← CreateSubset(calibrated_data, size)
0: model ← TrainNeRF(subset)
1: test_set ← getTestSet(size)
2: synthesized_views ← SynthesizeViews(model, test_set)
3: depth_maps ← ExtractDepthMaps(subset)
4: missing_images ← SynthesizeMissing(subset, depth_maps)
5: augmented_data ← AugmentData(subset, missing_images)
6: retrained_model ← TrainNeRF(augmented_data)
7: final_output ← SynthesizeViews(retrained_model, test_set)
8: end for
9: return results

To augment the training dataset for NeRF, we propose a sequence
f steps outlined in our methodology (shown in Fig. 1, and Algorithm

1): (1) Calibration of original images, (2) Depth map generation, (3)
Synthesis of virtual images, (4) Incorporation into the training pool, (5)
Training of the NeRF model, and (6) View synthesis with the trained
model.

4.1. Calibration of original images

Initially, the available images are calibrated to extract camera
arameters using Structure-from-Motion (SfM) techniques, such as
OLMAP, or using the OpenCV method. The result of this process is
he extraction of both intrinsic and extrinsic camera parameters. These
arameters are subsequently used in tasks such as depth estimation,
iew synthesis, and model training.

4.2. Depth map generation

Subsequently, depth maps are generated from the existing images
utilizing the MPEG Depth Estimation Reference Software (DERS) [19],
or MPEG Immersive Video Depth Estimation (IVDE) [45]. Both tools are
known for their high-quality depth estimation capabilities. This step is
bypassed if depth maps are already available within the dataset.
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Fig. 1. Pipeline of the proposed method: (1) Calibration using structure-from-motion (COLMAP) [13]), (2) Depth estimation (DERS [19]), (3) View synthesis (RVS [23]), (4)
Dataset pool preparation, (5) Training NeRF model (NeRF-pytorch [44], and (6) Target view synthesis. (C2.R2.S1).
4.3. Synthesis of virtual images

Employing the MPEG Reference View Synthesizer software (RVS),
virtual images are synthesized to fill the gaps of missing views. This
process leverages the original images, along with their corresponding
depth maps and camera parameters, to generate these synthesized
images. In particular, RVS utilizes depth maps to accurately position
and orient virtual views in the 3D space of the scene. Depth maps
inform the synthesizer about the relative distances of objects from
the viewpoint, enabling it to reconstruct scene geometry with high
precision. By integrating depth maps into the synthesis process, RVS
can more effectively handle occlusions and varying scene complexities,
resulting in more realistic and coherent virtual images. The depth-
aware synthesis not only improves the fidelity of the interpolated views
but also enhances the overall photorealism of the augmented dataset,
significantly boosting the performance of the subsequent NeRF model
training. (C9.R2.S1)

4.4. Incorporation into training pool

The synthesized virtual images, along with their corresponding
camera parameters, are added to the pool of available images for
training.

4.5. Training of the NeRF model

The enriched dataset pool is then used to train the NeRF model,
aiming to enhance its performance and generalizability.

4.6. View synthesis with trained model

we proceed to synthesize target views to evaluate both the quality of
the augmented images and the effectiveness of the trained model. This
synthesis involves generating images from viewpoints that were not ex-
plicitly represented in the training set. The primary metric for assessing
the quality of these rendered images is the Peak Signal-to-Noise Ratio
(PSNR), which provides a quantitative measure of image fidelity. By
analyzing the PSNR values, we can measure the accuracy and visual
quality of the synthesized views, thus verifying the model’s ability to
reconstruct high-quality images from the learned data. This step is
crucial in determining the practical utility of the augmented dataset
and the robustness of the NeRF model in producing visually compelling
and accurate representations from novel viewpoints. (C8.R2.S1)

Several critical points have to be considered in our methodology.
Firstly, the positioning of virtual images must be within the original
images’ field of view to avoid the introduction of new occlusions
that could degrade the quality of the trained model. Additionally, the
accuracy and clarity of the depth maps are critical; low-quality depth
4

maps can lead to artifacts in the augmented images, negatively impact-
ing model quality. Our approach, through careful augmentation and
consideration of these factors, aims to significantly enhance the training
dataset for NeRF models, facilitating superior 3D scene reconstruction
and rendering.

5. Dataset description

This section details the datasets used in our research to validate the
proposed methodology. We conducted experiments using two distinct
approaches. Initially, we established a structured dataset for proof of
concept through specific, controlled datasets; subsequently, we em-
ployed benchmark datasets to evaluate the performance enhancements
afforded by our technique in scenarios characterized by limited data
availability.

The choice of datasets can introduce biases that may affect the
generalizability of the results. Our experiments primarily utilized three
datasets, which were selected for their diversity in scene complexity
and lighting conditions and both real-world scene and synthetic dataset.
Then as a second type of experiments, we used two NeRF datasets
to benchmark our work. To mitigate potential biases, we ensured a
balanced representation of different scene types and conducted addi-
tional validation using synthetic datasets, thus providing a controlled
environment to test our augmentation technique.(C3.R2.S2)

5.1. Structured dataset for proof of concept

For the preliminary phase of our investigation, we selected three
5 × 5 input images, each serving to demonstrate the feasibility and
effectiveness of our approach under controlled conditions. The first
dataset, a subset derived from the ULB toys table dataset [46–48],
comprises images arranged in a 5 × 5 grid with a fixed baseline distance
of 32 mm between adjacent captures. This dataset is referenced in
multiple sources, indicating its validity and reliability for this type of re-
search. The second dataset, similarly organized in a 5 × 5 configuration,
was obtained using an Azure Kinect camera system, which was posi-
tioned on a movable frame at the Universidad Politécnica de Madrid
(UPM dataset hereafter). This setup maintained a baseline distance of
20 mm between each captured view. The third dataset is extracted from
the ETRI Garage dataset, a synthetically generated set using Blender
software [49], by the Electronics and Telecommunications Research
Institute (ETRI). This dataset, arranged in a 5 × 5 grid, differs from
the previous two with a larger baseline of 60 mm between captures.
The selection of these varied datasets, encompassing both actual and
virtual environments, allows for a comprehensive evaluation of our
methodology across different baseline distances and conditions.
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 synthesized (purple squares) images (bottom), and the last column shows the 2 × 2 configuration with just original images (up), and original + synthesized (purple squares)
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5.2. Benchmarking dataset

For a more extensive evaluation, we applied our methodology to
wo additional datasets from NeRF real datasets, named Orchid [50]
nd Fortress [12], to assess the improvement in data quality enabled

by our approach, particularly in situations with lack of enough training
images. The structure of these datasets including the position of the
cameras, depth of objects, disparity, and number of images are close
to the conditions of the datasets we proposed for proof of concept in
the Section. 5.1. Also these datasets are frequently employed in the
evaluation of 3D technologies, including neural radiance fields (NeRF)
and Local Light Field Fusion (LLFF) [12]. The Orchid dataset comprises
5 images, whereas the Fortress dataset contains 42 images. For each
ataset, we executed two sets of experiments: one using the full original
vailable images, and the other employing a minimal dataset con-
iguration, typically including four images. This minimal dataset was
hen expanded through image augmentation to illustrate the beneficial
mpact of augmented data within this context. In these experiments, we
ave the same test set for the Orchid dataset as the previous datasets,
ut for the Fortress dataset where the dataset inherently contains a
arger number of images, we designated five images as a consistent test
et across all trials, to ensure uniformity in evaluation metrics.

6. Experiment conditions

In order to make clear the details of the proposed pipeline, con-
figurations of using depth estimation tool to generate the depth maps,
configurations of view synthesizer, and configurations of training NeRF
are discussed.

All these experiments were conducted using the nerf-pytorch [44]
mplementation of NeRF. Each experiment utilized a 5 × 5 dataset
onfiguration (two additional unstructured datasets are used as well,
hich are introduced in Section 5). Camera parameters were deter-

mined via COLMAP, and depth maps for the images were generated
mploying MPEG’s Depth Estimation Reference Software (DERS), with
onsideration for all 5 × 5 images. The test image was consistently

placed in the upper left corner labeled 𝑉0, and the center of the
dataset structure labeled 𝑉12 (Fig. 2). For augmentation purposes at
ach experimental stage, synthesized images were generated using RVS,
ased on the available images in each step of experiments, excluding

the test images to preserve the experimental conditions integrity.
On the depth estimation side, we used two approaches to estimate

he depth of our datasets to be used in the data-augmentation method.
n the first approach, we used all original images to estimate the best
epth maps (hereafter named 𝐷𝐻 ). This approach helps to have more

accurate and sharp depth maps with fewer holes in it. The method
5

is close to the datasets that already have a good depth map. For
the second approach, we used just available original images (shown
in Fig. 2 - yellow squares) in each step to do the depth estimation
(hereafter named 𝐷𝐿). This approach is closer to the real cases in which
we do not have good depth maps. But in this process, we suffer from
holes in depth maps (especially in 2 × 2 datasets) that cause artifacts
and bad images in augmented data.

On the view synthesizer side, we used two approaches. First, syn-
thesizing the non-existent images using the 𝐷𝐻 (hereafter 𝐷 𝐴1), which
gives the best quality augmented images. In this method, available
riginal images in each configuration and their corresponding best
uality depth maps are used to synthesize the views. Second, using
𝐿. In this approach, the same as the previous approach, the available

mages are used but with their corresponding 𝐷𝐿 (hereafter 𝐷 𝐴2).
On the NeRF side, we executed two parallel sets of experiments to

examine the performance of the NeRF model across different conditions
of data availability, with an emphasis on the integration of extra
augmented images. The aim is to evaluate the impact of this data
augmentation on the NeRF model’s capacity to generate precise and
high-quality renderings. Through these experimental series, our objec-
tive is to illuminate the potential enhancements in model performance
facilitated by the strategic incorporation of synthesized data, offering
insights into optimizing NeRF models for improved neural rendering
capabilities.

The first set of experiments was committed to evaluate the NeRF
model utilizing solely the original images. Initiating with a compre-
hensive dataset including 5 × 5 original images, we decreased step
by step the dataset size to 4 × 4, 3 × 3, and 2 × 2 subsets for
training. This decremental strategy (illustrated in Fig. 2 - top row)
enabled a structural examination of the consequences of decreasing
training data on model efficacy. This experiment established a baseline
for the NeRF model’s performance under constrained data conditions,
reflecting common challenges in real-world deployments.

Subsequently, the second experiment series was designed to investi-
ate the benefits of supplementing the original dataset with synthesized
mages. We enhanced the datasets by integrating synthesized images,
roduced in the prior phase, into the vacant positions of the original
ataset’s missing views. This integration yielded an augmented 5 × 5
ataset, represented by a combination of original (marked as yel-
ow squares) and synthesized augmented (denoted as purple squares)
mages (depicted in Fig. 2 - bottom row).

7. Results and discussions

In this section, we show the outcomes observed at various stages
of our investigation. First, we delve into the results related to the
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Fig. 3. Generated depth maps for ULB Toys Table dataset (left), UPM dataset (middle), and ETRI Garage dataset (right), in each column: (a) high-quality depth map using all
original 5 × 5 images of the dataset, (b) using available images for 4 × 4 configuration, (c) for 3 × 3 configuration, and (d) for 2 × 2 configuration.
Fig. 4. ULB Toys Table dataset augmented images (left column), UPM dataset augmented images (middle column), and Garage dataset augmented images (right column) from
top to bottom: Using depth maps with available images for 2 × 2 configuration, 3 × 3 configuration, 4 × 4 configuration, and best quality.
generation of depth maps across different configurations of reference
images and their subsequent influence on the augmented images. Sub-
sequently, we explore the impact of these augmented dataset pools on
the NeRF model’s performance.

7.1. Quality of depth maps and augmented images

In this section, we show the quality of the generated depth maps
based on the quality of the augmented images.

Fig. 3 presents the outcomes of depth map generation for the ULB
Toys table dataset, UPM dataset, and ETRI Garage dataset employing
two distinct methodologies. The first methodology involves the creation
of high-quality depth maps (𝐷𝐻 ) using the entire original images from
the datasets (labeled a, in figures). While this approach requires a
longer execution time for depth map estimation, it results in better
quality and higher accuracy (shape edges and hole-free surfaces in
the 𝐷𝐻 ). On the other hand, the second methodology generates depth
maps based on the images available within each dataset configuration
(𝐷𝐿). For instance, within a 2 × 2 configuration of original images,
depth maps are produced for the available image positions using the
corresponding 2 × 2 images. This method is characterized by a reduced
computational time compared to the first approach, at the expense of
lower-quality depth maps. Holes can be seen in this type of depth map
(labeled b, c, and d in Fig. 3).

Fig. 4 shows the augmented images derived using the aforemen-
tioned depth map methodologies. It is evident that augmented im-
ages constructed from 𝐷𝐻 exhibit fewer artifacts and attain a higher
Peak Signal-to-Noise Ratio (PSNR), underscoring the benefits of this
approach in terms of image quality. Fig. 5 further illustrates the
heatmaps of the augmented images, describing variations across dif-
ferent configurations and methodologies. This visual representation
aids in comprehensively understanding the impact of each depth map
generation approach on the synthesized images and, by extension, on
the overall performance of the NeRF model. Based on this information,
best augmented images, happen when good quality depth maps are
available. Through this analysis, we provide insights into the strategic
optimization of dataset augmentation for enhancing the fidelity and
accuracy of neural rendering.
6

7.2. Impact of data augmentation on NeRF model

This section delves into both objective and subjective analyses of
our findings. Objective assessments, quantified using the Peak Signal-
to-Noise Ratio (PSNR), are depicted in Fig. 6 and Table 1, for structured
5 × 5 datasets and for NeRF benchmarking datasets.

Within Fig. 6, the blue line represents scenarios without data aug-
mentation and using just original available images in each configura-
tion of experiments, demonstrating that objective quality incrementally
rises with an increase in the original views for all datasets examined.
The maximum quality of the rendered images is in this configuration
with all original available images. And the worst quality happens when
there are a minimum number of original images available.

More crucially, the incorporation of synthesized views using 𝐷𝐿
acquired with available images in each configuration, as represented
by the orange line (indicative of data augmentation), substantially
boosts the quality across various subsets of the ULB Toys Table dataset,
aligning the results more closely with the best possible outcomes which
belong to all original available images. This quality increase is approx-
imately 11 dB for 2 ×2, and 3 × 3 configurations.

For the UPM dataset, this approach helps with the 2 × 2 configu-
ration but not for the rest. This quality increase is approximately 5 dB
for 2 × 2 configuration for both 𝐷 𝐴1 and 𝐷 𝐴2. For other configurations
of this dataset, there is a quality decrease (6 dB). This is caused by
the artifact of the augmented images due to the low quality generated
depth maps.

On the other hand, the Garage dataset exhibits a unique behavior;
while data augmentation enhances quality for the 2 × 2 and augmented
subsets using 𝐷𝐻 , around 1 dB, it fails to yield similar improvements
in other experimental setups. This discrepancy could likely be due to
the lower quality synthesized images’ and greater noise levels, possibly
resulting from depth map quality, especially considering the dataset’s
baseline size and depth of objects.

For both NeRF benchmarking datasets, two experiments were con-
ducted. One with the minimum amount of original images, and another
using all original images available. Results in both datasets demonstrate
a comprehensive increase in quality, 7 dB for the Orchid dataset, and
8 dB for the Fortress dataset using 𝐷 𝐴1, and 6 dB for the orchid dataset
and 2 dB for the Fortress dataset using 𝐷 𝐴 approach.
2



Journal of Visual Communication and Image Representation 107 (2025) 104365H. Razavi Khosroshahi et al.

s
u
a
i

i
a
r
t
i
r
s
d
d

Fig. 5. Heatmaps of augmented images using 𝐷𝐻 , and 𝐷𝐿, and available depth maps for ULB dataset (top row), UPM dataset (middle row), and ETRI dataset (bottom row), in
each row from left heatmap for augmented images based on: 𝐷𝐻 , 4 × 4, 3 × 3, and 2 × 2 configurations.
Table 1
PSNR (dB) of the rendered views for different datasets with different configurations, 𝛥 (original and 𝐷 𝐴2) represents the difference of PSNR between synthesized images using just
original images with using augmented images using 𝐷𝐻 .

Dataset ULB UPM ETRI Orchid Fortress

𝑉0 𝑉12 𝑉0 𝑉12 𝑉0 𝑉12 𝑉0 𝑉12 𝑉0 𝑉12

2 × 2 original 9.3997 7.9484 15.7232 16.5038 27.7962 26.9812 11.2032 11.4837 17.9764 17.9276
2 × 2 + 𝐷 𝐴1 20.9295 23.7172 23.2256 23.3347 28.0849 27.9023 19.3729 19.2861 25.9875 25.3657
2 × 2 + 𝐷 𝐴2 20.7085 20.5553 22.9703 23.0747 27.0182 26.0962 17.9765 16.1535 19.965 19.5241
𝛥 11.3088 11.3088 7.5024 11.3088 0.2887 0.9211 8.1697 7.8024 8.0111 7.4381

3 × 3 original 10.1339 9.4127 30.6063 31.2085 33.0976 34.5235 – – – –
3 × 3 + 𝐷 𝐴1 21.2753 24.2113 23.5323 23.6884 29.6938 29.1556 – – – –
3 × 3 + 𝐷 𝐴2 21.1718 23.7248 23.382 23.6342 29.5615 29.3973 – – – –
𝛥 11.1414 14.7986 −7.074 −7.5201 −3.4038 −5.3679 – – – –

4 × 4 original 22.358 25.1364 31.0326 31.5676 34.7867 34.3756 – – – –
4 × 4 + 𝐷 𝐴1 21.9503 25.3178 23.6616 23.6682 33.323 30.0184 – – – –
4 × 4 + 𝐷 𝐴2 21.0965 25.2238 23.7469 23.5852 33.4814 29.2804 – – – –
𝛥 −0.4077 0.1814 −7.371 −7.8994 −1.4637 −4.3572 – – – –

5 × 5 original 22.9636 26.5057 31.0853 31.8266 34.8668 35.8774 22.9363 23.2146 29.3476 27.5579
z
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From a subjective viewpoint, the evaluations offer profound in-
ights. A comparative analysis between the initial experimental series,
tilizing purely original images (shown in Figs. 7, 11-left, 12-left)
nd the subsequent series, incorporating both original and synthesized
mages, show improvements.

The results for the first series of experiments based on rendered
mages using the original available images show that using minimum
vailable images has the worst results, as was mentioned in objective
esults. This is the case that the training images are limited and is
he main case for data augmentation. The inclusion of augmented
mages enhances the quality of synthesized target views, with notable
eductions in blur and sharper edges. This improvement is visually
hown in Fig. 8 for the ULB Toys table dataset, in Fig. 9 for the UPM
ataset, in Fig. 11 for the Orchid dataset, and in Fig. 12 for the Fortress
ataset, but NOT in Figs. 10 for the ETRI Garage dataset, expressing
7

s

oomed-in sections of the test image rendering. Based on the objective
indings, enhancements in image quality are observed in the ULB
nd UPM datasets. Yet, for the Garage dataset, subjective assessments
o not indicate significant differences, verifying the objective and
ubjective analysis. This happened because of the object’s depth which
s related to the disparity between images. It shows for NeRF, where
he disparity between the images is low, data augmentation does not
elp. This consistency suggests that the synthesized images’ quality and
ttributes critically impact the NeRF model’s performance across varied
ataset scenarios.

The experimental results show that data augmentation can provide
etter learning of the 3D structure of scenes in NeRF training. There-
ore, it can be known that by employing the proposed data augmenta-
ion to provide sufficient information about the 3D structure, good re-
ults can be achieved when synthesizing novel viewpoints using NeRF.
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Fig. 6. Objective Results, the blue line demonstrates the training model just with available original images, the orange line shows adding augmented images using depth maps
generated with available images, and the green line shows the results for adding augmented images using 𝐷𝐻 .

Fig. 7. ULB Toys table dataset subjective results (left column), UPM dataset (middle column subjective results), and ETRI Garage subjective results (right column), from top to
down: Original image, rendered v0 for 2 × 2 configuration, 3 × 3 configuration, 4 × 4 configuration, and 5 × 5 configuration.

Fig. 8. NeRF rendered v0 (ULB Toys Table dataset) for 2 × 2 configuration (left column), for 3 × 3 configuration (middle column), and for 4 × 4 configuration (right column),
from top to bottom: original images, original + augmented using available depth maps, original + augmented using 𝐷𝐻 .

Fig. 9. NeRF rendered v0 (UPM dataset) for 2 × 2 configuration (left column), for 3 × 3 configuration (middle column), and for 4 × 4 configuration (right column), from top to
bottom: original images, original + augmented using available depth maps, original + augmented using 𝐷𝐻 .
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Fig. 10. NeRF rendered v0 (Garage dataset) for 2 × 2 configuration (left column), for 3 × 3 configuration (middle column), and for 4 × 4 configuration (right column), from top
to bottom: original images, original + augmented using available depth maps, original + augmented using 𝐷𝐻 .

Fig. 11. Left column: NeRF rendered v0 (Orchid dataset) for 2 × 2 configuration, top: original images, middle: rendered view using original 2 × 2 configuration, bottom: rendered
view using all original images. Right column: NeRF rendered v0 (Orchid dataset) for 2 × 2 configuration, top: original images, middle: original + augmented using available depth
maps, bottom: original + augmented using 𝐷𝐻 .

Fig. 12. Left column: NeRF rendered v0 (Fortress dataset) for 2 × 2 configuration, top: original images, middle: rendered view using original 2 × 2 configuration, bottom: rendered
view using all original images. Right column: NeRF rendered v0 (Fortress dataset) for 2 × 2 configuration, top: original images, middle: original + augmented using available
depth maps, bottom: original + augmented using 𝐷𝐻 .
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Fig. 13. Subjective results for Orchid dataset (top row), and Fortress dataset (bottom row), from left to right: trained with standard NeRF, trained with DSNeRF, trained with
DA1 method, trained with DA2 method.
Table 2
PSNR (dB) of the rendered test set for Orchid and Fortress datasets for 2 × 2
configuration using standard NeRF, DSNeRF, DA1 method, and DA2 method. The last
row shows the quality of the rendered images based on training standard NeRF using
all original ground truth images.

Dataset Orchid Fortress

𝑉0 𝑉12 𝑉0 𝑉12

NeRF 11.2032 11.4837 17.9764 17.9276
NeRF + 𝐷 𝐴1 17.9765 16.1535 19.965 19.5241
NeRF + 𝐷 𝐴2 19.3729 19.2861 25.9875 25.3657
DSNeRF 11.0741 10.8955 23.8515 20.9667

5 × 5 original 22.9363 23.2146 29.3476 27.5579

7.3. Benchmark comparison

This section assesses the perceptual quality of novel view synthesis
on the Fortress and Orchid datasets using three approaches. In this
section, we evaluate the perceptual quality of novel view synthesis on
the Fortress and Orchid datasets using three approaches. We compare
three distinct methods: (1) the standard NeRF, (2) NeRF enhanced
with sparse depth supervision, referred to as DSNeRF, and (3) NeRF
integrated with our proposed data augmentation technique.

The results of this comparative analysis are presented in Table 2 and
Fig. 13, under uniform experimental conditions. According to Table 2,
our method shows an enhancement in the mean PSNR of the standard
NeRF by 8 dB with the DA1 technique and 4 dB with the DA2 technique.
Furthermore, it outperforms DSNeRF by 7 dB with the DA1 method and
3 dB with the DA2 method.

Based on the results, we quantified the computational time required
for each process. The standard NeRF takes approximately 4 h to train
the model and render the target views. In comparison, DSNeRF requires
approximately 12 h to complete. Our method, however, demonstrates
more time efficiency: the DA1 approach takes about 10 h, while the
DA2 approach completes in approximately 5 h, encompassing depth
estimation, model training, and target rendering. These findings suggest
that our approach not only consumes less time on average but also
enhances quality.

While DA4NeRF significantly enhances the capability of Neural
Radiance Fields to generate photorealistic views from sparsely sampled
data, it does present certain limitations. Key among these is the reliance
on high-quality depth data, where inaccuracies can propagate through
the augmentation process, potentially degrading the model output.
Moreover, the computational demands of our approach may restrict its
application in real-time scenarios or on devices with limited processing
capabilities. Future work will need to address these challenges, possibly
through the adoption of more efficient computational strategies and
broader testing across diverse and dynamic environments to ensure the
technique’s robustness and scalability. (C5.R2.S2)
10
8. Conclusion

In summary, our research introduces a data augmentation pipeline
designed for Neural Radiance Fields, addressing the challenge of insuf-
ficient training images for better scene reconstruction (briefly shown
in Table 3). By synthesizing non-existent images from depth maps,
either sourced from existing datasets or created through depth es-
timation software, we expand the training dataset available for the
NeRF framework. This method effectively enriches the training data
by using depth map information. Our experiments demonstrate that
this approach significantly enhances the quality of images rendered by
NeRF, particularly when working with very sparse datasets.

The dataset characteristics, particularly the baseline distance and
the depth of objects, emerge as pivotal factors influencing the aug-
mentation’s success. Our findings explain that datasets characterized by
larger disparities between images benefit more from our augmentation
method, whereas NeRF inherently performs well with datasets exhibit-
ing minimal disparities. Notably, the ETRI Garage dataset did not ne-
cessitate our augmentation approach, but our approach outperformed
the rest of the datasets.

In conclusion, the DA4NeRF approach, integrating depth-aware aug-
mentation techniques for Neural Radiance Fields, promises significant
advancements in the rendering of photorealistic scenes from sparse
datasets. Our methodology not only enhances the generalizability and
accuracy of NeRF models but also sets a framework for future ex-
plorations into efficient data augmentation strategies in 3D rendering
fields. The potential applications of this research span a broad ar-
ray of technologies including virtual reality, augmented reality, and
autonomous vehicle navigation, where accurate and detailed environ-
mental representations are crucial. Our work, not only contributes to
the theoretical and methodological growth in computer graphics but
also paves the way for innovative practical applications that leverage
deep learning for enhanced visual computing tasks. (C5.R2.S1)

Moreover, the quality of depth maps stands out as a critical variable
affecting performance across different datasets. To forge a path toward
a more nuanced understanding of synthetic datasets, future studies
should incorporate an analysis of ground truth depth maps. Such an
exploration is anticipated to unlock further optimizations of the NeRF
model, tailoring it more effectively to diverse dataset characteristics.
All these numbers are approximate and averaged over several datasets
and several experiments were done on a single NVIDIA RTX-3090 GPU.

Our DA4NeRF technique was evaluated across a diverse array of
datasets, including structured synthetic environments and complex
real-world scenes. This diversity not only tests the robustness of our
approach under varied conditions but also demonstrates its potential
applicability across different domains. (C6.R2.S1)
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Table 3
Summary of experiment results. PSNR (dB) of the rendered 𝑉0 for sparse views, and
he impact of adding augmented images to training set. C4.R2.S1.
Dataset ULB UPM ETRI Orchid Fortress

Sparse Images 9.3997 15.7232 27.7962 11.2032 17.9764
Orig + DA 20.9295 23.2256 28.0849 19.3729 25.9875

Original 5 × 5 22.9636 26.5057 34.8668 22.9363 29.3476
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