IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

10695

DevOps for 10T Systems: Fast and Continuous
Monitoring Feedback of System Availability

Miguel A. Lopez-Pefia™, Jessica Diaz ™,

Abstract—Current Internet-of-Things (I0T) systems are highly

distributed systems, which integrate cloud, fog, and edge com-

puting approaches. Accelerating their maintenance and contin-
uous improvement, while ensuring their availability, is complex.
DevOps promotes fast and continuous feedback from opera-

Jorge E. Pérez ', and Héctor Humanes

actually loT systems that integrate sensors, actuators, com-
puting resources, and communication components to control
physical processes or monitor critical tasks [3].

0T systems (see Fig. 1) can be understood as the integra-

tions to development to detect problems before customers are tion of: a hardware infrastructure (a set of connected physical

impacted, among other benets. However, there is not any
formal de nition of how to do this. This article de nes the
“fast and continuous monitoring feedback of system availabil-
ity” activity (F&CF availability) that supports automatic and
continuous monitoring feedback from operations to the devel-
opment of the loT system availability. This activity has been

formalized through the software and systems process engineer-

ing metamodel (SPEM). Its implementation is demonstrated in
a real scenario that provides evidence that the formalization
of the F&CF availability activity helps teams in better diag-
nosing and xing outage problems. The result is a distributed
and con gurable monitoring component developed through code
[monitoring as code (MaC)]. This component is embedded in
the 10T infrastructure. MaC enables DevOps team to con gure
their own metrics and indicators at runtime, i.e., monitoring on
demand. The formalization of this activity, based on an MaC
technique, enables the automation, versioning, and replication of
monitoring elements.

Index Terms—Availability, continuous monitoring, DevOps,
fast and continuous feedback activity, Internet-of-Things (IoT)
systems.

I. INTRODUCTION

OWADAYS, it is a fact that there are a multitude of
Internet-of-Things (IoT) applications in nearly all fields
(especially in industry, utility management, health, transporta-
tion, sports, etc.). Many of them are deployed in environments,
such as smart cities, manufacturing plants, energy distribution
sites, hospitals, etc. [1], [2]. Many of those applications are

Manuscript received November 12, 2019; revised April 10, 2020 and
June 17, 2020; accepted July 24, 2020. Date of publication July 29, 2020;
date of current version October 9, 2020. This work was supported
in part by the European Commission’s Horizon 2020 Research and
Innovation Programme under Grant 732667 (RECAP, http://www.recap-
project.eu) and CROWDSAVING under Grant TIN2016-79726-C2-1-R.
(Corresponding author: Miguel A. Lopez-Pefia.)

Miguel A. Lépez-Pefia is with the Department of Innovation and
Development, Sistemas Avanzados de Tecnologia, S.A., 28023 Madrid,
Spain, and also with the Department of Sistemas Informaticos,
Universidad Politécnica de Madrid, 28031 Madrid, Spain (e-mail:
miguelangel.lopez.pena@alumnnos.upm.es).

Jessica Diaz and Jorge E. Pérez are with the Departamento de Sistemas
Informaticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
(e-mail: yesica.diaz@upm.es; jorgeenrique.perez@upm.es).

Héctor Humanes is with Department of Innovation, Sistemas Avanzados de
Tecnologia, S.A., 28023 Madrid, Spain (e-mail: hector.humanes@satec.es).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/J10T.2020.3012763

devices, such as servers, physical objects, sensors, actuators,
etc., and communication networks); a software infrastruc-
ture (commonly named the 10T platform or framework) that
supports the development, deployment, and execution of end-
to-end 10T applications; and a set of applications that offer
vertical solutions over those infrastructures.

Many IoT systems provide very important services, some-
times critical services that require an uninterrupted operation
or very high levels of availability (in e-health or energy for
instance), but their complexity makes them difficult to moni-
tor in depth in order to prevent anomalies and failures [4]. In
addition, rapid and continuous feedback to instrument main-
tenance, updates, and ultimately, meet customer satisfaction
requires a multidisciplinary collaboration between develop-
ment and operations teams, which have to test the systems
in production, build new releases, and deploy them [5]. For
that purpose, DevOps culture [6] is an approach that facilitates
the collaboration between the IT teams [7] and accelerates
and improves the cycles of maintenance [8]. DevOps promotes
fast and continuous feedback from operations to development
to detect problems long before customers are impacted [9].
However, continuous monitoring is not an easy task and is
even more complex for loT [10], [11].

In this work, the “fast and continuous monitoring feedback
of system availability” activity (F&CF availability activity) is
formally specified. The objective of this activity is early moni-
toring and detecting the availability of 10T systems working in
production and to continuously inform about it (feedback) to
the DevOps teams—feedback from operations to development.
This specification is made using the software and systems
process engineering metamodel 2.0 (SPEM 2.0) [12].

One important feature of the “F&CF availability” activity
is that it defines the use of a versioned and repeatable con-
figuration of an loT software infrastructure that we named
“monitoring as code” (MaC). MacC is defined as a specializa-
tion of infrastructure as code (laC) for monitoring purposes
that enable the implementation, deployment, and execution
of customized pieces of code. With this MaC infrastructure,
DevOps teams are able to configure their own metrics and
indicators at runtime and receive detailed information about
the availability of an 10T system in execution, in other words,
monitoring on demand.

2327-4662 c 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7493-0994
https://orcid.org/0000-0001-6738-9370
https://orcid.org/0000-0003-3349-6017

10696

loT Vertical Applications

&l

Software Infrastructure

loT App. loT App. loT App.

Hardware Infrastructure

Fig. 1. 10T system structure.

The F&CF availability activity is specified while conform-
ing to the fundamentals of DevOps [13], [14] and enables
the quick detection of availability problems and obtains the
information to fix them, ideally long before customers are
impacted. This work was completed with the implementation
of the F&CF availability activity in a real scenario in order
to obtain evidence to verify the validity of the activity and its
results in practice.

The remainder of this article is structured as follows.
Section |1 briefly introduces the concepts of 0T and DevOps.
Section 1l describes related work. Section IV presents the
specification of the F&CF availability activity in SPEM 2.0.
An implementation of the activity is described through a case
study in Section V. Finally, the results, conclusions, and future
works are described in Sections VI-VIII, respectively.

Il. BACKGROUND

Standard ISO/IEC 20924 (on the loT vocabulary) [15]
defines the most important terms and concepts of 10T. Standard
ISO/IEC 30141 (on the 10T reference architecture) [16] is the
first international standard that “specifies a general loT refer-
ence architecture in terms of defining system characteristics,
a conceptual model, a reference model, and architecture views
for 10T.” ISO/IEC 30141 also defines the concept of “trustwor-
thiness” as one of the main characteristics of an 10T system
and specifies that availability is an essential property to support
the trustworthiness of 10T systems.

A. loT Platforms: Cloud, Fog, and Edge Computing

There are many software 10T infrastructures in the mar-
ket (commonly referred to as loT platforms or frame-
works) [17], [18] that facilitate the development of these
systems. Some examples of loT platforms are FIWARE,!
SOFIA,? and ThingsBoard,® which offer services and appli-
cation programming interfaces (APIs) for the integration and
interoperability of multiple devices, as well as the storage,
processing, and analysis of a huge volume of data (data ana-
lytics). Together with these platforms, a set of 10T services
offered by well-known cloud providers (for example, Amazon
Web Services 10T,* Google Cloud I0T,® IBM Watson 10T,%
and Microsoft Azure 10T)” have emerged in the last few

Thttps:/www.fiware.org

2http://sofia2.com/

Shttps://thingsboard.io/
“https://www.amazonaws.cn/en/iot-core/
5https://cloud.googIe.com/solutions/iot/
6https://www.ibm.com/internet-of-things
7https://azure.microsoft.com/en—us/product—categories/iot/

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

years. However, the adoption of the fog/edge computing
paradigm [19], [20] is also growing, and most authors accept
that fog/edge computing features should also be included in
the definition of new loT architectures [21]-[25]. There are
already commercial examples of such infrastructures as, for
example, Cisco Kinetic.2 These new IoT infrastructures that
integrate cloud, edge, and fog computing are improving pro-
ductivity and are addressing important aspects, such as big
data management and high computational requirements [26].
However, they are much more complex and distributed and,
therefore, are also much more difficult to monitor and ensure
their availability.

B. Why Is DevOps Important for 10T?

IT operations monitoring is an essential activity to guaran-
tee reliable and compelling loT systems. So far, the teams
that develop loT systems and IT operations work in silos,
i.e.,, each one has its own objectives (usually different of
business objectives), processes, methodology, tools, managers,
etc. These silos and the lack of collaboration hamper rapid
and continuous feedback to instrument maintenance, updates,
and ultimately, meet customer satisfaction and impact on the
business. In 2008, Debois was one of the first voices on
highlighting the need of resolving the conflict between devel-
opment and operations teams when they have to collaborate
to provide quick response time to customer demands [27].
As a response to this need, DevOps emerged as a cultural
approach that promotes the development team to work closely
and efficiently with the operations team [7]. To create this cul-
ture, specific practices are needed. According to [9], fast and
continuous feedback from operations to development is one
of these fundamental practices. This means to create short
feedback loops that enable detect errors or weaknesses of
systems in production and correct them quickly in a continu-
ous improvement cycle [28], [29]. Balaile et al. [30] identified
“continuous monitoring” as a critical DevOps practice that
provides developers with performance-related feedback and
facilitates detecting any operational anomalies. This helps
to bridge the gap between development and operations and
change the team structures [30]. In a previous work [31] we
focused on self-service cybersecurity monitoring as an enabler
to introduce security practices in a DevOps environment.

However, continuous monitoring is not an easy task and
is even more complex for 10T. Some researchers [10], [11]
applied systematic literature review and multiple case study,
respectively, to identify the main challenges to adopt DevOps
to the embedded systems domain, in contrast to its widespread
use in the Web domain. One the one hand, there are technical
challenges as the high distribution of 10T systems (cloud, fog,
and edge approaches). On the other hand, people who are not
used to work together have to do it, being necessary to define
new processes, activities, and automate them. Dealing with
these challenges, we are enabling developers to monitor the
systems they build, on demand, self-service, and thus, enabling
fast and continuous feedback. In the related work section, we
mention some initial advances on DevOps in 0T systems,

8https://www.cisco.com/c/en/us/soIutions/internet—of—things/iot—kinetic.html

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

LOPEZ-PENA et al.: DevOps FOR 10T SYSTEMS: FAST AND CONTINUOUS MONITORING FEEDBACK OF SYSTEM AVAILABILITY

Fig. 2. SPEM 2.0 graphical notation.

although most of the work focuses on automating the deploy-
ment and delivery, being continuous monitoring a challenge
today. In this direction, Ferry et al. [32] presented challenges
related to the development, operation, and quality assurance
of trustworthy smart 10T systems. They present a research
roadmap to enable DevOps in smart loT systems and envi-
sion a DevOps framework to support them, although without
specific details about how to support continuous monitoring.

To deal with this challenge, this article formalizes the activ-
ity for fast and continuous feedback to detect problems in
advance, facilitating better-informed decisions in order to fix
them. We provide the basis for automating this activity through
the MaC so that developers can easily configure monitoring
infrastructure, on demand and thus, obtain fast feedback to
develop system more reliable.

I1l. RELATED WORK

Recently, some works approach the development of loT
systems based on DevOps practices. Most of them focus
on automating the deployment and delivery of systems. For
example, Karapantelakis et al. [33] described a system for
automated lifecycle management of loT applications requir-
ing cellular network access. This system supports DevOps by
automating the deployment pipeline of 10T applications, in
other words, the system automates allocation and dealloca-
tion of network and cloud resources based on the information
provided by a monitoring infrastructure of the network, CPU,
and memory status. Similarly, Kim and Kim [34] described
a system for data operation visibility. Bae et al. [35] focused on
automated continuous integration and deployment of loT cloud
services using containers. Syed and Fernandez [36] described
a cloud/fog ecosystem to support both 1oT and DevOps in

10697

the automated management of infrastructure but not explicitly
together.

As far as we know, only [33] and [34] address monitoring
infrastructures for 10T systems to convey feedback from oper-
ations to development. Nevertheless, our contribution differs
from these previous ones in some aspects: 1) the monitor-
ing infrastructure is created and configured automatically, it
is versioned and repeatable, and easily adaptable to changes
in production (monitoring as code, or MaC) and 2) we intro-
duce the concept of custom monitoring on demand (managed
as MaC components) as pieces of code for monitoring pur-
poses that can be coded, deployed, and executed in the loT
system in production to improve the feedback from operations
to development.

IV. FAST AND CONTINUOUS FEEDBACK OF SYSTEM
AVAILABILITY (F&CF AVAILABILITY)

A. “F&CF Availability”” Activity Definition

A key practice in DevOps is the fast and continuous feed-
back from operations to development. In this work, we have
promoted this practice in large 10T systems in production for
availability monitoring. For this purpose, we provide a formal
specification of the F&CF availability activity using SPEM
2.0 [12] (see some SPEM 2.0 graphical notations in Fig. 2).

Fig. 3 shows the SPEM specification for the activity of
the principle “fast and continuous feedback from operations
to development” and the instantiation for the case of system
availability monitoring. The activity specification is composed
of three TaskUse elements, each of which is described in its
corresponding TaskDefinition (through the relation << content
trace>>). Each TaskDefinition, as a method content element,

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

10698

Fig. 3. Specification (SPEM 2.0) of the “F&CF availability” activity.

provides step-by-step explanations that describe how specific
development goals are achieved independent of the placement
of these steps within a development lifecycle. Each TaskUse,
as a process element, takes these method content elements and
relates them to partially ordered sequences that are customized
to specific types of project.

The specification of the F&CF availability activity defines
the following set of TaskDefinition elements (see Fig. 3).

1) TaskDefinition “Create Telemetry”: This task reads
the values of the monitoring metrics specified in the
WorkProductDefinition target telemetry and generates a new
WorkProductDefinition named telemetry with the collected
data. Table I shows the summarized formal description of this
task in SPEM 2.0.

2) TaskDefinition “Analyze Telemetry”: This task is
responsible for detecting anomalies and failures from the val-
ues of the metrics that the WorkProductDefinition telemetry
collects. The set of detected anomalies is sent to the anomalies
artifact.

3) TaskDefinition ““Supervision”: The function of this task
is to diagnose problems (from the anomalies artifact) and
send the feedback to the development team with details of
the anomalies and possible solutions to fix them (e.g., deploy-
ing a new version of the software for some of the monitored
elements). This task will generate appropriate events and
messages to help plan corrective actions. These events are
described in the activity log artifact.

The main input for the F&CF availability activ-
ity through the TaskDefinition create telemetry is the
WorkProductDefinition called target telemetry, which contains
a complete definition of the elements of the 10T system that
must be monitored and how to accomplish this. The artifact
target telemetry is defined as associations of several metric
elements (environment metrics, application metrics, pipeline

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

metrics, etc.) (Fig. 3). Table Il shows a summary of the
“environment metrics” specification in SPEM 2.0.

The F&CF availability activity is carried out by the DevOps
Team, which performs both development and operation works.
This role has been specified as an instance of CompositeRole
whose main responsibility, in this case, is the generation of the
WorkProductUse script availability that implements the MaC
in this proposal.

Finally, the SPEM specification (Fig. 3) outlines a set of
tools that support the TaskDefinition elements. These tools
are part of a monitoring infrastructure (ToolDefinition) that
is flexible enough so that DevOps teams can develop their
own monitoring and alerting services according to their cri-
teria (monitoring on demand). In order to automatize the
deployment of the monitoring tools and the monitoring on
demand components (management of code and configurations
of monitoring, alarms, and alerts/events), we have defined a set
of configurable scripts which we call MaC as a specialization
of the well-known 1aC. All those code and configuration com-
ponents are versioned and configured, and they are repeatable.
Virtualization and containerization technologies are used for
the automation of the monitoring infrastructure. This automa-
tion is described in detail in the implementation of the F&CF
availability activity.

B. “F&CF Availability” Instantiation

The instantiation of F&CF availability is specified by defin-
ing the TaskUse and WorkProductUse elements as shown in
Fig. 3, and selecting the tools for the event&data collec-
tor, anomalies detection, and supervision. There are different
monitoring tools (Prometheus,® Pandora FMS,1° Netdata,!

9https://prometheus.io/
Onhttps://pandorafms.com/
D https:/ivww.netdata.cloud/

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

LOPEZ-PENA et al.: DevOps FOR 10T SYSTEMS: FAST AND CONTINUOUS MONITORING FEEDBACK OF SYSTEM AVAILABILITY

TABLE |

SPEM SPECIFICATION OF THE “CREATE TELEMETRY” TASKDEFINITION

10699

TABLE I
SPEM SPECIFICATION OF THE “ENVIRONMENT METRICS” METRIC

Attribute Value Attribute Value

name Create Telemetry name environment metrics

(from UML 2 Infrastructure) presentationName Environment Metrics

presentatlol_lN ame create telemetry Kind Metric

(from Describable - -

Element.ContentDescription) briefDescription Defines the family of metrics related to the

- — (from Describable IoT physical infrastructure on which the

Kind)) Discipline: feedback Ops2Dev Element.ContentDescription) |system is deployed.

(from Extensible Element.Kind) - . - -
mainDescription The taxonomy of environment metrics and

briefDescription This task defines how to get the (from Describable their measures follow the schema:

(from Describable metrics, and how these metrics are Element.ContentDescription) > Inf ics: ref

Element.ContentDescription) stored. nirastructure met_rlcs. referto

hardware and data links:
mainDescription This task is responsible for e CPU Metrics:
(from Describable reading the values of those o CPU Usage (%)

Element.ContentDescription)

elements that have to be
monitored and that are indicated
in the WorkProductDefinition
target telemetry. It generates a
new felemetry artifact in which the
read values appear (at the
indicated intervals).

purpose
(from Describable
Element.ContentDescription)

To gather metrics from elements
of an IoT system.

ownedTaskDefinitionParameter
(Default_TaskDefinitionParameter)

This is a composition association
that references the
WorkProductDefinitions related
with this task. In this case, farget
telemetry (mandatory, input) and
telemetry (mandatory, output).

usedTool: ToolDefinition

event&data collector tool

/step: Step

Precondition “target telemetry” artifact exists
(from Work Definition)

Postcondition “telemetry” artifact has been
(from Work Definition) created

Zenoss, 2 Azure,’3 AWS™ monitoring tools, etc.) and any
of them could have been selected and instantiated. In this
work, open-source Netdata tool has been selected because it
is distributed and light, enables deployment and monitoring in
both cloud, edge, and virtualized environments, and supports
monitoring and event management as code (MaC).

The instantiation of F&CF availability activity includes the
following elements.

2https:/iwww.zenoss.com/
B3https://docs.microsoft.com/azure/azure-monitor/
14https://aws.amazon.com/cloudwatch/

o ...
e Memory Metrics:
o RAM usage (Gb)
o ...
e Data Network Metrics:
o Physical Network Interfaces
Aggregated Bandwidth (Kb/s)
o Bandwidth (Kb/s)
o Packets (packets/s)
o Interface Errors (errors/s)
o Interface Drops (drops/s)
o ...
o Disk Metrics:
o /O operations (operations/s):
o Space usage (bytes)
o /0O bandwidth/s (Kb/s)
o Utilization (%)
o ...

» 10T service metrics: the [oT
infrastructure is designed as an
architecture of microservices, all of them
encapsulated in containers:

o http.server.requests (#)

e process.start.time (s)

e process.uptime (s)

e process.cpu.usage (%)

e process.files.open (#)

o system.load.average.lm (#)
e system.cpu.count (#)

e system.cpu.usage (%)

LI

» Device metrics:
e Device status (On/Off)
o Device error (Error Code)

> ..

1) Service Measures: It defines the availability metrics to
be collected in the instantiated scenario (IoT system). This
instance defines the “environment metrics” related to avail-
ability in three scopes: 1) infrastructure metrics; 2) 10T service
metrics; and 3) device metrics.

2) Availability Measures: This TaskUse collects the mea-
sures related to the availability specified in service measures
and calculates availability indicators by means of functions
that combine sets of measures applying predefined logic.
It leaves the value of those measures and indicators in
the WorkProductUse availability indicator. The steps are as
follows.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

10700

1) Develop monitoring components (code in the
Netdata plugin files) that collect the measures defined
in service measures following the design model defined
by the monitoring tool.

2) Configure the monitoring components in the monitor-
ing tool by editing and modifying the configuration file
netdata.conf defined for this purpose.

3) Restart the monitoring tool services (warm restart).

3) Availability Indicator: This WorkProductUse receives
and stores the entire set of values of the measures and
indicators.

4) Evaluate Availability: This TaskUse receives the val-
ues of measures and indicators stored in the WorkProductUse
availability indicator and applies a set of rules and logic
that define the grade of availability of the 10T system, gener-
ates availability alerts and events, and produces the detailed
information that will be sent to the DevOps team. This detailed
information will be the feedback of the availability status of
the 10T system in production (measures and indicator values,
alerts and events generated, and their severity levels) to be
sent to the DevOps team to anticipate anomalies and fix fail-
ures. The results of this task are sent to the availability alarm
WorkProductUse. The steps are as follows.

1) Develop the alarm components (code in the

Netdata alarm definition files) that evaluate the
IoT system availability, following the design model
defined by the monitoring tool.

2) Configure the alarm components in the monitoring
tool by editing and modifying the configuration file
netdata.conf.

3) Restart the monitoring tool services (warm restart).

5) Availability Alarm: This WorkProductUse is the repos-
itory that receives detailed information (indicators and evalu-
ation results) from the evaluate availability task.

6) Generate Dashboard: This TaskUse implements two
actions: 1) generate the dashboard Web application retrieving
measures, indicators, and their analysis stored in “availabil-
ity indicator” and availability alarm, respectively and 2) send
detailed feedback to the DevOps team through direct messages
(e-mail, instant messaging, etc.) and/or as tickets to other event
monitoring systems (third-party applications). The steps are as
follows.

1) Configure the dashboard in the monitoring tool by edit-
ing and modifying the configuration file defined for this
purpose. This configuration includes the URL to show
the dashboard in a Web browser.

2) Configure the event management in the monitoring tool
by editing and modifying the configuration file net-
data.conf or programming ad hoc components to send
messages and events that are called from the alarm
components.

3) Restart the monitoring tool services (warm restart).

7) Data Presentation: This WorkProductUse is the Web
application generated by the monitoring tool that shows the
loT system availability dashboard. This application is acces-
sible through a Web browser in a specific URL previously
configured in the tool.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

V. CASE STUDY: IMPLEMENTATION OF “F&CF
AVAILABILITY” ACTIVITY

The SPEM specification of the F&CF availability activity
has been validated by implementing it in a real 10T scenario.
The activity implementation and the results of the case study
are detailed as follows.

A. Case Study Description

The scenario for the case study was a drinkable water supply
system. This system consisted of three flow meters that could
be opened/closed on demand and that send the state of the
current metering to the loT platform.

The flow meters were installed in the water entry points
of three different sets of buildings. Each set of buildings was
a closed workplace where all the workers had everything they
needed to work and live. The workplace consisted of offices,
factories, canteens, houses, and warehouses, and could be seen
as a sort of small smart city, where systems such as the drink-
able water supply could be monitored using IoT capabilities.
The 10T capabilities of the system helped the facility man-
agement team to provide a quality service since they had
fine-grained information in real time. With the information
provided by the system, they could forecast system failures
even before they happened and act in advance to avoid supply
interruptions among other benefits.

The flow meters measured the amount of water flowing
through them and sent this data to third-party application
through the 10T infrastructure. The flow meters also had the
capability to stop and start the water flow and report this status
in conjunction with the water flow measures.

B. Case Study Technical Environment

For the development of this case study, we deployed
RECAP’s SAT-10T platform [37]. This platform was designed
and built using a distributed microservice architecture com-
posed of multiple small components working together.

The flow meter devices were configured to send their data to
the SAT-10T collector (one of the main entities of the plat-
form built as a microservice and deployed in a container)
using the MQTT protocol over TCP. This loT collector also
provided an endpoint where the user could obtain metrics,
such as data received, errors in the data, and data acquisition
performance.

This case study focused on the monitoring of the avail-
ability of this 10T system. The availability was studied from
the hardware infrastructure level that includes the status of
servers and devices, going through the 10T software infras-
tructure level, and to the application level. To perform this
study, the Netdata monitoring tool was chosen as an imple-
mentation of the event&data collector, anomalies detection,
and supervision tools defined in the F&CF availability activ-
ity specification (Fig. 3). This tool was designed as highly
modular software to perform all-in-one metrics analysis. The
Netdata configurations, plugins, and event/alarm managers can
be created, extended, or modified to fit the DevOps team
needs since almost behavior in Netdata can be coded. This
is key for enabling MaC and supporting the automation that

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

LOPEZ-PENA et al.: DevOps FOR 10T SYSTEMS: FAST AND CONTINUOUS MONITORING FEEDBACK OF SYSTEM AVAILABILITY

Fig. 4. Case study loT system overview.

the F&CF activity aims. These plugins and configurations are
managed via a version control system and are deployed using
an automation tool like Ansible® among others. Fig. 4 shows
an overview of the 10T distributed system that was deployed in
this case study, in which the SAT-10T collector, Netdata plug-
ins, alarm managers, and event managers were deployed in an
edge node, while the Netdata core and the other 10T software
infrastructure components were in cloud servers.

C. Implementation of “F&CF Availability”

Once the loT infrastructure was deployed, the next step
was the development of the F&CF availability activity and
its deployment and execution on the 10T system. To that end,
the TaskUse elements specified in Section I\V-B were imple-
mented ad hoc as MaC components and configured to be
installed and executed in Netdata. The implementation con-
sists of a set of configuration files, scripts, and python code
files, all of them under GitLab® CI/CD pipeline, configura-
tion, and version control. The management of deployments and
executions is carried out using playbooks that Ansible exe-
cutes in the selected servers. All this is the WorkProductUse
script availability generated by DevOps team to implement
the MaC. Fig. 5 shows the sequence of steps performed by
script availability.

The components we developed are described as follows.

1) TaskUse *““Availability Measures”: This TaskUse was
implemented by deploying the Netdata tool in the server,
specifying Netdata configuration files for measuring avail-
ability, developing the plugins, and executing them with
Ansible. Code 1 shows an excerpt from the configurations
file. When the Netdata tool was configured and was running,
custom plugins were coded using the Python programming
language. In this case, two ad hoc plugins were developed
(flow_meters_collector.py and API_check_collector.py) to
retrieve information from the SAT-l1oT collector [37] via the
APl REST endpoint. The information retrieved included the
flow meter measures, the state of the valve, the amount of
data sent, etc. Some code sequences of the plugins imple-
mented are shown in Codes 2 and 3.

Bhttps://www.ansible.com/
18https://about.gitlab.com

10701

Code 1 Netdata Configuration File
[global]

biﬁgins directory =
“/usr/libexec/netdata/plugins.d”
“letc/netdata/custom-plugins.d”

[web]
[plugins]

PATH environment variable =
Jusr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/shin:/bin:/sbin:/us
r/sbin:/usr/local/bin:/usr/local/shin:

PYTHONPATH environment variable = /opt/python/bin
proc = yes

enable running new plugins = yes

check for new plugins every = 60

apps = yes

charts.d = yes

python.d = yes
[health]

[re‘g.i.stry]
[backend]

[statsd]

Since this case study aimed to evaluate the availability of
the 10T system, it was necessary to provide a set of indicators
needed to calculate the availability. The calculation of these
indicators was coded and deployed in the same way as the
plugins, and they were also managed as MaC components and
coded in Python. In the case study, several indicators were
created.

1) System availability indicators combined CPU, RAM,
disk, and network usage metrics of hardware infrastruc-
ture. In addition, multiple indicators related to devices
and data sent from them were developed to reflect
availability. The first one was the error indicator. This
indicator was used to raise an alarm if a valve was sup-
posed to be closed, but the water was flowing through
the flow meter. The second one was a request indica-
tor to alert that the number of responses sent from de
device is less than the number of requests received. The
last one was the flow threshold, which indicates that
the current water flow is exceeding the manufacturer’s
recommended limits.

2) Software infrastructure (Sat-loT platform) availability
indicators relied on the responses (or the lack of them
if a component was down) from the loT software
infrastructure.

2) TaskUse “Evaluate Availability”: This TaskUse exam-
ines indicators, calculates the availability at different levels,
and generates feedback about the behavior of the system and
raise alarms.

In this case study, the availability is calculated at two levels:
1) component level (system environment, SW infrastructure,
and data/device) and 2) indicator level (for example, error,
request, and threshold are the indicators of data/device com-
ponent), and they are aggregated to calculate availability of

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

10702

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

<<script>> <<tool>> <<tool>> <<script>> <<laC: microservices>> <<script>> <<script>>
:availability :Gitlab :Netdata :availability measures :SaT loT Collector luate availability g te dashboard
T - T T T T T T
| 1: Get Plugins | | | | | |
| | | | |
2: Plugins | | | | |
******** | | | | |
! 2:Install Plugins ! } } } }
3: Config Tasks | | | |
| | | |
. | | | |
e S —— | | | |
| 5: API_check_collector | | | |
. + P I | |
6: I | |
P I |
7: | |
————————————— | |
8 < I I
——————————————————————————————— | | I
| | | |
9: flow_meters_collector | | | |
>, 10: | | |
11: > ! !
_______ L _ | |
12: < ‘u | |
——————————————————————————————— | | |
| | | |
13: evaluate_availability | | | |
+ P |
| | U |
| | |
! 14: generate_dashboard ! ! !
| | |
T | | |

Fig. 5. Sequence diagram of “script availability.”

Fig. 6. 10T software infrastructure alarm.

the whole IoT system. The availability A (C; Ij), where Ij is
an indicator that belongs to the component C;, is calculated
as in (1), the availability of each component Ac (C;) is calcu-
lated as in (2), and the availability of the system Asystem(Ci)
is calculated as in (3). This model, expresses the percentage
of time that a component/system is working properly and it
is computed by well-known equation which relates mean time
to repair (MTTR) and mean time to failure (MTTF) [38]

A = MTTF Ci, |j
' T MTTE Ll + MTTR G, |
B Uptime Cj, |; 1)
- Uptime Cj, I + Downtime C;j, I
Ac(Ci) = AIGi,])) (2
i
Asystem(Ci) = Ac(Ci). 3

This TaskUse was coded in Netdata using the graphic alarm
configuration system shown in Fig. 6. This system provides
a programable rule system that enables make calculations,
define rules to raise alarms, set the alarm severity, and also
execute a process associate to the alarm—in this use case,
a feedback generator that sends detailed information about

indicators and behavior of the system.
3) TaskUse “Generate Dashboard: This TaskUse is the

key piece of the activity for the de DevOps team since
this TaskUse provides a rich and tailored feedback from the
system in production, including measures, indicators, alarms,
and detailed notification messages about the behavior of
the system. The TaskUse generate dashboard is the cus-
tomized configuration of the dashboard and feedback system
in this case study. This customization was made using the
Netdata configuration file which contained the charts defini-
tion and location, the order of the elements, the scale of the
data, and all the parameters that are shown in the dashboard.
The notification actions were also defined through the alarm

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

LOPEZ-PENA et al.: DevOps FOR 10T SYSTEMS: FAST AND CONTINUOUS MONITORING FEEDBACK OF SYSTEM AVAILABILITY

Fig. 7. Dashboard panel with flows and threshold indicators.

Fig. 8. Request indicator graph.

configuration system described in the configuration of evaluate
availability. The customization of the dashboard is specified
and designed by the DevOps team so that it is adapted to the
specific environment monitored and helps the team to interpret
the information shown and to take the necessary actions in the
case of system anomalies or failures. Code 4 shows a fragment
of the configuration code for generating the dashboard.

D. Case Study Results

The result of this case study is a complete implementa-
tion of the F&CF availability activity that support the DevOps
team in the process of continuous improvement. DevOps team
manages both monitoring infrastructure and monitoring com-
ponents under a CI/CD model and the deploy of new versions
is fully automated.

This implementation is an example of MaC that consists of
both the installation of the tool (Netdata) and a set of config-
urations and customized pieces of code that were developed
specifically for the 10T system to be monitored. All these com-
ponents are controlled, tested, and versioned under a CI/CD by
the DevOps team, which is able to change them throughout the
loT application life cycle. In addition, any new version of the
whole monitoring system can be deployed and run automat-
ically through virtualization and containerization technology
as it is specified in script availability component in the F&CF
availability activity specification.

Figs. 7-9 show only some views of the very large and
detailed dashboard designed. For example, Fig. 7 is a view
of the panel that shows the time series of water flows through

10703

Code 2Flow_Meters_Collector.py Plugin

the main loop

count= 0

last_run = next_run = now = get_millis()

while True:

if next_run <= now:
count += 1
DATA GATHERING
resp = requests.get(“http://localhost:8086/actuator/info’)
if resp.status_code != 200:
This means something went wrong.
raise ApiError(‘GET /actuator/info

{}’.format(resp.status_code))
metrics = json.loads(resp.content)
#print “Stats:

"+ str(metrics[“UsageMetrics”][“CurrentMinuteRequests™])
valuel = metrics[“UsageMetrics”][“CurrentMinuteRequests”]
value2 = metrics[“UsageMetrics”][“LastMinuteRequests”]
value3 = metrics[“UsageMetrics”][“TotalRequests”]
value4 = metrics[“UsageMetrics”][“FlowMeter1”]
value5 = metrics[“UsageMetrics”][“FlowMeter2”]
value6 = metrics[“UsageMetrics”][“FlowMeter3”]
value7 = metrics[“UsageMetrics”][“DirtyDatal”]
value8 = metrics[*UsageMetrics”][“DirtyData2”]
value9 = metrics[“UsageMetrics”][“DirtyData3"]

the flowmeters and the threshold indicator (green in normal
conditions a red when the evaluation of this indicator raises
an alarm). Fig. 8 shows a real-time detailed graph with cur-
rent (green line) and cumulative values (red line) of requests
sent from the system to flowmeters, with which the mon-
itoring system calculates request indicators and raises the
corresponding alarms. Fig. 9 displays one of the views of the

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

10704

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

Code 3 API_Check_Collector.py Plugin

class Service(UrlService):
def __init__ (self, configuration = None, name = None):
UrlService.__init__(self, configuration = configuration, name = name)
self.order = ORDER
self.definitions = CHARTS
pattern = self.configuration.get(‘regex’)
self.regex = re.compile(pattern) if pattern else None
self.status_codes_accepted =
self.configuration.get(*status_accepted’, [200])
self.follow_redirect = self.configuration.get(‘redirect’, True)
def _get_data(self):
data = dict()
data[HTTP_SUCCESS] = 0
datalHTTP_BAD_CONTENT] = 0
data[HTTP_BAD_STATUS] = 0
data[HTTP_TIMEOUT] = 0
datalHTTP_NO_CONNECTION] = 0
url = self.url
try:
start = time()
status, content = self._get_raw_data_with_status
(retries = 1 if self.follow_redirect else False,
redirect = self.follow_redirect)
diff = time() S start
datalHTTP_RESPONSE_TIME] = max(round(diff * 10000), 0)
self.debug(“Url: {url}. Host responded with status code {code} in
{diff} s’.format(url = url, code = status, diff

= diff))
self.process_response(content, data, status)
except urllib3.exceptions.NewConnectionError as error:
self.debug(‘Connection failed: {url}. Error:
{error}’.format(url = url, error = error))
data[HTTP_NO_CONNECTION] = 1
except (urllib3.exceptions.TimeoutError,
urllib3.exceptions.PoolError) as error:
self.debug(’Connection timed out: {url}. Error:
{error}’.format(url = url, error = error))
data[HTTP_TIMEOUT] = 1
except urllib3.exceptions.HTTPError as error:
self.debug(‘Connection failed: {url}. Error:
{error}’ .format(url = url, error = error))
data[HTTP_NO_CONNECTION] = 1
except (TypeError, AttributeError) as error:
self.error("Url: {url}. Error: {error}’.format(url = url, error = error))
return None
return data
def process_response(self, content, data, status):
data[HTTP_RESPONSE_LENGTH] = len(content)
self.debug(’Content: \n\n{content}\n’.format(content = content))
if status in self.status_codes_accepted:
if self.regex and self.regex.search(content) is None:
self.debug(‘No match for regex “{regex}”
found’.format(regex = self.regex.pattern))
data[HTTP_BAD_CONTENT] = 1
else:
data[HTTP_SUCCESS] = 1
else:
data[HTTP_BAD_STATUS] = 1

dashboard panel that monitors the flowmeters error indicator,
this panel uses three graphical gauges that change their color
to red when the evaluation of the error level raises an alarm.

In addition to the graphical dashboard, the monitoring
system sends detailed feedback messages systematically.
Table 11l shows some of these detailed messages containing
indicators, alerts, availability values, and text messages that
allow the DevOps team to know the cause and severity of the
failures and make decisions fast.

Code 4 Dashboard Generation Code

parser = argparse.ArgumentParser(description = ‘Dashboard for the collector
demo’)
parser.add_argument(‘update_every’, type = int, nargs = ‘?’,
help = ‘update frequency in seconds’)
args = parser.parse_args()
internal defaults for the command line arguments
update_every = 1
evaluate the command line arguments
if args.update_every ! = None:
update_every = args.update_every
various preparations
update_every = 3000
get_millis = lambda: int(round(time.time() * 1000))
generate the charts in dashboard
try:
type.id name title units family context? chartType priority updateFre-
quency
db_conf ("CHART collector.requests requests “System Requests”
“Number of requests” “Requests” “collector.requests”
line 1001 %s\n’ % int(update_every / 1000))
db_conf (‘DIMENSION valuel “Current minute” absolute 1 1\n’)
db_conf(‘DIMENSION value2 “Last minute” absolute 1 1\n’)
db_conf(‘DIMENSION value3 “Total” absolute 1 1\n’)
db_conf(‘CHART collector.flowmeterl flowmeterl “Flow meter 1” “m3/h”
“Flow meters” “collector.flowmeter”
area 100000 %s\n” % int(update_every / 1000))
db_conf(‘DIMENSION value4 “Current flow” absolute 1 1\n’)
db_conf(‘CHART collector.flowmeter2 flowmeter2 “Flow meter 2” “m3/h”
“Flow meters” “collector.flowmeter”
area 100000 %s\n” % int(update_every / 1000))
db_conf(‘DIMENSION value5 “Current flow” absolute 1 1\n’)

db_conf(‘CHART collector.dirtydatal dirtydatal “Dirty data 1” “Failures”
“Dirty data” “collector.dirtydatal”
area 100000 %s\n” % int(update_every / 1000))
db_conf(‘DIMENSION value7 “Dirty data 1” absolute 1 1\n’)
db_conf(‘CHART collector.dirtydata? dirtydata2 “Dirty data 2” “Failures”
“Dirty data” “collector.dirtydata2”
area 100000 %s\n” % int(update_every / 1000))
db_conf(‘DIMENSION value8 “Dirty data 2” absolute 1 1\n’)

db_conf (“flush”)

except IOError as e:
db_conf(err = ‘Failed to send data to netdata\n’)
sys.exit(0)

Fig. 10 shows an additional panel that was built ad hoc to
monitor one of the flow meters during a maintenance process.
The upper part of the panel shows two combined graphs (one
line graph represented in the ordinate left axis and several bar
graphs represented in the ordinate right axis). The line graph
shows the water flow measurements sent by the flow meter
device during the process in which anomalies, such as miss-
ing data, erroneous values, etc. are seen. The bar graphs enrich
the previous information since it represents in the same time
interval different types of events and failure alarms detected
by the monitoring system, as well as the evolution of the
availability of the device. The bottom of the panel shows the
console that receives and displays periodically the feedback
messages which improve even more the interpretation of the
system dashboard, and the analysis tasks.

As a result, DevOps team can focus the analysis on the key
factors of the system with the ad hoc availability monitoring
implementation because they had more detailed information
and multiple general and specific views. In parallel, DevOps

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

LOPEZ-PENA et al.: DevOps FOR 10T SYSTEMS: FAST AND CONTINUOUS MONITORING FEEDBACK OF SYSTEM AVAILABILITY

Fig. 9. Flowmeter error indicator panel in the dashboard.

Fig. 10. Custom dashboard for a maintenance process.

team is receiving a detailed feedback of the system in
production.

VI. DISCUSSION

The results achieved at the end of this work and the main
contributions provided are the following.

A. Definition and Formal Specification of the “F&CF
Availability”” Activity for loT Systems

It promotes the practice “fast and continuous feedback from
operations to development”. Specifically, we focused on mon-
itoring availability, as this is one of the main features of
IoT systems. This formal specification has been made using
SPEM 2.0.

B. Definition of MaC and Its Management

It provides a set of predefined components (configura-
tion files, code components, and scripts corresponding to the
“TaskUses” defined in the F&CF availability activity speci-
fication) under an extension of the 1aC model described in
this work. With these components, DevOps teams can create
monitoring and analysis executable components on demand
by code that are versioned, replicable, and adaptable, instead
of requiring the manual configuration provided by the moni-
toring tools. With these customized pieces of code, the team

10705

TABLE I11
DETAILED FEEDBACK FROM OPERATIONS TO DEVELOPMENT (EXTRACT)

{"Report ID": "Flow_Meter_1_#000120",
"Date": "7-11-19 8:38:16",
"Error Indicator": 8, "Data Availability": "40%",
"Request Indicator”: 0, "Request Availability": "97%",
"Threshold Indicator": 4, "Threshold Availability": "87%",
"Total Availability Flow Meter 1": "34%",
"Feedback":"\"Device connected\"\"Data errors detected
(Critical)\"\"Data out of range (Critical)\"\"Device availability is
growing\""

b

{"Report ID": "Flow_Meter_1_#000130",
"Date": "7-11-19 8:48:16",
"Error Indicator": 1, "Data Availability": "41%",
"Request Indicator": 9, "Request Availability": "90%",
"Threshold Indicator": 1, "Threshold Availability": "87%",
"Total Availability Flow Meter 1": "32%",
"Feedback": "\"Device not connected\"\"Device manually Switched
off\"\"Device is not available (Critical)\""

can define their own metrics and indicators at runtime and
receive detailed information about the availability of an loT
system in execution. Therefore, DevOps team members share
the responsibility of releasing and deploying reliable software
and have the necessary infrastructure and information to do it,
which is key to enable a DevOps culture.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

10706

C. Implementation of the “F&CF Availability” Activity
in Real Scenario

It enables the definition of specific availability tests adapted
to the loT system (defining specific indicators and alarm
levels) and the running of these tests over the system in
production minimizing the risks by detecting faults very
quickly.

VIlI. CONCLUSION

This work is focused on the need of apply DevOps in the
development of reliable and compelling 10T systems. The arti-
cle presented and formalized through SPEM 2.0 a key activity
named F&CF availability that supports feedback from oper-
ations to development in the process of maintenance and
continuous improvement for 10T systems in operation. The
formal specification provides reusability and flexibility by sep-
arating good practices (method content) from their use in
different modalities of software development (process).

The F&CF availability activity has been designed to allow
DevOps teams to receive detailed feedback from operations.
This monitoring is based on the detection of anomalies or fail-
ures of availability from loT hardware infrastructure, devices,
IoT software infrastructure, and loT applications. The feed-
back obtained from the detection of availability anomalies
allows DevOps members in operations to make more informed
decisions to fix problems or support I0T system evolution.

The monitoring system and the monitoring on demand com-
ponents were developed using the techniques 1aC and MaC,
which enables two DevOps good practices: all the compo-
nents of the monitoring infrastructure are versioned (GitLab
Cl) and repeatable as their deployment had been automated
through virtualization and containerization technology.

The case study provides evidence of how this monitoring
infrastructure for a potable water supply system enabled the
detection of system availability status and helped to better
anticipate anomalies that could produce unavailability in the
midterm when a production deployment was performed.

The validity of the approach was performed through a case
study. All case studies are qualitative in nature. That is, they
are, in general terms, very difficult to judge objectively [39].
However, they are often used in software engineering due to
the difficulty in producing multiple experiments or experi-
ments with large populations. In fact, the major limitation in
case study research concerns external validity, “the generality
of the results with respect to a specific population” [40], in that
only one case is studied. In our examination, though only one
case was studied, in the humble opinion of the authors, it was
sufficient to validate the contributions claimed. In fact, this
case study allowed the research team to evaluate the designed
activity and the process practices in a real setting. This is an
important aspect in software engineering, in which a multitude
of external factors may affect the validation results [41].

VIIl. FUTURE WORK

We plan to address the formal specification (using SPEM
2.0) of the whole DevOps process for loT. This process
will define the phases and activities needed to represent the

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

three main DevOps practices [9]: 1) the fast flow of work
from development into operation; 2) fast and continuous feed-
back from operations to development; and 3) continuous
improvement.

We also plan to address new trustworthiness dimensions
in 10T systems (integrity, reliability, etc.) [32], and we will
pose the evolution from “monitoring” to “supervision” to
improve the feedback and provide developers not only fine
grain information but recommendations and procedures to
solve system anomalies and failures. Along this line, we will
extend the instantiation of the F&CF availability activity to
supervision as code. The specification of the activities for
these new characteristics as points of variability in the SPEM
specification will also be studied.

REFERENCES

[1] L. Atzori, A. lera, and G. Morabito, “Understanding the Internet of
Things: Definition, potentials, and societal role of a fast evolving
paradigm,” Ad Hoc Netw., vol. 56, pp. 122-140, Mar. 2017.

[2] T. Kramp, R. Kranenburg, and S. Lange, Introduction to the Internet of
Things,” in Enabling Things to Talk: Designing loT solutions With the
loT Architectural Reference Model. Berlin, Germany: Springer, 2013,
pp. 1-10, doi: 10.1007/978-3-642-40403-0.

[3] E. Lee, “Cyber physical systems: Design challenges,” in Proc. 11th IEEE
Int. Symp. Object Orient. Real Time Distrib. Comput., Orlando, FL,
USA, 2008, pp. 1189-1194.

[4] J. Reason and A. Hobbs, Managing Maintenance Error: A Practical
Guide. Hoboken, NJ, USA: CRC Press, 2017.

[5] G. Casale et al., “Current and future challenges of software engineer-
ing for services and applications,” Procedia Comput. Sci., vol. 97,
pp. 34-42, Oct. 2016.

[6] L. Lwakatare, P. Kuvaja, and M. Oivo, “Relationship of DevOps to agile,
lean and continuous deployment,” in Proc. 17th Int. Conf. PROFES,
2016, pp. 399-415.

[7] L. Lwakatare, P. Kuvaja, and M. Qivo, “An exploratory study of DevOps
extending the dimensions of DevOps with practices,” in Proc. 11th Int.
Conf. Softw. Eng. Adv., 2016, pp. 91-99.

[8] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and DevOps,” in Proc. IEEE/ACM 3rd Int. Workshop
Release Eng., 2015, p. 3.

[9] G. Kim, J. Willis, P. Debois, and J. Humble, The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in
Technology Organizations. Portland, OR, USA: IT Revolution Press,
2016.

[10] L. Lwakatare et al., “Towards DevOps in the embedded systems domain:

Why is it so hard?” in Proc. 49th Hawaii Int. Conf. Syst. Sci. (HICSS),

2016, pp. 5437-5446.

D. Mattos, J. Bosch, and H. Holmstrom, “Agile processes: Challenges

and strategies for undertaking continuous experimentation to embed-

ded systems: Industry and research perspectives,” in Proc. XP, 2018,

pp. 277-292.

OMG. (2008). About the Software Systems Process Engineering

Metamodel Specification (SPEM) Version 2.0. [Online]. Available:

http://www.omg.org/spec/SPEM/

F. Erich, C. Amrit, and M. Daneva, “A qualitative study of DevOps

usage in practice,” J. Softw. Evol. Process., vol. 29, no. 6, pp. 205-240,

Jan. 2017.

[14] W. Van Gremberen and S. De Haes, “Introduction to the minitrack on IT

governance and its mechanisms,” in Proc. 51st Hawaii Int. Conf. Syst.

Sci., 2018, pp. 1-2.

Information Technology—Internet of Things—Definition and Vocabulary,

Int. Standard 20924, 2018.

Internet of Things (loT)—Reference Architecture, Int. Standard 30141,

2018.

H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of commer-

cial frameworks for the Internet of Things,” in Proc. IEEE 20th Conf.

Emerg. Technol. Factory Autom. (ETFA), 2015, pp. 1-8.

[11]

[12]

[13]

[19]
[16]

[17]

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-3-642-40403-0

LOPEZ-PENA et al.: DevOps FOR 10T SYSTEMS: FAST AND CONTINUOUS MONITORING FEEDBACK OF SYSTEM AVAILABILITY 10707

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

P. Ray, “A survey of 10T cloud platforms,” Future Comput. Informat. J.,
vol. 1, nos. 1-2, pp. 35-46, 2016.

Industrial Internet Consortium (lIC). Accessed: Jun. 2020. [Online].
Available: https://www.iiconsortium.org

Y. C. Hu et al., “Mobile edge computing—A key technology towards
5G,” ETSI, Sophia Antipolis, France, White Paper, pp. 1-16, 2015.

P. Fremantle. (2015). A Reference Architecture for the Internet of Things
(White Paper). [Online]. Available: https://wso2.com/whitepapers/a-
reference-architecture-for-the-internet-of-things/

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the Internet of Things characterization of fog computing,” in
Proc. 1st MCC Workshop Mobile Cloud Comput., 2012, pp. 13-15.

R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet:
The Internet of Things architecture, possible applications and key
challenges,” in Proc. 10th Int. Conf. Front. Inf. Technol., 2012,
pp. 257-260.

Y. Shanhe, H. Zijiang, Q. Zhengrui, and L. Qun, “Fog computing:
Platform and applications,” In Proc. 3rd IEEE Workshop Hot Topics
Web Syst. Technol. (HotWeb), 2015, pp. 73-78.

A. Munir, P. Kansakar, and S. U. Khan, “IFCIoT: Integrated fog cloud
loT: A novel architectural paradigm for the future Internet of Things,”
IEEE Consum. Electron. Mag., vol. 6, no. 3, pp. 74-82, Jul. 2017.

S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and
A. S. Gokhale, “INDICES: Exploiting edge resources for performance-
aware cloud-hosted services,” in Proc. IEEE 1st Int. Conf. Fog Edge
Comput. (ICFEC), 2017, pp. 75-80.

P. Debois, “Agile infrastructure and operations: How infra-gile are you?”
in Proc. Agile Conf., 2008, pp. 202-207.

A. Wahaballa, O. Wahballa, M. Abdellatief, H. Xiong, and Z. Qin,
“Toward unified DevOps model,” in Proc. 6th IEEE Int. Conf. Softw.
Eng. Service Sci. (ICSESS), Beijing, China, 2015, pp. 211-214.

O. Krancher, P. Luther, and M. Jost, “Key affordances of platform-as-
a-service: Self-organization and continuous feedback,” J. Manag. Inf.
Syst., vol. 35, no. 3, pp. 776-812, 2018.

A. Balalaie, H. Abbas, and P. Jamshidi, “Microservices architecture
enables DevOps: Migration to a cloud-native architecture,” IEEE Softw.,
vol. 33, no. 3, pp. 42-52, Mar. 2016.

J. Diaz, J. Pérez, M. A. Lopez-Pefia, G. Mena, and A. Yagie, “Self-
service cybersecurity monitoring as enabler for DevSecOps,” |EEE
Access, vol. 7, pp. 100283-100295, 2019.

N. Ferry et al., “ENACT: Development, operation, and quality assur-
ance of trustworthy smart loT systems,” in Proc. DEVOPS, 2018,
pp. 112-127.

A. Karapantelakis et al., “DevOps for 10T applications using cellular
networks and cloud,” in Proc. IEEE 4th Int. Conf. Future Internet Things
Cloud (FiCloud), 2016, pp. 340-347.

S. Kim and J. Kim, “Enabling operation data visibility for
SmartX-MINI loT-cloud playground,” in Proc. IEEE NetSoft Conf.
Workshops (NetSoft), 2016, pp. 428-430.

J. Bae, C. Kim, and J. Kim, “Automated deployment of SmartX loT-
cloud services based on continuous integration,” in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), 2016, pp. 684-700.

M. Syed and E. Fernandez, “Cloud ecosystems support for Internet of
Things and DevOps using patterns,” in Proc. IEEE 1st Int. Conf. Internet
Things Design Implement. (IoTDI), 2016, pp. 301-304.

M. A. Lopez-Pefia and I. M. Ferndndez, SAT-loT: An Architectural
Model for a High Performance Fog/Edge/Cloud loT Platform, Limericks
County Library, Limerick, Ireland, 2019.

I. Silva, L. A. Guedes, P. Portugal, and F. Vasques, “Reliability
and availability evaluation of wireless sensor networks for industrial
applications,” Sensors, vol. 12, no. 1, pp. 806-838, 2012.

R. K. Yin, Case Study Research: Design and Methods, 4th ed. London,
U.K.: SAGE, 2009.

U. Van Heesch, P. Avgeriou, and R. Hilliard, “A documentation
framework for architecture decisions,” J. Syst. Softw., vol. 85, no. 4,
pp. 795-820, 2012.

C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557-572,
Jul./Aug. 1999.

Miguel A. Lopez-Pefiareceived the B.S. degree in
computer science from the Universidad Carlos Il
de Madrid, Getafe, Spain, and the master’s degree
from the Spanish Ministry of Education (EQF level
7), have postgraduate studies from the Universidad
Complutense de Madrid (Physics Sciences Faculty
Doctorate Courses), Madrid, Spain, Rey Juan Carlos
de Madrid (ESCET Faculty Master’s Programs),
Madrid, and IESE Business School, Barcelona,
Spain. He is currently pursuing the Ph.D. degree
in “Science and Computer Technologies for Smart
Cities” Program with the Universidad Politécnica de Madrid, Madrid.

Since 2005, he has been an Innovation and Development Manager with the
Sistemas Avanzados de Tecnologia, S.A., Madrid, and an ICT private multi-
national company with which he has participating in multitude of European
and national Research and Development projects.

Jessica Diazreceived the Ph.D. degree in com-
puter science from the Universidad Politécnica de
Madrid (UPM), Madrid, Spain, in 2012 (best thesis
Award).
She is currently an Associate Professor with the
E.T.S. Ingenieria de Sistemas Informéticos, UPM,
where she has been a Researcher with the System
and Software Technology Research Group since
April 2003 and is participating in several European
and National projects related to software engineer-
ing on Internet of Things and smart systems. Her
research interests include DevOps and rapid application development, cloud
computing, software architectures, software product lines, and model-driven
development.

Jorge E. Pérezreceived the B.S. degree in com-
puter science from the Universidad Carlos Il de
Madrid, Madrid, Spain, in 1999, and the Ph.D.
degree from the Universidad Politécnica de Madrid
(UPM), Madrid, in 2004.
From 1993 to 1997, he was a Secretary of the
Faculty of Computer Sciences, UPM. From 2007 to
2014, he was the Headmaster of the Department
of Applied Computer Science, UPM, where he
has been an Associate Professor since 1985. He
is currently the Coordinator of the DMAE-DIA
Educational Innovation Group and the Competencies and Active Learning
in Engineering Education Research Group. He has taken part in the creation
of several syllabuses for both grades and Postgraduates and has supervised
many research projects. His research interests include software architectures
and modeling.
Dr. Pérez is a recipient of several awards from the Rector of the UPM for
educational innovation at university.

Héctor Humanes received the B.S. degree in soft-
ware engineering and the master’s degree in embed-
ded and distributed system’s software from the
Universidad Politécnica de Madrid, Madrid, Spain,
in 2017 and 2018, respectively.

Since 2018, he has been the Technical Leader of
the Innovation Department, Sistemas Avanzados de
Tecnologia, S.A., Madrid. He has worked for the
System and Software Technology Group and the
Research Group, Universidad Politécnica of Madrid,
Madrid, Spain, where he grew his interests in soft-

ware architecture and loT systems.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 26,2022 at 12:39:46 UTC from IEEE Xplore. Restrictions apply.

