
DEPARTAMENTO DEINGENIERÍA TELEMÁTICA Y ELECTRÓNICA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y

SISTEMAS DE TELECOMUNICACIÓN

Energy-based Fair Queuing:

Energy-centric Processor Scheduling Algorithm

for Battery-limited Mobile Systems

TESIS DOCTORAL

Jianguo Wei

Master Universitario en Ingeniería de Sistemas y Servicios para la Sociedad de la

Información

DIRECTOR

Eduardo Juárez Martínez

 Ph.D. ès Sciences Techniques from the Swiss Federal Institute of Technology in

Lausanne

2015

i

Resumen

Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al

rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin

embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por

ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada

por la vida de la batería, que es un factor inestable de difícil de control. Para abordar

este problema, investigaciones anteriores han propuesto un esquema de gestion del

consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida

operativa de la batería mediante la gestión de la energía como un recurso de primera

clase en el sistema. Como el planificador juega un papel fundamental en la

administración del consumo de energía y en la garantía del rendimiento de las

aplicaciones, esta tesis explora la optimización de la experiencia de usuario para

sistemas móviles con energía limitada desde la perspectiva de un planificador que

tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de

primera clase.

En esta tesis se analiza en primer lugar los factores que contribuyen de forma

general a la experiencia de usuario en un sistema móvil. Después se determinan los

requisitos esenciales que afectan a la experiencia de usuario en la planificación

centrada en el consumo de energía, que son el reparto proporcional de la potencia, el

cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso

entre la cuota de potencia y las restricciones temporales. Para cumplir con los

requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se

extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia

el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair

queueing (EFQ) para proporcionar una planificación basada en la energía. El

algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas

mediante su planificación en función de la energía consumida y de la cuota reservada.

La cuota de consumo de cada tarea con restricciones temporales está protegida frente

a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte

ii

a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con

el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de

tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del

algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los

resultados de las simulaciones indican que los requisitos esenciales de la planificación

centrada en la energía pueden lograrse.

El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar

las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de

pruebas experimental basado en una sitema empotrado, un programa de banco de

pruebas multihilo, y un conjunto de pruebas de código abierto. A través de

experimentos específicamente diseñados, esta tesis verifica primero las propiedades

de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo

real y, a continuación, explora los beneficios potenciales de emplear la planificación

EFQ en la optimización de la experiencia de usuario para sistemas móviles con

energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía

muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de

energía, logrando un reparto proporcional de la energía del sistema

independientemente de en qué dispositivo se consume la energía. Los resultados

experimentales en la planificación en tiempo real demuestran que EFQ puede lograr

de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales

aunque se dé el caso de aumento del el número de tareas o del error en la estimación

de energía. Por último, un análisis comparativo de los resultados experimentales sobre

la optimización de la experiencia del usuario demuestra que, primero, EFQ es más

eficaz y flexible que los algoritmos tradicionales de planificación del procesador,

como el que se encuentra por defecto en el planificador de Linux y, segundo, que

proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los

sistemas móviles con energía limitada.

iii

Abstract

Modern mobile devices have been becoming increasingly powerful in functionality

and entertainment as the next-generation mobile computing and communication

technologies are rapidly advanced. However, the battery capacity has not experienced

an equivalent increase. The user experience of modern mobile systems is therefore

greatly affected by the battery lifetime, which is an unstable factor that is hard to

control. To address this problem, previous works proposed energy-centric power

management (PM) schemes to provide strong guarantee on the battery lifetime by

globally managing energy as the first-class resource in the system. As the processor

scheduler plays a pivotal role in power management and application performance

guarantee, this thesis explores the user experience optimization of energy-limited

mobile systems from the perspective of energy-centric processor scheduling in an

energy-centric context.

This thesis first analyzes the general contributing factors of the mobile system

user experience. Then it determines the essential requirements on the energy-centric

processor scheduling for user experience optimization, which are proportional power

sharing, time-constraint compliance, and when necessary, a tradeoff between the

power share and the time-constraint compliance. To meet the requirements, the

classical fair queuing algorithm and its reference model are extended from the

network and CPU bandwidth sharing domain to the energy sharing domain, and based

on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing

energy-centric processor scheduling. The EFQ algorithm is designed to provide

proportional power shares to tasks by scheduling the tasks based on their energy

consumption and weights. The power share of each time-sensitive task is protected

upon the change of the scheduling environment to guarantee a stable performance,

and any instantaneous power share that is overly allocated to one time-sensitive task

can be fairly re-allocated to the other tasks. In addition, to better support real-time and

multimedia scheduling, certain real-time friendly mechanism is combined into the

EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks.

iv

Through high-level modelling and simulation, the properties of the EFQ algorithm are

evaluated. The simulation results indicate that the essential requirements of

energy-centric processor scheduling can be achieved.

The EFQ algorithm is later implemented in the Linux kernel. To assess the

properties of the Linux-based EFQ scheduler, an experimental test-bench based on an

embedded platform, a multithreading test-bench program, and an open-source

benchmark suite is developed. Through specifically-designed experiments, this thesis

first verifies the properties of EFQ in power share management and real-time

scheduling, and then, explores the potential benefits of employing EFQ scheduling in

the user experience optimization for energy-limited mobile systems. Experimental

results on power share management show that EFQ is more effective than the

Linux-CFS scheduler in managing power shares and it can achieve a proportional

sharing of the system power regardless of on which device the energy is spent.

Experimental results on real-time scheduling demonstrate that EFQ can achieve

effective, flexible and robust time-constraint compliance upon the increase of energy

estimation error and task number. Finally, a comparative analysis of the experimental

results on user experience optimization demonstrates that EFQ is more effective and

flexible than traditional processor scheduling algorithms, such as those of the default

Linux scheduler, in optimizing and preserving the user experience of energy-limited

mobile systems.

v

Acknowledgements

This thesis could not have been completed without the support and effort of many.

First of all, I would like to thank all the professors and lab mates in GDEM-CITSEM.

My first thank goes to my official supervisor, Eduardo Juárez Martínez, from whom I

have learned how to conduct research works with critical thinking. Eduardo is a

knowledgeable professor with great patience on guiding students, and he always

provides valuable and quick comments to my research work. Thanks to the other

professors in GDEM: César Sanz Álvaro, Matías Javier Garrido González, Fernando

Pescador del Oso and Pedro José Lobo Perea, for their efforts in providing and

creating such a friendly and helpful working environment in the lab. Thanks also to

my lab mates, especially Rong Ren, who came to GDEM together with me and we

started the Master and PhD at the same time. It has been a pleasure to work together

with her during the past four years. Thanks to Juanjo and Enrique, I have benefited a

lot through the cooperation and the exchange of idea with them. Thanks to David,

Gonzalo, Ernesto, Miguel and Oscar, for their generous help both in the work and in

everyday life. Without their help, my life in Madrid would be much tougher. I enjoy

talking with them during the lunch and appreciate their efforts to push me speak more

Spanish.

I would also like to thank my family and friends. Thanks to my parents, for their hard

working to bring me up and ensure my receiving a good-quality of education, for their

greatness and unselfishness to let their only child fly as far as he can and freely chase

his life. Thanks to my girlfriend, I can’t image I can finish this PhD thesis without her

caring, encouragement and sacrifice. Thanks to my close friends in Madrid, Rong Ren,

Shan Huang, Meijuan Zhang, Liang Chai and Xiang Wang, for the pure friendship

maintained between us during the past four years and a half. Remember the first night

we spent together in the Beijing international airport, and the uncountable nights we

spent together with or without a reason.

vi

Table of Contents

Resumen i

Abstract iii

Acknowledgements v

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Background and challenge ...1

1.2 Motivation ..3

1.2.1 Battery lifetime guarantee ...3

1.2.2 User experience optimization ...7

1.3 Objectives ...10

1.4 Methodology and organization ...13

1.5 Contributions ..14

2 Related Work 17

2.1 OS-level power management ...17

2.1.1 Introduction ...17

2.1.2 Performance-centric power management18

2.1.3 Battery lifetime-aware power management19

2.1.4 Energy-centric power management ..20

2.2 GPOS scheduling algorithms ...29

2.2.1 Introduction ...29

2.2.2 GPOS scheduling requirements ..31

2.2.3 Priority scheduling ..33

2.2.4 Real-time scheduling ..36

2.2.5 Proportional share scheduling ...40

2.3 Summary and discussion ..58

vii

3 Energy-Centric Processor Scheduling 62

3.1 Assumptions and Conditions ..62

3.1.1 Applications, threads, and tasks ..64

3.1.2 Energy accounting ..65

3.1.3 Energy allocation ..67

3.1.4 Whole view ...67

3.2 Energy-centric scheduling model ...69

3.3 Power share management ...72

3.3.1 Maximum long-term and worst-case power shares72

3.3.2 Power share protection ..77

3.3.3 Power share reallocation ...81

3.4 Energy-based fair queuing (EFQ) ..85

3.4.1 Challenges of developing energy-based fair queuing85

3.4.2 Starting-energy fair queueing (SEFQ) ..87

3.4.3 Time-constraint compliance under EFQ89

3.4.4 Borrowed starting-energy fair queuing (BSEFQ)92

3.5 Summary ..96

4 High-Level Modelling and Simulation 99

4.1 SystemC ...99

4.2 EFQ modelling in SystemC ..100

4.2.1 High-level abstraction ...100

4.2.2 EFQ modelling: the consumer ..101

4.3 Simulation test-bench design ...106

4.3.1 Test-bench architecture ...106

4.3.2 Task modelling: the producer ...107

4.3.3 Obtaining scheduling results ...109

4.4 Task characterizations for simulation ..110

4.5 Simulation results ...112

4.5.1 Maintaining proportional power sharing112

4.5.2 Time-constraint compliance..115

4.5.3 Trading off power share and time-constraint compliance117

4.6 Summary ..119

viii

5 Linux-based Implementation 121

5.1 EFQ implementation in the Linux kernel ...121

5.1.1 Extend the scheduling-related data structures...........................123

5.1.2 Deal with priority and kernel load weight127

5.1.3 EFQ implementation within the core scheduling functions130

5.1.4 Implement the share protection and reallocation138

5.1.5 Extend the system call interface ...140

5.2 Simulation-based debugging ..141

5.2.1 The Linux scheduler simulator ...142

5.2.2 Extend the LinSched API for EFQ simulation and debugging .144

5.2.3 An EFQ simulation scenario ...147

5.3 Summary ..149

6 Experimental Test-bench 151

6.1 Test-bench and methodology overview ...151

6.1.1 Test-bench architecture ...151

6.1.2 Experimental methodology ...152

6.2 Computing platform ...154

6.2.1 The hardware environment ...154

6.2.2 The software environment ..156

6.3 Power supply and measurement system ...157

6.4 Benchmark characterization ...160

6.5 Multithreading test-bench program ..164

6.6 Summary ..166

7 Experimental Results 168

7.1 Maintaining proportional power sharing ..168

7.1.1 Proportional sharing of the system-wide power168

7.1.2 Power share protection ..170

7.2 Time-constraint compliance ...172

7.2.1 Time-constraint compliance under variable workloads172

7.2.2 Robustness of time-constraint compliance177

7.3 User experience optimization under energy limit182

ix

7.3.1 Experimental assumptions and task characterizations182

7.3.2 Experimental results analysis and discussion184

7.4 Summary ..192

8 Conclusions 194

8.1 Summary and discussion ..194

8.2 Limitations and future work ...197

8.3 Final words ...198

Bibliography 199

x

List of Figures

Figure 1. 1: General Structure of Energy-centric Power Management 6

Figure 1. 2: Block Diagram of the Methodology and Thesis Organization 13

Figure 3. 1: Energy-centric CPU Scheduling Surroundings 63

Figure 3. 2: Example of System-wide Power in Reference to CPU Execution

Time ... 66

Figure 3. 3: Illustration of the relationship between the system power and

CPU time .. 70

Figure 4. 1: High-level Abstraction of the CPU Scheduling 100

Figure 4. 2: Flow Chart of SystemC-based EFQ Modelling in the Consumer

Module ... 103

Figure 4. 3: Architecture of the SystemC-based Simulation Test-bench 106

Figure 4. 4: Flow Chart of the SystemC-based Task Modelling in the Producer

Module ... 108

Figure 4. 5: Proportional Power Sharing under SEFQ .. 113

Figure 4. 6: Trading off Power Share and Time-constraint Compliance with

EFQ .. 118

Figure 5. 1: Abstract Description of the Linux-based EFQ Implementation 122

Figure 5. 2: Hierarchy of the Scheduling-related Data Structures in Linux 124

Figure 5. 3: Extension of the Main Data Structures .. 125

Figure 5. 4: The Linux Kernel Priority Scale .. 127

Figure 5. 5: Linux Macros for Priority Conversion .. 127

Figure 5. 6: The Default Niceness Table of Linux-CFS 128

Figure 5. 7: The Modified Niceness Table for Linux-EFQ 129

Figure 5. 8: The Extended Priority Scale for Linux-EFQ 130

Figure 5. 9: Modified Linux Macros for Priority Conversion 130

xi

Figure 5. 10: Code Flow Diagram for the Periodic Scheduler Function

scheduler_tick .. 131

Figure 5. 11: Code Flow Diagram for the Main Scheduler Function schedule 133

Figure 5. 12: Flow Chart of EFQ Implementation within the Periodic Scheduler

scheduler_tick .. 135

Figure 5. 13: Flow Chart of EFQ Implementation upon Task Launch or

Wakeup .. 137

Figure 5. 14: Flowchart of Power Share Management .. 139

Figure 5. 15: List of System Calls for EFQ Scheduling .. 140

Figure 5. 16: Architecture of the LinSched Scheduler Simulator 143

Figure 5. 17: List of Main LinSched Simulation Engine API Functions 144

Figure 5. 18: The New LinSched API Function for Creating EFQ Tasks 145

Figure 5. 19: The LinSched API Function for Generating Energy Loads of

Interactive Tasks .. 146

Figure 5. 20: A LinSched Script for EFQ Simulation based on Linux 148

Figure 6. 1: Architecture Overview of the Experimental Test-bench 151

Figure 6. 2: Overview of the Experimental Methodology 153

Figure 6. 3: Block Diagram of BeagleBoard ... 155

Figure 6. 4: Block Diagram of the Power Supply and Measurement System 158

Figure 6. 5: Device Connections of the Power Supply and Measurement System

.. 158

Figure 6. 6: GUI of the Battery Emulator and Simulator 160

Figure 6. 7: Structure Diagram of the Multithreading Test-bench Program 165

Figure 7. 1: Comparison of the System-Wide Power Share under EFQ and

Linux-CFS.. 169

Figure 7. 2: Power Share Protection under EFQ ... 170

Figure 7. 3 : Real-time Performances upon Different Levels of Energy

Estimation Error ... 179

file:///C:/Users/jianguo-gdem/Dropbox/Doctor%20thesis/chapters/Doctoral%20Dissertation%20-%20v5.0.docx%23_Toc408933253
file:///C:/Users/jianguo-gdem/Dropbox/Doctor%20thesis/chapters/Doctoral%20Dissertation%20-%20v5.0.docx%23_Toc408933253

xii

Figure 7. 4: Real-time Performances upon Different Number of Background

Batch Tasks .. 181

Figure 7. 5: Power Management and Optimization within One Epoch 185

Figure 7. 6: Desired Power Consumptions when all Tasks are Behaving

Normally .. 188

Figure 7. 7: Protecting Task Power upon Abnormal Behaviors from Benchmark

rt_fft.. 189

xiii

List of Tables

Table 3. 1: Comparison of the Proportional Share Scheduling Models for

 Network, CPU and Energy...71

Table 3. 2: Example of Computing the Maximum Long-term and Worst-case

 Power Shares ... 75

Table 3. 3: Example of Recalculating the Effective Weight for Power Share

 Protection ... 79

Table 3. 4: Example of Power Share Reallocation upon the Temporary Releasing

 of RC Power Shares... 83

Table 4. 1: Characterization of Tasks in the Simulation .. 111

Table 4. 2: Comparison in Performance of Time-sensitive Tasks 115

Table 5. 1: Characterization of Tasks for A Linux-based Simulation of EFQ 148

Table 6. 1: Power Profiles of the Basic Components of Benchmarks 162

Table 6. 2: Characterization of Benchmarks with Constant Workload 163

Table 6. 3: Characterization of Periodic Benchmarks with Variable Workload.... 163

Table 7. 1: Benchmark Characterizations for Power Share Protection Experiment

 ... 170

Table 7. 2: Benchmark Characterizations with Variable Workloads 173

Table 7. 3: Time-constraint Compliance under Variable Workloads 175

Table 7. 4: Benchmark Characterizations for Robustness Validation of

 Time-constraint Compliance ... 178

Table 7. 5: Benchmark Characterizations for Demonstration on User Experience

 Optimization .. 182

Table 7. 6: Characterization of User Preference and Energy Allocation 184

Table 7. 7: Epoch-based User Experience Optimization under EFQ..................... 185

Table 7. 8: Comparison of System Performance under BSEFQ and Linux

 Scheduler when the Benchmark rt_fft is Abnormally-behaved 188

INTRODUCTION

1

Chapter 1

Introduction

1.1 Background and challenge

Currently, general purpose operating system (GPOS)-based mobile devices such as

Smartphones and tablets are experiencing significant improvements in hardware

performance and functionality, making them capable of handling multiple applications

simultaneously to meet the diversity of user needs. In a typical usage scenario of

GPOS-based mobile devices, a user can simultaneously browse webpages, listen to

music while having the push notifications turned on to stay informed of the latest

status from the email box and social network accounts. The increased complexity and

functionality in many GPOS-based mobile devices has motivated a transformation of

the system usefulness assessment from a quality of service (QoS) approach to a

quality of experience (QoE) approach [1, 2]. Instead of assessing the system

usefulness purely based on the computational application performance, the user

experience is now referred as the assessment basis.

In the meantime, along with the growth in computational frequency, data

transmission bandwidth and software complexity, the energy demands of modern

mobile applications are increasing higher as well, making the battery discharging rate

faster than ever. Unfortunately, the battery capacity is not experiencing a

corresponding augment; instead, it is further restricted by the relentless trend to make

mobile devices lighter, smaller, and thinner. Because the usefulness of mobile systems

not only depends on the computational speed and application functionality, but also is

limited by the battery lifetime, the battery energy in modern mobile devices has

become a scarce resource that is as important as machine resources like the CPU,

memory, and network bandwidth [3, 4, 5].

Against the above background, system designers have to conquer the problem of

how to optimize the mobile system user experience under the battery energy limit.

INTRODUCTION

2

This problem has been becoming increasingly prominent on modern mobile systems

due to the strained relationship between the system performance and the battery

energy. However, user experience optimization under the battery energy limit is a

difficult engineering problem because the user experience of a system depends on a

variety of possibly incompatible factors, such as the application performance,

multitasking ability, system fluency and response time, as well as the battery lifetime.

For instance, simultaneously executing multiple applications can increase the

difficulty of ensuring the performance of each application, while improving the

overall system performance from the application performance and/or the multitasking

ability will lead to a higher battery draining rate and a shorter battery lifetime.

When a user is running multiple applications on a battery-limited mobile device,

usually he or she has different preferences on the applications, and there is a

requirement concerning how long the battery needs to last for the most-preferred

applications. While the ability to guarantee a target battery lifetime increases the

confidence and the sense of security of the user on using the mobile system, in many

cases, a lack of such guarantee may turn the user to be a “coward” who is cautious on

every operation that can cause additional energy expenditures. Because the battery

lifetime affects the availability of the mobile system and service, a failure to achieve

the expected battery lifetime can significantly degrade the quality of experience (QoE)

of the system and make it unacceptable to the user. It is thus obvious that, under the

battery energy limit, to achieve a user-expected battery lifetime is the most

fundamental requirement of a mobile system user and is one of the most important

factors in the assessment of the overall user experience [2, 6]. Especially, in the

emergence of energy scarcity, to provide a guarantee on the battery lifetime is likely

to be the dominant requirement on a mobile system. Just to list a couple of scenarios

in which a specific battery lifetime is considered as a more important factor than the

pure application performance: a presenter is adjusting the slides on his way to the

conference while having the music turned on for inspiration and relaxation, the

battery lifetime is more concerned than the music quality and screen brightness; or, a

sports fan is watching a match broadcast while participating a forum discussion with

INTRODUCTION

3

friends, maintaining the mobile device until the end of the match is more desirable

than a good video quality and a quick forum update rate.

Unfortunately, the battery lifetime of many modern mobile systems, especially

Smartphones, is notoriously fragile. Even if the mobile system is not specifically

assigned certain resource-intensive tasks, the battery might be quickly depleted

without the user even noticing. Besides, guarantee a target battery lifetime is a tricky

work from the user side if the operating system is not properly designed. Users have

no idea if launching a new application or introducing some extra operations to the

mobile system at certain moments will finally cause a failure to reach the expected

battery lifetime. Therefore, in comparison with the other contributing factors of the

mobile system user experience, such as the application performance and the

multitasking ability, the battery lifetime is a more unstable factor that is hard to

control.

1.2 Motivation

For battery-limited mobile systems, because the battery lifetime is the most

fundamental, though unstable, contributing factor of the user experience, it is believed

that the first step of user experience optimization under energy limit is to provide a

battery lifetime guarantee to the system. More specifically, in a battery-limited mobile

system that is simultaneously running multiple applications, the basis of user

experience optimization is to guarantee a target battery lifetime to the user-preferable

applications. Once the requirement on the battery lifetime is satisfied, the user

experience of the mobile system can be further optimized from the other aspects, such

as enhance the application performance and enable the simultaneous support of more

applications. However, in all cases, the additional optimizations should be done

without impairing the target battery lifetime.

1.2.1 Battery lifetime guarantee

Guarantee the battery lifetime of energy-limited mobile devices is a complex work

INTRODUCTION

4

that requires a comprehensive power and energy management from the hardware level

to the operating system (OS) level and the application level. Especially, the operating

system should play a pivotal role because on one side, it is aware of the battery

discharging state and the power states of hardware devices, and on the other side, it

can learn the requirements of the user and the applications through the user/OS and

application/OS interfaces.

Until now, there have been a large number of OS-level power management (PM)

schemes proposed to deal with the energy issue. Unfortunately, the majority of them

are not strong energy-aware enough to provide a battery lifetime guarantee. These PM

schemes are considered as best-effort and performance-centric in energy saving in the

sense that they only make the best effort to reduce the energy consumption and extend

the battery lifetime under the application performance constraints but fail to provide a

guarantee on the battery lifetime. Among these performance-centric PM schemes,

dynamic power management (DPM) [7, 8, 9] and dynamic voltage and frequency

scaling (DVFS) [10, 11, 12, 13] are the most well-known and widely-applied

schemes. With the performance-centric strategy, hardware resources such as the CPU

and memory are managed as the first-class resources to preferentially guarantee the

pure application performance, while the energy management and power optimization

are at best placed on a secondary position.

To provide a specific guarantee on the battery lifetime, the energy as a resource

should be raised to a position that is at least equivalently important as the hardware

resources [5]. Based on this belief, a number of battery lifetime-aware PM schemes [5,

14, 15] have been proposed. Basically, in order to achieve a specific battery lifetime,

these PM schemes frequently check the residual energy in the battery and use that

information to guide the adaptation of the energy demands of the applications.

However, because the functioning of these PM schemes relies on the cooperation and

the self-adaption of the applications, the range of achievable battery lifetime is

significantly restricted by the application degradation levels. Besides, it is impossible

to widely apply these PM schemes in a general system where the applications are not

necessarily adaptive.

INTRODUCTION

5

In summary, the above-mentioned PM schemes are either unable to provide

battery lifetime guarantee with their performance-centric strategy or overly restricted

by the self-adaptive applications with limited degradation levels. To further extend a

guaranteed battery lifetime, the user has to manually turn off some unimportant

applications or less-used functions and peripherals (e.g. Wi-Fi, GPS). This leaves the

painful trading-off between the overall system performance and the target battery

lifetime to the user itself. However, without the information and control from the OS

side, a user can easily fall into a dilemma: on one side, launch a new application or

enhance the quality of existing applications may undermine the target battery lifetime;

while on the other side, keep or degrade the original system setting may lose the

chance to optimize the user experience within the target battery lifetime.

To guarantee a user-specified battery lifetime for general mobile systems with no

specific requirement on the applications, it has been proposed that energy, rather than

hardware machine resources, should be managed as the first-class resource in the

system [16, 17, 18]. Correspondingly, power optimization and energy management

should be considered prior to the optimization of the application performance and

diversity. Power management schemes that explicitly manage the energy as the

first-class system resource are known as energy-centric PM schemes [18].

As shown in Figure 1.1, the functioning of an energy-centric PM scheme relies on

the cooperation of three modules: the energy allocation module, the energy-centric

scheduling module and, the energy accounting module [4, 19].

The energy allocation module is in charge of restricting the battery discharging

rate as well as allocating the battery energy among applications; while a proper

restriction of the battery discharging rate sets the average system power that is

required to achieve a target battery lifetime, a proper energy distribution among

different applications guarantees to the user-preferred application(s) an energy

allocation that is consistent with its actual energy demand. Therefore, the energy

allocation module is pivotal in battery lifetime guarantee and energy quanta guarantee

for user-preferred applications; it builds the basis of user experience optimization for

energy-limited mobile systems.

INTRODUCTION

6

Figure 1. 1: General Structure of Energy-centric Power Management [4, 19]

The energy-centric scheduling module is in charge of scheduling the battery

energy to the applications. While applications can be allocated shares of energy that

are consistent with their energy demands or proportional to the user-specified ratio

with the energy allocation module, the ability that applications can consume energy

proportionally depends upon the schedulers (e.g. CPU, network and disk) that control

access to the machine resources [20]. The energy allocation module works

interactively with the energy-centric scheduling module to maximize the battery

energy utilization; if one application is not able to consume its energy quota, either

because it does not require that much energy or because it does not obtain enough

dispatching opportunities, the energy allocation module may reduce the energy quota

of the application so that other applications can gain a larger one, and vice versa.

Therefore, with proper or user-specified allocation of energy that has already been

made in the energy allocation module, to ensure that each application has adequate

energy spending opportunity, the energy-centric scheduling module should ensure a

proportional sharing of the system power in accordance with the energy allocation

ratio [4]. Otherwise, some applications may fail to consume their allocated energy

quota and the actual energy sharing among applications will shift away from that

CPU Memory I/O Buses Network Peripherals

Hardware components

Energy

Allocation

Device Driver

Waiting

Queue

Energy-Centric

Scheduler

Energy Accounting

Energy

Modeling

Activity

Tracing

Battery

Power

Tasks

INTRODUCTION

7

originally desired due to the energy quota re-adjusting from the energy allocation

module. Besides, with a proper energy quota reserved for a time-sensitive application,

the scheduler needs to work intelligently to let the task consume its share of energy

within the time constraints. Otherwise, the application performance cannot be

guaranteed. Therefore, the energy-centric scheduling module should be carefully

designed to achieve a proportional and timely sharing of the battery power; it

determines the additional improvement on the user experience that can be achieved on

top of a guaranteed battery lifetime.

Finally, the energy accounting module is in charge of mapping the hardware

device energy consumptions to the applications. To achieve that, the energy

consumption on hardware devices should be accurately modelled and correctly

accounted to the corresponding application that causes the device activities. The

energy accounting module is a fundamental and bridging module of the energy

allocation and energy-centric scheduling because, without a properly functioning

energy accounting module, there will be no correct information on how much energy

has been consumed by each application [4].

An in-depth survey and discussion on the three essential modules of

energy-centric power management is provided in Chapter 2.

1.2.2 User experience optimization

 Considering the strong guarantee on battery lifetime that can be provided by

energy-centric power management schemes, the work of this dissertation focuses on

the optimization of mobile system user experience from the energy-centric scheduling

module in an energy-centric context. Based on a guaranteed target battery lifetime, the

user experience of the mobile system can be further optimized by satisfying other

system and user requirements. Basically, a better user experience is achieved when the

performance of those user-preferred applications is always guaranteed during the

battery lifetime. Generally, the user experience optimization in energy-centric systems

can be considered from three aspects: the battery energy utilization, the application

performance and, the multitasking ability.

INTRODUCTION

8

The battery energy utilization is measured by the residual energy in the battery

when the target battery lifetime is reached. In energy-centric systems, the residual

battery energy reflects to what extent the total available energy is utilized to provide

services within the battery lifetime. Therefore, it should be minimized to optimize the

user experience of the mobile system. On the contrary, high residual battery energy

indicates overly conservative energy management and lost opportunities on

performance enhancement [20]. To maximize the battery energy utilization, the

energy allocation module should dynamically adjust the energy quota of applications

in accordance with their energy demands, and the energy-centric scheduling module

should let the applications proportionally share the system power in accordance with

the energy allocation ratio. Chapter 2 provides an introduction on the mechanisms

utilized to maximize the battery energy utilization in the energy allocation module.

The application performance is measured in different ways depending on the type

of the applications. Generally, three types of applications are considered in this

dissertation: batch, interactive and real-time (both soft and hard); the latter two types

are collectively referred as time-sensitive applications. Batch applications are

computationally intensive; therefore, the performance is determined by the average

energy serving rate (or the average power) that increases linearly to the allocated

energy quota. Instead, time-sensitive applications have periodic energy demands; their

performance not only depends on the allocated energy quota but also is affected by

the time (or how timely) each application is allowed to consume its energy quota.

Specifically, the performance of interactive applications is measured by the response

time; an interactive application can be allocated an energy quota that is enough to

finish the requested work in each period, but how long it takes to finish the work may

vary depending upon when the interactive application is allowed to consume energy.

Similarly, for soft and hard real-time applications whose performance is measured by

the deadline miss ratio, even with the energy quota that is enough to meet all the

energy demands in the long term, the performance can still be variable depending on

if the application is scheduled the demanded amount of energy before each deadline.

Therefore, for time-sensitive applications, apart from scheduling the energy

INTRODUCTION

9

proportionally, the energy-centric scheduling module should also schedule energy

with time-awareness.

Besides, more possibilities of user experience optimization can be explored by

distinguishing the pure application performance and the user-perceived performance

of time-sensitive applications. Although the user-perceived performance is dominated

by the pure application performance, and in many cases, increasing the pure

application performance also increases the user-perceived performance, they are not

strictly linear to each other. For interactive applications, since the human can only

distinguish the difference in delay above a certain level, let us say 100ms, then,

reducing the response time to a level that is lower than 100ms will no longer improve

the user-perceived performance. Meanwhile, improving the user-perceived

performance does not necessarily require a decrease of the response time. For

example, the response time with almost constant length can give users smoother

experience and possibly higher satisfaction than the response time with big variability,

even if the latter has a smaller average value than the former. As far as real-time

applications are concerned, depending on whether the missed deadlines are soft ones

or hard ones, the impact on user-perceived performance is totally different. For soft

real-time applications, missing a few numbers of deadlines may slightly degrade the

user-perceived performance, or can be hardly perceived by the user. Take the

multimedia applications for example, if a video frame cannot be decoded before a

deadline, it can cheat on the user by sending the former decoded frame to the screen,

in many cases, the user just fails to tell the differences. Even if the deadlines are

continuously missed, a multimedia application can always reduce its picture size or

quality to meet the following deadlines. However, for hard real-time applications or

tasks, miss one deadline may cause serious problems, such as system freeze, which

will significantly degrade the user’s satisfaction on the system. Therefore, to further

optimize the user experience in energy-centric systems, the energy-centric scheduling

should make use of the gap between the user-perceived performance and the pure

application performance, and work intelligently to ensure a smooth and timely

scheduling of the energy to the time-sensitive applications.

INTRODUCTION

10

 Finally, the multitasking ability is measured by the maximum number of

applications that can be simultaneously supported in the system to meet the diverse

user requirements. Ideally, the optimal user experience is achieved when the battery

energy utilization, the application performance and the multitasking ability are all

optimized. However, under the battery energy limit and the processor frequency limit,

increase the application performance and enhance the multitasking ability are two

conflicting operations when the energy and processor bandwidth are scarce. To

optimize the user experience, the application performance and the multitasking ability

should be traded off based on the user preferences. For instance, in order to support

the launch of new applications in an energy-limited system, the user may prefer to

reduce the energy quota of the currently running applications and degrade their

performance to the minimum acceptable levels. In another more specific example, the

user may maintain the performance of the most-preferable application(s) and degrade

the performance of the least-preferable ones to allow the launch of new applications.

1.3 Objectives

While some potential methods of user experience optimization are overly dependent

on the specific user preferences which are still not available when energy-centric

power management schemes are designed, the work of this dissertation is dedicated to

exploring one general approach on user experience optimization from the perspective

of energy-centric scheduling. Considering that the CPU scheduler is the core

component of the energy-centric scheduling module that interacts with the energy

allocation module and affects the battery energy utilization, and, in addition, the CPU

scheduler plays a pivotal role in balancing the application performance and the

multitasking ability, this thesis work focuses on energy-centric processor (or CPU)

scheduling to investigate the user experience optimization on battery-limited mobile

systems.

To optimize the user experience of an energy-centric system, the design of the

energy-centric processor scheduling algorithm should at least consider the following

three general requirements.

INTRODUCTION

11

Firstly, as the core component of the energy-centric scheduling module, the

energy-centric CPU scheduler should be designed to achieve a proportional sharing of

the system power among applications by taking into account the system-wide energy

consumption on different hardware devices. This is to say that, under an

energy-centric CPU scheduler, the energy consumption on other hardware devices can

affect the allocation of the CPU time quanta to the applications and thus, balance the

system-wide energy and power sharing among tasks in a user-desired ratio. This is the

pivotal feature that distinguishes an energy-centric CPU scheduler to a traditional one.

Therefore, the first requirement on the energy-centric processor scheduling is the

ability to support a proportional sharing of the system power among applications.

Secondly, the energy-centric CPU scheduler should first provide performance

guarantees for time-sensitive applications, and in addition to that, optimize the

multitasking ability without impairing the guaranteed performances. When the energy

and processor bandwidth are scarce, the optimizations of application performance and

multitasking ability are in conflict. However, within the CPU frequency limit, the

CPU scheduling algorithm can be properly designed to optimize the application

number while preserving the performance of those already admitted time-sensitive

applications. This requirement has a threefold meaning: first, the share of energy and

CPU that is reserved for each time-sensitive application should be protected from the

competition of new-joining applications; second, the resource share reservation for

each time-sensitive application should not be overly made so that a larger number of

time-sensitive applications can be supported; third, the maximum resource share in

total that can be reserved for time-sensitive applications should be optimized. Since

this is a real-time scheduling problem, the second requirement on the energy-centric

processor scheduling is marked as the ability to provide support on time-constraint

compliance.

 Thirdly, the energy-centric CPU scheduler should be able to balance between the

application power share and the time-constraint compliance when is necessary. For

time-sensitive applications that have a highly-fluctuating workload over the periods,

pursuing strict time-constraint compliance requires a significant over-reservation of

INTRODUCTION

12

the system power share, while the allowance of missing a few time constraints may

greatly reduce the required power share. Especially, if any user-preferred application

becomes ill-behaved by demanding excessive energy in short terms, potential high

power pulses should be restricted to maintain the performance of other user-preferred

applications. Because of the above concerns, the third requirement on energy-centric

CPU scheduler is the ability to provide a flexible trade-off between the application

power share and the time-constraint compliance.

 Based on the requirements discussed above, we set the objectives of this work as

proposing and developing energy-centric processor scheduling algorithms that can

provide supports in proportional power sharing, time-constraint compliance, and, in

addition, a flexible trade-off between them. On top of the algorithm proposal and

development, this work also aims to explore and demonstrate the potential of

employing energy-centric processer scheduling in the user experience optimization for

energy-limited mobile systems. For clarity, the above objectives are decomposed into

the following four objectives:

 OBJECTIVE 1: Theoretical proposal of energy-centric processor scheduling

algorithms

 OBJECTIVE 2: Implementation of energy-centric processor scheduling in

general purpose operating systems (GPOS). In this work, the target GPOS is

the Linux operating system considering its open-source property

 OBJECTIVE 3: Analysis and discussion of the experimental results based on

the Linux implementation of energy-centric processor scheduling

 OBJECTIVE 4: Experimental demonstration and exploration of user

experience optimization based on the Linux implementation of energy-centric

processor scheduling

INTRODUCTION

13

1.4 Methodology and organization

To achieve the above specified objectives, we follow a methodology that is

demonstrated in Figure 1.2. Through the overview of the methodology, Figure 1.2

also shows the organization of this dissertation.

Chapter 2 surveys the related work on OS-level power management and general

purpose operating system (GPOS) scheduling. At the end of Chapter 2, follows a

discussion on applying traditional GPOS scheduling algorithms to the energy-centric

processor scheduling for the target of achieving proportional system power sharing.

Then, based on the related work investigation, and a set of assumptions and

conditions that are made on the applications, energy accounting and energy allocation,

Chapter 3 presents the theoretical proposal of one energy-centric processor scheduling

algorithm called energy-based fair queuing (EFQ).

Figure 1. 2: Block Diagram of the Methodology and Thesis Organization

Before moving to the Linux implementation of the EFQ algorithm, in Chapter 4,

a high-level modelling and simulation of the algorithm is taken to verify its

scheduling behaviors in response to specifically-defined task sets and energy

requesting patterns. The high-level simulation allows a convenient and flexible

INTRODUCTION

14

pre-evaluation of the EFQ properties in reference to the requirements of

energy-centric processor scheduling. After that, Chapter 5 presents the

implementation of the EFQ algorithm in the Linux kernel. Considering the complexity

and difficulty of the Linux implementation work, a Linux scheduling simulation tool

is employed for user-space debugging.

To design experiments and assess the EFQ implementation in Linux, an

experimental test-bench based on a concrete Linux computing platform and a

multithreading test-bench program is built up in Chapter 6. To focus on the

assessment of the energy-centric processor scheduling and avoid the complexity of

building up the whole energy-centric system, the modules of energy allocation and

energy accounting are not specifically implemented. Instead, we first profile the

power consumption of each benchmarks and then program the threads of the

multithreading test-bench program with the benchmarks and their power profiles.

Then, in Chapter 7, based on the experimental test-bench, experiments assuming

various EFQ scheduling scenarios are designed and the results are analyzed and

discussed. We first analyze the EFQ scheduling results on proportional power sharing

and time-constraint compliance, after that, explore the user experience optimization of

energy-limited mobile systems through specifically-designed experiments on the EFQ

scheduling and the default Linux scheduling. Finally, Chapter 8 concludes the thesis

work and suggests the directions for future research.

1.5 Contributions

This thesis work investigates the user experience optimization of mobile systems

under the energy limit. The starting point of the dissertation is that, the battery

lifetime is one of the most important while unstable contributing factors of the mobile

system user experience, and therefore, energy-centric power management schemes

should be available to provide strong guarantee on the battery lifetime. Based on this

point, this work explores the design of energy-centric processor scheduling for the

user experience optimization of battery-limited mobile systems. To be specific, the

contributions of this dissertation include:

INTRODUCTION

15

1. Energy-centric scheduling model. The classical reference model for

proportional resource sharing is extended from the traditional CPU and

network scheduling domain to the energy scheduling domain, and based on

that, a practical energy-centric scheduling model is proposed for

proportional power share scheduling.

2. Power share management mechanisms. This work provides an insight into

the power share management under the energy-centric proportional power

share scheduling model, and proposes efficient mechanisms on power share

protection and power share reallocation.

3. Starting-energy fair queuing (SEFQ) scheduling algorithm. This work

provides a comparative and analytical study of the challenges in developing

energy-based fair queuing (EFQ) algorithms for proportional power sharing,

then proposes the starting-energy fair queuing (SEFQ) algorithm that is of

low time complexity, low implementation complexity, and near-optimal

fairness.

4. Borrowed starting-energy fair queuing (BSEFQ) scheduling algorithm. The

thesis provides an analytical and exploratory study of the time-constraint

compliance under energy-based fair queuing (EFQ) scheduling, and

proposes the borrowed starting-energy fair queuing (BSEFQ) algorithm that

adds real-time scheduling support on top of proportional power sharing

5. High-level modelling and simulation of the EFQ algorithms. This thesis

provides a methodology to model and simulate the scheduling algorithms

from a high level perspective. The high-level abstraction and simulation

allow a convenient and flexible pre-evaluation of the scheduling behavior

with specifically-designed task set and workloads.

INTRODUCTION

16

6. Linux-based implementation of EFQ scheduling. The proposed EFQ

scheduling algorithm is implemented in the Linux kernel. A debugging

method based on the Linux scheduler simulation is developed for user space

simulation and debugging of the EFQ scheduler.

7. A thorough evaluation of the EFQ implementation in Linux. Experiments

based on a concrete computing platform and a multithreading test-bench

program is designed to evaluate the Linux-based EFQ implementation, from

the properties of proportional system power sharing and power share

protection to those of time-constraint compliance and its robustness under

energy estimation errors and task number variations.

8. Experimental and analytical exploration of the user experience optimization

for energy-limited mobile systems. Through a comparative analysis of the

experimental results under the EFQ scheduler and the default Linux

scheduler, this work explores the potential of employing EFQ algorithm in

optimizing the mobile system user experience under the energy limit.

RELATED WORK

17

Chapter 2

Related Work

Developing energy-centric processor scheduling algorithms requires an investigation

of the related works on both power management and GPOS scheduling. In this

chapter, different OS-level power management mechanisms are firstly surveyed, with

a focus on the energy-centric power management schemes; and then, GPOS

scheduling algorithms that range from priority scheduling to real-time scheduling and

proportional share scheduling are investigated and comparatively discussed. At the

end of this chapter, the related works on power management and GPOS scheduling

are summarized and the possibilities of applying traditional GPOS scheduling

algorithms on energy-centric processor scheduling is discussed.

2.1 OS-level power management

2.1.1 Introduction

Energy and power management is a system-wide issue that requires a support from

the bottom hardware level up to the operating system (OS) level and the application

level. Among the different levels, the OS level is pivotal in energy saving and

management because it enables the interaction between the application level and the

hardware level. While hardware devices can be designed to work on multiple power

modes, and applications can be programed to be energy-aware and self-adaptive in

energy requesting [14, 15], only with the support of the operating system can these

features be exploited to manage the energy consumption. For example, one

self-adaptive application can only be informed the low battery state through the OS,

and if the application reduces its energy demands, again, only through the OS can the

application inform the device drivers to change device-access patterns or device

power modes to decrease the hardware energy consumption.

RELATED WORK

18

With the battery energy limit imposed on mobile systems, OS-level power

management (PM) schemes need to balance between the overall application

performance and the battery lifetime. While the guarantee of application performance

relies on a proper management of the machine resources, such as the CPU, memory,

and network bandwidth, the guarantee of battery lifetime requires a proper

management of the energy as a system-wide resource. Depending on the priorities

given to the resources, OS-level PM schemes are generally separated into three

categories: performance-centric, battery lifetime-aware, and energy-centric. In the

remaining of this section, the three types of power management schemes will be

separately introduced, with a focus on the essential modules of energy-centric power

management.

2.1.2 Performance-centric power management

In performance-centric PM schemes, the management of the machine resources is

given a higher priority than the energy management and power optimization.

Therefore, PM schemes that are performance-centric usually do the best effort to

reduce the system energy consumption under the application performance constraints.

Most performance-centric PM schemes generally fall into two categories:

dynamic power management (DPM) [7-9] that runs the workload to completion at the

maximum CPU and disk speed and then rests the system in the longest low-power

mode; and dynamic voltage and frequency scaling (DVFS) [10-13] that assumes the

highest energy saving can be achieved by running at the lowest hardware setting

under the performance constraints. One apparent limitation of those

performance-centric PM schemes is that they are unable to provide a battery lifetime

guarantee to the mobile systems. Under performance-centric PM schemes, all

applications are first allowed to freely consume energy as they demand to guarantee

the desired application performance, energy saving is considered only after the

performance goal is achieved.

Performance-centric PM schemes are considered as low energy-aware, because

they are unaware of the power-related system states and are not able to adjust the

RELATED WORK

19

application energy requesting based on the battery discharging state. In a

performance-centric PM scheme, all applications are allowed to run freely without

being imposed any power or energy restriction. Therefore, even energy saving is made

with the best-effort, the battery is likely to be depleted before the most preferable

applications finish their assignments.

2.1.3 Battery lifetime-aware power management

Battery lifetime-aware PM schemes are those that are aware of the battery discharging

state and are able to adapt the application performance according to the user-specified

battery lifetime [5, 14, 15]. In this case, the energy management is given at least equal

priority in reference to the machine resource management.

Under battery lifetime-aware PM schemes, it has been demonstrated that a target

battery lifetime can be achieved if the applications can self-adapt their

performance-related activities (so as the energy demands) based on the residual

energy in the battery. Specifically, Flinn et al [14, 15] first developed on the Odyssey

platform [21] a battery lifetime-aware PM scheme. The Odyssey achieves the battery

lifetime by periodically measuring the residual battery energy, predicting future

energy demand based on present and past power usages, and notifying applications

with an up-call if adaptation of energy demands is needed. A similar PM scheme was

later developed by Neugebauer et al [5] on the Nemesis OS [22]. Nemesis also

requires applications to be energy-aware and cooperative, but introduces an economic

model to provide feedback to the applications.

Although PM schemes based on application adaptation provide a possibility to

achieve a target battery lifetime, the space to set a user-desired lifetime for preferable

applications is limited by the degradation level of the applications. For instance, let us

assume the expected lifetime is 2 hours, but the maximum lifetime achievable when

all applications are degraded to the lowest fidelity is 90 minutes or even less, then the

system fails to provide a meaningful guarantee on the battery lifetime. Moreover, the

requirement of applications to be adaptive and energy-aware impedes these PM

schemes from being widely applied in general systems. Considering the millions of

RELATED WORK

20

applications that have been existed in the market, rewriting all of them is a huge work,

not to mention that not all of the applications are able to be programmed as adaptive.

2.1.4 Energy-centric power management

In energy-centric PM schemes, the energy is explicitly and globally managed as the

first-class resource in the system. Unlike machine resources which are exclusive to

one hardware device, energy is global to all devices and can affect the use of each

machine resource in the system [20]. The energy consumption in a system goes in

three dimensions: time, application and device [4]. While the power optimization in

most PM schemes is explored only from one or two dimensions, managing the energy

globally as the first-class resource allows the energy to be controllable in three

dimensions. This extends the design space of developing strong energy-aware PM

schemes, therefore, brings more opportunities to the power optimization and the

achievement of advanced energy goals.

The advantage of designing a system to be energy-centric is obvious. First, an

energy-centric framework is compatible with the existing power optimization efforts

such as DPM, DVFS and application self-adaptation, which can be combined into the

energy-centric framework to form more advanced PM schemes. Then, it does not

require the applications to be adaptive and energy-aware, non-energy-aware

applications are also combined into the framework and their roles in the system-wide

energy management can be further exploited. Finally, guaranteeing a user-specified

battery lifetime for critical applications becomes a straightforward work that can be

achieved as long as the energy is properly distributed both over time and among the

applications.

A complete energy-centric PM scheme is composed of three modules: the energy

allocation module, the energy accounting module and the energy scheduling module.

To the best of the author’s knowledge, strictly, ECOSystem [4, 18, 20] and Cinder [19]

are the only two reported energy-centric systems that explicitly and globally manage

energy as the first-class resource; and particularly, ECOSystem is the only one that

has implemented all the three modules of an energy-centric PM scheme. In the

RELATED WORK

21

following subsections, the related works on the three essential modules of

energy-centric power management will be separately reviewed and discussed.

2.1.4.1 Energy allocation

The energy allocation module does two things, on one side, it restricts the battery

discharging rate by allocating energy to the whole system in a speed that is

determined by the target battery lifetime and the remaining battery energy, and on the

other side, it allocates energy to the applications to support their execution during the

expected lifetime. Specifically, when the energy available in the battery is adequate to

support the normal execution of all applications during a target battery lifetime, each

application is allocated a share of energy that is consistent with its actual energy

demand; otherwise, the energy consumption of those least-preferred applications are

properly restricted so that enough remaining energy can be reserved to the

most-preferred applications to run them with user-acceptable performance until the

expected lifetime is reached. If a user-preferred application supports self-adaption

with multiple fidelities, based on the user preference, it is possible that the application

degrades its quality of service and correspondingly reduces its energy demand so that

to allocate the saved energy to the other active applications or to enable the launch of

a new application under the target lifetime constraint.

The energy allocations of different applications should be protected from each

other, so that no application can use the energy quota of other applications.

Furthermore, an amount of energy consumed on various devices should be subtracted

from the energy quota of the application that causes the device activities. Since energy

is a system-wide resource that is commonly shared by different devices, and an

amount of energy spent on one device is no longer available for other devices,

resource abstraction techniques such as the resource container [23] are employed to

achieve a uniform and explicit management of the energy resource in the system.

Different approaches have been proposed to implement the energy allocation module.

In the ECOSystem [4, 18, 20], an energy abstraction called currentcy is defined to

represent the amount of energy that is available for the system within a fixed amount

RELATED WORK

22

of time. The target lifetime is achieved by dividing it into a number of fixed-length

time intervals named epochs and limiting the currentcy available in each epoch; the

limited amount of currentcy is released at the beginning of each epoch and is further

allocated to different applications according to energy demands (with adequate

currentcy) or user-specified proportions (with scarce currentcy). Instead, in the Cinder

OS [19], the abstractions of reserve and tap are proposed to manage the energy on the

basis of the applications: while reserves store an amount of energy for a target

application or its child processes, taps control the maximum rate at which the energy

is consumed by placing a rate limit on the energy flowing between the battery and the

reserves so that a fixed amount of energy is transferred per unit time.

The workloads of some applications tend to be variable over time and the actual

energy demand may drop to a level that is lower than the energy allocation;

consequently, certain resource containers or reserves may gradually accumulate

energy that no other application can use. To avoid this situation and maximize the

battery energy utilization (minimize the residual battery energy) within the battery

lifetime, both ECOSytem and Cinder have implemented certain energy conserving

mechanisms to reclaim the unused energy and redistribute it to other needy tasks. The

idea of energy reclaiming and redistributing is similar in ECOSystem and Cinder.

Basically, the capacity of each resource container (or reserve) is bounded to a certain

limit; once the accumulated energy of a resource container reaches to its capacity

limit, it will stop the energy infusion and remaining energy allocation will be

redistributed to other resource containers whose capacity has not yet reached to the

limit. Particularly, the energy conserving mechanism in ECOSystem achieves a

considerably low residual energy (less than 1%) by dynamically adjusting the

capacity of each task’s resource container based on the actual energy needs [20].

2.1.4.2 Energy accounting

The energy accounting module concerns how the energy consumed on each hardware

device can be correctly mapped to the application that causes the device activities.

RELATED WORK

23

Energy accounting in modern mobile systems is a challenging work because many

device activities are asynchronous to the processes and applications may interact with

each other through Inter-process Communication (IPC) calls [19]. It is very likely that

energy is simultaneously consumed on multiple devices whose activities are caused

by various applications. In this case, it is difficult to distinguish the energy

consumption of different applications. A potential power management scheme may

require the energy accounting to be on-line and real-time to support the high-level

policies, such as energy-aware scheduling. This presents additional challenges to the

energy accounting module.

The implementation of an energy accounting module requires two basic elements:

an energy modeling mechanism that meters or estimates the amount of energy

consumed on each device, and an activity tracking mechanism that identifies device

activities from applications and attributes the device’s energy consumption to

applications. There have been a number of efforts to deal with the energy accounting

[24-37]. Many of them only focus on energy modeling [25-31], because it is the basis

of energy profiling and management. And in many scenarios, only one or a few

synchronous and independent applications are considered.

The PowerScope [24] is one of the earliest works that maps energy consumption

to applications. To collect measurement data of the system when it is executing

applications, the PowerScope requires two synchronized components: a system

monitor that samples the program counter (PC) and process identifier (PID) of the

currently executing process, and a digital multi-meter that samples the power

consumption of the whole system. Then, the collected data is used to profile the

energy consumption of applications based on an off-line energy analyzer. The idea of

PowerScope is clear and the implementation is easy, however, it is difficult to

combine this work into PM schemes because it relies on an extra digital multi-meter

to measure the energy consumption and the energy accounting is done off-line.

Besides, since PowerScope only measures the whole system power instead of the

power of individual devices, it would fail to accurately attribute the energy

consumption to the correct applications. A practical energy accounting module

RELATED WORK

24

requires not only an accurate and on-line activities tracking mechanism but also a fast,

cost-effective, and accurate on-line power model for individual devices.

Methods based on hardware performance monitor counters (PMCs) have been

shown as a good solution to model the energy consumption of devices that support

PMCs. Since Bellosa, in [25] correlated PMCs to energy consumption, PMCs

combined with linear regression methods have been widely used to support on-line

energy estimation that is free of extra hardware power meters [26-31]. To achieve an

on-line energy model that can estimate the energy consumption with acceptable

accuracy and low overhead, a minimum set of PMCs that are highly correlated to the

energy consumption have to be properly selected, and their correlation coefficients

with the energy consumption have to be determined in advance through an off-line

calibration phase for obtaining the linear energy model. The set of PMCs are usually

platform-dependent and may vary in a different platform.

Early works of PMCs only focus on the energy modeling of processors, these

methods are later applied to model the memory energy consumption [29, 30], and the

frequencies of CPU, memory and I/O buses can be combined with PMCs to form an

energy model under voltage and frequency scaling [30]. However, for those devices

(e.g. I/O peripherals, disk, network interface card and display) that cannot be directly

monitored by PMCs, their power consumption has to be modelled based on some

device-specific state variables (e.g. idle, active, low-power, transmit) and parameters

(e.g. device I/O rate, network download and upload data rate, and display brightness

level) [31].

While PMC-based energy modeling is believed as a promising mean for

on-the-fly power estimations, the availability and uniqueness of appropriate

PMC-events for each platform prevents it from being widely employed as a general

energy modeling method for diverse platforms. For this reason, some systems,

especially most mobile systems, model the power consumption of all system devices

based on device-specific state variables and parameters [32-37]. When the system is

running applications, the power consumption of different devices can be estimated

based on the readable state variables and device-specific parameters. Similar to the

RELATED WORK

25

PCM-based energy modeling methods, to obtain the device power model, it also

requires a one-time, off-line calibration phase to stress the devices under test with

variable workloads. The purpose is to expose all of the power states and correlate the

power consumption to the state variables and device-specific parameters [35].

Depending on the accuracy of the measurement tools used (e.g. power meter,

battery interface or voltage sensor) and the set of exercising applications employed in

the calibration phase, different levels of error will be incurred to the device power

model. The generated device power model usually consists of two parts: the base

power of a power state that is related to a state variable and the active power that is

related to device-specific parameters. For example, the CPU power is determined by

whether it is idle or active, and also by the CPU-specific parameters such as CPU

utilization and frequency; and the network interface power is determined by the

device states such as doze, receive and transmit, as well as the transmitting or

receiving bit rate.

Power state-based methods tend to have worse accuracy than the PMC-based

methods due to the lack of deep knowledge on processor and memory activities;

however, they should incur lower overheads because only high-level metrics (e.g.

power state, CPU frequency) are employed during the on-line energy estimation. This

property makes high-rate energy estimation to be possible for a system. Specifically,

an energy estimation rate as high as 100Hz (or one per 10ms) has been reported in [36,

37]. High-rate energy estimation is particularly appreciated by energy accounting and

energy-aware scheduling in multitasking systems. For simplicity, existing

energy-centric systems like ECOSystem [4, 18, 20] and Cinder [19] and several

recently-developed energy accounting mechanisms [36, 37] all employ power

state-based methods to estimate the device energy consumption.

Activity tracking mechanisms in energy accounting are usually device-specific.

For hardware devices that can only be part of one synchronous activity at a time, such

as CPU, tracking the activity is as easy as logging the activity events (e.g. CPU

scheduling events). For devices that work in an asynchronous manner and can execute

a common operation on behalf of multiple tasks, such as disk, network interface and

RELATED WORK

26

radio, energy accounting can be very complex and challenging. Take the ECOSystem

[18] for example, activity tracking in disk requires inserting the resource container ID

(or task ID) into the system calls and sharing the energy cost of spinning up and down

among the related tasks; and activity tracking in network interface requires adding the

container ID into the socket structure and the TCP/IP implementation.

Activity tracking mechanisms are also OS-specific. Tracking activities related to

GPS and network interface in Window Mobile 6 needs rerouting the system calls and

modifying their implementation mechanisms; while tracking activities in Android

requires logging system calls and events in the Linux kernel level, application

framework level as well as Dalvik VM level [36]. In Quanto [37] where energy

tracking should be achieved across networked embedded systems (or nodes), the

authors defined an activity label that contains the origin activity node to represent

each activity and propagate the label along with the causally related operations to

track energy consumption. In Linux, Inter-process communication (IPC) calls can

significantly complex the activity tracking and energy accounting, because the IPC is

implemented mainly based upon messages and the calling processes is difficult to

identify. However, this is not a big issue to the Cinder OS [19] because its IPC

mechanisms allow a simple and accurate tracking of resource use across IPC calls.

2.1.4.3 Energy-centric scheduling

The energy scheduling module controls each application’s energy consumption rate,

and thus should ensure that each application has adequate energy spending

opportunity corresponding to the allocated energy quota. If it does not work properly,

some applications would spend energy in a slower speed than others and may fail to

run out of their energy quotas (due to the maximum power limit) before the next

energy infusion arrives. In extreme situations, it may end up that certain applications

temporarily monopolize the machine resources in the beginning of an epoch (or

infusion period) and quickly go to idle after draining their resource containers, but

others are initially starved for an unknown time interval before getting the energy

RELATED WORK

27

spending opportunity. Thanks to the energy conserving mechanisms implemented in

ECOSystem [4, 18, 20] and Cinder [19], the unspent energy can be reclaimed and

redistributed to other applications to maximize the energy utilization. However, in the

above case, the energy is no longer consumed in proportion to the originally-desired

ratio of energy allocation.

To achieve a desired energy distribution among applications, the scheduling

policies should be designed to allow the system power being shared in proportion to

the allocated energy quota. A proportional power sharing among applications

guarantees a minimum power for each application and thus, avoids the appearance of

energy starvation on any application. However, developing a proportional

power-share scheduling module is a complex work, because the energy consumption

of applications should be considered in a system-wide manner when making

scheduling decisions.

While a proper energy abstraction mechanism (e.g. resource container) and an

accurate energy accounting mechanism can help the energy scheduling module be

globally aware of each application’s energy use, how the different schedulers (e.g.

CPU, disk, network) should work cooperatively to achieve the system-wide

proportional energy-sharing goal is a challenging problem. The CPU scheduler is the

core scheduler that leads the energy scheduling for all applications; therefore, it

should make scheduling decisions in reference to the energy quota and system-wide

energy consumption of each application. That is to say, the energy expenditures on

both CPU and non-CPU resources should be considered in each CPU scheduling

decision. For other device schedulers, such as the disk scheduler and network

scheduler, it is not necessary (and way too complicated) to consider the global energy

consumption in each scheduling decision. But when the device bandwidth appears as

a bottleneck, the energy quota of applications must be referred in determining or

adjusting the bandwidth shares of local resources. This should avoid throttling certain

application’s execution on CPU when there is data flow bottleneck from disk I/O or

network interface [20].

In Cinder OS [19], the authors implemented the energy allocation and energy

RELATED WORK

28

accounting modules but left the energy scheduling as future work. In ECOSystem [4,

18, 20], the authors implemented an energy-centric CPU scheduler based on Linux,

and explored how it can achieve the desired proportional energy use upon

bottlenecked network bandwidth. Their results showed that proportional sharing of

the system power is achievable through energy-centric scheduling. To the best of the

author’s knowledge, the ECOSystem is the only work that concerns energy-centric

processor scheduling up to the moment this thesis is written.

However, the work on energy-centric scheduling in ECOSystem is limited by the

general-purpose workload that is employed in the application characterizations [4].

Since the application workload is not well-defined and lacks specific information such

as deadlines, how the energy-centric scheduling will affect the application

performance and user experience is an unanswered question. Besides, ECOSystem

only provides a simple description on how the energy-centric scheduler behaves,

neither the scheduling algorithm is formally structured nor the concrete

implementation scheme is published. Therefore, the specific properties and

scheduling overhead of the algorithm are unknown. The work of this dissertation

investigates energy-centric CPU scheduling by employing specifically-defined

workloads, and explores how energy-centric scheduling can be utilized to optimize

the user experience of mobile systems with energy limit.

RELATED WORK

29

2.2 GPOS scheduling algorithms

2.2.1 Introduction

Scheduling is concerned with the optional allocation of system resources (e.g. CPU

time, network bandwidth, and memory) to threads, processes or data flows in a

multitasking environment. It plays a pivotal role in fairly sharing resources and

providing performance guarantees. Resource sharing among tasks always results in

contention, and scheduling disciplines are algorithms that are used to resolve the

contention. In operating systems, scheduling algorithms are mainly applied to the

CPU, network interface and storage devices. The scheduler is a special operating

system module that implements one or several scheduling disciplines to share the

local resources among different entities. A process scheduler selects from among the

threads and processes in memory that are ready to execute, and allocates the CPU to

one of them. While a network scheduler (or packet scheduler) handles the network

packet traffic for fairly sharing the transmission bandwidth among packet flows that

are associated with different CPU processes. In the storage side, I/O requests initiated

by different processes are managed by the I/O scheduler (sometimes also called disk

scheduler), it determines in which order the requested I/O operations will be

submitted to the storage devices. Because one process can access to different

hardware resources, the schedulers must work cooperatively to achieve a system-wide

resource sharing among the processes.

 The design of a scheduler may relate to different concerns such as the throughput,

latency, CPU utilization, fairness and time-constraint meeting. In practice, there is no

“one commonly true scheduling algorithm” that fulfills all these goals [38], which are

usually contradictory (e.g. throughput versus latency, fairness versus time-constraint

meeting). Preference is given to one or more of the concerns depending upon the

specific purpose of the system. A batch processing system executes a series of

programs that run to completion without manual intervention, thus maximizing the

CPU utilization is more concerned than minimizing the latency. On the contrary,

interactive systems should optimize the scheduling latency to avoid undermining the

RELATED WORK

30

user experience on system smoothness. In a hard real-time system, such as an

automatic control system in transportation (e.g. high-speed train), the scheduler must

ensure the crucial processes to meet the hard deadlines, which is pivotal to keep the

system stable and avoid disastrous consequences. While in soft real-time systems,

such as multimedia systems, processes are allowed to miss a few of deadlines on

condition that the user-sensed quality of service is not significantly undermined.

The earliest computer systems are mainly used to process batch tasks for large

scale computation, and the computational resources were very scarce and expensive at

that time. For this reason, early scheduling algorithms are designed to maximize the

CPU utilization with low scheduling overhead. The First-Come First-Serve (FCFS) is

one of the oldest and most widely used batch scheduling algorithms in the process and

I/O scheduling. In a FCFS scheduler, the ready-to-run tasks are stored in a First-In

First-Out (FIFO) queue and tasks are scheduled in the order of their arriving time. A

FCFS scheduler is simple to implement because only one FIFO queue is needed for

all tasks. It is also of low-overhead because context switches solely occur when a task

execution is terminated. Unfortunately, FCFS can lead to resource starvation if one

task arrives first but never completes. For the same reason, the waiting time and

response time of short interactive tasks can be high if the CPU is continuously

occupied by long batch tasks.

Modern general-purpose operating systems (GPOSs) include personal computer

operating systems used in desktop PCs or laptops, as well as mobile operating systems

used in Smartphones, tablets, PDAs, or other digital handheld devices. Modern

GPOSs often have a mix of batch, interactive and real-time processes. In a typical

mobile phone operating system, there may be batch processes running in the

background while interactive or multimedia processes running in the foreground;

besides, certain system processes that run in the background may have hard deadlines

to meet in order to handle emergency calls or keep the operating system stable. In

addition to that, a user may have different preferences on the foreground applications.

Therefore, a suitable compromise of the above mentioned criteria should be made in

the design of a GPOS scheduler.

RELATED WORK

31

In the remaining of this section about GPOS scheduling, the design requirements

of a GPOS scheduler will be firstly discussed from a general view, and then, three

important GPOS scheduling disciplines will be separately surveyed.

2.2.2 GPOS scheduling requirements

In general purpose operating systems, basically the scheduler ensures that no process

is starved of accessing to the system resources and, additionally, it provides fairness in

the resource sharing among processes. In other words, each process should be

allocated a certain fraction of the system resources depending upon the user

preference as well as the actual resource demand of different processes. For this

reason, general purpose operating systems are essentially time-sharing so that each

task or user gets a chance on the CPU at regular intervals. To achieve that, early

operating systems require processes to voluntarily cede the CPU and give control to

other processes. This approach relies on the processes cooperating for time sharing to

work; it is known today as cooperative scheduling (or cooperative multitasking). In a

cooperatively-multitasked system, one poorly designed application can continuously

occupy the CPU to starve other applications or even pivotal system processes; thus,

this method is rarely adopted in modern general-purpose operating systems that are

dealing with an increasing number of malicious third-party applications.

Modern GPOSs widely employ the preemptive scheduling (or preemptive

multitasking) to ensure a more reliable sharing of the CPU time among processes.

Preemptive scheduling takes advantage of clock interrupts or event interrupts (e.g. I/O

return, operating system call) to forcibly suspend the currently executing process on

the CPU and make a context switch to the next process that is selected according to

the scheduling discipline. One of the simplest and most commonly used preemptive

scheduling algorithms is the Round-Robin. Round-Robin relies upon a programmable

interval timer to generate interrupts periodically; this determines the length of the time

quantum (or time slot) after which a scheduling decision will at least have to be made.

Processes are managed in a run queue and served with the equally-sized time quanta

RELATED WORK

32

in a circular order. A process may voluntarily quit the CPU if its CPU burst is smaller

than the assigned time quantum, or otherwise be preempted and added to the back end

of the ready queue once the time quantum is expired. Although the Round-Robin

scheduling is starvation-free and easy to implement, the resource sharing among

processes may be unfair. Because the length of CPU bursts may be smaller than the

scheduling time quantum, processes with longer CPU bursts can receive more CPU

allocation than processes with shorter CPU bursts. This limitation can be resolved by

fair queuing that is to be further discussed in section 2.2.5.

Moreover, the process scheduler must also provide low scheduling latency to

interactive processes and time-constraint compliance to real-time processes. Many

operating systems employ the process priority to distinguish the importance or

urgency of processes. A time-sensitive process (interactive or real-time process) is

often given a higher priority over background batch processes to enable earlier

dispatch from the run queue. This, however, may bring energy starvation risks.

Because a high priority task is always scheduled ahead of a low priority task, the low

priority task will be starved if the high-priority task never or rarely blocks. This

problem is aggravated in modern GPOSs that usually run high workload real-time

applications (e.g. Multimedia, Gaming and VoIP). Besides, a high priority task may

also be starved by a medium priority task in the case of priority inversion. Potential

solutions such as the aging technique may be used to give starving tasks the chance of

execution by gradually increasing their priorities [38]. How the processor scheduler

should be designed to support low-latency and real-time scheduling in GPOSs will be

further discussed in section 2.2.3 and section 2.2.4.

Apart from fairness and latency, a practical scheduler should also not incur too

much processing overhead. The scheduling overhead mainly comes from the

computational complexity of the scheduler and the context switch between processes.

The ideal computing complexity of a scheduler is O(1), indicating that the scheduling

overhead will not scale with the number of active tasks. In contrast, the overhead

incurred by an O(N) scheduler can scale linearly to the number of active tasks. As far

as the context switch overhead is concerned, it depends on how frequently a

RELATED WORK

33

scheduling decision must be made, or in other words, the length of the

minimum-schedulable time quantum. In most modern systems, the time quantum is

generally between 10 and 100 milliseconds, with respect to a relatively small context

switch overhead that is on the order of 10 microseconds. Popular GPOSs, such as

Windows, Linux and Mac OS, usually employ a hierarchical or multi-level design of

the scheduler to support the multitasking of a variety of applications under tolerate

overheads [38].

2.2.3 Priority scheduling

Modern operating systems widely employ numerical priorities for process scheduling.

Different levels of priority are assigned to processes and the priority scheduler simply

allocates the CPU to the process with the highest priority. Processes of equal priority

are scheduled in FCFS or Round-Robin. A priority scheduler can be either preemptive

or cooperative. In the preemptive version, the currently running process is preempted

when a higher-priority process comes in; while in the cooperative version, the

higher-priority process is added at the top of the queue to wait for the termination of

the currently running process.

Priorities can be assigned according to OS internal criteria, such as CPU burst

time and execution urgency, or external factors, such as process importance and user

preference. One of the simplest and most intuitive methods is to assign the priority

based on the process importance that is subject to user preference. An

importance-based scheduling is quite straightforward in providing resource guarantees

to the applications that are most important to the user. However, giving autocracy to

the user on an operating system that he or she is unfamiliar with can lead to several

significant problems. Since the process scheduling is completely based on user

preference, there is no fairness among processes and thus, resource starvation is very

likely. Also, the ignorance of system internal factors such as time limit and CPU burst

time may yield poor performance to the time-sensitive processes. To improve the poor

response time of interactive processes, the priority can also be assigned based on the

RELATED WORK

34

CPU burst time. Especially, the Shortest Job First (SJF) scheduling firstly selects the

task with the shortest length of CPU burst in the run queue, and the Shortest

Remaining Time First (SRTF) scheduling is a preemptive version of SJF that achieves

the optimal average response time by selecting the task with the shortest remaining

time to run next. Unfortunately, SJF and SRTF are only practical in systems where the

length of future CPU bursts is predictable; while in real systems, the processing time

of many applications, typically multimedia, is hard to predict, without even

mentioning the additional prediction overheads. Moreover, in a system that is stressed

by many tasks with short CPU bursts, resource starvation is very likely to happen on

tasks with long CPU bursts due to their fixed lower priorities.

In general purpose operating systems where processes can be easily categorized

into different groups based on their importance to the system and requirements on the

scheduling latency, different levels of priority are statically assigned to separate

queues for meeting different scheduling needs. Processes from a ready queue with

higher priority will be scheduled definitely ahead of those from a lower-priority ready

queue, and each queue can have its own scheduling algorithm. This is known as

fixed-priority multilevel queue scheduling (MLQ). For example, a high priority can

be assigned to a foreground queue that runs interactive processes in Round-Robin;

and a low priority is associated with a background queue that schedules batch

processes in FCFS. Therefore, interactive processes with a high response time

requirement will be fairly scheduled ahead of batch processes with a low response

time requirement.

The use of static priority in multilevel queue scheduling can lead to the resource

starvation of low-priority processes if each process permanently remains in a queue.

The multilevel feedback queue (MLFQ) allows processes to migrate between queues

and applies priority aging to avoid starvation. Low priority processes that wait a long

time will be upgraded to a higher-priority queue to increase its chance of CPU

assignment and eventually complete its execution. In the meanwhile, processes with

long CPU bursts may be demoted to a lower-priority queue to avoid overly use of the

CPU. In this way, MLFQ favors interactive and I/O-bound processes over batch and

RELATED WORK

35

CPU-bound processes. Multilevel feedback queue scheduling is the most flexible and

general scheduling algorithm because it can be tuned for any specific system with the

dynamic priorities. It is widely employed in many popular operating systems, such as

the Solaris, Windows and Mac OS X, to achieve time-sharing scheduling among

interactive and batch processes [38]. However, MLFQ is also the most complex to

implement, since the design of a MLFQ scheduler concerns many adjustable

parameters, including the number of queues, the scheduling algorithm per queue, the

methods to upgrade or demote processes and the queue selection rules. The Linux also

employs dynamic priorities to favor interactive and I/O-bound processes in the

time-sharing scheduling, but in a manner with less overheads. In Linux, the priority of

a time-sharing process is upgraded or demoted by a certain value (normally 5)

depending on whether it is I/O-bound or CPU-bound.

Real-time and multimedia applications require low waiting and response times to

meet concrete temporal constraints. Since a high priority provides low scheduling

latency and increases the chance of meeting deadlines with the best effort, it is

intuitive to assign higher priority to real-time processes. To add support of soft

real-time scheduling in a general purpose time-sharing system, modern operating

systems usually separate priorities into real-time class and time-sharing class, and

then assign static and strictly higher priority to processes that belong to the real-time

class. Take the Windows NT-based operating system for example, higher priority

levels that range from 16 to 31 are reserved for real-time processes in a static manner;

while lower priority levels from 1 to 15 are assigned to interactive and batch

processes, whose priorities are variable under the multilevel feedback queue

scheduling [38]. The Linux is another example, in which higher priority levels that

range from 0 to 99 are statically reserved for real-time processes, while lower priority

levels from 100 to 139 are assigned to interactive and batch processes depending on

their interactivity [39]. This is beneficial for a time-sensitive process to meet

deadlines because it can immediately obtain resources with a high priority. On the

other side, interactive and batch processes may risk to starvation because they have to

wait as long as there are real-time processes awake in the system. The system may be

RELATED WORK

36

blocked for normal use in the presence of heavy-loaded or runaway real-time

activities [40]. The Marc OS X also assigns the highest priority range to real-time

processes; in particular, a real-time process will be demoted to the priority range of

time-sharing processes if it overly requests CPU access in a compute-bound manner

[41]. This may help to avoid starvation in the above specific situation, and in most

cases, it is enough for a general purpose operating system in which few processes

belong to the real-time class. However, demoting a real-time process is a tricky work,

especially in modern systems where real-time applications such as multimedia

applications are increasingly heavy-loaded and compute-bound. On one side, a

normally-behaved but relatively compute-bound real-time process may be mistakenly

demoted to the time-sharing priority range and time constraints are unnecessarily

missed. On the other side, a malicious real-time process may continuously fork short

processes to keep remained in the real-time priority range and starve time-sharing

processes.

Traditionally, general purpose operating systems are mainly extended to support

multimedia and soft real-time processes. They are not ready to support hard and strict

real-time scheduling because the real-time priorities are statically assigned based on

programmer- or user-expressed importance and preferences. To achieve strict

time-constraint compliance, process properties such as the cycle duration and

deadlines should be taken into consideration in the priority assignments. Recently, the

Linux community has been working on the incorporation of hard real-time scheduling

into the mainline Linux kernel [42]. Algorithms that target to achieve strict

time-constraint compliance will be further discussed in the next section.

2.2.4 Real-time scheduling

Real-time scheduling aims to guarantee that all real-time processes must be served

before their temporal constraints. To achieve this objective, it is mandatory to have a

preemptive and priority-based scheduling algorithm so that the system can respond

immediately to the requirements of a real-time process. The priorities in a real-time

RELATED WORK

37

scheduling algorithm can be either static or dynamic. A real-time scheduler working

with static priority is simple to implement because the priority of each process is

unchanged after the initial assignment; while a dynamic-priority scheduler is more

complex because the priorities are adjusted according to the approaching deadlines. In

both cases, the system load has to be controlled below a desired threshold in order to

keep the processes schedulable. This is achieved by using a technique known as

admission control, with which a new process will be admitted only if meeting its

resource requirements will not violate the time-constraint compliance of other

processes [43].

The rate-monotonic (RM) is one of the most used algorithms for real-time

scheduling. Processes are assigned fixed priorities that are inversely proportional to

their periods, so that a process with shorter period receives a higher priority. RM is

easy to implement on top of generic operating systems and commercial kernels that

are usually based on static priorities, and it doesn’t require the system to support

explicit temporal constraints [44]. Unfortunately, RM cannot fully utilize the CPU

bandwidth for real-time scheduling because its CPU utilization is bounded. According

to the schedulability test of Liu and Layland [45], the schedulable bound of RM tends

to 0.69 when the number of process approaches infinity. It means that, with a large

number of processes, the CPU utilization is better below 0.69 so that each process can

meet deadlines under RM. A schedulable bound of 1 is achievable under the

earliest-deadline-first (EDF) scheduling [46], which dynamically assigns priorities to

the processes based on their deadlines: the highest priority is always assigned to the

process that has the earliest deadline. In particular, EDF is theoretically optimal when

the system is under-loaded because it is believed that “if any scheduling algorithm can

meet all the deadlines then EDF can” [47]. Even though with the above mentioned

appealing properties, EDF is not as widely used as RM due to the additional

implementation complexity incurred in tracing the dynamic deadlines and mapping

them into the priority levels [44]. The managing of dynamic priorities also introduces

an additional runtime overhead that is not present in a fixed-priority scheme like RM.

However, it is worth noting that the total runtime overhead introduced in EFQ may be

RELATED WORK

38

less than RM, because the context switching caused by EFQ is less frequent than RM.

Another disadvantage of EDF is the poor predictability during overload conditions.

When the system becomes overloaded, under EFQ, the set of tasks that miss their

deadlines is largely unpredictable; while with fixed priority, the highest-priority

process is at least guaranteed to meet its deadlines.

Under admission control schemes, an overload condition is usually transient and

occurs when the resource requirements of admitted processes exceed their expected

value [43]. This is known as execution overrun, and it is most likely to occur in

applications with highly variable resource requirements, such as multimedia

applications. To prevent task interference and achieve predictability during execution

overruns, an approach known as resource reservation can be employed to enforce

resource isolation among tasks [43, 48]. In fact, resource reservation mechanisms are

commonly combined with real-time scheduling and admission control schemes to

support multimedia applications in general purpose operating systems [43, 46, 48].

The idea behind resource reservation is to allow each real-time task to reserve a

time-independent fraction of resource that is just enough to meet its deadlines. Once a

task has reserved a certain share of resources, it is guaranteed to receive exactly that

share in isolation, independently of the behavior of other tasks. To achieve this

stringent resource protection, each task should be prevented from consuming more

CPU cycles than its reservation. Therefore, a CPU usage monitoring mechanism is

required to accurately measure the computation time consumed by each task [43].

Any task overruns its reservation budget will be immediately degraded to the

background time-sharing level. The reservation rate is not necessarily static; it can be

modified in a user process with the support of the CPU usage monitoring module and

a rate-adaption interface between the kernel and user processes. The resource

reservation can be applied both to RM and EDF, and it relies on the admission control

to guarantee these already reserved shares: a new task will be rejected to enter the

system if its reservation request exceeds the leftover CPU bandwidth that is available

for reservation. Recalling the schedulable bound of EFQ and RM, EDF allows a total

CPU reservation up to 100%, while RM has a lower reservation bound that is

RELATED WORK

39

dependent on the number of real-time tasks. In general purpose operating systems,

however, certain unreserved CPU bandwidth is required to avoid resource starvation

on time-sharing tasks.

Although resource reservation achieves predictability during execution overruns,

“the overall system performance becomes quite dependent on a proper resource

allocation” [49]. To satisfy the time constraints of a real-time application with variable

computation times, the CPU bandwidth has to be over-reserved based on maximum

requirements. However, in this case, the task execution rate will always fall behind

the reserved rate, and the CPU cycles reserved for the real-time application are

therefore not fully utilized. In the meantime, the slack times are neither available for

reservation of other real-time tasks, nor for sharing by conventional time-sharing tasks.

The scheduler becomes non-work-conserving in a way that when a task finishes its

execution earlier than the reserved time, the CPU goes to idle even if there are other

tasks waiting in the queue to be executed. Although the reservation rate can be

adjusted in accordance to the feedback of task workloads, predicting the resource

requirements is a difficult job in multimedia applications where the workloads are

usually data and hardware dependent. Therefore, a hard resource reservation is better

suited for hard real-time applications in which the resource requirements are usually

constant or can be known beforehand [50].

To achieve a more efficient resource reservation for multimedia applications, the

Constant Bandwidth Server (CBS) [51, 52] can be employed under EDF to reserve a

proper and constant bandwidth share for each task. With CBS, a task remains in the

real-time priority level when its reserved CPU cycles are exhausted; however, its next

approaching deadline is postponed properly to guarantee that the execution rate never

exceeds the reserved rate. This is also known as soft resource reservation because

only soft deadlines are affordable to be postponed. A CBS-based scheduler can

behave in a work-conserving fashion, so that available slack times can be efficiently

utilized by other tasks [53]. Unfortunately, this method cannot be applied to

static-priority algorithms because it requires the system to provide explicit deadlines.

Besides, it can risk to resource starvation in a GPOS due to the fact that an

RELATED WORK

40

overrunning task can remain in the real-time priority level. Another disadvantage is

that the use of deadline postponement mechanism poses restrictions on the behavior

of real-time applications, which instead can choose to abandon the unfinished work of

the current period and skip to the next period.

Because resource reservation relies on admission control to avoid system

overload, any new resource request that cannot be satisfied by the leftover CPU

capacity will be denied in order to not violate the rate guarantees of admitted tasks.

This achieves fairly strict share guarantee, but at the cost of losing flexibility, fairness

and efficiency [40]. With this scheme, a later arriving but more important application

may be denied to be allocated resources. Even if the new application is not that

important, it is a common situation that a user might be willing to degrade the

performance of admitted applications to accommodate the new application [54].

Admission control policy allows a reservation system to shed the system load based

on the reservation rate that is allocated at reservation time, thus the system is totally

ignorant of the dynamical changing workloads during the program execution. Since

the over-reserved CPU time cannot be shared by other tasks, a reservation system

might be working in a lightly loaded state and goes to idle regularly, while rejecting

the requests from newly launched applications.

2.2.5 Proportional share scheduling

Proportional share scheduling (PSS) is a type of work-conserving algorithm that aims

to achieve a proportional and fair allocation of the system resource to each process or

data flow [55]. In a proportional share system, each process is pre-assigned a weight

and makes progress at a precise rate that is proportional to the weight. This is

beneficial to provide differentiated services to various applications in general purpose

operating systems. Because proportional share scheduling provides a natural mean to

guarantee the performance of time-sensitive tasks and allows a graceful degradation

of the task performance in overload situation, it is particularly well-suited to the

problem of supporting multimedia and soft real-time applications in GPOSs [55, 56].

RELATED WORK

41

The remaining of this section is organized as follows. Firstly, the reference model

and performance metrics of the proportional share scheduling are given as the

fundamentals in section 2.2.5.1 and section 2.2.5.2, respectively; then section 2.2.5.3

is dedicated to the discussion on supporting real-time scheduling with PSS algorithms,

and section 2.2.5.4 is focused on the mechanisms of protecting the resource shares of

time-sensitive tasks. From section 2.2.5.5 to section 2.2.5.7, different types of

proportional share scheduling algorithms are comparatively introduced, and finally in

section 2.2.5.8, it is introduced several PSS algorithms that are particularly designed

to support multimedia scheduling in GPOSs.

2.2.5.1 The reference model

PSS algorithms are implemented to approximate the Generalized Processor Sharing

(GPS), an idealized fluid-flow model that assumes the resource can be arbitrarily split

into infinitesimal units and simultaneously served to different processes or data flows

[57]. The earliest comprehensive studies on referring to the GPS model for PSS

algorithm design are carried out in the network scheduling domain [57, 59, 60, 61, 66,

68, 71]. In network scheduling, a proportional sharing scheduler should ensure that

multiple packlized traffic flows (or session) can fairly share the linked network

bandwidth to transmit data with guaranteed rates. This approach is later applied to the

processor scheduling domain to achieve proportional sharing of the CPU bandwidth

among competitive processes [55, 56, 63, 64, 69, 74]. In this document, the GPS

model and PSS algorithms are introduced mainly in referring to the processor

scheduling, however, some concepts and definitions from the network scheduling are

also referred to provide a comprehensive knowledge on proportional share

scheduling.

In the GPS model, each process is associated with a weight that determines the

minimum share of the CPU bandwidth that the task is entitled to use. Let 𝑤𝑖 denotes

the weight assigned to task 𝑖, the bandwidth share 𝑓𝑖(𝑡) of task 𝑖 at time 𝑡 is

defined as [55]:

RELATED WORK

42

 𝑓𝑖(𝑡) =
𝑤𝑖

∑ 𝑤𝑗∀𝑗𝜖𝐴(𝑡)
 , ∀𝑖 𝜖 𝐴 (𝑡) (2.1)

where 𝐴(𝑡) denotes the set of active tasks at time 𝑡. For any interval (t1, t2] during

which the set of active tasks does not change, the bandwidth share should remain

constant and the CPU time allocated to task 𝑖 is 𝑓𝑖(𝑡)(𝑡2 − 𝑡1). More generally, if

the task share varies over the time, the allocated CPU time during any interval (t1, t2]

is [55]:

 𝑊𝑖(𝑡1, 𝑡2) = ∫ 𝑓𝑖(𝜏)
𝑡2

𝑡1
𝑑𝜏 (2.2)

2.2.5.2 Performance metrics

The GPS scheduler can provide perfect fairness in resource allocation because the

shared resources are assumed to be infinitely divisible and they are simultaneously

accessed by multiple tasks. However, any practical implementation of a PSS

algorithm must take into account that the minimum schedulable time quantum is

bounded by the hardware restrictions and that the processor can be accessed only by

one task at a time. Due to the quantization in the CPU time allocation, it is impossible

that a task always receives exactly the same CPU time as it is entitled to in the GPS

model. This difference between the CPU time that a task should consume in the ideal

GPS model and the CPU time it actually consumes in the real system is called

allocation error or service time lag (or simply lag) [55, 58]. The lag is considered as

positive if the task in a real system has received less service time than the service time

received in the ideal GPS system; otherwise, it is regarded as a zero lag or negative

lag. An elaborately designed PSS algorithm should ensure that the sum of lag of all

active tasks is zero at any time.

Because the performance of a PSS algorithm is measured by how close it can

approximate the GPS model, it is necessary to design the algorithm with a bounded

lag for each task. This is especially important when supporting real-time scheduling in

general purpose operating systems, in which a proper share of the resource should be

determined for periodical time-sensitive tasks [51, 55]. Besides of the specific

RELATED WORK

43

algorithm design, the allocation error bound is also dependent on the length of the

standard time quantum, 𝑄, which is defined as the maximum length of time that a

task is allowed to continuously seize the processor before the next scheduling decision

is made. The length of the standard time quantum, 𝑄, is pre-defined by the scheduler

designer or system user to achieve a balance between the allocation error and the

context-switching overhead. In the processor scheduling, the optimal bound of

allocation error that can be achieved by a PSS algorithm is 𝑄 ; while, in the

packet-based network scheduling, the optimal lag bound is 𝐿𝑚𝑎𝑥 , the maximum

packet size among all the data flows.

The unfairness bound (or fairness bound) and latency (or delay bound) are

another two metrics that are commonly used to assess a PSS algorithm design,

especially in the packet-based network scheduling [59, 60].

The unfairness bound is defined as the maximum difference between the

normalized CPU time received by any two tasks 𝑖 and 𝑗 over all intervals of time

(𝑡1, 𝑡2] during which both are continuously active, it is expressed as [59]:

𝑀𝑎𝑥 {|
𝑊𝑖(𝑡1,𝑡2)

𝑤𝑖
−

𝑊𝑗(𝑡1,𝑡2)

𝑤𝑗
|} (2.3)

The unfairness bound is usually used for theoretical analysis of the fairness of a PSS

algorithm. In the idealized GPS model, the unfairness bound is zero because the

normalized service time of any two tasks is always the same. Intuitively, PSS

algorithms should be designed to achieve an unfairness bound that is as close to zero

as possible. However, it has been proven that the optimal unfairness bound of a

proportional share scheduling algorithm is
1

2
(

𝑞𝑖
𝑚𝑎𝑥

𝑤𝑖
+

𝑞𝑗
𝑚𝑎𝑥

𝑤𝑗
), where 𝑞𝑖

𝑚𝑎𝑥 and 𝑞𝑗
𝑚𝑎𝑥

denote the maximum lengths of time quanta of task 𝑖 and 𝑗, respectively [61].

Note that the maximum length of time quanta of any task in a PSS algorithm is no

more than the length of the standard time quantum 𝑄 . Therefore, the optimal

unfairness bound can be loosely computed as
𝑄

2
(

1

𝑤𝑖
+

1

𝑤𝑗
) . Depending on the

algorithm design, the unfairness bound of a PSS algorithm may be close to or larger

RELATED WORK

44

than the optimal unfairness bound, but in whatever case, the bound should be 𝑂(1),

independent of the number of active tasks [61].

 The latency (or delay bound) is defined to measure the maximum elapsed time

from the instant that a time quantum is requested by a task to the instant that the

requested time quantum is completely served to the task [60]. It represents the

worst-case delay of a task, which is normally the delay seen by the first requested

time quantum of a newly-rejoined or rejoined task. In general purpose operating

systems, achieving a low latency is important to provide quick response time to the

low throughput tasks with short CPU burst time.

 Besides of the above metrics, proportional share scheduling algorithms are also

evaluated by the implementation complexity and run-time efficiency [56].

2.2.5.3 Real-time scheduling support

 The rationale of supporting real-time execution with proportional share

scheduling is to allocate a proper share of the CPU bandwidth that is corresponding to

the periodic workload of each task [55]. Ideally, the CPU share should be computed

based on the task period and the actual execution time in each period. However,

because the actual execution time in most multimedia and soft real-time applications

can vary over the time and may be hard to predict, it is preferably to compute the CPU

share based on the worst-case execution time so that to avoid the prediction overhead

as well as any deadline miss caused by the prediction error.

Besides, determining the concrete share for each task in a real system requires

taking the allocation error bound into account [56]. Let us assume the task period is 𝑝,

the actual execution time in each period is 𝑎, and the worst-case execution time is 𝑐,

to meet all the time constraints in a PSS scheduler with allocation error bound as 𝑙𝑎𝑔,

it requires a CPU share that is at least (𝑐 + 𝑙𝑎𝑔)/𝑝. This is an over-reserved share in

comparison to the ideal share of 𝑎/𝑝 in the GPS model. As the total share of all tasks

is one (∑ 𝑓𝑖𝑖∈𝐴(𝑡) = 1), the over-reservation causes a waste of the CPU time allocation

in the sense that the over-reserved CPU time cannot be guaranteed to other tasks [56].

RELATED WORK

45

 The over-reservation of a CPU share can be qualified as (𝑐 + 𝑙𝑎𝑔)/𝑎. Because

the actual execution time 𝑎 and the worst-case execution time 𝑐 are both dependent

on the given task, the only approach to directly reduce the over-reservation is to

minimize the allocation error bound. According to Stoica et al [55], the optimal

allocation error bound that can be achieved by PSS algorithms is equal to the size of

the standard time quantum, 𝑄. Therefore, the over-reservation is dependent on the

size of the standard time quantum, which is typically 10-30 ms in GPOSs. Smaller

time quantum can be employed as the user desires, however, it must be balanced with

the scheduling overheads incurred by timer interrupts and context switches.

 In despite of the allocation error, the level of over-reservation is acceptable in

many real-time tasks whose workload is fluctuating slightly. Even for tasks whose

worst-case execution is much larger than the actual execution time, a large

over-reservation is not a big problem if the worst-case share is a small one. However,

the CPU share for reservation will be badly wasted if the task workload is fluctuating

significantly and the worst-case share is a considerable large one, which is very

common in modern multimedia applications.

To better support multimedia scheduling, it has been proposed to combine extra

real-time friendly mechanisms into the PSS algorithms [50]. With the combination of

real-time friendly mechanisms, PSS algorithms can provide stronger guarantees on

time-constraint compliance while allowing the CPU shares to be much smaller than

the worst-case shares. Although the short-term fairness is worse due to the

instantaneous priority given to the time-sensitive tasks, the long-term CPU shares are

still maintained based on the weight of each task. Algorithms belong to this type will

be further introduced in section 2.2.5.8.

2.2.5.4 Share protection

 Once the minimum CPU share required by a time-sensitive task is determined, it

is necessary to ensure the task at least that amount of share during the task execution.

However, according to equation (2.1), the CPU share 𝑓𝑖 of one task varies with the

RELATED WORK

46

number and the weight sum of the active tasks. Any new task that joins the

competition with a large weight may reduce the CPU share of a time-sensitive task to

an arbitrarily low level, thus leading to unstable real-time performance. To maintain a

desired share for a target task, its weight must be adjusted in accordance with the

dynamic activities in the system. This is known as the weight-assignment problem

[62], and the approaches that can resolve the problem is called share protection or

share insulation. Share protection aims to protect the resource right of one task by

isolating its resource share from the activities of the other tasks. It is also employed in

hierarchical scheduling models to protect the resource use of different groups of tasks

or users [63, 64].

 The concept of share protection firstly appears in the lottery scheduling [63], one

of the earliest proportional share processor scheduling algorithms based on the

probability theory. In the lottery scheduling, it is claimed that the resource use of

different task groups can be isolated by applying a specific resource abstraction

barrier on each group. However, the concrete implementation scheme of load

insulation is not provided in the lottery scheduling, and therefore its computational

complexity is unknown. This topic is later explored by Stoica et al., in [54]. It is

proposed to build an equation for each time-sensitive task based on the duality of

weights and shares. Upon dynamic activities, the weights of normal tasks are always

fixed, while the weights of time-sensitive tasks are recomputed based on their desired

shares and the weight sum of all tasks. This approach is straightforward and easy to

understand, however, it requires resolving a group of simultaneous equations to obtain

the proper weight for each time-sensitive task.

To reduce the computational complicity, Goddard and Tan [62] proposed to

re-compute the weights of normal tasks instead of the weights of time-sensitive tasks

upon dynamic activities. Specifically, the weight sum of all tasks is fixed to one

(∑ 𝑤𝑖 = 1𝑖∈𝐴), and the weight of each time-sensitive task is fixed to its desired share

by 𝑤𝑖 = 𝑓𝑖 to achieve the share reservation; then the weights of the normal tasks are

recomputed based on their initially-assigned weights and the share that is not yet

reserved. In this way, the computational complexity of share protection is

RELATED WORK

47

significantly reduced and the overhead of weight recalculation is dependent on the

number of normal tasks.

 In the above methods, time-sensitive tasks are ensured a minimum share that is

independent of the system dynamics, but they are not able to compete for the resource

share that is released by normal tasks. A recently developed share protection approach

[65] provides this support by explicitly separating the weight and share to be initial

ones and effective ones. In this approach, time-sensitive tasks are assigned both the

initial weight and the initial share, while normal tasks are only assigned the initial

weight. The initial share allows the time-sensitive task to reserve the minimum

required CPU share and the initial weight enables it to compute for the unreserved or

released share. In practice, however, it should appear to the system that the

time-sensitive task is competing for the resource with one effective weight. Therefore,

this approach needs to compute the effective weight for each task. The effective

weight of a normal task is simply equal to its initial weight. However, the

computation of the effective weight of time-sensitive tasks is pretty cumbersome due

to the dependency on the initial weights and shares of all active tasks. Therefore, this

approach is better suited for systems with a small number of time-sensitive tasks.

2.2.5.5 Weighted Round-Robin

The weighted Round-Robin (WRR) [66] is one of the simplest proportional share

scheduling algorithms that aims to emulate the Generalized Processor Sharing (GPS)

model in a Round-Robin style. Like Round-Robin, it executes processes in a circular

order and enforces preemption when the allocated time quantum (or time slot) is

expired. However, to provide differentiated quality of service, weighted Round-Robin

(WRR) assigns a time quantum that is equal to the weight of each process. A process

with a large weight gets a larger time quantum than a process with a small weight.

Then the CPU is expected to be proportionally shared among processes by scheduling

them with the same frequency but different size of time quanta.

As a Round-Robin algorithm, WRR is simple to implement and schedules

RELATED WORK

48

processes with a time complexity of O(1). However, it also inherits the unfairness in

resource sharing from Round-Robin upon non-equally sized CPU bursts. In practice,

to resolve the unfairness problem and achieve proportional resource sharing, WRR

requires an estimation of the mean length of CPU bursts to normalize the weight

factors. Unfortunately, efforts to resolve the problem have only been found in network

packet scheduling under the name of deficit Round-Robin (DRR) [67]. The method is

difficult to be transplanted to the processor scheduling domain due to the

unpredictability of CPU bursts. Besides, since a process that misses its slot of time has

to wait until the time slot of the next round, the maximum delay incurred in a WRR or

DRR server is dependent on the number and weights of the active tasks that can be

arbitrary. Therefore, the delay bound can be arbitrarily high if the weights are not

appropriately selected [68].

2.2.5.6 Lottery scheduling

Lottery scheduling is a probabilistic scheduling algorithm that statistically guarantees

proportional resource sharing among processes [63]. Each process is given some

number of "lottery tickets", and the scheduler selects the next process by generating a

random ticket number. A process with more tickets can have a higher chance of

selection, and the statistic fraction of the resources allocated to one process is

determined by the relative number of tickets that are held by the process.

 Lottery scheduling is starvation-free because any process that is holding at least

one lottery ticket has the probability of being selected. The algorithm is applicable to

the management of diverse resources and provides a flexible control on the resource

consumption rates of processes through a number of ticket mechanisms, such as the

ticket transfer and ticket inflation [63]. However, being a randomized algorithm, lottery

scheduling offers proportional fairness only over a large number of time quantum

allocations. In addition, due to the randomized property, the allocation error in lottery

scheduling is not tightly-bounded and can increase over the time [68]. Specifically, the

allocation error after a series of 𝑛𝑎 allocations is 𝑂(√𝑛𝑎) [69]. Besides, the

RELATED WORK

49

implementation of lottery scheduling is also a tricky and challenging work. Firstly, it

requires implementing a reliable random number generator, and secondly, it may incur

a high overhead in managing the index of all tickets.

2.2.5.7 Fair queuing

Fair queuing is a classic algorithm that is widely used in processor and network

scheduling to achieve a proportional allocation of resources. Different from the WRR

and lottery scheduling, the implementation of a fair queuing algorithm relies upon the

using of virtual time to track the service allocation in both the real system and the

idealized GPS system. The concept of virtual time was firstly invented in network

packet scheduling to resolve the unfairness of resource allocation that may be

generated in WRR scheduling when the data packets are of variable length [70].

Naturally, this approach is employed to achieve a better unfairness bound in processor

scheduling, in which the CPU burst time can also vary from one task to another.

The main purpose of the virtual time is to emulate the GPS system and use it as a

reference model to the real system scheduling [57]. To achieve that, a non-decreasing

function called system virtual time 𝑉(𝑡) is defined to track the normalized CPU time

that is served to all the tasks. Ideally, the system virtual time 𝑉(𝑡) evolves at a rate

that is inversely related to the weight sum of all active tasks, it is expressed as [57,

70]:

 𝑉(𝑡) = ∫
1

∑ 𝑤𝑗∀𝑗𝜖𝐴(𝜏)

𝑡

0
𝑑𝜏 (2.4)

where 𝐴(𝜏) denotes the set of active tasks at time 𝜏. In a practical implementation of

PSS algorithms, the system virtual time can be computed in different methods with

different computational complexity. The most expensive method is to concurrently

emulate the GPS model and compute the system virtual time 𝑉(𝑡) based on the

above integration equation. This incurs a computational complexity of 𝑂(𝑁), where

𝑁 denotes the number of active tasks in the system. There are less expensive methods

with which the system virtual time can be computed by self-referring to the

RELATED WORK

50

real-system scheduling model [59, 68]. However, the performance of the PSS

algorithm may be affected. According to the discussion in [71], in order to provide a

lag bound and delay bound within one standard time quantum or one maximum size

packet, it is necessary for the system virtual time to have the minimum slope property,

that is, the increasing slope of the system virtual time is at least one.

 Besides of the system virtual time, the task virtual time 𝑉𝑖(𝑡) is defined to

determine the scheduling order of tasks by tracking the normalized CPU time

consumed by each task. More concretely, the task virtual starting time (or simply

staring stamp) and the task virtual finishing time (or simply finishing stamp) are

defined to separately record the normalized CPU time consumed by each task before

and after it is allocated a time quantum. Depending upon the algorithm design, a fair

queuing scheduler may select either the task with the lowest staring stamp or the one

with the lowest finishing stamp to access the processor. The task virtual time 𝑉𝑖(𝑡)

starts from zero, and it is updated when task 𝑖 finishes the execution of a time

quantum or when the task rejoins the resource competition after temporally leaving

the run queue. To prevent any temporally-leaving task from continuously seizing the

processor when they rejoin the competition with a smaller task virtual time, the

system virtual time is used as a reference to update the task virtual time so that the

latter can never suppress the former [55, 57].

 Weighted fair queuing (WFQ) is one of the earliest fair queuing algorithms that

strictly emulate the GPS model in the data packet scheduling [57, 72]. It is a

well-studied algorithm and has been proven to have a bounded fairness and latency.

Specifically, it is guaranteed that the WFQ system can never fall behind the GPS

reference system by more than one maximum size packet, and the maximum delay of

data flow 𝑓 is bounded by
𝑙𝑓

𝑚𝑎𝑥

𝑟𝑓
+

𝐿𝑚𝑎𝑥

𝐶
 , where 𝑙𝑓

𝑚𝑎𝑥 denotes the maximum packet

size of data flow 𝑓, 𝑟𝑓 denotes the rate assigned to data flow 𝑓, 𝐿𝑚𝑎𝑥 denotes the

maximum size packet among all data flows, and 𝐶 denotes the capacity of the

network bandwidth. Unfortunately, WFQ fails to preserve the fairness when it is

directly applied to the processor scheduling. This is because WFQ schedules tasks

RELATED WORK

51

based on the finishing stamp and it requires a priori knowledge of the length of each

CPU time quantum. While in network scheduling, the length of each packet can be

known from the header upon packet arrival; in processor scheduling, the length of

CPU burst time is unknown and usually impossible or difficult to predict. This

problem is resolved in the stride scheduling [69], the first fair queuing processor

scheduling algorithm that supports fractional and non-uniform quanta and provides

deterministic guarantees on resource shares. In stride scheduling, tasks are also

scheduled in the increasing order of the finishing stamp (known as finishing pass).

Although the finishing stamp of each task is computed based on the standard time

quantum 𝑄, a pre-defined time quantum with constant size, its value is modified to

reflect the actual length of the execution time when the task relinquishes the CPU.

 As stride scheduling [69] provides a time-quantum-based solution for fair

queuing implementation, there is no theoretical proof of the unfairness bound and the

allocation error. Actually, stride scheduling is believed to have an allocation error that

can increase linearly to 𝑁, the number of active tasks [55]. The 𝑂(𝑁) lag is due to

the continuously scheduling of the task with the lowest finishing stamp, which may

cause the task to advance far ahead of the GPS model. Another problem experienced

by fair queuing processor scheduling is the unfairness that may be introduced in

dynamic task participation. In processor scheduling, if a task is allowed to

dynamically join or leave the resource competition at any time, it may leave the

competition before being allocated a requested time quantum (positive lag) or right

after using up a CPU time quantum (negative lag). This introduces to the remaining

tasks an unfairness that can be quantified by the non-zero lag of the leaving task. To

address the problem, stride scheduling defines a state variable called remain to store

the lag of each temporally-leaving task. When the task rejoins the system, the remain

is used to compensate the updating of the task virtual time, so that the task with

positive lag is favored to receive time quantum while the task with negative lag is

punished [69]. This approach introduces a time complexity of 𝑂(𝑙𝑔𝑁) for both

operations regarding the task leaving and rejoining. However, it is not quite effective

to maintain the fairness because it is based on the assumption that a current time

RELATED WORK

52

quantum is equivalent to a future time quantum [55]. Extra unfairness will be incurred

if the set of active tasks varies significantly between the instant of time that a task

leaves and rejoins the system [58].

 The earliest eligible virtual deadline first (EEVDF) [55, 58] is a fair queuing

algorithm that improves the lag bound and unfairness bound of stride scheduling and

provides a strict theoretical proof. Actually, EEVDF has been proven to have the

optimal lag bound that equals to the length of the standard time quantum, 𝑄, and the

maximum delay of time quantum 𝑞𝑓
𝑗
 is bounded by

𝑞𝑓
𝑗

𝑟𝑓
+

𝑄

𝐶
, where 𝑟𝑓 denotes the

rate assigned to task 𝑓, and 𝐶 denotes the CPU bandwidth. In EEDVF, tasks are also

scheduled according to the finishing stamp (known as virtual finishing deadline).

However, only those tasks whose starting stamp is smaller than the system virtual

time are considered as eligible to be scheduled. Since a task is only eligible when it

receives less service time than it is entitled to in the GPS model, no task can advance

ahead of the GPS model by more than one standard time quantum. To maintain the

fairness upon dynamic task participation, EEVDF employs a more effective and

systematical approach based on its interpretation of fairness in dynamic systems: any

non-zero lag of leaving tasks should be proportionally distributed to the remaining

tasks in the system [58]. The approach can be summarized in three steps. First, it

delays whichever task with a negative lag to leave the system until the lag becomes

zero, while allows tasks with a non-negative lag to immediately leave the system.

Then, any positive lag is proportionally distributed to the remaining active tasks by

compensating the system virtual time with a value that can be expressed as

𝑙𝑎𝑔𝑗(𝑡)

∑ 𝑤𝑖𝑖∈𝐴(𝑡) \{𝑗}
, where ∑ 𝑤𝑖𝑖∈𝐴(𝑡) \{𝑗} denotes the weight sum of all active tasks after task

𝑗 leaves the system. Finally, each task that newly joins or rejoins the competition is

assigned a zero lag. With this approach, EEVDF maintains the fairness upon dynamic

task participation and no extra unfairness is incurred as in the stride scheduling.

 The implementation of any PSS algorithm should be practical and has reasonable

computational complexity. Generally, the computational complexity of a fair queuing

algorithm comes from three types of operations: virtual time stamp computation for

RELATED WORK

53

each task, task sorting in the run queue, and other operations that are specifically

required to implement each algorithm, such as re-computing the task virtual time after

the termination of a time quantum in stride scheduling and EEVDF. The complexity

incurred by task sorting is 𝑂(𝑙𝑔𝑁) in all fair queuing algorithms, where 𝑁 denotes

the number of active tasks in the system. However, the complexity of time stamp

computation depends on whether the ideal GPS system is required to compute the

system virtual time 𝑉(𝑡). In both stride scheduling and EEVDF, the complexity of

time stamp computation is 𝑂(𝑁) because the ideal GPS model must be emulated

concurrently to support the computation of system virtual time through the integration

equation (2.4). To reduce the expensive overhead of GPS emulation, it has been

proposed to compute the system virtual time by self-referring to the task virtual time

of the active tasks in the real system. This approach is free of the GPS model

emulation and can reduce the complexity of time stamp computation to 𝑂(1).

 Self-clock fair queuing (SCFQ) [59] is one of the earliest and most well-known

fair queuing algorithms that compute the system virtual time based on self-reference.

Similar to stride scheduling, SCFQ schedules tasks in the increasing order of the

finishing stamp. However, to reduce the scheduling overhead, the system virtual time

is defined equal to the finishing stamp of the task under execution. In other words, the

system virtual time is defined to track the lowest finishing stamp of all active tasks.

SCFQ is simple to implement and its unfairness bound is near optimal in the sense

that it is only twice the optimal bound [59]. However, because the system virtual time

in SCFQ does not increase with a minimum slope of one, the allocation error and

delay bound under SCFQ are not guaranteed within a standard time quantum, but

increase with the growth of the number of active tasks. More specifically, the

maximum delay of time quantum 𝑞𝑓
𝑗
 is bounded as

𝑞𝑓
𝑗

𝑟𝑓
+ ∑

𝑞𝑖
𝑚𝑎𝑥

𝐶1≤𝑖≤𝑁⋀𝑖≠𝑓 , where 𝑟𝑓

denotes the rate assigned to task 𝑓, 𝑞𝑖
𝑚𝑎𝑥 denotes the maximum time quantum of

task 𝑖, and 𝐶 denotes the CPU bandwidth.

 Starting-time fair queuing (SFQ) [68] is another fair queuing algorithm that is

free of the GPS model. Unlike SCFQ, it defines the system virtual time equal to the

RELATED WORK

54

starting stamp of the task under execution and schedules tasks in the increasing order

of the starting stamp. Compared to SCFQ, SFQ is even more computationally

efficient because it does not need to modify the task virtual time after the termination

of a time quantum; yet, the delay bound in SFQ is considerably smaller than in SCFQ

while both have the same unfairness bound that is near-optimal. Unfortunately, like

SCFQ, because the system virtual time of SFQ does not meet the minimum slope

property, the lag bound and delay bound of SFQ also increase with the growth of the

number of active tasks in the system. Specifically, the maximum delay of time

quantum 𝑞𝑓
𝑗
 is bounded as

𝑞𝑓
𝑗

𝐶
+ ∑

𝑞𝑖
𝑚𝑎𝑥

𝐶1≤𝑖≤𝑁⋀𝑖≠𝑓 . However, recall that the delay

bound of in WFQ and EEVDF is
𝑞𝑓

𝑗

𝑟𝑓
+

𝑄

𝐶
, in comparison, SFQ provides a better delay

guarantee to low throughput tasks (such as interactive tasks) when the number of

tasks is small.

 Until now, all the above discussion and comparison of the fair queuing algorithms

are based on the assumption that the system server bandwidth, such as the network

bandwidth or CPU bandwidth, is constant. However, the capacity of a real-system

server can be variable over the time and this situation is not considered in many fair

queuing algorithms that assumes a constant rate server, such as the WFQ, stride

scheduling and EEVDF. In particular, it is illustrated that WFQ fails to achieve the

claimed fairness over a variable capacity server [68]. Implicitly, any fair queuing

algorithm (including the stride scheduling and EEVDF) that computes the system

virtual time under the assumption of a constant CPU bandwidth may potentially fail to

provide its claimed unfairness bound and delay bound over variable rate servers.

Conversely, fair queuing algorithms (including SFQ and SCFQ) that compute the

system virtual time by self-referring to the real system can preserve their claimed

fairness over variable rate servers. Actually, it has been proven that SFQ can provide a

near-optimal unfairness bound under any variable rate server [68] and that it can

provide bounds on maximum delay and minimum throughput (or share) for each task

under a fluctuating bandwidth that can be modeled as a Fluctuation Constrained (FC)

server or Exponentially Bounded Fluctuation (EBF) server [68]. The FC server [73] is

RELATED WORK

55

defined as a lower-bounded server that can be expressed as (𝐶, 𝛿(𝐶)), where 𝐶

denotes the long-term average capacity and 𝛿(𝐶) denotes the maximum delay of

resource serving in the FC server. In other words, a FC server serves at most 𝛿(𝐶)

less resource than a server with a constant capacity of 𝐶 in any interval of a busy

period. The EBF server [73] is simply a stochastic relaxation of the FC server.

2.2.5.8 Multimedia scheduling

To better support soft real-time and multimedia applications in GPOSs with

proportional share scheduling, several algorithms that combine certain real-time

friendly mechanism to proportional share scheduling have been proposed [50, 74,

75]. Basically, those algorithms break the short-term fairness to give scheduling

priority to time-sensitive tasks, but maintain the proportional power sharing from the

long-term.

SMART [50] is one of earliest PSS algorithms that are specifically enhanced to

support multimedia scheduling. The crux of SMART is to distinguish between

urgency and importance when making scheduling decisions. While urgency is specific

to real-time applications and measured by the time constraints, importance is common

to all applications. The importance is measured by a value-tuple consisting of a static

priority and a biased virtual finishing time (BVFT) that reflects the normalized energy

received by a task. In the computation of BVFT, a bias is added to the virtual finishing

time (or finishing tag) of regular tasks when completing a quantum, so that regular

tasks are deferred to let real-time tasks get scheduled earlier to meet their time

constraints. The bias affects instantaneous proportional allocations and worsens

fairness bound, but does not change the long-term proportional share of resources.

Generally, SMART makes the scheduling decision in two steps. In the first step, it

identifies the most important task (the one with the highest value-tuple), if the most

important task is a regular one, the task is scheduled immediately; if not, it enters the

second step. In the second step, all real-time tasks which are more important than the

most important regular task are organized in a queue named working schedule, and

among them, the most urgent one is selected to execute.

RELATED WORK

56

In comparison with traditional PSS algorithms like EEVDF, SMART introduces

time-constraint awareness to the scheduler, and thus, provides better real-time

performance while allowing proportional sharing of resource based on user-desired

share ratio. In addition, SMART integrates static priority into the proportional share

scheduling and allows prioritizing tasks across real-time and non-real-time classes.

Besides, SMART provides dynamic feedback to real-time applications to allow them

adapting properly to the current load. However, SMART experiences several practical

issues in the implementation. Firstly, SMART incurs computing overhead in

managing both the value-tuple list and the working schedule queue. Since the system

virtual time is updated in reference to a GPS system and tasks are ordered based on

the virtual finishing time (or finishing tag), the cost of managing the value-tuple list is

similar to WFQ. It requires a time complexity of 𝑂(𝑛𝑐) for finishing tag

computations and 𝑂(𝑙𝑔𝑛𝑐) for service quanta sorting. The complexity of managing

the working schedule queue is 𝑂(𝑛𝑅
2), where 𝑛𝑅 is the number of real-time tasks in

the candidate set. This complexity can be further reduced to 𝑂(𝑛𝑅), but it requires a

more complicated implementation scheme. Secondly, SMART predicts the service

time required by a periodical real-time task in its future periods, tests if the required

service time can be served before its deadline, and based on that decides whether

insert a task into a working schedule queue or abandon its service request. This

method is sensitive to the prediction error, thus, introduces risks of abandoning a

service request that can actually meet its deadline. Finally, SMART introduces a bias

to the virtual finishing time of regular tasks to preferentially schedule time-sensitive

tasks, but does not provide any user interface to support a flexible control on the bias.

BERT [74] is another real-time friendly PSS algorithm that was developed in

reference to SMART. Since it shares several common features with SMART, such as

the requirement of simulating the GPS system and the need to compute the virtual

finishing time based on predicted length of time quanta, it suffers the high computing

overhead and implementation complexity as in SMART.

Borrowed-virtual-time (BVT) [75] is an effective yet low-complexity PSS

algorithm targets on the support of real-time and multimedia scheduling in GPOSs.

RELATED WORK

57

BVT employs a real-time friendly mechanism named warping to support

time-sensitive tasks in proportional share scheduling. The warping mechanism

involves the following state variables of each task: 𝐴𝑖, the actual virtual time (AVT);

𝐸𝑖, the effective virtual time (EVT); 𝑊𝑖, the virtual time warp; and 𝑤𝑎𝑟𝑝𝐵𝑎𝑐𝑘𝑖, a

bool sets whether the warp is enabled or not. The effective virtual time 𝐸𝑖 is

computed as 𝐴𝑖 − 𝑊𝑖 if the warp is enabled (𝑤𝑎𝑟𝑝𝐵𝑎𝑐𝑘𝑖 = 1) for task 𝑇𝑖; otherwise,

if the warp is not enabled (𝑤𝑎𝑟𝑝𝐵𝑎𝑐𝑘𝑖 = 0), the effective virtual time 𝐸𝑖 equals to

the actual virtual time 𝐴𝑖. BVT monitors the task execution progress with the actual

virtual time 𝐴𝑖, but schedules tasks in the increasing order of the effective virtual

time 𝐸𝑖. By enabling the warp to warp back the virtual time stamp, a time-sensitive

task appears earlier in the scheduling queue and gains dispatch preference. The

fairness worsens due to the dispatch preference given to time-sensitive tasks; however,

the long-term CPU bandwidth share is still constrained by the weighted fair sharing of

BVT because the actual virtual time 𝐴𝑖 is advanced based on its actual CPU usage.

Warping a task can introduce latency to other lower-priority tasks. Thus, BVT

introduces two additional parameters to warping: the warp time limit 𝐿𝑖 that limits

the maximum time one task can run warped; and the unwarp time requirement 𝑈𝑖

that governs the time a task must wait before warping again. These two warp

parameters should be properly set to limit the CPU occupation of higher-priority tasks

and thus avoid adding too much latency to other tasks. BVT provides a user interface

to support a flexible setting of these two parameters.

The warping mechanism is simple and straightforward to implement in any

WFQ-like fair-queuing algorithm. With a proper choice of the warp parameters, BVT

can reduce the dispatching latency for real-time and interactive tasks while providing

weighted proportional sharing of the CPU bandwidth across time-sensitive and

regular tasks. However, since the interaction of multiple warped tasks with multiple

levels of warp values has not been investigated and it is still an open question how

various warp parameters should be set to produce a desired overall system behavior,

more research on the warping mechanism are required [74].

RELATED WORK

58

2.3 Summary and discussion

In this chapter, the related works of energy-centric processor scheduling have been

surveyed from two domains, OS-level power management and GPOS scheduling

algorithms.

Different from traditional OS-level PM schemes which are either best-effort in

energy saving or dependent on application self-adaptation, energy-centric PM

schemes can provide a strict guarantee on the user-specified battery lifetime by

globally managing energy as the first-class resource in mobile systems with general

applications. While the guarantee of a specific battery lifetime meets the basic

requirement of a mobile system user, the energy-centric processor scheduling is

pivotal in user experience optimization on top of the guaranteed battery lifetime.

Specifically, to optimize the user experience of an energy-limited mobile system,

energy-centric processor scheduling is required to provide supports in proportional

power sharing, time-constraint compliance, and a flexible trade-off between them.

Until now, no energy-centric processor scheduling algorithm that has all the

above-mentioned properties has been proposed. Although certain former work has

been done on energy-centric processor scheduling and it has been claimed that

proportional power sharing is achievable, it is based on the assumption of general

purpose workload with no information on the time constraints and neither formal

description nor concrete implementation method of the algorithm is provided.

Develop energy-centric processor scheduling algorithms need to first consider the

general scheduling requirements in GPOSs. As a large number of processor

scheduling algorithms have been developed for GPOS scheduling, it is natural to add

energy-awareness to the existing GPOS scheduling algorithms and extend them to the

energy-centric scheduling domain to form energy-centric processor scheduling

algorithms. Basically, a GPOS processor scheduler should provide differential quality

of service (QoS) to the applications while avoid any application being starved for

resource accessing; in addition, the scheduler should be practical in implementation as

well as low overhead in computing and scheduling. Priority scheduling based on static

RELATED WORK

59

parameters like the user preferences and application importance is a natural way to

provide differential QoS to applications, but there are two problems: first, it does not

provide fairness in resource sharing, low-priority applications may experience

resource starvation if high-priority tasks are never or rarely blocked for execution;

second, when there are multiple real-time applications that are simultaneously

executed with high priorities (in comparison with the low priority of regular and

interactive applications), if the priority assignment does not take into account

application properties such as the cycle duration and approaching deadlines, the

scheduler may fail to achieve strict time-constraint compliance for all real-time

applications. Although approaches like priority aging and priority demoting are

available for avoiding resource starvation on low-priority applications, the

implementation complexity is greatly increased and more risks are brought to the

time-constrain compliance of real-time applications. To ensure strict time-constraint

compliance and avoid resource starvation in GPOSs, real-time scheduling algorithms,

such as rate-monotonic (RM) and earliest-deadline-first (EDF), are commonly

combined with admission control and resource reservation mechanisms to support

real-time and multimedia scheduling in GPOSs. While the resource reservation allows

reserving certain amount of processor time to each real-time application, the

admission control can set the maximum share of resource that is reservable for

real-time applications, thus leaving certain amount of unreserved computational time

to other regular and interactive applications. However, the scheduler based on

resource reservation is non-working-conserving in a way that any over-reserved and

unused resource will neither be available for reservation by other real-time

applications nor for sharing with regular applications. Make it worse, to protect the

already-reserved resource, the admission control may deny a later coming but more

important application while the system is working in a lightly loaded state.

Fair queueing-based proportional share scheduling (PSS) can achieve a

proportional sharing of the common resource upon non-uniform service quanta in

accordance with the pre-defined weight of each application. Because each application

can be guaranteed certain share of resource that is specified by the user or determined

RELATED WORK

60

by the application workload, fair queuing-based PSS is able to provide a differential

yet fair sharing of the schedulable resource. In addition, the time-constraint

compliance of real-time applications can be ensured under PSS as long as an adequate

resource share is allocated to each real-time application, and real-time friendly

mechanisms can be further combined into the fair queuing-based PSS to improve its

support on real-time and multimedia scheduling. Besides, different from the resource

reservation in RM and EDF scheduling, PSS is work-conserving in the sense that the

over-allocated resource share can be reallocated to other regular applications.

Considering all these properties, the fair queuing-based proportional share scheduling

is regarded as a proper reference candidate to be extended to the energy domain for

the development of energy-centric processor scheduling algorithms.

Fair queuing scheduling algorithms are implemented to approximate the ideal

Generalized Processor Sharing (GPS) model to achieve a proportional and fair sharing

of the common resource. The GPS model has been applied in both the network and

CPU scheduling domains, and based on that, fair queuing algorithms have been

developed to achieve a proportional sharing of the network bandwidth or CPU

bandwidth among the different schedulable entities. Similar to the network bandwidth

and CPU bandwidth, energy is a limited resource that is commonly shared by

different tasks with various energy requirements. Equivalence can be built between

the (network or CPU) bandwidth allocation and energy allocation. In packet-based

network scheduling, the service received by each session is data measured in bits,

each session is allocated a share of the network bandwidth that is defined as its rate of

data transmission and measured in bits per seconds (bps); in time-quantum-based

CPU scheduling, the service received by each task is time measured in CPU clock

cycles, each task is allocated a share of the CPU bandwidth that is defined as the rate

of its execution on CPU and measured in cycles per second or in Hz; similarly, we can

develop fair queuing algorithms in the energy domain by considering the energy

(measured in Joules) as the service, then each task will be allocated a share of the

system power that is defined as its rate of energy consumption and measured in Watt.

Therefore, the GPS model can also be applied to model the energy sharing among

RELATED WORK

61

different tasks, and based on that, energy-based fair queuing (EFQ) algorithms can be

developed to achieve a proportional and fair sharing of the system power. The

extension of the fair queuing and the GPS model for supporting energy-centric

processor scheduling will be presented in the next chapter.

ENERGY-CENTRIC PROCESSOR SCHEDULING

62

Chapter 3

Energy-Centric Processor Scheduling

Fair queuing-based proportional share scheduling is considered as a proper reference

algorithm for the development of energy-centric processor scheduling. In this chapter,

the fair queuing algorithm and the ideal Generalized Processor Sharing (GPS) model

are implemented in the energy sharing domain, and the energy-based fair queuing

(EFQ) algorithm is proposed for achieving proportional power sharing and

time-constraint compliance in energy-centric processor scheduling. To simplify the

work and focus on the processor scheduling, this chapter starts with a set of

assumptions and conditions on the energy accounting, the energy allocation, and the

schedulable entities. Then, in reference to the Generalized Processor Sharing (GPS)

model and the traditional fair queuing scheduling models of network and CPU sharing,

the energy-centric scheduling model is proposed as the basis of algorithm design for

energy-centric processor scheduling. After that, an insight of the power share

management under the GPS-based energy-centric scheduling model is provided, and

specific mechanisms are proposed for the protection and reallocation of the power

shares of time-sensitive tasks. Finally, energy-based fair queuing (EFQ) algorithms

are designed for energy-centric processor scheduling to achieve the proportional

power sharing and the time-constraint compliance.

3.1 Assumptions and Conditions

The CPU scheduler is a core component in the operating system that can interact with

a variety of different system components. Therefore, before the presentation of the

scheduling algorithm design, a series of conditions and assumptions should be built

on the scheduling surroundings. This section provides a statement of the conditions

and assumptions that our scheduling proposal is based on.

ENERGY-CENTRIC PROCESSOR SCHEDULING

63

In a typical energy-centric system, the proper functioning of an energy-centric

CPU scheduler relies on the cooperation and interaction with a number of hardware

and software components. Their relationships are abstracted in Figure 3.1.

As can be seen in Figure 3.1, the energy-centric CPU scheduler interacts with the

energy consumptions not only on the CPU but also on the other hardware components;

it relies on the cooperation with the energy allocation module and especially the

energy accounting module to achieve the above interactions.

Figure 3. 1: Energy-centric CPU Scheduling Surroundings

In a modern mobile system that is running multiple applications, the cooperation

and interactions between the different components can be considerably complex. For

instance, each application can create multiple threads in the user space, and in the

kernel space, there will be one task entity structure maintained for each user-space

thread and thus the applications are scheduled in the unit of thread; however, to

achieve a proportional share of energy and power between different applications, the

battery energy should be proportionally allocated to each application instead of thread,

Energy-Centric

CPU Scheduler

Task

Entities

Waiting

Queue

Energy

Allocation

Energy

Accounting

CPU
Other HW

Components

Threads of

Apps

User Space

Kernel Space

ENERGY-CENTRIC PROCESSOR SCHEDULING

64

while the energy consumptions caused by thread activities on various hardware

devices should be correctly mapped to different applications. The above situation will

be further complicated if inter-thread and inter-process communications are

considered between different threads and applications.

To simplify the energy-centric scheduling surroundings and focus on the CPU

scheduler design, a series of conditions and assumptions have been built up for the

applications, the energy allocation module, and the energy accounting module. They

will be stated in the following sub-sections.

3.1.1 Applications, threads, and tasks

For simplicity, the first assumption made in this work is that each application is a

single threaded process that is independent to other applications. That is to say each

application has only one thread in the user space and is correlated to a unique task

entity structure in the kernel space. Therefore, the terms application, process, thread,

and task mean the same thing in this dissertation, and they are used interactively in

different parts of the dissertation. With this assumption, the energy allocation, energy

accounting, and energy scheduling are greatly simplified because they can all be

considered based on the task entity. Note that, in the future, our energy-centric CPU

scheduling algorithm can be enhanced to schedule multithreaded applications by

organizing tasks in groups and applying group scheduling strategies; also, the

scheduling algorithm can be extended to multi-core processors by applying additional

load balancing policies. However, in this dissertation work, we only consider the

individual task as the scheduling entity and focus on the development and verification

of the very fundamental energy-centric scheduling algorithms for single-core

processor.

Even single threaded applications can have a variety of different energy

requesting patterns, so the second assumption made in this dissertation is related to

the characterization of the task working patterns. In general, the tasks are separated

into three categories: batch tasks, interactive tasks and real-time (both soft and hard)

tasks. It is assumed that batch tasks can continuously consume energy and never go

ENERGY-CENTRIC PROCESSOR SCHEDULING

65

idle before their termination, while interactive and real-time tasks are periodic ones

that can go idle between the periods. However, the period of real-time tasks is

assumed to be a fixed value all the time, while the period of interactive tasks are

considered as variable to reflect the aperiodic of user requests. Besides, different

metrics are applied to interactive and real-time tasks to measure the performance.

While the performance of interactive tasks is measured by the response time of the

energy request in each period, the performance of real-time tasks are measured by the

percentage of deadline misses in all periods. In total, real-time tasks and interactive

tasks are collectively called periodic time-sensitive tasks in this work.

3.1.2 Energy accounting

Energy accounting is fundamental to an energy-centric power management scheme

because it enables a tracking of the amount of energy consumed by each task, only by

referring to the energy consumption information of each task can the CPU scheduler

make energy-centric scheduling decisions. However, achieve accurate energy

accounting is a complex and challenging work, as shown in Figure 3.1, it deals with

both the hardware devices in the bottom level and the tasks in the high-level.

Therefore, to focus on the high-level scheduling algorithm, it is assumed in this

dissertation work that energy consumptions on the different hardware devices can be

correctly mapped to the specific tasks.

With the above assumption, an energy model that abstracts the power

consumptions on low-level hardware devices is necessary for the design of high-level

energy-centric CPU scheduling algorithms. While the CPU scheduler is unwaring of

the task operational time on other devices, it does have the information of each task’s

CPU occupation time. To build the abstracted energy-centric scheduling model, the

system-wide power consumption caused by one task should be in certain way

correlated to the CPU occupation time of the task. However, as we observe the

system-wide power changing when executing a task, it can be found that the system

power can vary greatly over the time and the task can still consume energy even if it

is not occupying the CPU any more.

ENERGY-CENTRIC PROCESSOR SCHEDULING

66

Figure 3.2 demonstrates the current change of an embedded system when a

program is executed alone on the system. The program firstly executes CPU-intensive

computations and later writes the computation results into the SD card of the system.

The voltage is a stable value during the execution so it is not specifically given. As

can be observed, the system power increases significantly when there are extra I/O

operations caused by the program; besides, even after the program has quitted the

CPU, extra power consumptions are still caused by the I/O operations to the SD card.

While the fluctuating system power can be approximately modelled by certain

random functions, the asynchrony between the system power and the CPU activity

can significantly complicate the energy-centric CPU scheduling model. Therefore, to

simplify the model, another assumption in made assuming that the system power is

synchronized to the CPU activities, and when computing the system power of a task,

the asynchronous energy consumptions are accounted onto the CPU occupation time.

Under this assumption, we have developed an energy-centric scheduling model that

will be presented in detail in the next section (section 3.2).

Figure 3. 2: Example of System-wide Power in Reference to CPU Execution Time

Note that the above assumption on energy accounting will not preclude the author

from properly designing and assessing the behavior of the energy-centric scheduling

Base CPU CPU + SD I/O SD

I/O
Base

Time(H:M:S)

C
u

rren
t(A

)

ENERGY-CENTRIC PROCESSOR SCHEDULING

67

algorithm from the high level, because the scheduler just does not care about

low-level details such as in which hardware device the energy is spent. What really

matters to the scheduler is how much energy is consumed by which task at a specific

time. In the future when practical and accurate energy accounting mechanisms are

available and easily applicable for modern OS-based mobile systems, these

mechanisms can be combined with the high-level energy-centric scheduling

algorithms to achieve a complete system cycle of energy-centric power management

over a variety of different hardware devices.

3.1.3 Energy allocation

Although the energy allocation module is not necessarily needed for the normal

functioning of the energy-centric CPU scheduler, it plays a pivotal role in

guaranteeing a user-specified battery lifetime to the user-preferred applications. In

other words, a proper energy allocation over the time and among the applications is

the prerequisite of a meaningful energy-centric scheduling and PM scheme. Therefore,

in this dissertation work, the energy-centric CPU scheduling algorithm is researched

based on the condition and assumption that, the idea of epoch [4] is adopted to restrict

the battery discharge rate and guarantee a target lifetime, and in the meantime, the

idea of reserve [19] is adopted in each epoch to reserve or limit a certain amount of

battery energy for an application.

3.1.4 Whole view

Under the above conditions and assumptions, a mobile operating system is

considered as a set of tasks {𝑇1, … , 𝑇𝑛 } (real-time, interactive, and batch) competing

for the total amount of energy 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 that is available in the battery. The system

has a target lifetime 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, which is divided into 𝑚 periods of time, termed epochs,

with length 𝑇𝑒𝑝𝑜𝑐ℎ
𝑖 . In each epoch, the energy available for consumption, known as

𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 , is a limited value. Then, 𝐸𝑒𝑝𝑜𝑐ℎ

𝑖 is further allocated to different tasks in two

ENERGY-CENTRIC PROCESSOR SCHEDULING

68

ways: for a user-preferred task, a certain amount of energy is reserved to ensure its

normal execution during the whole epoch; and for a less-favored task, a maximum

limit of energy consumption is imposed in each epoch. The combinational use of the

epoch and reserve mechanisms in the energy allocation provides a flexible yet strict

guarantee of battery lifetime to the user-preferred tasks. This builds the prerequisite of

user experience optimization for battery-limited mobile systems.

For the sake of simplicity and without loss of generality, in this thesis work, the

research on the optimization of the user experience is focused on one epoch out of the

whole target lifetime. Within one epoch, the optimization of the user experience relies

on the fulfillment of two conditions. First, all user-preferred applications should be

guaranteed to run with the user-acceptable performance during the whole epoch; and

second, the remaining energy at the end of one epoch should be minimized to ensure

the maximization of the epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 and so that the total system

performance.

To fulfill the first condition, the scheduler has to be well designed to achieve

proportional power sharing among tasks and in the meanwhile provide a strong

support to the time-sensitive tasks; the scheduler design will be presented in detail in

the following sections.

And to fulfill the second condition, the energy allocation among tasks should be

properly and dynamically set in each epoch to achieve that the epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖

is exhausted right at the end of the expected epoch time. If the energy quota of

user-preferred tasks is conservatively reserved while the energy quota of those

less-favored tasks is overly restricted, the 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 will not be exhausted during the

expected epoch time, which indicates a loss of the opportunity to improve the whole

system performance during the epoch. In contrast, if the energy restriction is too loose,

the 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 may be drained before the expected epoch time by those less-favored but

energy-greedy tasks.

ENERGY-CENTRIC PROCESSOR SCHEDULING

69

Since the work of this dissertation is focused on the energy-centric scheduler

design, the mechanisms of optimizing the energy usage in each epoch are not

specifically investigated here; it is simply assumed that a proper energy allocation has

been implemented for the tasks in each epoch.

3.2 Energy-centric scheduling model

In this section, the Generalized Processor Sharing (GPS) [57] model is extended to the

energy sharing domain, and based on that, the energy-centric scheduling model is

introduced as the basis of the energy-based fair queuing algorithm design for

energy-centric processor scheduling.

Based on the assumptions and conditions in section 3.1, the energy-centric

scheduling problem can be formulated considering the set of tasks {𝑇1, … , 𝑇𝑛 }

(real-time, interactive, and batch) competing for a limited amount of energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖

during the 𝑖𝑡ℎ epoch. Each task 𝑇𝑖 is assigned a weight 𝑤𝑖 that determines its

minimally guaranteed share of the system power. Then, in the ideal Generalized

Processor Sharing (GPS) model, which assumes energy as an infinitely divisible

resource that can be simultaneously served to multiple tasks, the power of task 𝑇𝑖 at

time 𝑡, 𝑃𝑖(𝑡), is at least:

𝑃𝑖(𝑡) = 𝑃(𝑡) ∙
𝑤𝑖

∑ 𝑤𝑗∀𝑗𝜖𝐴(𝑡)
 (3.1)

where 𝑃(𝑡) denotes the system power and 𝐴(𝑡) denotes the set of active tasks at

time 𝑡.

The ideal GPS model considers energy sharing as a continuous fluid model with

perfect fairness. In a real mobile system, however, it is required to consider a discrete

energy distribution both over time and across the different hardware components.

Firstly, multiple tasks cannot simultaneously gain access to a single component;

therefore, energy is served to tasks along with the assigned discrete time quanta.

Secondly, one task can consume energy by accessing different components.

ENERGY-CENTRIC PROCESSOR SCHEDULING

70

While it is a complex work to exactly model the energy sharing and the system

power in a real system, by assuming that the system power 𝑃(𝑡) is synchronized to

the CPU activities (refer to section 3.1.2), the energy consumption of a real system

can be abstracted to a model in which the system power is a piecewise constant

function of the CPU time. Their relationship is illustrated in Figure 3.3. During

different intervals, the system power value is dependent on the specific hardware

activities caused by task execution. Note again that, the above assumption will not

preclude the author from properly designing and assessing the energy-centric CPU

scheduling algorithm, because it is not the responsibility of the high-level scheduler to

account for where the task has spent its energy.

Figure 3. 3: Illustration of the relationship between the system power and CPU time

Therefore, the energy sharing in a real system can be modelled considering that

energy is allocated to the active tasks along with discrete CPU time quanta. For each

CPU time quantum allocated to a task, there is a corresponding amount of energy

consumption that is synchronously spent on the task. A task is selected to receive

energy at the beginning of a time quantum; it may run on the CPU for the entire time

quantum or release it before the end of the time quantum. This is realized by dividing

the service time of task 𝑇𝑖 into a number of time quanta 𝑞𝑖
𝑘 with maximum length

𝑄, and defining the energy consumption of task 𝑇𝑖 during the time quantum 𝑞𝑖
𝑘 as an

ENERGY-CENTRIC PROCESSOR SCHEDULING

71

energy packet 𝑒𝑖
𝑘. Specifically, a CPU time quantum with the maximum length of 𝑄

is called the standard time quantum, and the energy consumption during a standard

time quantum is called the standard energy packet. Both time quantum 𝑞𝑖
𝑘 and

energy packet 𝑒𝑖
𝑘 are regarded as service in this context, and thus, they are

collectively called as service quantum, marked as 𝑠𝑞𝑖
𝑘.

While one task can be allocated two service quanta with the same length of CPU

time quanta, the size of the two energy packets may vary because of the different

hardware activities caused by specific task functions. Due to the quantization of the

system service, it is impossible for a task to always consume exactly the same amount

of energy as in the ideal GPS model. The difference between the energy a task

consumes in the GPS model and the energy it actually consumes in the real system is

defined as the energy allocation error.

For clarity, in this dissertation work, the basic unit of CPU time quantum is

uniformly defined as one CPU time unit (Tu), and the basic unit for measuring energy

consumption is defined as one energy unit (Eu), as such, the basic unit for measuring

power is Eu/Tu, defined as one power unit (Pu). Now, recall the general comparative

discussion on applying the fair queuing scheduling in the domain of network, CPU

and, energy (in section 2.3), we can reach to a detailed comparison of them as shown

in Table 3.1.

Table 3. 1: Comparison of the Proportional Share Scheduling Models for Network, CPU and

Energy

 Network CPU Energy

Scheduling

resource
Data in bits CPU in cycles Energy in Eus

Allocation

share
Bandwidth in bps Bandwidth in Hz Power in Pus

Scheduling

entities
Sessions Tasks Tasks

Schedulable

units
Packet in bits Time quantum in cycles

Time quantum in Tus

&Energy packet in Eus

ENERGY-CENTRIC PROCESSOR SCHEDULING

72

In comparison to the proportional share scheduling model in the network and

CPU domain, applying proportional share scheduling (PSS) algorithms in the energy

domain is a more complex and challenging work considering the uncertain

relationship between the CPU time quantum and the energy packet. Based on the

energy-centric scheduling model built in this section, the design of energy-centric

proportional power share scheduling algorithms will be presented in section 3.4.

3.3 Power share management

This section provides an insight into the power share management under the

GPS-based energy-centric scheduling model before the energy-centric scheduling

algorithm is presented in the next section (section 3.4).

3.3.1 Maximum long-term and worst-case power shares

3.3.1.1 Definitions

Batch tasks can continuously receive energy until their total energy demands are all

met, and then, they finish the work and become completely passive. Therefore,

increase the weight of a batch task will always increase its power share. However, this

is not true for periodic time-sensitive tasks. Once a time-sensitive task receives its

demanded energy in one period, it stops receiving energy and becomes passive until

next period begins. Thus, different from batch tasks, increase the weight of a periodic

time-sensitive task may not always increase its power share; there will be bounds in

the power share allocation. Generally, in periodic time-sensitive tasks, both the

number of service quanta per period and the size of each energy packet are not

constant, leading to a variable energy load in each period. In this work, the maximum

long-term power share and the worst-case power share are defined to describe the

power allocation bounds of the periodic time-sensitive tasks with variable energy

loads over the periods.

The maximum long-term power share is defined as the average power share of

the system power that guarantees meeting the total energy demands of a periodic task

ENERGY-CENTRIC PROCESSOR SCHEDULING

73

in a long-term static interval. Note that the term “long-term” in this work is a

statistical concept with respect to the task period. The average power of one task

during a long-term interval is called the long-term average power, or simply long-term

power, while the average power during a task period is called the instantaneous

average power, or simply instantaneous power. A long-term static interval is a certain

number of task periods during which the set of tasks and the average power of each

task are determined. The maximum long-term power share sets the upper bound of the

long-term power share that can be allocated to a periodic time-sensitive task. Increase

the weight of a periodic task can only increase its long-term power share up to the

value of the maximum long-term power share. During the idle time of a periodic task,

any over-assigned instantaneous power share will be re-allocated to the other active

tasks that are able to receive a higher long-term power share; this point will be

expanded in section 3.3.3. The value of the maximum long-term power share depends

on many parameters, such as the long-term power of each task, the workloads of

periodic tasks, and the weights of batch tasks. At the later part of this section, one

example will be provided to demonstrate the computation of the maximum long-term

power share.

The maximum long-term power share guarantees the serving of all energy that is

demanded by a periodic time-sensitive task in a long-term interval. Therefore,

assigning one time-sensitive task a weight that can guarantee a maximum long-term

power share is the prerequisite of meeting the majority of the time constraints. In

contrast, if any time-sensitive task is allocated a power share that is lower than its

maximum long-term power share, it is likely to miss the most of its time constraints if

the energy demand is not degraded. Since it makes little sense to keep executing a

task that misses the most of its time constraints, periodic time-sensitive tasks,

especially real-time tasks, should be assigned a weight to guarantee an instantaneous

power share that at least equals to the maximum long-term power share. How a

weight can be determined to guarantee a specific and constant power share to

time-sensitive tasks will be expanded in the next section (section 3.3.2).

ENERGY-CENTRIC PROCESSOR SCHEDULING

74

The worst-case power share is defined as the lowest instantaneous power share

that is required to guarantee the meeting of the maximum energy demand among all

periods of a time-sensitive task. For a periodic time-sensitive task, the maximum

energy demand is also known as the worst-case energy load, it appears in the period

during which the task has the worst-case execution time (WCET) and the maximum

average size of energy packets at the same time. Therefore, the worst-case power

share sets the lower bound of the instantaneous power share that is required by the

periodic time-sensitive tasks to guarantee the meeting of the energy demand in all

periods. By averaging the worst-case energy load with the task period length, we can

obtain an average power that is called the worst-case instantaneous power. The value

of the worst-case power share depends not only on the worst-case instantaneous

power of the concerned task, but also on the power of other tasks. Theoretically, the

worst-case power share is computed when the concerned task has the worst-case

instantaneous power and all other tasks have the lowest instantaneous power.

However, in real systems, the probability of having the above combinational situation

is very low. Therefore, a practical method is employed to compute the worst-case

power share considering the looser situation in which the concerned task has the

worst-case instantaneous power and all other tasks have the long-term average power.

3.3.1.2 Example demonstration

To demonstrate the computation of the maximum long-term power share and the

worst-case power share, table 3.2 shows an example of the power allocation based on

4 tasks. For simplicity, the length of all service time quanta is uniformly set as 1 Tu.

R1 and R2 are periodic time-sensitive tasks with fixed length of period, while B1 and

B2 are batch tasks with continuous energy demand. R1 has a period of 10 Tus; the

service time in each period varies from 2 Tus to 6 Tus and averagely is 4 Tus, and the

energy packet size varies from 6 Eus to 10 Eus with the average size as 8 Eus. R2 has

a period of 15 Tus; the service time in each period varies from 2 Tus to 4 Tus and

averagely is 3 Tus, and the energy packet size varies from 12 Eus to 18 Eus with the

ENERGY-CENTRIC PROCESSOR SCHEDULING

75

average size as 15 Eus. The energy packets of batch tasks are also with variable sizes.

Specifically, the energy packet size of B1 varies from 4 Eus to 8 Eus, with the average

size as 6 Eus; the energy packet size of B2 varies from 10 Eus to 14 Eus, with the

average size as 12 Eus. To compute the maximum long-term power share and

worst-case power share of R1 and R2, the average size of the energy packets

requested by all the batch tasks should be computed in advance. In this example,

based on the weight ratio of 1:2 of B1 and B2, the average energy packet size of the

two batch tasks is (6 × 1 + 12 × 2)/3 = 10 𝐸𝑢. In a real dynamic system where the

weights of batch tasks are variable over time or not known in advance, the lower

energy packet size can be directly referred to compute the maximum long-term and

worst-case power shares; in this case, the obtained power shares are conservative ones

with a larger value than the actual ones.

Table 3. 2: Example of Computing the Maximum Long-term and Worst-case Power Shares

Task R1 R2 B1 B2

Period (Tus) 10 15

N/A Number of service quantum / period 2-6 2-4

Average number of service quantum / period 4 3

Size of energy packets (Eus) 6-10 12-18 4-8 10-14

Average size of energy packets (Eus) 8 15

6 12

10

(weight ratio = 1:2)

Maximum long-term power (Pus) 3.2 3 lim (x → 10)

Maximum long-term power share 0.314 0.294 lim (x → 1)

Worst-case instantaneous power (Pus) 6 4.8
N/A

Worst-case power share 0.545 0.424

First, we compute the maximum long-term power share. In the long-term, the

average CPU occupation rate of R1 is at most 4/10 = 0.4, even if R1 is assigned an

infinitely high weight to allow it consuming energy in an infinitely high instantaneous

power; therefore, the maximum long-term power of R1 is 0.4 × 8 = 3.2 𝑃𝑢𝑠 .

ENERGY-CENTRIC PROCESSOR SCHEDULING

76

Similarly, the average CPU occupation rate of R2 is at most 3/15 = 0.2 in the

long-term, and the maximum long-term power of R2 over the periods is 0.2 × 15 =

3 𝑃𝑢𝑠. The two batch tasks can achieve a maximum long-term power close to 10 Pus

if their weights are infinitely higher than those of R1 and R2, correspondingly, the

maximum long-term power share of the two batch tasks can be close to 1. However,

to compute the maximum long-term power share and the worst-case power share of

R1 and R2, both R1 and R2 are assumed to have a weight that allows them taking the

maximum long-term power. In this case, the remaining CPU occupation rate for the

two batch tasks is 1 − 0.4 − 0.2 = 0.4, and the long-term power of the two batch

tasks is 0.4 × 10 = 4 𝑃𝑢𝑠 . Finally, based on the maximum long-term power of

periodic real-time tasks and the long-term power of the two batch tasks, the maximum

long-term power share is computed. For R1, the maximum long-term power share is

3.2/(3.2 + 3 + 4) = 0.314; and for R2, the maximum long-term power share is

3/(3.2 + 3 + 4) = 0.294.

Next, we compute the worst-case power share. Because R1 has a worst-case

execution time of 6 Tus and a maximum energy packet size of 10 Eus, the maximum

amount of energy that can be consumed by R1 in one period is 60 Eus, and the

worst-case instantaneous power of R1 in one period is 6 Pus. When R1 has the

worst-case CPU occupation rate of 6/10 = 0.6 , the maximum average CPU

occupation rate of R2 is 3/15 = 0.2 and the maximum long-term power of R2 is 3

Pus; therefore, the remaining CPU occupation rate for the two batch tasks is 0.2, and

the long-term power for the two batch tasks is 0.2 × 10 = 2 𝑃𝑢𝑠. Finally, based on

the worst-case instantaneous power of R1, and the long-term power of the rest tasks,

the worst-case power share of R1 is 6/(6 + 3 + 2) = 0.545 . Similarly, the

worst-case power share of R2 can be computed based on the worst-case instantaneous

power of R2 and the long-term power of other tasks, the computation process is not

repeated here, but the result can be found in Table 3.2.

As can be seen from the above example, the maximum long-term power share

and the worst-case power share can vary with the system environment. These two

parameters only keep constant in a long-term static interval where the set of active

ENERGY-CENTRIC PROCESSOR SCHEDULING

77

tasks, their weights and average power do not change. In a real dynamic system, tasks

may frequently join or leave the system, change their weights or significantly vary

their energy loads. Therefore, both the maximum long-term power share and the

worst-case power share are variable in different long-term static intervals.

3.3.2 Power share protection

3.3.2.1 Mechanism

As in the traditional fair queuing scheduling of network and CPU, the

weight-assignment problem [62] also arises in the energy-centric scheduling model in

which the power share of time-sensitive tasks should be protected from the dynamic

activities of other tasks to ensure a stable real-time performance. Basically, the power

share of a time-sensitive task should be no lower than its worst-case power share if a

strict compliance of all deadlines is required; in another case, the assigned power

share can be between the maximum long-term power share and the worst-case power

share if a certain degree of response time and deadline miss ratio is acceptable.

However, according to equation (3.1), the power share 𝑃𝑖 of any task can vary with

the number and weight of the active tasks in the system. Any new task that joins the

competition with a large weight may reduce the power share of a time-sensitive task

to a level that is lower than its maximum long-term power share, leading to the miss

of the majority of its deadlines. Therefore, certain power share mechanisms should be

employed to achieve a desired level of power share for time-sensitive tasks.

In this work, the approach to achieve power share protection is a combination of

several CPU share protection proposals [62, 54, 65]. First, as in [65], each task is

assigned an initial weight �̅�𝑖 and an initial power share 𝑓�̅� that ranges from zero to

one (𝑓�̅� ∈ [0,1]). This allows supporting a mix of tasks in three categories:

 𝑓�̅� = 0 and �̅�𝑖 > 0, for batch tasks that do not require a guaranteed power

share for meeting time constraints. This type of tasks compete for the

unreserved and released power share with the non-zero initial weight �̅�𝑖.

ENERGY-CENTRIC PROCESSOR SCHEDULING

78

 𝑓�̅� > 0 and �̅�𝑖 = 0, for time-sensitive tasks that have a specific power

share requirement. This type of tasks can reserve a certain level of power

share with the non-zero initial share, but do not compete for the unreserved

and released power share.

 𝑓�̅� > 0 and �̅�𝑖 > 0, for time-sensitive tasks that have a minimum power

share requirement. In addition to the reserved power share, this type of

tasks also compete for the unreserved and released power share with its

non-zero initial weight �̅�𝑖.

The above three categories are further separated into two classes, the first category

with 𝑓�̅� = 0 and �̅�𝑖 > 0 belongs to the best-effort class (BC), while the latter two

categories with 𝑓�̅� > 0 belong to the reserved class (RC). Since the power share of

the category with 𝑓�̅� > 0 and �̅�𝑖 > 0 can also be achieved by adaptively adjusting

the initial share 𝑓�̅� in the second category, for simplicity and easy analysis, only the

category with 𝑓�̅� > 0 and �̅�𝑖 = 0 is considered in the simulation and experiments of

this work.

Second, each task is assigned an effective power share 𝑓𝑖 and an effective weight

𝑤𝑖, with the effective weight sum of all tasks fixed to one (∑ 𝑤𝑖 = 1∀𝑖∈𝐴). As the

name indicates, the power share allocation is expressed with the effective power share

and is finally based on the effective weight of each task. Let 𝐹 denotes the total

initial power share that has been reserved to the reserved class (RC) tasks, the

effective power share and the effective weight are computed as follows:

𝑓𝑖 = 𝑓�̅� + (
�̅�𝑖

∑ �̅�𝑗∀𝑗𝜖𝐴(𝑡)
) ∙ (1 − 𝐹), 𝐹 = ∑ 𝑓�̅�∀𝑗𝜖𝐴(𝑡) (3.2)

𝑤𝑖 = 𝑓𝑖 (3.3)

In a dynamic system, each time the task number changes or any task adjusts its power

share requirement (by modifying the initial share 𝑓�̅� or the initial weight �̅�𝑖),

equation (3.2) and (3.3) are employed to re-compute the effective weight.

Specifically, for a time-sensitive task with the initial weight as zero (�̅�𝑖 = 0), no

ENERGY-CENTRIC PROCESSOR SCHEDULING

79

re-computation of the effective power share is required; the effective weight can be

simply fixed to the initial power share or the desired power share by 𝑤𝑖 = 𝑓�̅�.

The above mechanism of power share protection is simple yet can support a

wider variety of energy requirements than the mechanism in [62]. Besides, in

comparison with the share protection mechanism in [65], the effective weight

recalculation is significantly simplified; consequently, this mechanism is suitable for

systems with arbitrary combination of batch tasks and time-sensitive tasks.

3.3.2.2 Example demonstration

To demonstrate the idea of the power share protection, an example is provided in

Table 3.3 regarding to the effective weight recalculation upon the join of new tasks.

Table 3. 3: Example of Recalculating the Effective Weight for Power Share Protection

a)

Tasks �̅�𝒊 �̅�𝒊 𝒘𝒊 and 𝒇𝒊

1 0.2 0 0.2

2 0.2 1 0.3

3 0 2 0.2

4 0 3 0.3

b)

Tasks �̅�𝒊 �̅�𝒊 𝒘𝒊 and 𝒇𝒊

1 0.2 0 0.2

2 0.2 1 0.25

3 0 2 0.1

4 0 3 0.15

 5 0 6 0.3

c)

Tasks �̅�𝒊 �̅�𝒊 𝒘𝒊 and 𝒇𝒊

1 0.2 0 0.2

2 0.2 1 0.225

3 0 2 0.05

4 0 3 0.075

5 0 6 0.15

 6 0.3 0 0.3

ENERGY-CENTRIC PROCESSOR SCHEDULING

80

In Table 3.3-a), there are four active tasks in the system. Task 1 and 2 are RC

tasks that require a specific guarantee of power share. Especially, task 2 can compete

for unreserved or released power share with its non-zero initial weight. Task 3 and 4

are batch tasks which do not require a guaranteed power share. Because task 1 and

task 2 reserve a total power share of 0.4, only a remaining power share of 0.6 is

allocated to task 2, task 3, and task 4 with their initial weights being 1, 2, and 3,

respectively. Then, based on the equation (3.2) and (3.3), the effective power share

and the effective weight of each task are computed as follows:

𝑤1 = 𝑓1 = 0.2 + 0 = 0.2,

𝑤2 = 𝑓2 = 0.2 +
1

6
× 0.6 = 0.3,

𝑤3 = 𝑓3 = 0 +
2

6
× 0.6 = 0.2,

𝑤4 = 𝑓4 = 0 +
3

6
× 0.6 = 0.3.

Later on, as shown in Table 3.3-b), a BC task (task 5) joins the energy competition

with the initial power share as zero and the initial weight as 6. Then, the effective

power share and the effective weight are updated as follows:

𝑤1 = 𝑓1 = 0.2 + 0 = 0.2,

𝑤2 = 𝑓2 = 0.2 +
1

12
× 0.6 = 0.25,

𝑤3 = 𝑓3 = 0 +
2

12
× 0.6 = 0.1,

𝑤4 = 𝑓4 = 0 +
3

12
× 0.6 = 0.15,

𝑤5 = 𝑓5 = 0 +
6

12
× 0.6 = 0.3.

As can be seen, task 5 can only compete for the remaining power share of 0.6; the

reserved power share of task 1 and task 2 are protected from the competition of task 5.

Finally, Table 3.3-c) shows the effective weight recalculation upon the join of a

RC task (task 6) whose initial power share is 0.3 and initial weight is 0. The effective

ENERGY-CENTRIC PROCESSOR SCHEDULING

81

power share and effective weight of each task are computed as:

𝑤1 = 𝑓1 = 0.2 + 0 = 0.2,

𝑤2 = 𝑓2 = 0.2 +
1

12
× 0.3 = 0.225,

𝑤3 = 𝑓3 = 0 +
2

12
× 0.3 = 0.05,

𝑤4 = 𝑓4 = 0 +
3

12
× 0.3 = 0.075,

𝑤5 = 𝑓5 = 0 +
6

12
× 0.3 = 0.15,

𝑤6 = 𝑓6 = 0.3 + 0 = 0.3.

In this case, a total power share of 0.7 is reserved for task 1, task 2, and task 6, and

then, only a remaining power share of 0.3 is allocated to task 2, task 3, task 4, and

task 5 in proportional to their initial weights.

3.3.3 Power share reallocation

3.3.3.1 Problem and solution

When a task finishes its work and leaves the energy competition, its power share is

released and is available for reallocation among the other active tasks in the system.

Ideally, the released power share should be fairly reallocated to the other active tasks

according to their initial weights. However, in a real system, unfair share reallocation

may occur if the temporarily released power shares of periodic time-sensitive tasks

are immediately reallocated to the other active tasks. This is because, a periodic task

releases its power share after the work of one period is completed and regains the

power share at the beginning of its next period; when there are multiple periodic

time-sensitive tasks in the system, depending on which periodic task or which set of

periodic tasks have released the power share as well as which task is selected to

access the CPU at which time, the remaining power share for effective weight

re-computation is different. To demonstrate the unfair power share reallocation that

ENERGY-CENTRIC PROCESSOR SCHEDULING

82

may occur in a real system, an example is provided in Table 3.4-a) that will be

explained later in this section.

Note that, this problem of unfair power share reallocation has not yet been

reported and dealt with in former share protection mechanisms [62, 54, 65]. In this

dissertation work, as a solution to the problem, the total reserved power share 𝐹 of

RC periodic time-sensitive tasks is fixed when any RC task temporarily leaves the

system after finishing the work of one period; however, the total reserved power share

𝐹 will be updated if any RC task has finishes all periods of work and completely left

the system. With the above solution introduced, the method of computing the effective

weight and the effective power share changes slightly. This is because the sum of all

effective power shares is always one (∑ 𝑓𝑖 = 1∀𝑖∈𝐴) while the sum of all effective

weights is now not necessary to be one (∑ 𝑤𝑖 ≤ 1∀𝑖∈𝐴). Let 𝐹 denotes the total initial

power share of the RC tasks that have not completely finished the work, the effective

weight is directly computed as follows:

𝑤𝑖 = 𝑓�̅� + (
�̅�𝑖

∑ �̅�𝑗∀𝑗𝜖𝐴(𝑡)
) ∙ (1 − 𝐹), 𝐹 = ∑ 𝑓�̅�∀𝑗𝜖𝑈(𝑡) (3.4)

where 𝑈(𝑡) denotes the tasks that have not completely finished all the work, it also

contains periodic tasks that have temporarily left the system. And, since the sum of all

effective weights is not always one any more (∑ 𝑤𝑖 ≤ 1∀𝑖∈𝐴), the effective power

share allocated to each task is now computed as:

𝑓𝑖 =
𝑤𝑖

∑ 𝑤𝑗∀𝑗𝜖𝐴(𝑡)
 (3.5)

According to equation (3.4) and (3.5), since the remaining power share for allocation

is constant upon the temporary releasing of power shares by RC tasks, it can support a

fair and proportional energy allocation among BC tasks. Although the solution favors

the remaining active RC tasks with a larger allocation of the instantaneous power

share when the effective weight sum is less than one (∑ 𝑤𝑖 < 1∀𝑖∈𝐴), the maximum

long-term power share that can be served to a RC periodic time-sensitive task is the

ENERGY-CENTRIC PROCESSOR SCHEDULING

83

same; the over-allocated instantaneous power share will be finally re-allocated to the

BC tasks after a RC task finishes its work in each period.

3.3.3.2 Example demonstration

To demonstrate the unfair power share reallocation and our solution to the problem,

Table 3.4 provides an example of the power share reallocation upon the temporary

releasing of the reserved power shares.

Table 3. 4: Example of Power Share Reallocation upon the Temporary Releasing of RC

Power Shares

a)

Tasks �̅�𝒊 �̅�𝒊 𝒘𝒊 𝒇𝒊

1 0.1 0 0.1 0.1

2 0.2 0 0.2 0.2

3 0.4 0 0.4 0.4

4 0 1 0.1 0.1

5 0 2 0.2 0.2

b)

Tasks �̅�𝒊 �̅�𝒊 𝒘𝒊 𝒇𝒊

1 0.1 0 0.1 0.167

2 0.2 0 0.2 0.333

4 0 1 0.1 0.167

5 0 2 0.2 0.333

c)

Tasks �̅�𝒊 �̅�𝒊 𝒘𝒊 𝒇𝒊

1 0.1 0 0.1 0.25

4 0 1 0.1 0.25

5 0 2 0.2 0.5

In Table 3.4-a), task 1, task 2 and task 3 are RC periodic time-sensitive tasks with

non-zero initial power shares, while tasks 4 and task 5 are BC batch tasks with

non-zero initial weights. The RC tasks reserve a total power share of 0.7, and the

remaining power share of 0.3 is allocated to task 4 and task 5 in proportional to their

initial weights. Therefore, when the five tasks are all active in the system, the

ENERGY-CENTRIC PROCESSOR SCHEDULING

84

effective weights of task 4 and 5 are 0.1 and 0.2, respectively. Now, assume that at

certain moment, task 1 finishes its work of one period, temporarily leaves the system,

and releases its power share of 0.1. Then, if we immediately update the total reserved

power share to 0.6 and task 4 is the next task to be executed, the effective weight of

task 4 is
(1−0.6)×1

3
= 0.13. At a later moment, task 5 is executed after both task 1 and

task 2 have left the system and released a total power share of 0.3. Then, after the total

reserved power share is updated to 0.4, the effective weight of task 5 is
(1−0.4)×2

3
=

0.4. As can be seen, since the effective weight ratio of task 4 and task 5 is no longer in

accordance with their initial weight ratio of 1:2, they will fail to receive the energy

fairly and proportionally in the long-term.

Table 3.4-b) and 3.4-c) show the power share reallocation results based on our

solution that is formulated in equation (3.4) and (3.5). In table 3.4-b), after task 3 has

temporarily left the system, the total reserved power share 𝐹 is fixed as 0.7, and

according to equation (3.4), the effective weights of the rest active tasks are the same

as the original ones in Table 3.4-a). However, since the effective weight sum of all

active tasks is no longer one, the effective power shares of the active tasks change

proportionally to their effective weights, and the values are computed based on

equation (3.5). As can be seen in Table 3.4-b), task 4 and task 5 receive power shares

that are proportional to their initial weights, and an instantaneous power share that is

larger than the reserved one is respectively allocated to task 1 and task 2. If the new

instantaneous power share is larger than the maximum long-term power share, task 1

and task 2 will finish their work before the end of each period and release the

overly-allocated instantaneous power share to task 4 and task 5 that are continuously

active in the system. To see how that works, we move to Table 3.4-c), in which task 2

has finished its work of one period and temporarily left the system, leaving only task

1, task 4, and task 5 still active in energy competition. We keep fixing the total

reserved power share 𝐹 as 0.7, and compute the effective weights and effective

power shares of all active tasks based on equation (3.4) and (3.5).

ENERGY-CENTRIC PROCESSOR SCHEDULING

85

As can be observed, task 4 and task 5 keep receiving their power shares in

proportional to the initial weight ratio of 1:2. If task 1 temporarily leaves the energy

computation in a later moment, its instantaneous power share of 0.25 will also be

reallocated to task 4 and 5 in proportional to their initial weights. Actually, in the

long-term, if the maximum long-term power shares of task 1, task 2, and task 3 are

𝑃𝑚𝑎𝑥
1 , 𝑃𝑚𝑎𝑥

2 and 𝑃𝑚𝑎𝑥
3 , respectively, then, the long-term power shares of task 4 and

task 5 are
1

3
× (1 − ∑ 𝑃𝑚𝑎𝑥

𝑖3
𝑖=1) and

2

3
× (1 − ∑ 𝑃𝑚𝑎𝑥

𝑖3
𝑖=1), respectively. Therefore,

our solution avoids the unfair power share reallocation among BC batch tasks while in

the meantime favors the time-sensitive tasks with temporary higher instantaneous

power shares.

3.4 Energy-based fair queuing (EFQ)

This section presents the energy-based fair queuing (EFQ) algorithm design for

energy-centric processor scheduling. It starts with a challenge analysis of developing

EFQ algorithms based on the traditional fair queuing algorithms in network and CPU

scheduling, and then, proposes a practical and low-time-complexity EFQ algorithm

named starting-energy fair queuing (SEFQ). After that, the issue of time-constraint

compliance under general EFQ and SEFQ scheduling is analyzed and the requirement

of combining time-friendly mechanisms into EFQ scheduling is emphasized. Finally,

the borrowed starting-energy fair queueing (BSEFQ) is proposed to support real-time

and multimedia scheduling in EFQ with the combination of a real-time friendly

mechanism.

3.4.1 Challenges of developing energy-based fair queuing

Fair queuing has been proven as the proper candidate algorithm for achieving

proportional resource sharing among competing entities. To achieve a proportional

share of the energy and system power, it is natural to combine the fair queuing

algorithm with our energy-centric scheduling model so that to develop an

ENERGY-CENTRIC PROCESSOR SCHEDULING

86

energy-based fair queuing (EFQ) algorithm that schedule tasks according to the

energy consumption as well as the effective weight of each task. However, extending

the fair queuing to the energy domain is not an easy work; several issues can arise if

an existing fair queuing algorithm of network or CPU scheduling is directly applied to

energy-centric scheduling. We will discuss the challenges of energy-based fair

queuing from three aspects.

The first challenge of developing energy-based fair queuing is the

unpredictability of the energy packet size. Unlike the fair queuing network scheduling

in which the data packet size can be known upon arrival, the energy packet size of a

service quantum can only be known after the service quantum is completely served.

Making it worse, the energy packet size is hard to predict considering the fact that it

can vary with different tasks and within the same task it can also vary depending on

which piece of code is executed, especially in the case of multimedia applications.

Even if energy prediction mechanisms are available, how the prediction accuracy can

affect the performance of these algorithms is another open problem. Therefore, fair

queuing network scheduling algorithms which rely on a prior knowledge of the packet

size, such as WFQ [57], WF2Q [71], and SCFQ [59], are not applicable to

energy-centric scheduling. On the other side, time-quantum-based fair queuing CPU

scheduling algorithms like the stride scheduling [69] and EEVDF [55] do not require

the length and size of service quanta to be known in advance. However, these

algorithms can incur a lot of extra overhead, because the finishing tag has to be

recomputed to reflect the actual size of a service quantum after its completion.

The second challenge is the volatility of the system power. While the network or

CPU bandwidth in most traditional fair queuing algorithms is assumed to be constant

for allocation, energy-based fair queuing has to deal with a system power that is

variable over the time. It is because the system power is dependent on the tasks being

executed at specific times. Therefore, those fair queuing algorithms that update the

system virtual time with the assumption of a constant commonly-shared bandwidth,

such as stride scheduling [69], EEVDF [55], and SMART [40], may fail to provide

the claimed fairness and delay bound when applied to energy-centric scheduling.

ENERGY-CENTRIC PROCESSOR SCHEDULING

87

The third challenge is the time complexity of the scheduling algorithm. A

practical energy-based fair queuing algorithm should avoid the introduction of high

computing-time complexity. Therefore, traditional fair queuing algorithms that require

a simultaneous emulation of the ideal fluid-flow system are not suitable for

energy-based fair queuing scheduling.

3.4.2 Starting-energy fair queueing (SEFQ)

The above challenges have posed many restrictions on the development of

energy-based fair queuing. These restrictions can greatly narrow down the possible

methods of designing fair queuing algorithms in the energy domain in comparison to

the domains of network and CPU scheduling. With the above challenges and

restrictions in mind, we consider the starting-time fair queuing (SFQ) [64, 68] as the

proper candidate algorithm for energy-centric scheduling. Based on SFQ, an

energy-based fair queuing scheduling algorithm called starting-energy fair queuing

(SEFQ) is developed by combining the SFQ algorithm with our energy-centric

scheduling model.

The starting-energy fair queuing (SEFQ) algorithm is designed to schedule tasks

in the increasing order of the starting energy tag (or simply starting tag) 𝑆𝑖, a variable

that traces the normalized energy consumption of each task. To compute the starting

tag 𝑆𝑖, a time function named virtual energy is defined to track both the received and

missed normalized energy of each task, similar to the concept of the virtual time in

traditional fair queuing algorithms. This is realized by defining a task virtual energy

𝑉𝐸𝑖(𝑡) to track the normalized energy received by each task, and a system virtual

energy 𝑉𝐸(𝑡) to track the normalized energy consumed in the system. The system

virtual energy 𝑉𝐸(𝑡) works as a reference to update the task virtual energy 𝑉𝐸𝑖(𝑡)

whenever a new task joins the system for the first time or an old task rejoins the

system after leaving temporarily. To avoid incurring the complexity of simulating the

fluid-flow model, the system virtual energy 𝑉𝐸(𝑡) traces the lowest starting tag

among all active tasks, and therefore, is defined as being equal to the starting tag of

ENERGY-CENTRIC PROCESSOR SCHEDULING

88

the task currently in service. Then, the starting tag, 𝑆𝑖
𝑘, of the 𝑘𝑡ℎ service quantum

𝑠𝑞𝑖
𝑘, can be defined as the value of the task virtual energy 𝑉𝐸𝑖(𝑡) at the instant of

time when the service quantum 𝑠𝑞𝑖
𝑘 of task 𝑇𝑖 begins the execution. The starting

tag 𝑆𝑖
𝑘 can be computed as follows:

𝑆𝑖
𝑘 = 𝑚𝑎𝑥 {𝑉𝐸(𝐴𝑅(𝑠𝑞𝑖

𝑘)), 𝐹𝑖
𝑘−1} (3.6)

where 𝐴𝑅(𝑠𝑞𝑖
𝑘) denotes the time at which the service quantum 𝑠𝑞𝑖

𝑘 is requested, and

𝐹𝑖
𝑘−1 is the finishing tag of the previous service quantum 𝑠𝑞𝑖

𝑘−1. The finishing tag

𝐹𝑖
𝑘 is incremented as follows:

 𝐹𝑖
𝑘 = 𝑆𝑖

𝑘 +
𝑒𝑖

𝑘

𝑤𝑖,
, 𝐹𝑖

0 = 0 (3.7)

where 𝑒𝑖
𝑘 is the energy packet size of the service quantum 𝑠𝑞𝑖

𝑘.

As the SEFQ algorithm is an extension of the SFQ algorithm in the energy domain,

it inherits from SFQ the following properties that are highly valued in energy-centric

scheduling [64, 68]:

1. Low time complexity. SEFQ is computationally efficient with time complexity

of O(1) for starting tag computation and O(log N) for service quantum

selection. In SEFQ, since the system virtual energy is updated by self-referring

to the starting tags, there is no need to simultaneously run the ideal fluid-flow

model for continuously recalculating the system virtual energy, which will

lead to a computing time complexity of O(N).

2. No prior knowledge of the service quanta required. Since SEFQ makes the

scheduling decisions based on the starting energy tags, both the time-quantum

length and the energy packet size of the service quanta are not required to be

known in prior. This property is highly appreciated in multimedia task

scheduling, in which the energy loads may vary dramatically over periods and

are hard to predict.

ENERGY-CENTRIC PROCESSOR SCHEDULING

89

3. Near-optimal fairness bound under variable system power. Like SFQ, SEFQ

can achieve a fairness bound that is near optimal in comparison to WFQ,

regardless of the variation of the system power. The near-optimal fairness

bound of SEFQ ensures a fair and proportional sharing of the system power

among the candidate tasks.

As can be seen, SEFQ is able to achieve near-optimal fairness bound under

variable system power with low computing time and implementation complexity.

However, as in the SFQ algorithm, the energy allocation error bound under SEFQ can

increase with the growth of the number of active tasks due to the failure to meet the

minimum slope property of system virtual energy updating. The increasing energy

allocation error will cause the growth of the maximum dispatch latency (or delay

bound) as well, making the time-constraint compliance of latency-sensitive tasks a

difficult work under SEFQ. A detailed analysis of the time-constraint compliance

problem under the energy-based fair queuing is provided in the next section.

3.4.3 Time-constraint compliance under EFQ

Under the energy-based fair queuing (EFQ) scheduling, meeting the time constraints

of periodic time-sensitive tasks is equivalent to meeting the energy demand in each of

the periods. In many periodic time-sensitive tasks, because the energy load varies in

different periods, the minimum instantaneous power share that is required for meeting

the energy demand in each period is also variable. In traditional fair queuing CPU

scheduling algorithms, it has been proposed to dynamically adapt the share to deal

with the variable workload. Unfortunately, there are several practical issues to apply

adaptive power shares in the energy-based fair queuing. First, adaptive power share

relies on a knowledge of the historical energy demands of previous periods to

predictively compute the proper power share for the coming periods, therefore, the

time-constraint compliance is sensitive to the energy load prediction accuracy. Since

energy load prediction is a much more difficult work than CPU workload prediction,

ENERGY-CENTRIC PROCESSOR SCHEDULING

90

the prediction overhead may be very large and the prediction accuracy is hard to

guarantee. Second, unlike fair queuing CPU scheduling under which the proper

bandwidth share can be computed simply based on the predicted CPU workload, the

proper power share under EFQ is more complex to compute because it depends not

only on the energy load of the concerned task but also on the energy loads and

average powers of other active tasks in the system. The issues from the above two

aspects have prevented the applyment of adaptive power shares in the energy-based

fair queuing.

One obvious method to guarantee time-constraint compliance under EFQ is to

assign each periodic time-sensitive task an instantaneous power share that is no lower

than the worst-case power share of the task. However, as in the fair queuing CPU

scheduling domain, this method can lead to an over-reservation of power share

because the actual power share required by one periodic time-sensitive task is usually

lower than the worst-case power share. The over-reservation causes a waste of the

power share in the sense that the over-reserved power share is no more reservable for

other time-sensitive tasks. In periodic time-sensitive tasks whose energy load is

fluctuating slightly or whose worst-case power share is a small percentage, the degree

of power share over-reservation is still acceptable under EFQ. However, the power

share for reservation will be badly wasted if the task energy load is fluctuating

significantly and the worst-case power share is a considerable large percentage, which

is very common in many soft real-time applications such as multimedia applications.

Furthermore, even if the degree of power share over-reservation is acceptable,

determine a proper instantaneous power share for time-constraint compliance is a

difficult work. The difficulties mainly come from two aspects. First, since the

worst-case power share of a periodic task may change frequently over different

long-term static intervals in a dynamic system, the instantaneous power share reserved

for a periodic time-sensitive task have to be adjusted timely and frequently in

accordance to the variable worst-case power share. This brings challenge to the

time-constraint compliance and increases the computing overhead on the EFQ

scheduler. If the instantaneous power share reserved for each time-sensitive task is not

ENERGY-CENTRIC PROCESSOR SCHEDULING

91

timely and correctly adjusted in accordance to the current worst-case power share, the

time-sensitive tasks will fail to timely receive the periodic energy demands and begin

to miss the deadlines. Second, although, theoretically, a worst-case power share can

guarantee the compliance of all time constraints, in real systems, an instantaneous

power share that is higher than the worst-case power share is required considering the

energy allocation error caused by service time and energy quantization. Unfortunately,

the energy allocation error bound under SEFQ is not a constant value but can increase

with the growth of the active task number; without knowing the average system power,

the system power burstiness, and the active task number, which are randomly variable

over time, the energy allocation error bound is impossible to compute, and

consequently, the instantaneous power share that is minimally required to meet the

worst-case energy load in a real system cannot be determined. This means, in real

system scheduling, a coarse and conservative power share that may be much larger

than the worst-case power share has to be reserved to each periodic time-sensitive

task for ensuring the time-constraint compliance.

In fair queuing scheduling, maintaining a strict fairness is a double-edged sword

for supporting time-sensitive tasks. On one side, achieving the optimal fairness bound

and allocation error bound can minimize the share over-reservation for time-sensitive

tasks, and therefore, conserve the share reservation space for the support of more

time-sensitive tasks. On the other side, to enforce a strict fairness among the tasks, the

scheduler may preclude a time-sensitive task from using the CPU at an inopportune

time, leading to a close deadline being missed. Unfortunately, in SEFQ, the

near-optimal fairness bound does not guarantee a stable allocation error that is

unaffected by the number of active tasks. As have been mentioned before, because of

the energy allocation error bound that can increase with the task number, the

minimum instantaneous power share that is required by each time-sensitive task to

meet the time constraints cannot be determined under SEFQ. Making it worse, the

energy allocation error of SEFQ causes a delay bound that can increase with the task

number; this will amplify the negative effect of a strict fairness on the time-constraint

compliance as the active task number increases in the system. A time-sensitive task

ENERGY-CENTRIC PROCESSOR SCHEDULING

92

may be continuously precluded from accessing the CPU for a long period of time due

to a large number of tasks waiting ahead to fairly receive their share of the energy.

Considering the above facts, maintaining a near-optimal fairness bound becomes

less attractive in supporting time-sensitive tasks in energy-based fair queuing

scheduling. Instead, as in the fair queuing CPU scheduling domain, certain real-time

friendly mechanism can be combined into the SEFQ algorithm for a better support of

time-sensitive tasks. A real-time friendly mechanism breaks the short-term fairness

between time-sensitive tasks and batch tasks by giving dispatch preference to the

former; however, the long-term proportional power sharing should still be maintained

among tasks so that any energy starvation on batch tasks can be avoided. This point

will be extended in the next section.

3.4.4 Borrowed starting-energy fair queuing (BSEFQ)

To provide a better support for time-sensitive tasks in energy-based fair queuing

(EFQ), this work combines one low-complexity and low-overhead real-time friendly

mechanism named warping into the SEFQ algorithm and, proposes a new EFQ

algorithm named borrowed starting-energy fair queuing (BSEFQ). The warping

mechanism was originally proposed in the borrowed-virtual-time (BVT) scheduling

[74], it has been adapted to support priority-based real-time scheduling in

energy-based fair queuing. The adaptations will be introduced along with the

presentation of the BSEFQ algorithm.

The warping mechanism introduces a new variable called effective starting tag

for each task, the BSEFQ traces the normalized energy consumption of each task with

the starting tag 𝑆𝑖 but schedules the tasks in the increasing order of the effective

starting tag, 𝐸𝑆𝑖. For distinction with the effective starting tag 𝐸𝑆𝑖, the original

starting tag 𝑆𝑖 is called the actual starting tag from this point forward. The effective

starting tag 𝐸𝑆𝑖 is computed in such a way that, for a periodic time-sensitive task

within a certain time limit, it is the actual starting tag 𝑆𝑖 minus a certain value named

warp, and the task is regarded as warped; for a batch task or a time-sensitive task that

ENERGY-CENTRIC PROCESSOR SCHEDULING

93

is out of the time limit, it equals to the value of the actual starting tag 𝑆𝑖, and the task

is regarded as un-warped.

The time limit imposed on periodic time-sensitive tasks is called the warp time

limit. This limit is applied on a periodic basis to restrict the maximum length of time

that one task can run warped in each period. One periodic time-sensitive task is

allowed to run warped at the beginning of each period; it can run warped continuously

until the cumulative warp time of the current period reaches the warp time limit; after

that, the time-sensitive task is forced to run un-warped until the next period begins.

Note that, in comparison to the warp mechanism in BVT, where an additional

parameter is required to specify the minimum time that one task has to wait before

warping again, the way how the warp time limit works is simplified and easier to

control in this work, especially in the situation when multiple periodic time-sensitive

tasks are simultaneously running with warp.

By warping back the starting tag and borrowing virtual energy from its future

energy allocation, a time-sensitive task moves forward in the run queue and receives

its share of energy earlier to meet its time constraints [74]. The short-term fairness

among tasks is broken with the staring tag warping to give time-limited dispatch

preference to time-sensitive tasks; however, the long-term proportional power sharing

is still maintained by updating the actual starting tag based on the assigned effective

weights. If a time-sensitive task becomes un-warped before finishing the work of one

period, since its actual starting tag 𝑆𝑖 has been advanced with the normalized energy

consumption during the warped period of time, the task will be placed at the very end

of the run queue to let other tasks have the chance to catch up with the energy

consumption.

In BSEFQ, the warping mechanism brings a problem to the updating of the

system virtual energy that is not reported in the BVT algorithm [74]. Recall that, in

SEFQ, tasks are scheduled in the increasing order of the actual starting tag 𝑆𝑖 and the

current task in execution is the one with the smallest actual starting tag. Thus, the

system virtual energy 𝑉𝐸(𝑡) is updated to the actual starting tag of the task currently

in execution to trace the smallest starting tag among all active tasks. This guarantees

ENERGY-CENTRIC PROCESSOR SCHEDULING

94

the system virtual energy to be a monotonically non-decreasing function that is no

greater than the minimum virtual energy of all active tasks. However, under BSEFQ,

once a time-sensitive task is warped, it will be executed even if its actual starting tag

𝑆𝑖 is not the smallest one. If the system virtual energy 𝑉𝐸(𝑡) is still updated to the

actual starting tag 𝑆𝑖 of the current task in service, it is no longer a non-decreasing

function that always keeps pace with the smallest actual starting tag. In this case,

when a new batch task joins the system at time 𝜏 and is assigned an actual starting

tag that equals the system virtual energy 𝑉(𝜏), the task will be delayed in execution if

the system virtual energy 𝑉(𝜏) is larger than the lowest actual starting tag in the

system. The delay time can be considerably large if there is a big difference between

the system virtual energy and the lowest actual starting tag of all active tasks.

To resolve the above problem, BSEFQ only updates the system virtual energy to

the actual starting tag of the current task in service if the current task is not warped.

Otherwise, the system virtual energy remains unchanged. With this approach, the

system virtual energy 𝑉𝐸(𝑡) of BSEFQ is guaranteed to be a monotonically

non-decreasing function that traces the lowest virtual energy of all active tasks.

The scenario of multiple time-sensitive tasks with multiple levels of warp values

is also not investigated in the BVT algorithm [74]. When there are multiple periodic

time-sensitive tasks active in the system, different levels of warp values can be either

statically or dynamically assigned to the tasks according to their periods, user

preferences, or urgencies. Statically, warp values can be assigned in a rate-monotonic

(RM) manner with which a larger warp value is given to the task with shorter period;

while dynamically, warp values can be assigned in an earliest-deadline-first (EDF)

manner with which a larger warp value is assigned to the task with the most urgent

deadline. For simplicity and to focus on GPOS in which a certain share of CPU

bandwidth should be left to batch tasks, this work focuses on static warp values.

Besides of assigning warp values in the RM manner, more important, user-preferred,

or latency-sensitive tasks are usually given larger warp values so that they can be

dispatched earlier to meet their time constraints. For instance, a time-critical system

task or a hard real-time task can be assigned the largest warp value, and a soft

ENERGY-CENTRIC PROCESSOR SCHEDULING

95

real-time task or an interactive task can be assigned a smaller warp value. The task

that holds the largest warp value is dispatched immediately after its new period begins

and can continuously occupy the CPU until finishing its work or reaching its warp

time limit, while tasks holding smaller warp values have to wait until more important

tasks finish their work or become un-warped. For time-sensitive tasks of equal

importance, the same warp values are assigned so that the tasks can be scheduled in

turns; the dispatching frequency of each task depends on the energy packet size and

the effective weight, and their real-time performance can be traded off by adjusting

the effective weights.

With the warp values of different levels, the warping mechanism actually

combines the priority-based real-time scheduling into the energy-based fair queuing

scheduling. While the warp-based priorities enable a flexible and effective support of

various types of time-sensitive tasks in energy-based fair queuing (EFQ), the warp

time limit of each time-sensitive task restricts the maximum time that one task can run

with priority and avoids any energy starvation on batch tasks. By adjusting the warp

time limit automatically based on the CPU workload feedback or manually through a

user interface, BSEFQ allows for a flexible tradeoff between power control and the

time-constraint compliance of time-sensitive tasks. Therefore, on one hand, power

pulses caused by high-priority tasks with excessive energy demand can be restricted

to avoid interfering with the normal energy use of other tasks; on the other hand,

stringent time-constraint compliance can be achieved when tasks are consuming

energy at a normal rate. As in the traditional real-time processor scheduling,

admission control can be applied in combination with the warping mechanisms to

control the CPU utilization rate under a safe threshold to keep all admitted

time-sensitive tasks schedulable in EFQ scheduling.

ENERGY-CENTRIC PROCESSOR SCHEDULING

96

3.5 Summary

In this chapter, the traditional fair queuing algorithm is extended to the energy sharing

domain, and the energy-based fair queuing (EFQ) scheduling algorithm is proposed

for energy-centric processor scheduling to provide a support on proportional power

sharing, time-constraint compliance and a tradeoff between them.

Applying the fair queuing algorithm for energy-centric processor scheduling is

equivalent to implementing the ideal Generalized Processor Sharing (GPS) model in

the energy sharing domain. Therefore, the first step of developing energy-based fair

queuing (EFQ) algorithms is to build a realistic energy-centric scheduling model in

reference to the GPS model. Considering that an accurate modelling of the

asynchronous energy consumption caused by hardware devices is almost impossible

and high-level scheduling policies do not concern in which device a specific amount

of energy is consumed, this chapter introduces a practical energy model in which the

energy consumption is assumed to be synchronously related to the CPU time quantum.

Thus, in the energy model, each task that receives one CPU time quantum will be

served a corresponding amount of energy that is defined as energy packet.

In comparison with the CPU bandwidth management in the fair queuing

processor scheduling model, the power share management in the energy-centric

scheduling model is a much more complex work. Therefore, this chapter provides an

insight into the power share management under the energy-centric scheduling. The

maximum long-term power share is defined to describe the upper bound of the

average power share that one periodic time-sensitive task can receive in the long-term,

and the worst-case power share is defined to describe the minimum theoretical power

share that is required to meet the worst-case energy demanding of one periodic

time-sensitive task. It is found that the maximum long-term power share and the

worst-case power share are sensitive to the system dynamics because their values are

also dependent on the energy loads of other active tasks. To ensure an acceptable and

stable performance, the power share of one time-sensitive task should be no less than

the maximum long-term power share and its instantaneous value needs to be protected

ENERGY-CENTRIC PROCESSOR SCHEDULING

97

from the competition of other tasks. Upon the change of the scheduling environment,

one simple yet effective way to achieve the power share protection is to fix the weight

of one time-sensitive task to its desired power share and re-compute the weight of

regular tasks based on their initial weights and the overall reserved (or protected)

power share of the time-sensitive tasks. Because the instantaneous power share of one

periodic time-sensitive task is usually over-reserved in comparison with its maximum

long-term power share, the over-reserved power share should be reallocated to the

other tasks when the time-sensitive task temporarily leaves the energy competition. To

avoid the occurrence of unfair power share reallocation upon the temporary releasing

of power shares, the overall reserved power share of time-sensitive tasks can be fixed

as a constant value for the task weight re-computation of other regular tasks.

The design of energy-based fair queuing (EFQ) algorithms is restricted by the

unpredictability of the energy packet size, the volatility of the system power and the

practical issues such as the implementation complexity and the scheduling overhead.

The proposed starting-energy fair queuing (SEFQ) algorithm schedules tasks in the

increasing order of the starting energy tag, thus, the size of the energy packet as well

as the length of the CPU time quantum are not required to be known in advance. In

addition, because the system virtual energy of SEFQ can be updated by self-referring

to the lowest starting energy tag of all tasks, no simulation of the ideal GPS model

and no assumption of a constant system power are required for the functioning of

SEFQ. Therefore, SEFQ is simple to implement and it can achieve near-optimal

fairness bound for proportional power sharing under variable system power with low

computing-time complexity. Unfortunately, because of the failure to meet the

minimum slope property in the system virtual energy updating, the energy allocation

error and the scheduling latency bound under SEFQ can increase with the growth of

the task number. This increases the difficulty of determining a proper power share for

the time-constraint compliance of time-sensitive tasks, and a conservative power

share should therefore be overly reserved to each time-sensitive task. Especially,

when the number of tasks is large, the effort of maintaining a fair sharing of the

energy will lead to a considerable large scheduling latency to time-sensitive tasks and

ENERGY-CENTRIC PROCESSOR SCHEDULING

98

make the time-constraint compliance a difficult work under SEFQ. To improve the

support of real-time and multimedia scheduling under EFQ, a real-time friendly

mechanism named warping is combined into the SEFQ, and based on that, the

borrowed starting-energy fair queuing (BSEFQ) is proposed. The warping mechanism

can periodically reduce the starting energy tag of one time-sensitive task to allow it

being scheduled earlier to receive its share of energy, but the maximum time that one

task can be warped in each period is restricted. This gives time-limited priority to the

time-sensitive task and improves its scheduling latency; although the short-term

fairness among tasks is broken, the long-term proportional power sharing can still be

maintained by advancing the starting energy tag based on the task weight. When

multiple time-sensitive tasks are active in the system, different levels of warp values

can be employed to prioritize the time-sensitive tasks based on their importance or

time urgency. The warping mechanism actually combines the priority scheduling into

the proportional share scheduling, which allows the BSEFQ being able achieve

proportional power sharing, effective time-constraint compliance, and a flexible

tradeoff between them.

HIGH-LEVEL MODELLING AND SIMULATION

99

Chapter 4

High-Level Modelling and Simulation

Before moving to the complex implementation of the energy-based fair queuing (EFQ)

scheduling algorithm on a concrete OS, a high-level modelling and simulation of the

scheduling algorithm can provide a convenient and flexible pre-evaluation of the

scheduling behavior. In this chapter, a high-level EFQ modelling and simulation based

on the SystemC language is provided for early-phase assessment of the EFQ

algorithm. The chapter starts with a brief introduction on the SystemC modelling

language, and then continues with a high-level modelling of the EFQ algorithm in

SystemC. After that, a simulation test-bench is developed and a task set is

characterized to execute EFQ simulation experiments. Finally, the simulation results

are analyzed according to the different EFQ properties.

4.1 SystemC

SystemC [76] is a system-level modelling language that is widely used for hardware

and software co-design. It is a C++ class library which provides an event-driven

simulation interface. Unlike the C and C++ languages which have no notion of time

and concurrency, SystemC can simulate concurrent processes and support a

cycle-accurate model for software algorithms.

Modules are the basic building blocks in SystemC design. A SystemC model

usually consists of a number of modules that are connected via channels. Within the

module, there are a variety of elements, including processes, ports, internal signals

and data instances, etc. Processes are the basic computation elements which can be

executed currently by the SystemC simulator. A process should be registered after its

definition. The simplest registration method is SC_THREAD. The underlying

functions and codes of a SC_THREAD process are executed only once. SystemC

provides the sc_time data type to measure the process execution time. Particularly, the

HIGH-LEVEL MODELLING AND SIMULATION

100

wait(sc_time) method can be employed to suspend the execution of SC_THREAD

processes for specified periods of time. Ports are in charge of the communication

between modules. They use specified type of interfaces to communicate with channels.

While interfaces define a set of synchronization and communication mechanisms,

such as mutex, semaphore and FIFO, channels implement the interfaces. Channels in

SystemC can be viewed as a special type of modules that implement the

communication mechanisms. The readers are advised to refer the book [77] for more

details on SystemC facilities and their usage.

In this thesis work, the SystemC development environment is set up on the

Eclipse (Juno) IDE for C/C++ Developers. The codes are compiled using the GCC

4.6.3 compiler with the support of the SystemC 2.2.0 library.

4.2 EFQ modelling in SystemC

4.2.1 High-level abstraction

This section describes the high-level modelling of the EFQ scheduling algorithm in

SystemC. The CPU scheduling abstraction that is referred for EFQ modelling is

shown in Figure 4.1.

Figure 4. 1: High-level Abstraction of the CPU Scheduling

To reduce the simulation complexity, the run queue that uniformly manages all

active tasks is not exclusively modelled in the abstraction. As an alternative, each task

HIGH-LEVEL MODELLING AND SIMULATION

101

is correlated to a data buffer which records its resource requests in the form of energy

packet and the task queuing operations of the run queue are combined into the

scheduler model. Therefore, it appears that the tasks are working as a producer that

generates energy packet requests, and the scheduler and CPU are working as a

consumer that consumes the requested energy packets in the data buffers. In the

remaining of this section, we will focus on the modelling of the EFQ scheduler and

the CPU. The modelling of the tasks and their request buffers will be later introduced

when the simulation test-bench is presented.

4.2.2 EFQ modelling: the consumer

In this simulation design, the EFQ scheduler and the CPU have been modelled

together in one SystemC module, which is known as the consumer module. The flow

chart of the SystemC-based modelling of the EFQ algorithm is shown in Figure 4.2.

Note that the EFQ algorithm has been modelled with the simulation control and

results generation in mind. Therefore, some extra functions have been added in the

consumer module for this purpose. Also, only the flow chart of BSEFQ is provided in

this work because SEFQ can be seen as a special case of EFQ in which all tasks are

un-warped.

To model the EFQ scheduler and the CPU, the length of the maximum

schedulable time quantum 𝑄 as well as the scheduling time tick must be determined

in advance. For clarity and without loss of generality, the CPU time unit (Tu) is

employed to measure the time in the simulation, one Tu is defined as one millisecond

(MS) in the sc_time data type of SystemC and is set as the minimum schedulable time

quantum for the simulation. For simplicity, all time quanta requested by the tasks are

assumed to have the maximum length 𝑄, which is also set as 1 Tu. That is to say, in

each scheduling tick of the simulation, a time quantum of 1 Tu is assigned to the

selected task and a standard energy packet of the task is consumed. The length of the

scheduling tick is thus set as 1 CPU time unit as well. To achieve the 1 Tu scheduling

tick and simulate the CPU execution, we simply employ the wait(sc_time) method to

suspend the consumer simulation for 1 Tu at certain point inside the scheduling loop.

HIGH-LEVEL MODELLING AND SIMULATION

102

Within each scheduling loop, it is firstly checked whether there is energy

available for consumption. This is achieved by updating the total energy consumption

at the end of each scheduling loop and comparing its value with the pre-set energy

budget. If the energy is exhausted, the simulation program will output the scheduling

results in text files and quit the execution; otherwise, we further check whether all the

tasks under test are idling or not. If all the tasks have been continuously idled for a

certain time that is larger than the biggest period of periodic tasks, the scheduling

results are exported and the simulation is terminated; otherwise, we move to the

initialization of the total initial weight and total reserved share. Note that a task is

regarded as idle only if its corresponding request buffer is empty. To detect that, the

scheduler reads a request buffer and returns the remaining number of time quanta

requests in it; if the returned value is zero, the request buffer is empty and its

corresponding task is regarded as idle.

The EFQ algorithm schedules tasks in the increasing order of the effective

starting (energy) tag. It is thus important to determine the task with the lowest

effective starting tag in the scheduling loop. To achieve this goal, first, a task needs to

be set by default as the one for dispatching (Figure 4.2-①), and then, a tag

comparison loop (Figure 4.2-②) is executed to compare the effective starting tag of

all candidate tasks and select the one with the lowest tag for dispatching. To support

this procedure, one variable named 𝑚𝑖𝑛𝑇𝑎𝑔 is exclusively defined to store the ID of

the task with the smallest effective starting energy tag. Initially, the ID of the default

dispatching task is assigned to the variable 𝑚𝑖𝑛𝑇𝑎𝑔.

The method of setting the default dispatching task determines the way how the

scheduler breaks the tie when two tasks have equal energy tag. Because a tie breaking

that favors time-sensitive tasks can support a better real-time performance without

affecting the fairness, it first select the default dispatching task randomly from the

time-sensitive tasks; a non-real-time task is randomly selected only in case all

time-sensitive tasks are idling. Note that, while it has no time cost to execute these

operations in a simulation, the overhead of implementing them in a real system can be

very high if the algorithm is not properly designed.

HIGH-LEVEL MODELLING AND SIMULATION

103

Figure 4. 2: Flow Chart of SystemC-based EFQ Modelling in the Consumer Module

HIGH-LEVEL MODELLING AND SIMULATION

104

After the default dispatching task is randomly determined, the tag comparison

loop (Figure 4.2-②) is executed to compare the effective starting tag of all candidate

tasks. The purpose is to select the task with the lowest effective energy tag and assign

the task ID to the variable 𝑚𝑖𝑛𝑇𝑎𝑔. Within the loop, it first checks the request buffer

of one task to find out whether the task is idling or not. Once an idle task is detected,

the initial weight value of the idle task is subtracted from the total initial weight and

the task state is marked as idle. For an active task 𝑇𝑖, it will further compute its

starting energy tag 𝑆𝑖 (Figure 4.2-③). First, it needs to detect whether the task is a

newly joined one that has just made its transition from idle state to active state. If a

newly joined task is detected and its starting energy tag 𝑆𝑖 is smaller than current

value of the system virtual energy 𝑉𝐸(𝑡), the starting energy tag 𝑆𝑖 is updated to the

value of the system virtual energy 𝑉𝐸(𝑡). Otherwise, the starting energy tag 𝑆𝑖

keeps unchanged.

Next, it further computes the effective starting energy tag 𝐸𝑆𝑖 based on the warp

parameters (Figure 4.2-④). For a warp-enabled task that is within its warp time limit,

the effective starting energy tag 𝐸𝑆𝑖 is computed by subtracting its warp value

𝑤𝑎𝑟𝑝𝑖 from the starting energy tag 𝑆𝑖. In other cases, the effective starting energy

tag 𝐸𝑆𝑖 equals the starting energy tag 𝑆𝑖. Based on the effective starting energy tag

𝐸𝑆𝑖, the current task 𝑇𝑖 is compared with the task whose ID is stored in the variable

𝑚𝑖𝑛𝑇𝑎𝑔. If the current task 𝑇𝑖 has a lower effective starting energy tag (𝐸𝑆𝑖 <

𝐸𝑆𝑚𝑖𝑛𝑇𝑎𝑔), its ID is assigned to the variable 𝑚𝑖𝑛𝑇𝑎𝑔; otherwise, the 𝑚𝑖𝑛𝑇𝑎𝑔 value

keeps unchanged. After the above works are finished, the tag comparison loop will be

executed another time for the next candidate task. When the loop finishes the tag

comparison for all candidate tasks, the task with the smallest effective starting energy

tag is determined and its ID is stored in the variable 𝑚𝑖𝑛𝑇𝑎𝑔.

Once the task to dispatch has been selected, the wait(sc_time) function is called to

stop the consumer for one CPU time unit to simulate the task’s execution on the CPU.

After the CPU execution, the system virtual energy 𝑉𝐸(𝑡) has to be firstly updated

(Figure 4.2-⑤) before the update of other variables. Because the system virtual

HIGH-LEVEL MODELLING AND SIMULATION

105

energy 𝑉𝐸(𝑡) is non-decreasing and always traces the smallest starting energy tag of

all the tasks, it is updated to the starting energy tag of the current task 𝑇𝑚𝑖𝑛𝑇𝑎𝑔 only

in case that the task 𝑇𝑚𝑖𝑛𝑇𝑎𝑔 is not warped and its starting energy tag 𝑆𝑚𝑖𝑛𝑇𝑎𝑔 has a

larger value. In other cases, the system virtual energy 𝑉𝐸(𝑡) keeps unchanged. And

in case the current task 𝑇𝑚𝑖𝑛𝑇𝑎𝑔 is warped, its cumulative warp time is increased by

one CPU time unit.

After the system virtual energy is updated, we need to further update the

cumulative energy consumptions and the starting energy tag of the current task

𝑇𝑚𝑖𝑛𝑇𝑎𝑔. To achieve that, we need first read the size of the selected energy packet

𝑒𝑚𝑖𝑛𝑇𝑎𝑔
𝑘 from the request buffer of task 𝑇𝑚𝑖𝑛𝑇𝑎𝑔. Then, both the cumulative energy

consumption of task 𝑇𝑚𝑖𝑛𝑇𝑎𝑔 and the total energy consumption are increased by

adding the size of the selected energy packet 𝑒𝑚𝑖𝑛𝑇𝑎𝑔
𝑘 . While the cumulative energy

consumption of each task is recorded for energy statistics and scheduling results

analysis, the total energy consumption is used to check if the energy budget is reached

at the beginning of each scheduling loop. To update the starting energy tag of task

𝑇𝑚𝑖𝑛𝑇𝑎𝑔, we also need to compute in advance its effective weight 𝑤𝑚𝑖𝑛𝑇𝑎𝑔 according

to the share protection mechanism. Finally, after the size of the energy packet

𝑒𝑚𝑖𝑛𝑇𝑎𝑔
𝑘 and the effective weight 𝑤𝑚𝑖𝑛𝑇𝑎𝑔 have been both obtained, the starting

energy tag 𝑆𝑚𝑖𝑛𝑇𝑎𝑔 is updated by increasing the current starting energy tag with the

normalized energy consumption,
𝑒𝑚𝑖𝑛𝑇𝑎𝑔

𝑘

𝑤𝑚𝑖𝑛𝑇𝑎𝑔
.

The warp mechanism should reset the cumulative warp time of a periodic task at

the start of each period. At the end of the scheduling loop, the sc_time_stamp()

function is called to obtain the current time of the simulation and use it to detect

whether a new period of any periodic task is started. If a new period is detected, the

cumulative warp time of the task is reset to zero so that the task can be warped again

for the coming period.

HIGH-LEVEL MODELLING AND SIMULATION

106

4.3 Simulation test-bench design

In this section, the simulation test-bench developed to assess the SystemC-based EFQ

design is described. It starts with an overview of the test-bench architecture, and

continues with the SystemC modelling of the simulation task set. Finally, the extra

functions to generate scheduling results are presented.

4.3.1 Test-bench architecture

Based on the CPU scheduling abstraction and the producer-consumer model in Figure

4.1, a simulation test-bench has been developed. Its architecture is shown in Figure

4.3. There are three SystemC modules in general: the producer, the consumer and the

FIFO channel. Each module is defined in a corresponding C++ header file. The

main.cpp file is in charge of setting simulation parameters (task number, initial shares

and weights, task period and workload etc.,), instantiating the modules and controlling

the test-bench execution.

Figure 4. 3: Architecture of the SystemC-based Simulation Test-bench

In the simulation test-bench, one task is modelled as an instantiation of the

producer module; depending on the task type, it either periodically or continuously

main.cpp

Task_1

Task_2

Task_N

…

…

RequestBuffer_1

Scheduler

&

CPU

producer.h rq_fifo.h consumer.h

RequestBuffer_2

RequestBuffer_N

sc_port<rq_fifo_out_if<T>> sc_port<rq_fifo_in_if<T>>

…

…

HIGH-LEVEL MODELLING AND SIMULATION

107

generates service requests in the form of energy packet. The request buffers are

modelled as instantiations of the FIFO channel with sufficient length; the energy

requests generated by the producer module are stored into the corresponding request

buffers through the entitled ports. Then, buffering the energy packets is as easy as

writing the size of each energy packet into the request buffers. This writing is fulfilled

through the write() function, which is declared in an interface class named

rq_fifo_out_if and defined in the header file rq_fifo.h. The scheduler and CPU are

modelled as an instantiation of the consumer module, which is also connected to the

request buffers via the entitled ports. Based on the EFQ scheduling algorithm, the

consumer module selects the next energy packet to consume from the candidate

request buffers. Similarly, it is fulfilled by reading the size of a selected energy packet

through the read() function, which is declared in an interface class named

rq_fifo_in_if and defined in the header file rq_fifo.h. Finally, in the main.cpp, the

modules of producer, consumer, and FIFO channel are instantiated and connected to

form a complete simulation test-bench.

4.3.2 Task modelling: the producer

To drive the EFQ scheduling simulation in the consumer module of the test-bench, the

tasks should be properly modelled in the producer module to generate a variety of

different energy requesting patterns. The flow chart of the producer module is shown

in Figure 4.4.

At the beginning of the producer, it is firstly checked whether the task is set to be

delayed in the starting up. This is to simulate the situation in which a new task joins

the resource competition at certain instant of time; in case of that, the wait(sc_time)

function is called to delay the task for a certain length of time before it enters the

energy requesting loop. Then, once we enter the loop where the energy requests are

issued, depending on the task type, different patterns are followed to generate the

service quanta and energy packets.

HIGH-LEVEL MODELLING AND SIMULATION

108

Figure 4. 4: Flow Chart of the SystemC-based Task Modelling in the Producer Module

For time-sensitive tasks that generate energy requests periodically, the producer

module controls the period of service quanta generation, the number of service quanta

per period, and the energy packet size. This will determine the workload and the

average power of a periodic task. For instance, if a task has a period of 10 Tus, in each

period, it request 3 service quanta that lasts 3 Tus and the energy packet size of each

service quantum is 10 Eus, then, the workload is 30% and the average power over one

period is 3 Pus. Specifically, in this simulation, real-time tasks are modelled with

fixed-length periods while interactive tasks are modelled with random-length periods;

in both cases, the number of service quanta per period and the energy packet size are

variable over the time. At the beginning of each period, a loop is executed to request

the service quanta of one period; the energy packet size value of each requested

service quanta is stored into the corresponding FIFO request buffer through the write()

Start

wait(delayTime, SC_MS)
Task delayed in

Starting up ?

YES

Finishes the loop of

energy requesting ?

NO

End
YES

NO

Periodic task ?
YES Finishes the loop

of energy requesting for

one period ?

YES

output_port ->

write(energy_packet_size)

wait(periodTime, SC_MS)

NO
NO

output_port ->

write(energy_packet_size)

wait(1, SC_MS)

HIGH-LEVEL MODELLING AND SIMULATION

109

function and the output port of the producer module. Once the above loop finishes, the

wait(sc_time) function is called to stop the task until its next period starts. At the side

of the consumer module, if the service quanta of a periodic task are consumed in a

speed that is faster than their generation speed, then, the corresponding request buffer

will become empty before the next period begins, and during this time the task is

regarded as idle.

For batch tasks that request energy continuously, in each CPU time unit, the

producer generates a service quantum and writes the energy packet size value into the

corresponding FIFO request buffer. It turns out to the scheduler that a new service

quantum is requested once the previous service quantum is finished. Therefore, the

request buffer will never become empty until all requested service quanta are finished

by the consumer. As in the case of periodic tasks, the energy packet size of batch tasks

is also variable over the time.

Note that, all variable numbers of the test-bench are generated from the C++

random function with a discrete uniform distribution. Thus, their average values can

be easily obtained for computing the maximum long-term power share of periodic

time-sensitive tasks.

4.3.3 Obtaining scheduling results

To obtain the experimental results from the simulation test-bench, three extra pieces

of SystemC code have been inserted into the consumer module; these codes are

mainly added at the end of the scheduling loop in Figure 4.2 and should be checked

for execution in each CPU time unit.

The first piece of SystemC code is employed to check the long-term task power

shares under the EFQ scheduling algorithm. To achieve this goal, the cumulative

energy consumption of all tasks are sampled into a text file every 100 Tus. The 100

Tus period is detected by checking whether the current CPU time returned by the

sc_time_stamp() function is divisible by 100.

The second piece of SystemC code is used to check the time-constraint

HIGH-LEVEL MODELLING AND SIMULATION

110

compliance of periodic real-time tasks. First, we use the same method as above to

detect the deadline of periodic tasks. Once a deadline of any task is detected, the

actual cumulative service time of the task and its expected cumulative service time

before the deadline are compared. If the former is smaller than the latter, it means the

task is not served the requested service time before the deadline, then, a deadline miss

is recorded.

The third piece of SystemC code is employed to measure the response time of

interactive tasks. To achieve the goal, we need to firstly detect whether the service

quanta of one period are all served to an interactive task by comparing the number of

service quanta that the interactive task has actually received with the number of

service quanta that are requested in the current period. This requires passing the

period length and workload of interactive tasks from the main.cpp to the consumer

module. Then, if the service quanta of one period have all been served, the response

time is computed based on the current CPU time returned by the sc_time_stamp()

function and the actual time when the current period starts requesting service quanta.

Finally, after the scheduling loop is finished, we compute the maximum and average

response time of the interactive task based on the recorded response time of all

periods.

4.4 Task characterizations for simulation

This section provides the characterization of the tasks for the simulation. An overview

of the task characterization is shown in Table 4.1. Batch 1 and Batch 2 are regular

batch tasks with continuous energy demand, while Real-time and Interactive are

time-sensitive tasks with periodic energy demand. Real-time has a fixed-length period

of 10 time units (Tus), while Interactive is simulated with a random-length period that

ranges from 40 to 60 Tus. Both time-sensitive tasks request a variable number of

service quanta per period. In addition, their energy packets have variable size. All

variable numbers in Table 4.1 are drawn from the C++ random function with a

discrete uniform distribution. Thus, their average values can be easily obtained.

HIGH-LEVEL MODELLING AND SIMULATION

111

Real-time has an average of 3 service quanta per period and the average size of the

energy packet is 10 Eus. Interactive has an average period of 50 Tus, every period has

an average of 10 service quanta and the average size of the energy packet is 5 Eus.

For a convenient analysis of the scheduling results, the average size of the energy

packet in both batch tasks is set as 8 Eus to ensure a constant value for the maximum

long-term power share and the worst-case power share.

Table 4. 1: Characterization of Tasks in the Simulation

 Real-time Interactive Batch 1 Batch 2

Period (Tus) 10 50±10 N/A N/A

Num. of service quanta / period 3±1 10±4 N/A N/A

Energy packet size (Eus) 10±3 5±2 8±1 8±3

Max. long-term power share 0.375 0.125 lim (x → 1) lim (x → 1)

Worst-case power share 0.553 0.297 N/A N/A

Based on the task characterization in Table 4.1, the maximum long-term power

share and the worst-case power share (definitions refer to section 3.3.1) are computed.

In the long-term case, the average power of Real-time and Interactive is 3 power units

(Pus) and 1 Pu (in maximum), respectively. Then, the two batch tasks have an average

power (in minimum) of:

(1 −
3

10
−

10

50
) × 8 = 4 𝑃𝑢𝑠.

Therefore, the maximum long-term power shares of Real-time and Interactive are

0.375 and 0.125, respectively. When Real-time has a worst-case power of:

4 × 13

10
= 5.2 𝑃𝑢𝑠,

the average power of Interactive is 1 Pu, and the average power of the two batch tasks

is:

(1 −
4

10
−

10

50
) × 8 = 3.2 𝑃𝑢𝑠.

Thus, the worst-case power share of Real-time is:

HIGH-LEVEL MODELLING AND SIMULATION

112

5.2

5.2 + 1 + 3.2
= 0.553.

When Interactive has the worst-case power of:

14 × 7

40
= 2.45 𝑃𝑢𝑠,

the average power of Real-time is 3 Pus, and the average power of both batch tasks

is:

(1 −
3

10
−

14

40
) × 8 = 2.8.

Thus, the worst-case power share of Interactive is 0.297.

4.5 Simulation results

Based on the simulation test-bench and the task characterizations, simulation

experiments are designed to evaluate the different EFQ properties in this section. To

meet the requirements of energy-centric processor scheduling, the EFQ algorithm

should be able to achieve proportional power sharing, time-constraint compliance, and

when necessary, a tradeoff between them. In the remaining of this section, the EFQ

algorithm will be evaluated from these three aspects through specifically-designed

simulation experiments. Because a simulation of the whole operational time consists

of a series of epoch simulations, the simulation is run for only one epoch and a system

in which the epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 equals 50,000 energy units (Eus) is considered.

4.5.1 Maintaining proportional power sharing

Figure 4.5 shows how the system power is proportionally shared under SEFQ when

the task characterizations in Table 4.1 are employed as the simulation input and both

Real-time and Interactive are reserved a power share that equals the maximum

long-term power share. The solid lines are the (reference) power shares when the

average parameters in Table 4.1 are employed, whereas the dotted lines are those

obtained by averaging the results of 10 repetitive simulations when the random

HIGH-LEVEL MODELLING AND SIMULATION

113

parameters (generated by 10 different random seeds) specified in Table 4.1 are used.

As can be observed in Figure 4.5, proportional power sharing among tasks is

long-term guaranteed even under a variable energy load. Similar results are achieved

under the BSEFQ [78]. However, the share fluctuations under BSEFQ are larger than

those under SEFQ due to its fairness deficiency.

Figure 4. 5: Proportional Power Sharing under SEFQ

To introduce system dynamics, the launch of Batch 2 is advisedly delayed 2,000

Tus, and the energy allocation of Batch 1 is limited to 15,000 Eus; all other tasks start

at time 0 and run until exhausting the 50,000 Eus epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 . The sharp

slopes in Figure 4.5 are due to the join event of Batch 2 (at 2,000 Tus) and the exit

event of Batch 1 (at 4,800 Tus). As can be observed, the long-term power shares of

Real-time and Interactive are not affected by these changes. This is because both

Real-time and Interactive belong to the reserved class; they are both guaranteed

reserved power shares that equal their corresponding maximum long-term power

shares of 0.375 for Real-time and 0.125 for Interactive. The remaining power share is

allocated to Batch 1 and Batch 2 according to their initial weights, 3 and 2,

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000 7000

 Real-Time Interactive Batch 1 Batch 2

Time (Tus)

S
h

a
re

 o
f

p
o

w
e

r
(%

)

HIGH-LEVEL MODELLING AND SIMULATION

114

respectively. Initially, Batch 1 receives the entire 0.5 power share left by the reserved

class. At time 2,000 Tus, Batch 2 joins the competition and takes its power share of

0.2, while the power share of Batch 1 drops to 0.3. At a time near 4,800 Tus, Batch 1

becomes completely passive and leaves the system after receiving 15,000 energy units;

therefore, Batch 2 takes the entire 0.5 power share. At approximately 6,250 Tus, the

CPU goes to idle due to the exhausting of the epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 . The above results

illustrate that the proposed algorithm can properly control the power sharing in

dynamic systems where the task weight and number are variable over the time.

 In the above simulation, the length of the user-desired epoch time is not specified

and no mechanism is available to drive the simulation until the end of one epoch.

Therefore, the tasks and the CPU may be put into idle at certain time before the end of

one epoch when the epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 is exhausted. The CPU idle interval before

the end of one epoch is not appreciated by those time-sensitive tasks or applications

that need to provide a smooth user experience over epochs. To extend their execution

to a user-specified epoch time, the energy allocations should be properly set to ensure

that the epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 is rightly exhausted at the end of one epoch. If not,

implicitly we lose the opportunity to improve the whole system performance within the

epoch. Let us assume Real-time and Interactive are the user-preferred tasks, and they

are expecting an epoch time of 8,000 Tus, that is, 800 periods for Real-time and

averagely 160 periods for Interactive. As a result, 24,000 Eus energy has to be reserved

to Real-time and 8,000 Eus energy has to be reserved to Interactive, considering their

average powers being 3 Pus and 1 Pus, respectively. On the other side, the total energy

allocation of the two batch tasks has to be restricted in 18,000 Eus to avoid them

draining the epoch energy 𝐸𝑒𝑝𝑜𝑐ℎ
𝑖 before the expected 8,000 Tus epoch time. This

issue of energy allocation and epoch time achievement will be further investigated in

our later experiments based on a concrete platform.

HIGH-LEVEL MODELLING AND SIMULATION

115

4.5.2 Time-constraint compliance

Table 4.2 statistically compares the performance of Real-time and Interactive under

SEFQ and BSEFQ when they are run against Batch 1 and Batch 2. The results are

based on the statistics of 20 sets of simulation data. Real-time has a total number of

625 deadlines on average. Any service quantum that misses its deadline is postponed

to the later periods. Thus, the deadline of one period may be missed even if the energy

demands in that period are met. Interactive starts a new period if and only if the

quanta service from the previous period has been finished.

Table 4. 2: Comparison in Performance of Time-sensitive Tasks

Reserved

power share

Warp

value

Real-time

Num. deadline

missed
*

Interactive

Mean response

time*

Interactive

Max. response

time*

SEFQ1

Max.

long-term
0 403±20 46.9±0.7 74.5±1.3

SEFQ2 Worst-case 0 1.4±0.4

18.4±0.2 29.8±0.3

BSEFQ1

Max.

long-term

RT >

Inter.
0 14.1±0.1 23.8±0.7

BSEFQ2

Max.

long-term

RT <

Inter.
62.1±2.9 10±0.1 14

* The interval around the mean is based on a 95% confidence interval of Student’s t-distribution.

In SEFQ1, although a reservation of the maximum long-term power share for both

Real-time and Interactive guarantees that all their energy demands are met in the

long-term, the scheduler fails to serve energy timely to meet the time constraints.

Therefore, the real-time performance is very poor: Real-time misses more than half of

its deadlines and Interactive experiences a mean response time that is close to its

average period and a maximum response time that is larger than the average period.

For real-time tasks that are able to abandon the unfinished work and jump to the next

period, a smaller yet significant number of deadlines will be missed.

To improve the real-time performance, SEFQ2 reserves the worst-case power

share for both Real-time and Interactive. In this case, the response time of Interactive

and the deadline compliance of Real-time are significantly improved in comparison

HIGH-LEVEL MODELLING AND SIMULATION

116

with SEFQ1. However, this improvement is achieved at the cost of an overly-reserved

total power share that is at least 0.85 in the worst cases, while the total power share of

Real-time and Interactive is only 0.5 in average. Because of the over-reservation in

power share, only a power share of 0.15 is available for reservation for later-joined

time-sensitive tasks. Besides, Real-time still has the risk to miss a few deadlines; the

number of deadline misses ranges from 0 to 3 in the 20 sets of scheduling results. The

reason is that the energy allocation error in a real scheduling scenario is not

considered when computing the worst-case power share for this simulation. Since the

exact value of the energy allocation error is difficult to determine in real systems, to

ensure the strict time-constraint compliance under SEFQ, a coarse and conservative

power share that is larger than 0.85 is required for reservation.

In comparison with SEFQ, BSEFQ is more flexible and effective in supporting

various types of time-sensitive tasks. It provides stringent deadline compliance and

quick response time when Real-time is given a higher priority (indicated by the warp

value) in BSEFQ1, and achieves the optimal response time for Interactive when it is

favored over Real-time in BSEFQ2. This is because warped time-sensitive tasks are

always scheduled ahead of the normal batch tasks, and the warped task with the

highest priority is scheduled ahead of other warped tasks. In BSEFQ1, the requested

service quanta of Real-time are immediately served when it begins a new period, and

therefore, no deadline is missed; the response time of Interactive is also improved in

comparison with SEFQ, because its service quanta are served right after the ones of

Real-time. In BSEFQ2, since the service quanta of Interactive are always served

before the ones of Real-time, Interactive achieves the best response time while

Real-time misses around 10% of the deadlines. Under BSEFQ, both Real-time and

Interactive are assigned the maximum long-term power share instead of the

worst-case power share; therefore, it avoids the inconvenience and downside of

considering the energy allocation error as in SEFQ. Besides, since a total power share

of only 0.5 is required for power share reservation in BSEFQ, a remaining power

share of 0.5 is available for other tasks.

HIGH-LEVEL MODELLING AND SIMULATION

117

4.5.3 Trading off power share and time-constraint compliance

In systems where soft real-time tasks have highly variable workloads over the time,

high power pulses may appear under the BSEFQ scheduling algorithm when certain

high-priority real-time task is heavily loaded or abnormally behaving during some of

its periods. The high power pulses may violate the power shares of other tasks

(including time-sensitive tasks) and cause the deterioration of their performances. The

warp time limit can be utilized to trade off the power share and the time-constraint

compliance of real-time tasks, so that, on the one hand, the time-constraint

compliance can be guaranteed when the normal energy load of the real-time task does

not impair the power of other user-preferred tasks, and on the other hand, high power

pulses can be restrained when the real-time task is over-requesting energy.

In the following simulation, we show how the warp time limit of BSEFQ can be

properly adjusted to reach a trade-off between the power share and the time-constraint

compliance of real-time tasks. Real-time and Interactive are assumed as

user-preferred tasks; both of them are allowed to warp their starting energy tag to gain

scheduling priority. Besides, Real-time is assigned a higher warp value (indicating

priority) than Interactive. To generate high energy loads in task Real-time, its

workload is deliberately increased to 9 service quanta per period during time 1,000 to

2,000 Tus. Besides, for clarity and without loss of generality, only one batch task

(Batch 1) is considered for energy competition in the simulation.

Figure 4.6 shows the power change of tasks under EFQ when Real-time is

abnormally behaving with high energy loads during time 1,000 to 2,000 Tus. The

graphs are obtained by averaging the scheduling results of 10 repetitive simulations

with different random seeds. To focus on the power changes during the

abnormally-behaving periods, only the scheduling results until time 5,400 Tus are

shown in the graphs.

Figure 4.6-a) shows the task powers under BSEFQ without warp time limit or

SEFQ with Real-time being assigned the worst-case power share. In both cases,

Real-time is allowed to consume a power as high as 9 Pus, which starves Interactive

HIGH-LEVEL MODELLING AND SIMULATION

118

to a power level of 0.5 Pus and causes it suffering a maximum response time of 100

Tus during time 1,000 Tus to 2,000 Tus. Because the performance of the

user-preferred task Interactive is not protected from the abnormal behaviors from task

Real-time, the user experience of the system is greatly degraded by the misbehaving

of Real-time. Besides, the power of Batch 1 is unfairly starved to zero during the

abnormal periods of Real-time.

a) BSEFQ without warp time limit or SEFQ with worst-case power share for Real-time

b) BSEFQ with a 5 Tus warp time limit

Figure 4. 6: Trading off Power Share and Time-constraint Compliance with EFQ

HIGH-LEVEL MODELLING AND SIMULATION

119

Figure 4.6-b) shows the task powers under BSEFQ when the warp time limit of

Real-time is set as 5 Tus. In this case, Real-time is scheduled as the highest-priority

task only within the allowed 5 Tus period of warp time. Once the allowed warp time

expires, Real-time is un-warped; and before its next period begins, it has to compete

with other tasks based on its weight. For this reason, the maximum power of

Real-time is properly controlled under 5 Tus; the 1 Pus power of Interactive and its

performance are protected from the misbehaving of Real-time, and the power of

Batch 1 is preserved to some extent. Note that, because of the power restraining on

Real-time during 1,000 Tus and 2,000 Tus, the unserved service quanta of Real-time

are postponed to the later periods, appears in Figure 4.6 as a 5 Pus power that lasts a

time longer than 1,000 Tus.

According to the above simulation results, we can see that the adjustment of the

warp time limit in BSEFQ plays an important role in protecting and isolating the

power as well as the performance of different tasks.

4.6 Summary

A high-level modelling and simulation of the EFQ scheduling algorithm is

implemented in this chapter. The system-level modelling language SystemC is

employed to build the model because it can simulate concurrent processes and support

cycle-accurate model for software algorithms. In the high-level abstraction, each task

is modelled as a producer that continuously or periodically generates service quantum

requests into one privately-owned FIFO buffer, while the EFQ scheduler and the CPU

are modelled as a consumer that selects from the different FIFO buffers the next

service quantum to serve in each scheduling tick. This producer-consumer model

avoids incurring the complexity of modelling a realistic CPU scheduler, but allows a

convenient characterization of the task energy loads and a flexible adjustment of the

EFQ scheduling algorithm.

Based on the producer-consumer model, a simulation test-bench is developed to

evaluate the EFQ scheduling behaviors from three aspects: power share management,

HIGH-LEVEL MODELLING AND SIMULATION

120

time-constraint compliance, and the ability to balance the power share and the

time-constraint compliance.

The first simulation on power share management shows that EFQ can

successfully share the power among tasks in proportion to the user-specified ratio, and

in addition, EFQ is effective in protecting the power share of target tasks upon the

change of the task number.

The second simulation on time-constraint compliance compares the real-time

scheduling performance of SEFQ and BSEFQ. The results show that the

time-constraint compliance under SEFQ can only be guaranteed when a power share

that is larger than the worst-case power share is assigned, while under BSEFQ, the

real-time performance of time-sensitive tasks can be effectively and flexibly

guaranteed by assigning a power share that is no less than the maximum long-term

power share.

The final simulation demonstrates that by adjusting the warp time limit to restrict

the maximum time that one time-sensitive task can run with high priority, BSEFQ can

balance the power share and the time-constraint compliance of the time-sensitive task,

and avoid potential high power pulses that may be caused by the highly-fluctuating

energy loads of the task. In the next chapter, the proposed EFQ algorithms will be

implemented in the Linux kernel.

LINUX-BASED IMPLEMENTATION

121

Chapter 5

Linux-based Implementation

This chapter presents the implementation of the energy-based fair queuing algorithm

in the Linux. In the first part of this chapter, we introduce the Linux scheduling

subsystem and demonstrate how its architecture can be maximally utilized to

implement the EFQ algorithm. In the second part of the chapter, we develop a

simulation test-bench based on a Linux scheduler simulator. This simulation

test-bench serves two purposes. First, it helps to learn the Linux scheduling subsystem

and debug the Linux-based EFQ implementation from the user space; second, it

allows an assessment of the EFQ scheduling algorithm through simulated energy

loads as in the SystemC-based test-bench. In this dissertation work, the main purpose

of the simulation test-bench is for user-space debugging of the EFQ implementation

in the Linux kernel. The simulation results under this test-bench are not specifically

analyzed in this chapter because they are very similar with those of the

SystemC-based test-bench when the same task characterizations are used as the

simulation input.

5.1 EFQ implementation in the Linux kernel

Linux implements different scheduling polices for real-time and conventional

non-real-time processes. Since the kernel version 2.6.23, the completely fair scheduler

(CFS) has been adopted as the default scheduler for non-real-time process scheduling

in Linux. Because the CFS algorithm is a variant of fair queuing and it shares the

same basic principles with the EFQ algorithm, the organizational structure of the CFS

scheduler has been maximally utilized to ease the code modification of EFQ

implementation. The work is carried out in the Linux kernel V3.3 with around 150

lines of code; it can be ported to the latest kernel versions with minor modifications.

LINUX-BASED IMPLEMENTATION

122

The Linux-based EFQ implementation is abstractly described in Figure 5.1. As

can be seen, the implementation of EFQ requires works from the bottom data

structures and reference tables, to core EFQ scheduling and share management

functions and the system call interface. The different implementation steps will be

introduced in detail in the next five sub-sections.

As shown in Figure 5.1, the default CFS run queue, which is in fact a red-black

tree, is utilized to organize the tasks. The EFQ scheduler operates on the run queue

according to the effective starting energy tag of each task. In the Linux kernel, the

effective starting energy tag is computed based on the kernel load weight of each task,

rather than the effective weight. The parameter flow in Figure 5.1 demonstrates how

the effective starting energy tag in the kernel space is affected by the reserved share

and initial weight in the user space. As can been seen, the reserved share and initial

weight are passed into the kernel space via the extended system call interface to

compute the effective weight; then, by referring to a conversion table with the

effective weight, the corresponding kernel load weight is obtained for computing the

effective starting energy tag.

Figure 5. 1: Abstract Description of the Linux-based EFQ Implementation

LINUX-BASED IMPLEMENTATION

123

The remaining of this section is organized as follows. Section 5.1.1 introduces the

extension of the data structures that is required to support EFQ scheduling in Linux.

Section 5.1.2 presents the modified table that is utilized to convert among the

effective weight, priority and kernel load weight. In section 5.1.3, the core scheduling

functions of Linux is introduced and the EFQ algorithm is implemented within those

functions. In section 5.1.4, the power share protection and reallocation mechanism is

implemented to compute the effective weight and kernel load weight of each task.

Finally, in section 5.1.5, the system call interface is extended to support the creation

and specification of EFQ threads in the user space.

5.1.1 Extend the scheduling-related data structures

Linux employs a series of data structures to sort and manage the processes, these data

structures are mainly defined in include/linux/sched.h and kernel/sched/sched.h, and

their relationships are shown in Figure 5.2.

The task_struct (Figure 5.2-①) is the central data structure that is used to

represent all Linux processes. It contains a large number of elements, including the

task state, scheduling class, priority, process identifier (PID), scheduling policy, and

much more. Many elements are pointers to another data structure. However, because

not all processes are always runnable and schedulable, the task_struct is not directly

managed by the Linux scheduler. Instead, new data structures for scheduling entities

are created to interact with the scheduler. In Linux, based on the sched_class element

in task_struct, processes are generally classified into two classes, the real-time class

and the completely fair share (CFS) class (sometimes also called normal class).

Therefore, the data structure sched_entity (Figure 5.2-②) is created to track the

scheduling information of CFS class tasks and the structure sched_rt_entity (Figure

5.2-③) is to track real-time class tasks.

Correspondingly, Linux implements two types of run queues and schedulers to

manage the scheduling entities of the ready-to-run tasks. Real-time tasks are managed

by the run queue rt_rq (Figure 5.2-⑤); the tasks are queued either in a First-In

First-Out manner (if the policy element in task_struct is SCHED_FIFO) or in a

LINUX-BASED IMPLEMENTATION

124

Round-Robin manner (with the policy set as SCHED_RR). CFS class tasks (with

policy as SCHED_NORMAL, SCHED_BATCH or SCHED_IDLE) are managed by

the run queue cfs_rq (Figure 5.2-⑥); this run queue is in fact a time-ordered

red-black tree where tasks can be inserted or deleted as nodes. The root of the

read-black tree is referred via the rb_root element (Figure 5.2-⑦) within the cfs_rq

data structure, and each node in the tree is represented by the rb_node element (Figure

5.2-⑧) that is included in the sched_entity structure.

Figure 5. 2: Hierarchy of the Scheduling-related Data Structures in Linux

The most important element that is included in the sched_entity structure is the

virtual runtime vruntime. It traces the amount of time one task has run in reference to

the virtual clock and serves as the index of the red-black tree. One task with the

smallest vruntime is inserted into the leftmost position of the tree, and, in the data

LINUX-BASED IMPLEMENTATION

125

structure cfs_rq, a pointer called rb_leftmost (Figure 5.2-⑨) is defined to point to the

leftmost node of the red-black tree. Within the data structure of both rt_rq and cfs_rq,

there is a variable that records the number of active tasks in each queue. The two data

structures are included in the data structure rq (Figure 5.2-④), so that it appears to

the core Linux scheduler that the different types of tasks are managed by only one run

queue. Linux maintains one rq for each processor.

To support the EFQ algorithm in Linux, the first step is to define a new

scheduling policy macro named SCHED_EFQ in the header file include/linux/sched.h

and correlate it to the CFS class so that any process that belongs to this policy will be

handled by the CFS scheduler. Later on, the CFS scheduler should be modified to

implement the EFQ algorithm. But before doing that, the data structure sched_entity is

extended to include EFQ-related elements, such as initial weight, reserved share,

effective weight, standard energy packet size, (effective) starting energy tag and warp

parameters. The extended data structure of sched_entity is shown in Figure 5.3-a).

Figure 5. 3: Extension of the Main Data Structures

struct sched_entity {

struct load_weight load;

struct rb_node run_node;

· · ·

u64 initial_weight;

u64 reserved_share;

u64 effective_weight;

u64 standrad_energy_packet_size;

u64 starting_energy_tag;

u64 starting_energy_tag_effective;

· · ·

u64 warp_value;

u64 warp_time_limit;

u64 cumulative_warp_time;

bool warp_enabled;

· · ·

u64 sum_exec_runtime;

u64 prev_sum_exec_runtime;

· · ·

① u64 sum_consumed_energy;

② u64 prev_sum_consumed_energy;

· · ·

};

struct cfs_rq {

struct load_weight load;

unsigned long nr_running;

· · ·

u64 total_initial_weight;

u64 total_reserved_share;

u64 min_starting_energy_tag;

· · ·

struct rb_root tasks_timeline;

struct rb_node *rb_leftmost;

· · ·

③ u64 total_energy_consumption;

· · ·

};

struct sched_param {

int sched_priroity;

u64 warp_value;

u64 warp_time_limit;

u64 standard_energy_packet;

};

a)

b)

c)

LINUX-BASED IMPLEMENTATION

126

Also, the data structure cfs_rq is extended to include elements like

total_initial_weight, total_reserved_share and min_starting_energy_tag. The elements

total_initial_weight and total_reserved_share are utilized for power share protection

and re-allocation that will be presented in section 5.1.4. The element

min_starting_energy_tag is used to update the system virtual time by tracing the lowest

starting energy tag among all active tasks. The extended data structure of cfs_rq is

shown in Figure 5.3-b).

Note that, extra elements like sum_consumed_energy (Figure 5.3-①) and

prev_sum_consumed_energy (Figure 5.3-②) in data structure sched_entity and

total_energy_consumption (Figure 5.3-③) in data structure cfs_rq are exclusively

added to trace the energy consumption and generate statistic results. Similar elements

are also added into the data structure sched_rt_entity and rt_rq for comparing the

scheduling results under the EFQ scheduler and the default Linux scheduler.

The red-black tree is an efficient and practical implementation of the run queue

for normal tasks. To utilize it in the EFQ implementation, all of its data structures are

kept unchanged. The new element starting_energy_tag_effective of structure

sched_entity is now referred as the index for task insertion on the red-black tree.

When a new process is created, the EFQ-related elements are all initialized to

zero within the do_fork() function; to enable the change of their values after the task

creation, the data structure sched_param in include/linux/sched.h is also extended to

include some of the EFQ-related elements, as shown in Figure 5.3-c). Note that, the

original data structure sched_param only contains one element, sched_priority. The

user-specified element values of sched_param and the scheduling policy macro are

passed from the user space to the kernel space via the system call function

sched_setscheduler(), which should be modified to recognize the SCHED_EFQ

policy and assign values for EFQ-related elements.

LINUX-BASED IMPLEMENTATION

127

5.1.2 Deal with priority and kernel load weight

In the Linux kernel, task priorities are expressed in two forms, the normal priority that

is non-zero and globally uniform to all tasks, and the niceness that is specific to CFS

class tasks. The Linux kernel uses a scale that ranges from 0 to 139 to represent the

process priorities. Larger values indicate lower priorities. Real-time processes always

have higher priorities than CFS class processes; they are reserved the priority range

from 0 to 99. The range from 100 to 139 is allocated to normal processes, this priority

range is mapped to the niceness values in the range [-20, +19]. The Linux kernel

priority scale is shown in Figure 5.4.

Figure 5. 4: The Linux Kernel Priority Scale

Figure 5. 5: Linux Macros for Priority Conversion

To convert between the different forms of priority representation, the following

macros (as shown in Figure 5.5) are defined in include/linux/sched.h and

kernel/sched/sched.h. The MAX_RT_PRIO macro specifies the maximum priority

Real-Time Class Normal/CFS Class

0 99 100 139

Niceness-20 +19

Priority
Higher Lower

include/linux/sched.h

#define MAX_USER_RT_PRIO 100

#define MAX_RT_PRIO MAX_USER_RT_PRIO

#define MAX_PRIO (MAX_RT_PRIO + 40)

#define DEFAULT_PRIO (MAX_RT_PRIO + 20)

kernel/sched/sched.h

#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)

#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)

#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)

LINUX-BASED IMPLEMENTATION

128

value of real-time processes, and the MAX_PRIO macro is the maximum priority

value of CFS class processes. Upon the creation of one normal process, the default

niceness value is 0 with the DEFAULT_PRIO macro set as 120; the process priority

can be adjusted via system call function nice() or set_priority() at any time during

the execution. Similarly, we can change the priority of a real-time task via the system

call function sched_setparam() or sched_setscheduler().

Linux computes the virtual runtime vruntime and the timeslice length of a CFS

class task based on the kernel load weight, which is an element of the data structure

load_weight that is contained in the data structure sched_entity. The load weight is

determined by the process priority, thus, a niceness table is provided in the

kernel/sched/sched.h to convert between the niceness priority and the load weight, as

shown in Figure 5.6. The table contains one weight entry for each nice level in the

range [-20, 19]. For instance, the load weight of a task with a default niceness value of

zero is 1024. The weight values in the array are carefully set so that every process that

decreases the priority by one nice level can get 10 percent more CPU time [39].

Figure 5. 6: The Default Niceness Table of Linux-CFS

To implement the EFQ algorithm based on the CFS architecture, the niceness

table in Figure 5.6 has been modified to allow a proper mapping between the kernel

load weight and the effective weight. The modified niceness table contains 100

elements, with the load weight values ranging from 100 to 10,000 and increasing in a

step of 100, as shown in Figure 5.7. Correspondingly, the nice levels are now

extended to a range of [-50, 49] and mapped to the prio_to_weight array index with a

LINUX-BASED IMPLEMENTATION

129

difference of 50. With the new niceness table, decreasing the priority by one nice

level will increase the load weight by 100; this allows the power share to be reserved

in a resolution of 0.01 from the user space. In addition, the new niceness table enables

a quick search and matching between the effective weight and the kernel load weight,

because the load weight values are all multiples of 100 and have a simple arithmetic

relationship with their array indexes. This point will be illustrated in section 5.1.4.

Figure 5. 7: The Modified Niceness Table for Linux-EFQ

To reflect the range changing of nice levels, the Linux priority scale and the

Linux macros for priority conversion have to be modified accordingly. We extend the

priority scale to the range from 0 to 199, and map the priority range from 100 to 199

to the nice levels of range [-50, 49], as shown in Figure 5.8 and Figure 5.9.

For a newly-created task, because the DEFAULT_PRIO macro is set as 150, its

default niceness value is 0 and the load weight is 5,000 in according to the priority

conversion in Figure 5.8 and the new niceness table in Figure 5.6. Note that, under the

EFQ scheduling, both real-time and normal processes are managed as EFQ class, or

simply fair class. The 0 to 99 priority range for the original Linux real-time class can

LINUX-BASED IMPLEMENTATION

130

actually be cancelled; however, we keep this priority range for creating privileged

threads that are used to trace task energy consumptions in the experimental

test-bench.

Figure 5. 8: The Extended Priority Scale for Linux-EFQ

Figure 5. 9: Modified Linux Macros for Priority Conversion

5.1.3 EFQ implementation within the core scheduling functions

The Linux scheduler relies on two core scheduling functions: the periodic scheduler

function scheduler_tick and the main scheduler function schedule. The related

functions are mainly defined in the files kernel/sched/core.c, kernel/sched/fair.c and

kernel/sched/rt.c. Understanding the related functions of the periodical scheduler and

the main scheduler is pivotal to the EFQ implementation.

5.1.3.1 The periodic scheduler function scheduler_tick

The periodic scheduler function scheduler_tick is automatically called when a

software interrupt is generated by the scheduling timer. Its main assignment is to

update the scheduling-related elements of the current task (being served on the CPU)

Original Linux Real-Time Class Fair/EFQ Class

0 99 100 199

Niceness-50 +49

Priority
Higher Lower

include/linux/sched.h

#define MAX_USER_RT_PRIO 100

#define MAX_RT_PRIO MAX_USER_RT_PRIO

#define MAX_PRIO (MAX_RT_PRIO + 100)

#define DEFAULT_PRIO (MAX_RT_PRIO + 50)

kernel/sched/sched.h

#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 50)

#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 50)

#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)

LINUX-BASED IMPLEMENTATION

131

and determine whether the current task should be preempted by another one. The code

flow diagram in Figure 5.10 provides an overview of the main functions in

scheduler_tick.

Figure 5. 10: Code Flow Diagram for the Periodic Scheduler Function scheduler_tick

Depending on the scheduling class of the current task, different functions are

called to implement the periodic scheduler. In the figure, the function task_tick_fair

(Figure 5.10-①) is called because the current task belongs to the CFS class. However,

if the current task belongs to the real-time class, the function task_tick_rt (Figure

5.10-②) will be called by scheduler_tick. In this thesis, we only focus on function

task_tick_fair because it is where the core of the CFS scheduling algorithm is

implemented. Inside the function task_tick_fair, there are two core functions known

as update_curr (Figure 5.10-③) and check_preempt_tick (Figure 5.10-④). The

function update_curr does two important things, the first is to update the current task

scheduler_tick

curr->sched_class->task_tick

task_tick_fairtask_tick_rt

entity_tick

update_curr

More than one active process

in the CFS run queue?

__update_curr

Update physical run time and

vruntime of the current process

Update the min_vruntime

of the CFS run queue

check_preempt_tick

Timeslice expired?

resched_task

①②

③

④

⑤

sched_class = CFS

LINUX-BASED IMPLEMENTATION

132

timing information, including the physical run time and the virtual run time vruntime,

and the second is to update the minimum virtual run time min_vruntime of all active

tasks in the CFS run queue. After the update, the function check_preempt_tick (Figure

5.10-④) is called to determine whether a process rescheduling should be executed. If

the current task has used up its timeslice and needs to be rescheduled, the function

resched_task (Figure 5.10-⑤) will be called to set the TIF_NEED_RESCHED flag.

Up to this point, the main assignment of the periodical scheduler function

scheduler_tick is done. When the kernel returns from the software interrupt of the

scheduling timer, the main scheduler function schedule will be called to carry out the

process rescheduling operations.

To maximize the code sharing between the default Linux-CFS scheduler and the

EFQ scheduler, the main work of EFQ implementation is taken place inside the

function update_curr (Figure 5.10-③) and function check_preempt_tick (Figure

5.10-④). The details are given in section 5.1.3.3.

5.1.3.2 The main scheduler function schedule

The main scheduler function schedule can be called from many points in the kernel to

execute the process rescheduling operations. It is either directly called within the

current process or called with some delay after the kernel is returning from interrupts

and system calls. The first situation happens when the current task is blocked for

resource uses or goes to idle, while the second situation happens when the current task

finds itself using up the timeslice in a scheduling tick, or a task with higher priority is

woken up, or an active task in the run queue changes its scheduling policy and priority.

In the second situation, the function need_resched is first called to check the

TIF_NEED_RESCHED flag; the main scheduler function schedule continues to be

executed only in condition that the TIF_NEED_RESCHED flag is set.

The main scheduler function schedule is in charge of removing the current

process from the CPU, selecting the next process to execute, and implementing the

context switch between the two processes. The code flow diagram in Figure 5.11

provides a simplified overview of the main functions inside schedule.

LINUX-BASED IMPLEMENTATION

133

Figure 5. 11: Code Flow Diagram for the Main Scheduler Function schedule

Again, different functions may be called to implement the main scheduler

depending on the scheduling class; only those functions that are related to the CFS

class are shown in Figure 5.11. When the current process needs to be removed from

the CPU, the function put_prev_task_fair (Figure 5.11-①) is called to move the

current process to the CFS run queue that is based on the red-black tree. A task is

inserted into the red-black tree via the function rb_entry (Figure 5.11-②). Note that,

__schedule

Preparation works: such as update

run queue and current task

put_prev_task

schedule

put_prev_task_fair

put_prev_entity

__enqueue_entity

rb_entry(parent, ,)

pick_next_task

pick_next_task_fair

pick_next_entity

__pick_first_entity

rb_entry(leftmost, ,)

Next task is not the current task?

context_switch

clear_tsk_need_resched

Post-schedule works

set_next_entity

__dequeue_entity

rb_erase(&se->run_node, ,)

①

②
③

④

⑤

⑥
⑦

⑧

LINUX-BASED IMPLEMENTATION

134

within the main scheduler function schedule, the current task is referred as the

previous task prev_task due to the process switch that is going to happen. After the

removal of the previous process, the function pick_next_task_fair (Figure 5.11-③) is

called to select the next task to dispatch. This function does two things. First, it calls

the function pick_next_entity (Figure 5.11-④) to select the leftmost process in the

red-black tree, that is, the process with the lowest virtual run time vruntime. Second, it

calls the function set_next_entity (Figure 5.11-⑤) to remove the selected task from

the red-black tree and set the pointer rb_leftmost of the data structure cfs_rq to the

new leftmost task in the red-black tree. The leftmost task of the red-black tree is

picked also via the function rb_entry, while its removal is achieved via the function

rb_erase (Figure 5.11-⑥). After the current task is removed from the CPU and the

next task is selected from the CFS run queue, the TIF_NEED_RESCHED flag of the

current task is cleared via the function clear_tif_need_resched (Figure 5.11-⑦), and

finally, the context switch (Figure 5.11-⑧) between the two processes is executed.

5.1.3.3 EFQ implementation

As mentioned earlier in section 5.1.3.1, to maximize the code sharing between the

default Linux-CFS scheduler and the EFQ scheduler, the EFQ implementation work is

mainly carried out inside the CFS class functions update_curr and

check_preempt_tick. These two functions are included in the CFS class function

task_tick_fair, which is defined in the file kernel/sched/fair.c and called by the

periodic scheduler function scheduler_tick. Figure 5.12 shows a simplified flow chart

of the EFQ implementation based on the periodic scheduler function scheduler_tick.

The readers are advised to refer back to Figure 5.10 to have a complete view of the

periodic scheduler. The main scheduler function schedule and its related CFS class

functions keep unchanged and are directly utilized by the EFQ scheduler. Especially,

by employing the new element starting_energy_tag_effective of the data structure

sched_entity as the index for task insertion on the red-black tree, the CFS run queue is

fully utilized by the EFQ scheduler for process queuing operations.

LINUX-BASED IMPLEMENTATION

135

Figure 5. 12: Flow Chart of EFQ Implementation within the Periodic Scheduler

scheduler_tick

In Figure 5.12, the function task_tick_fair is periodically called for EFQ

scheduling if the current task belongs to the EFQ class. Then, task_tick_fair calls the

update_curr function to update the execution time and EFQ-related variables of the

current task.

Inside the update_curr function, the first assignment is to check the scheduling

environment. For a task whose reserved share is zero, if there has been a change of the

active task set, or the reserved share and initial weight of certain task have been

periodic

scheduler_tick

update_curr

nice resetting

update

starting_energy_tag

waiting for

next tick

share&weight

updated ?

YES

NO

within

warp_time_limit

?

warping
YES

NO

SCHED_EFQ

check_preempt_tick

within one

time_quantum ?

YES

NO

return

reserved_share

is 0 ?

YES

NO

task_tick_fair

warp enabled ?

update

system_virtual_energy

update

cumulative_warp_time

YES

NO

can be warped ?
YES

resched_task schedule

need_resched

starting_energy_tag_effective

LINUX-BASED IMPLEMENTATION

136

changed, the nice level as well as the kernel load weight of the task should be

recomputed before updating the starting energy tag; however, for a task with a

non-zero reserved share, its kernel load weight should be kept unchanged and nice

resetting is not required. The method of nice resetting is introduced in section 5.1.4.

Then, the next assignment is to update the system virtual energy and the

cumulative warp time of the current task. Recall that the system virtual energy is

updated through the new element min_starting_energy_tag of the data structure

cfs_rq. The operation of updating the system virtual energy is executed only in

condition that the task is not warped; this ensures that the system virtual energy is

monotonically non-decreasing and it always traces the lowest starting energy tag of all

active tasks. Instead, if the current task has been running warped, its cumulative warp

time is updated by adding the task execution time since its last update. After that, we

update the starting energy tag of the current task. The starting energy tag is updated

based on the task execution time, energy packet size and kernel load weight.

Finally, we implement the warp mechanism and compute the effective starting

energy tag. A predefined warp value is subtracted from the starting energy tag of the

current task if it is time-sensitive and the continuous time it has been running with

warp in the current period is less than the warp time limit. A time-sensitive task that

reaches to its warp time limit will keep the original starting energy tag; however, the

task will be allowed to warp the energy tag another time once its next period starts.

Once the above works have been done, the periodic scheduler will check if the

current task should be preempted by another task by calling the check_preempt_tick

function. If the task execution time is within one scheduling time quantum, nothing is

to be done until the next scheduling tick occurs; otherwise, the resched_task function

is called to set the TIF_NEED_RESCHED flag of the current task. After the kernel

returns from the scheduling tick, the main scheduling function schedule is called to

determine the next task to be dispatched by comparing the effective starting energy

tag of the current task with the effective starting energy tag of the left-most task in the

red-black tree-based run queue cfs_rq. If the current task has a smaller effective

starting energy tag (especially when the task has a large power share or it is running

LINUX-BASED IMPLEMENTATION

137

with a wrap), it will stay on the CPU for another time quantum; otherwise, the current

task is forcibly removed from the CPU and inserted back to the run queue based on its

effective starting energy tag, while the scheduler will make a context switch to the

left-most task in the red-black tree.

Besides of the virtual energy updating in the periodic scheduler, the EFQ

scheduler should also update the virtual energy and the run queue cfs_rq when a new

task is launched or an old task wakes up and re-joins the energy competition. Figure

5.13 shows the flow chart of EFQ implementation upon task launch or wakeup.

Figure 5. 13: Flow Chart of EFQ Implementation upon Task Launch or Wakeup

task launch or

wakeup event

SCHED_EFQ

enqueue_entity

activate_task

starting_energy_tag <

system_virtual_energy ?

starting_energy_tag =

system_virtual_energy

enqueue the entity

into the red-black tree

return

YES

NO

enqueue_task_fair

update_curr

update cfs_rq

LINUX-BASED IMPLEMENTATION

138

As shown in Figure 5.13, an event of task launch or wakeup will interrupt the

current kernel work, and then, the newly-joined task is activated via the activate_task

function, which further calls the enqueue_task_fair function to complete the

activation work for EFQ class tasks. Inside the enqueue_task_fair function, the main

work is done via the enqueue_entity function. It first calls the update_curr function to

update the EFQ-related statistics of the current task in service, and then, the starting

energy tag of the newly-activated task is updated. To prevent the newly-activated task

from continuously occupying the CPU with a considerably smaller energy tag, the

starting energy tag of the newly-activated task is updated to the value of the system

virtual energy of the run queue cfs_rq if it has a smaller value. After the updating

work is done, the newly-activated task is inserted into the run queue cfs_rq based on

the energy tag, and the number of active tasks as well as the total weight load of the

cfs_rq are updated before the kernel returns to its original work.

5.1.4 Implement the share protection and reallocation

The flowchart of share protection and reallocation is demonstrated in Figure 5.14, the

related functions are defined mainly in kernel/sched/fair.c. The module of share

management may be called upon four events: new task launching (Figure 5.14-①),

share or weight adjusting (Figure 5.14-②), old task leaving (Figure 5.14-③), and the

request of nice resetting from the update_curr function (Figure 5.14-④).

When a new task is launched (Figure 5.14-①), or the reserved share and initial

weight of an old task are modified (Figure 5.14-②) in the user space, the values of

the reserved share and initial weight are passed into the kernel space to update the

corresponding variables in the sched_entity structure. This update event will be later

detected in the update_curr function (Figure 5.14-④) that is periodically performed

by the scheduling tick, so that other tasks can have the chance to adjust the effective

weight if necessary. To avoid incurring float computation in the kernel space and

reduce the scheduling overhead, the reserved share is scaled up by 10,000 in the user

space.

LINUX-BASED IMPLEMENTATION

139

Figure 5. 14: Flowchart of Power Share Management

After the updating of the reserved share and initial weight, the module of

effective_weight_computation is called to compute the effective weight for the task. If

the task is an important or time-sensitive one that is holding a non-zero reserved share,

the effective weight is equal to the reserved share; otherwise, as shown in the figure,

the effective weight should be computed based on the total reserved share, the total

initial weight of all active tasks, and the initial weight of the concerned task.

Finally, the effective weight is passed to the nice_resetting module to compute

the nice value and niceness table index, and the kernel load weight is set to be the

indexed value of the niceness table. With the modified niceness table for the EFQ

policy in Figure 5.7, the niceness table index and the nice value can be easily

system call interface

new task

launching

initial_weight

reserved_share * 10000

share & weight update in kernel

reserved_share

is 0 ？
effective_weight

= reserved_share

effective_weight =

(10000 - total_reserved_share) *

initial_weight /total_initial_weight

effective_weight_computation

nice_resetting

niceness_table_index =

100 – (effective_weight / 100)

niceval =

niceness_table_index - 50

 set_user_nice(curr,niceval)
kernel_load_weight =

niceness_table[niceness_table_index]

nice resetting

request

update_curr

old task

leaving

total_reserved_share += reserved_share

total_initial_weight += initial_weight

total_reserved_share -= reserved_share

total_initial_weight -= initial_weight

User

space

Kernel

space

share & weight

adjusting

NO

YES

① ② ③

④

LINUX-BASED IMPLEMENTATION

140

computed as shown in Figure 5.14. In Linux, the set_user_nice function is specifically

defined to set the nice value and the kernel load weight of tasks.

In the case when an old task leaves the system after finishing its work (Figure

5.14-③), we only update its kernel-space reserved share and initial weight at that

time. This event of share and weight updating will be detected by the update_curr

function (Figure 5.14-④) in a later moment, if the task that calls the update_curr

function is a normal task with no share reservation, the effective_weight_computation

module and nice_resetting module will be called to reset its nice value and kernel load

weight.

5.1.5 Extend the system call interface

The final step of EFQ implementation concerns the extension of the system call

interface. Figure 5.15 shows a list of the system calls that are specifically designed for

EFQ scheduling.

Figure 5. 15: List of System Calls for EFQ Scheduling

// create a task and initialize the EFQ-related variables

sys_clone;

// set scheduling policy, priority and EFQ-related variables after task creation

sys_sched_setscheduler;

// update the share and weight when a new thread joins the system

sys_thread_join;

// update the share and weight when an old thread leaves the system

sys_thread_leave;

// adjusts the share and weight of a thread during its execution

sys_weight_adjust;

// reset the warp value and warp time limit

sys_warp_reset;

// adjust the energy packet size of a thread during its execution

sys_powert_adjust;

LINUX-BASED IMPLEMENTATION

141

First, the existing system call sys_clone and its related kernel functions are

modified to allow the initialization of EFQ-related variables when a thread is created

or a process is forked. Then, another existing system call sys_sched_setscheduler and

its related function sched_setscheduler are modified so that the new scheduling policy

SCHED_EFQ can be recognized and set as the policy of the created task structure;

this system call is also used to pass EFQ parameters, such as warp, warp time limit

and energy packet size, to the task structure of a thread right after it is created.

Besides, several new system calls have been implemented to enable the user

space thread to interact with its kernel task structure during the whole life cycle of the

thread. Specifically, the system call sys_thread_join and sys_thread_leave allow

updating the share and weight in the kernel space when a new thread joins the system

and an old thread finishes the work, respectively; the system call sys_weight_adjust

allows the thread adjusting its share and weight in the middle of the thread execution;

the system call sys_warp_reset allows resetting the warp value and warp time limit;

and the system call sys_power_adjust allows changing the energy packet size of the

thread based on the executed codes in the program.

5.2 Simulation-based debugging

In the previous section, we have introduced the EFQ implementation based on the

Linux scheduling subsystem; in this section, a simulation test-bench that relies on the

EFQ-embedded Linux scheduling subsystem is further presented for user-space

debugging of the EFQ implementation in the Linux kernel. This simulation test-bench

is based on a Linux scheduler simulator called LinSched [79], which is able to

simulate the scheduling behavior of the Linux scheduler in an isolated user-space

environment. Such a simulation test-bench is very useful because it can be used to

verify the scheduling behavior of the Linux-based EFQ scheduler from the user space.

Debugging the EFQ implementation on Linux is now as easy as debugging a user

space program by employing traditional Linux debugging tools like the GDB

debugger. This greatly eases the EFQ implementation in this thesis work. If the EFQ

LINUX-BASED IMPLEMENTATION

142

scheduling algorithm is found with any problem during the simulation, we can simply

debug the EFQ scheduler with breaking points, modify the EFQ codes, re-compile the

simulation test-bench program, and re-check the updated EFQ scheduling behaviors

without incurring the trouble of recompiling the whole Linux kernel and rebooting it

on hardware platforms. The LinSched-based test-bench allows a pre-evaluation of the

Linux-based EFQ scheduling algorithm before moving to its complete

implementation and assessment on a concrete computing platform.

In the remaining of this section, we will first have an overview of the Linux

scheduler simulator Linsched; then we go deep into its simulation engine API and

show how the API can be extended to support the EFQ scheduling simulation and

debugging from the user space; finally, a LinSched script is given to demonstrate how

to create an EFQ scheduling simulation scenario based on the extended Linsched API

functions. Note again that, the simulation results under the LinSched-based test-bench

are not specifically analyzed in this dissertation work because they are very similar to

those of the SystemC-based test-bench when the same task characterizations are used

as the simulation input.

5.2.1 The Linux scheduler simulator

The Linux scheduler simulator (LinSched) [79] is an open-source tool that hosts the

Linux scheduling subsystem in an isolated user-space environment. It can be used to

observe and modify the behaviour of the Linux kernel scheduler on various platforms

and workloads independently of other Linux subsystems, and it offers stable and

repeatable scheduling results that are not affected by the program operating

environment. These features make it a valuable tool in simulating and prototyping

new Linux scheduling policies, such as the EFQ algorithm.

The overall architecture of LinSched is illustrated in Figure 5.16. LinSched is a

user-space program that consists of four main components: stimulti, simulation

engine, environment module, and portions of the Linux kernel (including the Linux

scheduler subsystem). At the bottom level is the host operating system that runs the

LINUX-BASED IMPLEMENTATION

143

LinSched program. The Linux kernel of the host operating system is not necessarily

the same as the one included in the LinSched program, in fact, they are totally

independent of each other.

Figure 5. 16: Architecture of the LinSched Scheduler Simulator [79]

The environment module provides a minimum emulation of the necessary

components of the Linux kernel so that the Linux scheduler can be executed outside

of the kernel. It satisfies the code dependencies of the Linux scheduling subsystem

and the simulation engine by abstracting the indispensable functions and macros, most

of which are supplied directly by including a subset of the Linux kernel source and

header files. On the environment module is the simulation engine, which provides an

Application Programing Interface (API) than can be used to run a simulation and

interact with the Linux scheduling subsystem. Through the API functions, the

simulation engine can control the simulation and call appropriate scheduler functions

from the kernel source files to simulate the Linux scheduling. Additionally, the API

can call functions to create tasks with specific workloads and initialize the kernel

environment emulation with user-specified processor topologies. Finally, above the

simulation engine is the stimuli. It is a scripting environment that performs a set of

Host Operating System

Linux

Scheduling Subsystem

Portions of Linux Kernel Source Files

Environment

Module

Simulation Engine

Script Interpreter

Simulation Script
Stimuli

User

Space

LINUX-BASED IMPLEMENTATION

144

API functions to set up the desired test-bench scenario. The simulation scripts can be

parameterized to run simulations based on a variety of different workloads and

platforms.

The LinSched simulator was originally developed at the University of North

Carolina based on the Linux version 2.6.23 [80]. It was later revived by Google based

on the Linux version 2.6.35 to validate the behaviour of the Completely Fair Share

(CFS)-based Linux kernel scheduler [81]. The latest LinSched simulator is based on

the Linux kernel version 3.3-rc7 [82], it is employed to design the simulation

test-bench and prototype the EFQ scheduling algorithm in this work. The LinSched

repository is actually the Linux kernel sources 3.3-rc7 with a new subdirectory called

linsched under the tools directory. The LinSched source code for the environment

emulation module and simulation engine is contained in the tools/linsched

subdirectory. In this work, the LinSched-based test-bench program is compiled using

the GCC 4.6.3 compiler under the 64-bit Ubuntu 12.04 LTS OS.

5.2.2 Extend the LinSched API for EFQ simulation and debugging

To develop a simulation test-bench with LinSched, it is important to know the main

LinSched simulation engine API functions and understand how they interact with the

Linux scheduling subsystem and the environment emulation module.

Figure 5. 17: List of Main LinSched Simulation Engine API Functions

// initialize the Linux scheduling subsystem and environment emulation module

linsched_init;

// create a CFS class task with the scheduling policy marked as SCHED_NORMAL

linsched_create_normal_task ;

// create a task data structure that defines the call back function and sleep/run pattern

linshced_create_sleep_run;

// runs the simulation for a number of timer ticks

linsched_run_simulation;

// print out the simulation results and individual task statistics

linsched_print_task_stats;

LINUX-BASED IMPLEMENTATION

145

Figure 5.17 provides a list and simple description of the most important LinSched

API functions. To know more details on these functions, the readers are advised to

refer to the paper [79] and LinSched source code [82].

To design the LinSched simulation test-bench and utilize it for user-space EFQ

debugging, the original LinSched simulation engine API should be extended not only

to create tasks that are managed by the EFQ scheduler but also to support the

specification of the energy load for each task.

To start with, a new LinSched API function is defined for creating EFQ tasks. As

shown in Figure 5.18, the function first creates a task with certain task data td (Figure

5.18-①), then it sets the scheduling policy of the task as SCHED_EFQ and passes

the EFQ-related parameters to the kernel functions via the system call function

sched_setscheduler (Figure 5.18-②), finally it passes the reserved share and initial

weight to the kernel functions and sets the nice and kernel load weight of the task via

the system call function thread_join (Figure 5.18-③).

Figure 5. 18: The New LinSched API Function for Creating EFQ Tasks

struct task_struct *linsched_create_EFQ_task

(struct task_data *td, float reserved_share, int initial_weight,

u64 warp_value, int warp_time_limit)

{

struct sched_param params = { };

struct task_struct *p;

int id = num_tasks++;

assert(id < LINSCHED_MAX_TASKS);

① /* Create task with task data td*/

p = __linsched_tasks[id] = __linsched_create_task(td);

__linsched_set_task_id(p,id);

② /* Initialize scheduling priority and EFQ-related variables */

params.sched_priority = 0;

params.warp_value = warp_value;

params.warp_time_limit = warp_time_limit;

② /* Set scheduling policy and pass EFQ-related variables */

sched_setscheduler(p, SCHED_EFQ, ¶ms);

③ /* Pass the share and weight, set the nice and kernel load weight*/

thread_join(p, reserved_share, initial_weight);

assert(current->cgroups->subsys[0]);

assert(p->cgroups->subsys[0]);

return p;

}

LINUX-BASED IMPLEMENTATION

146

The task data td determines the energy requesting pattern of each task. To

simulate the energy loads of normal batch tasks, interactive tasks and real-time tasks,

we have implemented three new LinSched API functions to create different task data

structures. Figure 5.19 shows the API function for interactive tasks. The API

functions for real-time and batch tasks are not specifically given as they are similar

and simpler.

Figure 5. 19: The LinSched API Function for Generating Energy Loads of Interactive Tasks

struct task_data *linsched_create_sleep_run_interactive

(int period_average, int period_range, int busy_average, int busy_range,

int energy_packet_size_ave, int energy_packet_size_range)

{

struct task_data *td = malloc(sizeof(struct task_data));

struct sleep_run_task *d = malloc(sizeof(struct sleep_run_task));

d->task_type = 1; //Mark this task as an interactive task

① /* Initialize the energy packet size*/

d->min_energy_packet_size = energy_packet_size_ave - energy_packet_size_range;

d->max_energy_packet_size = energy_packet_size_ave + energy_packet_size_range;

① /* Initialize the busy time of one period */

d->min_busy = busy_average - busy_range;

d->max_busy = busy_average + busy_range;

d->busy = random(d->min_busy,d->max_busy);

① /* Initialize the length of one period */

d->min_period = period_average - period_range;

d->max_period = period_average + period_range;

d->period = random(d->min_period, d->max_period);

① /* Initialize the sleep time of one period */

d->sleep = d->period - d->busy;

② /* Initialize the variables used for generating scheduling statistics */

d->cumulative_period_time = d->period;

d->n_deadline_missed = 0;

d->n_deadline_met = 0;

d->response_cumulative = 0;

d->response_maximum = 0;

d->task_create_time = current_time;

③ /* Initialize the sleep run functions with the defined task data*/

sleep_run_init(&d->sr_data);

td->data = d;

td->init_task = sleep_run_start;

td->handle_task = sleep_run_handle;

return td;

}

LINUX-BASED IMPLEMENTATION

147

As can be seen in Figure 5.19, this API function first initializes the range of

period, busy time, sleep time and energy packet size for interactive tasks (Figure

5.19-①). All of the above parameters are fluctuating ones and their values are

generated over the time with the random function. Besides, to generate scheduling

statistics of the simulation, some extra parameters are defined to record the task

response time and count the deadline misses (Figure 5.19-②). Finally, the sleep run

functions are initialized and the task data is set to be handled by the sleep_run_handle

function (Figure 5.19-③), which is the core function to control the energy load

simulation based on the task data td->data. To avoid incurring too much complexity,

we will not go into the details on how the sleep_run_handle function is implemented.

Besides of the above extensions on the Linsched API, the API function

linsched_run_sim and linsched_print_task_stats have also been modified to allow the

recoding of EFQ scheduling results. Inside the linsched_run_sim, a piece of code has

been inserted so that the simulation test-bench can periodically sample the cumulative

energy consumption of each task into a text file; also, an energy budget has been set

so that the test-bench can terminate the simulation once the energy budget is used up.

In the linsched_print_task_stats, the response time and deadline misses of

time-sensitive tasks have been computed and sent to the scheduling statistics files.

5.2.3 An EFQ simulation scenario

With the extended LinSched API interface, we are now ready to create the EFQ

simulation test-bench based on the EFQ implementation in the Linux scheduling

subsystem.

Figure 5.20 shows a LinSched script for an EFQ scheduling scenario that is

characterized in Table 5.1. The scheduling scenario is the same as the one in Table 4.1

of the SystemC-based simulation.

LINUX-BASED IMPLEMENTATION

148

Figure 5. 20: A LinSched Script for EFQ Simulation based on Linux

Table 5. 1: Characterization of Tasks for A Linux-based Simulation of EFQ

 Real-time Interactive Batch 1 Batch 2

Period (Tus) 10 50±10 N/A N/A

Num. of service quanta / period 3±1 10±4 N/A N/A

Energy packet size (Eus) 10±3 5±2 8±1 8±3

Reserved share 0.375 0.125 0 0

Initial weight 0 0 3 2

Launch time / Delay (Tu) 0 0 0 2000

In the script, we first create a real-time task with fixed-length period, an

interactive task with variable period, and a batch task that is continuously busy before

its termination; after running the simulation for 2,000 Tus, we launch another batch

task to join the simulation. All the tasks have a variable size of the energy packet.

void linsched_test_main(int argc, char **argv)

{

linsched_init(); // Initialize the simulator

// Create a real-time task, period fixed at 10 Tus, requests 3±1 time quanta per period, energy packet size

is 10±3 Eus, power share reserved as 0.375, warp value set as 80000000, warp time limit is 4 Tus

linsched_create_EFQ_task(linsched_create_sleep_run_rt(10, 3, 1, 10, 3), 0.375, 0, 80000000, 4);

// Create an interactive task, variable period of 50±10 Tus, requests 10±4 time quanta per period, energy

packet size is 5±2 Eus, power share is 0.125, warp value set as 20000000, warp time limit is 14 Tus

linsched_create_EFQ_task(linsched_create_sleep_run_interactive(50, 10, 10, 4, 5, 2), 0.125, 2000000,

14);

// Create a batch task, it is busy 100% of the time, energy packet size is 8±1 Eus, initial weight is 3

linsched_create_EFQ_task(linsched_create_sleep_run(0, 100, 8, 1), 3);

// Run the simulation for 2000 time units (Tus) or timer ticks

linsched_run_sim(2000);

// Create a batch task with a delay of 2000 Tus, it is busy 100% of the time, energy packet size is 8±3,

initial weight is 2

linsched_create_EFQ_task(linsched_create_sleep_run(0, 100, 8, 3), 3);

// Run the simulation for another 6000 Tus

linsched_run_sim(6000);

// Print out the task statistics

linsched_print_task_stats();

return;

}

LINUX-BASED IMPLEMENTATION

149

Specifically, the real-time task and interactive task both have a variable number of

service quanta per period; they are reserved a power share of 0.375 and 0.125,

respectively. The two batch task has no share reservation; they compete for energy

with the initial weight, being 3 and 2, respectively. There is a total energy budget for

the whole simulation, and every task can be set with an energy budget. If a task finds

itself using up its energy budget, it will goes to idle and leaves the energy competition.

The test-bench will terminate the whole simulation and output the simulation results if

the total energy budget is used up.

5.3 Summary

In this chapter, the EFQ algorithm is implemented within the Linux scheduling

subsystem. Since the Linux-CFS scheduler is an implementation of the fair queuing

algorithm in processor scheduling, the organizational structure of the CFS scheduler

has been maximally utilized to implement the EFQ scheduler. To add fundamental

supports to the EFQ algorithm, the scheduling-related data structures, the priority

scale and the load weight scale in Linux are firstly extended. Then, the main

components of the EFQ algorithm, including the starting tag computation, the system

virtual energy updating and the warp mechanism, are implemented within the core

scheduling functions of the Linux scheduler, and the parameter based on which the

tasks are inserted into the run queue is set as the effective starting energy tag. In this

way, the tasks can be managed with the default Linux scheduler but the scheduling

decisions are made according to the EFQ policy. After that, the power share

protection mechanism is implemented within and on top of the core Linux scheduling

functions, this mechanism can detect the change of the scheduling environment and

re-compute the effective weight for each task. Finally, the system call interface of

Linux is extended to allow kernel-space EFQ class tasks interacting with the

user-space threads or processes.

To debug the EFQ implementation, the simulation engine API of the Linux

scheduler simulator LinSched is extended to add the support of EFQ scheduling

LINUX-BASED IMPLEMENTATION

150

simulation, and based on that, a simulation test-bench is developed to isolate the

Linux scheduling subsystem and simulate the EFQ scheduling behavior in the user

space. This allows a convenient debugging of the Linux-based EFQ implementation

from the user space. With the LinSched-based simulation test-bench, the EFQ

implementation can be verified through a comparison of the simulating results with

those of the SystemC-based high-level simulation. At the end of the chapter, a

LinSched script is provided as an example of creating one simulation scenario for the

Linux-EFQ scheduler. In the next chapter, the experimental test-bench based on a

concrete computing platform will be introduced to verify the Linux-based EFQ

implementation.

EXPERIMENTAL TEST-BENCH

151

Chapter 6

Experimental Test-bench

The implementation of the Linux-based EFQ scheduler is further verified though

experiments that are based on a concrete computing platform. This chapter presents

the test-bench design of the experiments. It starts with an overview of the test-bench

architecture and the experimental method, and then, continues with an introduction on

the computing platform and the power supply and measurement system; after that,

follows a presentation of the benchmarks employed in the experiments and the

method to characterize their energy loads; finally, it ends with a presentation of the

multithreading test-bench program that is employed to generate experimental results.

6.1 Test-bench and methodology overview

6.1.1 Test-bench architecture

The architecture of the test-bench for EFQ assessment is shown in Figure 6.1.

Figure 6. 1: Architecture Overview of the Experimental Test-bench

EXPERIMENTAL TEST-BENCH

152

As can be observed, the test-bench consists of two parts, the experimental

platform and the power supply and measurement system.

The experimental platform is an ARM-based Linux computing platform which

hosts a multithreading test-bench program and an open-source benchmark suite. The

multithreading test-bench program is in charge of creating different scheduling

scenarios and generating statistic results, threads created by the program are managed

by the EFQ scheduler that is implemented in the Linux OS of the computing platform.

The benchmarks are employed to program the thread functions of the multithreading

test-bench program. In the following sections, we will provide an expanded

description of the computing platform, the benchmarks, and the multithreading

test-bench program.

The power supply and measurement system is composed of three modules: a

DC-DC converter, a battery emulator, and a power measurement unit. The DC-DC

converter is contained in a portable Lithium-ion battery pack; it is used to boost the

battery voltage output to a proper level of the computing platform. The battery

emulator is composed of a programmable power source and a Labview-based battery

simulation program; it can emulate the battery voltage output and is employed to

replace a real Lithium-ion battery. The power measurement unit is internally

contained in the programmable power supply device; it is used to profile the power

consumption of the whole experimental platform, the measured voltage and current

values are returned to the Labview program, through which the measuring frequency

can be configured. A detailed description of the power supply and measurement

system is provided in section 6.3.

6.1.2 Experimental methodology

The functioning of the EFQ scheduler relies on an online real-time feeding of the

power information of each task or thread. Therefore, the ideal way to assess the

Linux-based EFQ scheduler is to build a complete energy-centric system with the

energy allocation and energy accounting module properly implemented.

EXPERIMENTAL TEST-BENCH

153

However, build the whole energy-centric system is a huge and complex project,

not to mention that there are several unsolved yet challenging problems in energy

modeling and activity tracing.

In our test-bench that is shown in Figure 6.1, unfortunately, it is neither able to

feed the power consumption of each task to the EFQ scheduler in real-time nor able to

account the energy consumption to the correct thread. However, the test-bench still

allows carrying out a simplified experimental work that solely focuses on the

scheduling assessment. To achieve that, a two-phase experimental methodology as

demonstrated in Figure 6.2 is employed in this work.

Figure 6. 2: Overview of the Experimental Methodology

While the first phase is focused on the power profiling of each benchmark, the

second phase is where different EFQ scheduling experiments are carried out and

statistic results are obtained. In the first phase, each benchmark is individually

launched and run on the experimental platform; and in the meantime, the power

consumption is profiled via the power measurement unit that periodically samples the

voltage and current of the experimental platform. After repeating this process for each

benchmark, we can obtain the power profiles of all benchmarks at the end of the first

phase. In the second phase, we use the benchmarks and their power profiles to

program the threads of the multithreading test-bench program, and run the test-bench

EXPERIMENTAL TEST-BENCH

154

on the experimental platform to generate the scheduling results. In this way, the

power of one thread is determined by the power profiles of the related benchmarks

that are obtained in the first phase, and the power values are already fixed when the

test-bench program is compiled. Therefore, online real-time power modelling and

accounting is self-contained in the multithreading test-bench program, and there is no

need to implement extra energy modelling and activity tracing mechanisms in the

experimental platform. With this two-phase methodology, we can focus on the

assessment of the Linux-based EFQ scheduler while avoid any interference from the

modules of energy allocation and energy accounting.

6.2 Computing platform

The computing platform of the experiments is a commercial board named

BeagleBoard [83] that runs the Angstrom Linux operating system [84] with the EFQ

scheduler implemented in the kernel. In the remaining of this section, the

experimental platform will be introduced from two aspects: the hardware environment

and the software environment.

6.2.1 The hardware environment

The BeagleBoard is a low-power single-board computer that combines all the

functionality of a basic personal computer. Many popular operating systems such as

Android, Angstrom Linux, Ubuntu, Windows CE and RISC OS have been ported to

the BeagleBoard. A general description of the BeagleBoard architecture is given in

Figure 6.3.

As shown in Figure 6.3, the BeagleBoard shelters an OMAP 3530

system-on-a-chip (SOC), which includes a 720 MHz ARM Cortex-A8 CPU for

general purpose computation and a TMS320C64x+ DSP for accelerated multimedia

applications. Build-in storage and memory is provided for the OMAP 3530 SOC

through a Package-On-Package (POP) chip that includes 256MB of NAND flash and

256MB of SDRAM. Additional memory can be added to the BeagleBoard by

EXPERIMENTAL TEST-BENCH

155

installing a SD or MMC card in the SD/MMC slot, or driving a USB thumb drive or

hard drive through the USB OTG port and the EHCI USB port. The TPS65950 is a

power management chip (PMIC) that provides different power domains and clock

frequencies to the BeagleBoard, its 5V power source can come from the USB OTG

port connected to a PC powered USB HUB, or a 5V DC supply. Besides, TPS65950

also provides stereo audio in and out. The video output of the BeagleBoard is

provided through a separate S-Video connector and a DVI-D connector that can

partially support High-Definition Multimedia Interface (HDMI). In addition,

BeagleBoard provides a RS-232 serial connector, a Join Test Action Group (JTAG)

connector, and an expansion connector.

Figure 6. 3: Block Diagram of BeagleBoard

The functions of the BeagleBoard can be divided into four categories:

computation, storage, I/O, and communication. Note that the communication unit and

the I/O unit are combined together due to the lack of specific physical interface for

network communication. But there are several USB to network adapters on the market

that can add Ethernet, Wi-Fi, or Bluetooth connectivity to the BeagleBoard by using

the EHCI USB port or the USB OTG port in the host mode.

OMAP 3530

TPS65950

Power

Clock

I2C

USB0

Stereo

Out

Stereo

In

U
S

B
 O

T
G

EHCI USB

HOST

SD/MMC

JTAG

RS232 USB3322

SVideo

TFP410DVI-D

LCD

E
X

P
A

N
S

IO
N

FLASH

256MB

SDRAM

256MB

POP Memory

5V DC

SWITCH

REGULATOR

UART3

EXPERIMENTAL TEST-BENCH

156

In this thesis work, not all functions and devices of the BeagleBoard are

employed for the experiments. To simplify the work and focus on the energy

consumptions caused by the ARM Cortex-A8 CPU, the memory subsystem, and the

related I/O buses, the BeagleBoard has been configured as a minimal system that

disables the unnecessary components such as the display and network subsystems.

6.2.2 The software environment

The Angstrom Linux [84] is a special Linux distribution that is tailored for embedded

systems and shipped with the BeagleBoard. A full package of the Angstrom

distribution images includes an X-loader (MLO), a U-boot (u-boot.bin), a Linux

kernel image (uImage), and a Linux root filesystem. To boot the Angstrom Linux on

the BeagleBoard from SD card, the SD card has been formatted into two partitions,

with the X-loader, U-boot and uImage held in the first partition and the Linux root

filesystem held in the second partition. The procedure of Linux booting is as follows:

when the BeagleBorad is powered on, the ROM program loads and executes the

X-loader, which further loads the U-boot and executes it; the U-boot reads its

commands and loads the Linux OS kernel image with the U-boot commands as

arguments; once the kernel image is fully loaded to the memory, it is uncompressed

and begins the initialization procedure; at certain point of the kernel initialization, the

kernel mounts the root filesystem partition based on the U-boot commands; after the

Linux OS is fully booted, a login interface appears and the system is ready for use.

In this work, the Linux kernel V3.3 has been employed to implement the EFQ

scheduling algorithm. To obtain the EFQ-embedded Linux kernel image, the Linux

kernel source codes with the EFQ implementation are configured for the BeagleBoard

OMAP 3530 architecture and compiled with a GCC ARM cross compiler.

To set the minimum schedulable CPU time quantum for the EFQ scheduler, the

Linux kernel V3.3 has been configured to use the 32 KHz timer of the BeagleBoard to

generate a kernel internal timer frequency of 1000 Hz. A 1000 Hz kernel internal

timer can produce a one millisecond-granularity scheduling tick and provide a

maximum preemption delay of 1 millisecond.

EXPERIMENTAL TEST-BENCH

157

The Linux kernel V3.3 can support the frequency and voltage scaling of the ARM

Cortex-A8 CPU from the user space. In this work, the default frequency and voltage

of the ARM CPU are set as 720 MHz and 1.35 V, respectively. The CPU frequency

governor is set as cpufreq_performance, which will force the CPU to always use the

highest possible clock frequency of 720 MHz.

6.3 Power supply and measurement system

As has been mentioned in the architecture overview of the test-bench, the power

supply and measurement system consists of three functional modules: the battery

emulator, the power measurement unit, and the DC-DC boost converter.

The block diagram of the power supply and measurement system is shown in

Figure 6.4, and the device connections of the system are demonstrated in Figure 6.5.

The battery emulator and the power measurement system are built up together

with a PC that executes a LabView-based battery simulation program [85] and an

Agilent 66321D programmable power supply [86] that internally includes a digital

voltmeter and a digital ammeter. The DC-DC boost converter is contained in a

portable Lithium-ion battery pack called BeagleJuice [87].

The platform of battery emulation and power measurement can measure the

power consumption of the device-under-test (DUT) while emulating the voltage

output of a lithium-ion battery. Besides, it allows setting up the battery full-charge

state instantaneously; therefore, in this thesis work, the battery emulator is employed

to replace the lithium-ion battery of the BeagleJuice, which requires a

time-consuming procedure of battery recharging. The power source to be connected to

the DC-DC converter can be selected through the switcher of the BeagleJuice. Finally,

the DC-DC converter can boost the battery voltage output to a level of 5V to power

on the BeagleBoard.

To build the battery emulator and the power measurement system, the PC and the

Agilent 66321D are connected through a USB to General-Purpose Interface Bus

(USB-GPIB). The battery simulation program on the PC is designed in Labview 2009.

EXPERIMENTAL TEST-BENCH

158

Figure 6. 4: Block Diagram of the Power Supply and Measurement System

Figure 6. 5: Device Connections of the Power Supply and Measurement System

PC

Battery

Model

Labview

Simulator

Agilent 66321D

USB - GPIB

Power Measurement via

Digital Voltmeter&Ammeter

Programable

Power Source

Battery Emulator & Power Measurement

DC-DC

Converter

SWITCH
Lithium-ion

Battery

BeagleJuice

BeagleBoard

DUT

Emulated Battery

Voltage Output ≈ 3.7 V

Raised Voltage

(5V)

Voltage Control

Sampling Frequency Control

Voltage & Current Samples Return

Agilent 66321D

USB

GPIB 4-W OUT

BeagleJuiceBeagleBoard

JACK OUT 5V

JACK IN 5V BAT. IN≈3.7V

Battery Emulator & Power Measurement

≈
3

.7
V

 - 4
 W

IR
E

S
 C

O
N

N
E

C
T

IO
N

5V - 2 PIN TO

JACK CABLE

EXPERIMENTAL TEST-BENCH

159

The LabView program takes the battery discharging model and simulates the

battery voltage drop according to the battery discharge state along the time. The

voltage values generated from the battery simulator are passed via the USB-GPIB to

the voltage control module of the Agilent 66321D. The Agilent power supply outputs

the emulated battery voltage to the DC-DC converter of the BeagleJuice and, in the

meantime, meters the voltage and current values of the DUT with the

internal-contained digital voltmeter and ammeter. Again, through the USB-GPIO

interface, the LabView program on the PC can configure the measuring frequency of

the digital meters and obtain the voltage and current samples from the Agilent

66321D.

The battery model of the emulator is built with the polynomial regression

technique based on the pre-measured voltage samples of the discharging curve of a

reference battery [85]. This model assumes a constant discharge current and achieves

a mean error less than 2%. As drawbacks the model does not take into account the

battery working temperatures, neither the working age nor the Peukert’s law. On the

whole, this power model is far enough for this dissertation work because its accuracy

will not affect the power profiling of the benchmarks.

The Graphical User Interface (GUI) of the LabView-based battery emulator and

simulator is shown in Figure 6.6. To start the battery emulation, a sample file of the

reference discharging voltage curve (in blue) should be firstly loaded, and then the

battery model (voltage curve in red) should be calculated based on the selected

polynomial regression order; after that, the internal resistance and the maximum

current of the battery should be introduced, and finally, the battery emulation is

started by pressing the start button below the icon of battery charge indicator. At the

middle bottom of the GUI, the DLOG option is available for observing the measured

voltage and current in real-time and saving the historical data. At the right bottom of

the GUI, the measuring period of the digital voltmeter and ammeter can be set via the

USB-GPIB interface. For the power profiling of the benchmarks in this thesis work,

the sampling period is set as 100 milliseconds, that is, 10 samples of voltage and

current per second.

EXPERIMENTAL TEST-BENCH

160

Figure 6. 6: GUI of the Battery Emulator and Simulator [85]

6.4 Benchmark characterization

An open-source and widely-referred embedded benchmark suite named MiBench [88]

is employed to program the benchmarks for the experiments. The MiBench contains a

set of 35 representative embedded programs of six categories, including Consumer

devices, Telecommunications, Office automation, Automatic and Industrial control,

Networking, and Security. The MiBench programs have been slightly modified to fit

the multithreading test-bench program and the experimental purpose. For the

experiments of this dissertation work, the following benchmarks are employed:

rt_fft: adapted from the FFT benchmark of MiBench, performs Fast Fourier

Transform (FFT) every 200ms, modeling a CPU-intensive periodic real-time

application. The amount of FFT work in each period is adjustable so that the

benchmark can produce a fluctuating workload in each period.

EXPERIMENTAL TEST-BENCH

161

int_stringsearch: adapted from the stringsearch benchmark of MiBench,

searches for given words in sentences every one second, modeling a

CPU-intensive interactive application through which a user can send periodic

requests on string searching. The amount of search work in each period is

adjustable so that the benchmark can produce a fluctuating workload in each

period.

batch_fft: continuously performs the Fast Fourier Transform (FFT) until the

application terminates, modeling a CPU-intensive batch application.

batch_fft_io: first continuously performs the FFT in a CPU-intensive style as the

batch_fft, and then repeatedly writes the FFT results into the SD card, modeling a

batch application that consumes a large amount of energy on I/O operations.

batch_cubic: adapted from the basicmath benchmark of MiBench, continuously

performs the cubic function solving, modeling a CPU-intensive batch application.

batch_isqrt: adapted from the basicmath benchmark, continously computes

integer square roots, modeling a CPU-intensive batch application.

batch_rad2deg: adapted from the basicmath benchmark, continuously performs

angle conversions from degrees to radians, modeling a CPU-intensive batch

application.

batch_mix: performs the batch_fft, batch_rad2deg and stringsearch benchmark

one by one, modeling a batch application that has different power consumptions

along the time.

The above benchmarks are programed based on a number of basic computational

components; they are fft, fft_io, stringsearch, cubic, isqrt, and rad2deg. To profile the

power consumption of the experimental benchmarks, each basic computational

component has been executed individually on the experimental platform, whose

power is supplied and in the meanwhile measured by the battery emulator and power

measurement system.

EXPERIMENTAL TEST-BENCH

162

Table 6.1 lists both the total power and the active power of each basic

computational component; the baseline power when the platform is running no

benchmark is 1.188W. As can be seen, different CPU-intensive components can have

various power consumptions depending on the specific codes that are executed.

Notably, the fft_io component has the highest power (active power almost twice of the

cubic) due to the extra power consumption caused by I/O operations to the SD card.

Initially, it has an active power of 0.759 W that is almost the same as fft. The active

power jumps to 1.402 W when an additional power of 0.643 W is caused by the I/O

operations. Note that asynchronous energy consumptions caused by the I/O operations

are accounted onto the CPU occupation time.

Table 6. 1: Power Profiles of the Basic Components of Benchmarks

 Total power (W) Active power* (W)

fft 1.946 0.758

fft_io 1.947+0.643(I/O) = 2.59 0.759+0.643(I/O) = 1.402

stringsearch 2.259 1.071

cubic 1.929 0.741

isqrt 1.943 0.755

rad2deg 2.074 0.886

* System baseline power with no active benchmark is 1.188 W

Next, the benchmarks are characterized for the experiments based on the power

profiles in Table 6.1. Since the total powers include the power consumptions of the

DC-DC converter and the whole computing platform, the active powers are employed

to determine the standard energy packet size of each benchmark. In this way, we

exclude the baseline power of the experimental platform and focus on the power

consumptions that are additionally caused by the benchmark activities on the CPU,

memory and I/O buses. Note that this will neither destruct the energy model nor affect

the scheduling assessment, because the system base power can be simply combined

into the model by adding a constant value. Besides, for the sake of clarity and

easy-analysis, the energy unit (Eu) and power unit (Pu) are employed to measure the

energy consumption in the remaining of this dissertation. Specifically, one energy unit

EXPERIMENTAL TEST-BENCH

163

(Eu) is defined as one micro joule (µJ); and one time unit (Tu) is defined as one

millisecond (ms). Therefore, one power unit (Pu or Eu/Tu) equals one µJ/ms or one

milliwatt (mW).

The characterizations of the experimental benchmarks are provided in Table 6.2

and Table 6.3; they are referred to build diverse scheduling experiments in the next

chapter.

Table 6. 2: Characterization of Benchmarks with Constant Workload

 Period
#
 (Tus)

Workload
#
 (Tus) /

period
Power* (Pus)

Average power*

(Pus)/ Period

rt_fft 200 72 (36%) 758 758*36% = 273

int_stringsearch 1,000 193 (19.3%) 1071 1071*19.3% = 207

batch_fft N/A 100% 758 758

batch_fft_io N/A 100%
759+643(I/O)

= 1402

759+643(I/O)

= 1402

batch_cubic N/A 100% 741 741

batch_isqrt N/A 100% 755 755

batch_rad2deg N/A 100% 886 886

batch_mix N/A 100%
varies among 758,

886, 1071

varies among 758,

886, 1071

1 time unit (Tu) equals 1 millisecond (ms), 1 energy unit (Eu) equals 1 micro joule (µJ)

* 1 power unit (Pu) is defined as 1 Eu/Tu, equals 1 µJ/ms or 1 milliwatt (mW)

Table 6. 3: Characterization of Periodic Benchmarks with Variable Workload

 rt_fft int_stringsearch

Power* (Pus) 758 1071

Period
#
 (Tus) 200 1000

Average workload (Tus) / period 71 190

Average CPU utilization 35.5% 19.0%

Average power (Pus) / period 269 203

Worst-case workload (Tus) / period 109 312

Worst-case CPU utilization 54.5% 31.2%

Worst-case power (Pus) / period 413 334

1 time unit (Tu) equals 1 millisecond (ms), 1 energy unit (Eu) equals 1 micro joule (µJ)

* 1 power unit (Pu) is defined as 1 Eu/Tu, equals 1 µJ/ms or 1 milliwatt (mW)

EXPERIMENTAL TEST-BENCH

164

In Table 6.2, benchmark rt_fft and int_stringsearch are characterized as periodic

tasks with a constant workload of 36% and 19.3%, respectively; both of them cannot

fully utilize the CPU because they will go idle once the work of one period is

completed; while the other benchmarks are batch tasks that can utilize the CPU up to

nearly 100%.

In Table 6.3, benchmark rt_fft and int_stringsearch are characterized as periodic

tasks with a variable workload in each period. The variable workloads are produced

by repeating the basic computational component (fft or stringserach) for a random

number of times in each period. The random numbers are uniformly distributed.

Based on the average value and maximum value of the random numbers, the average

and worst-case workloads, CPU utilizations, and powers can be determined for the

periodic benchmarks. In Table 6.3, the average workload of benchmark rt_fft and

int_stringsearch are 35.5% and 19%, respectively. These values are slightly different

from those in Table 6.2 due to unavoidable experimental errors.

6.5 Multithreading test-bench program

A multithreading test-bench program based on the POSIX-thread (Pthread) API has

been developed to assess the Linux implementation of the EFQ scheduler. Figure 6.7

demonstrates the structure diagram of the Pthread-based test-bench and its interaction

with the EFQ-embedded Linux kernel.

Besides of the system calls required by EFQ, two extra system calls, namely

sys_get_total_energy and sys_get_thread_energy, have been implemented to support

the test-bench. The system call sys_get_total_energy reads the total energy

consumption of benchmarks from the kernel space and returns the value to the

test-bench so that it knows when to terminate the program under an energy budget.

The system call sys_get_thread_energy is used to periodically return the energy

consumption of each benchmark and write the values into a statistics file.

EXPERIMENTAL TEST-BENCH

165

Figure 6. 7: Structure Diagram of the Multithreading Test-bench Program

The Pthread-based test-bench starts with a main thread, and the benchmarks are

executed as child threads. After the characterizations of the child threads have been

defined in the beginning of the main thread (Figure 6.7-①), the library function

pthread_create is called to create child threads that execute their pre-defined works

(Figure 6.7-②). The pthread_create can create a schedulable entity in the kernel

space and return the PID to the main thread through the system call sys_clone (Figure

6.7-③). At this point two types of child threads, namely test thread and etrace thread,

are created. Test threads (Figure 6.7-④) are those that execute the benchmark works

under the EFQ scheduler. Once a test thread is created, the library function

pthread_setschedparam is called by the main thread to set the scheduling policy

(SCHED_EFQ), the energy packet size, and the warp parameters in the corresponding

entities of the kernel (Figure 6.7-⑤). The etrace thread (Figure 6.7-⑥) is an energy

statistic thread that is only created once. It is a high-priority and lightly-loaded thread

that wakes up every second to read the energy consumption of each test thread

through the system call sys_get_thread_energy (Figure 6.7-⑦); its effect to the EDF

scheduling of test threads can be ignored. After all threads have been created, the

EXPERIMENTAL TEST-BENCH

166

main thread will suspend itself and waiting for the termination of the child threads by

calling the library function pthread_join (Figure 6.7-⑧). When a test thread begins

executing, the system call sys_thread_join (Figure 6.7-⑨) is firstly called to update

the share and weight in the kernel space and reset the nice value. During the

benchmark work, diverse system calls can be used to adjust the EFQ parameters or

frequently check the total energy consumption (Figure 6.7-⑩). If the energy budget

of the test-bench is exhausted, all test threads are forced to exit even before finishing

their benchmark works, this event will signal the exit of the etrace thread and finally

wakes up the main thread to terminate the test-bench.

6.6 Summary

This chapter presents the experimental test-bench that is employed to verify the

Linux-based implementation of the EFQ algorithm. The experimental test-bench is

composed of two parts: the experimental platform and the power supply and

measurement system. The experimental platform is a Linux computing platform that

hosts a multithreading test-bench program. The Linux computing platform consists of

an ARM-based embedded board and a specially-tailored Linux distribution with the

EFQ algorithm implemented in the kernel. Both the hardware environment and the

software environment of the Linux computing platform are described. The

multithreading test-bench program is designed to create different scheduling scenarios

and generate statistic experimental results; it is developed with the POSIX-thread

(Pthread) API and an open-source benchmark suite is referred to program the threads

under testing or scheduling. The multithreading test-bench program design and the

related benchmarks are also introduced in this chapter. The power supply and

measurement system is used to power the experimental platform and measure its

energy consumption; it is composed of three functional modules: the battery emulator,

the power measurement unit and the DC-DC converter, a description of these modules

are also provided.

EXPERIMENTAL TEST-BENCH

167

To avoid incurring the complexity of implementing the whole energy-centric

system and focus on the assessment of the energy-centric scheduling, the energy

accounting and energy allocation is not implemented in the experimental test-bench.

Because of this limitation, a two-step approach is employed to build the EFQ

scheduling experiments of this work. In the first step, the power consumption of each

reference benchmark is profiled, and in the second step, the power profiles of the

reference benchmarks are programed into the threads of the multithreading test-bench

program so that the EFQ scheduler can work without a real-time and on-line

accounting of the hardware energy consumption. This chapter also provides a

description on the benchmark power profiling and the two-step experimental

methodology. The next chapter will introduce the experiment design and discuss the

experimental results.

EXPERIMENTAL RESULTS

168

Chapter 7

Experimental Results

To meet the requirements of energy-centric processor scheduling, the energy-based

fair queueing (EFQ) algorithm should be able to achieve proportional power sharing,

time-constraint compliance, and when necessary, a tradeoff between the task power

share and time-constraint compliance. Based on the Linux-based EFQ implementation

and the experimental test-bench, this chapter provides a more realistic and

comprehensive evaluation of the EFQ algorithm and explores the potential of

employing EFQ to optimize the mobile system user experience via

specifically-designed experiments. The analysis and discussion of the experimental

results are organized in three sections. Section 7.1 and 7.2 validates the properties of

EFQ in providing proportional power sharing and time-constraint compliance, and

section 7.3 explores the potential of employing EFQ to optimize the user experience

of energy-limited mobile systems.

7.1 Maintaining proportional power sharing

This section evaluates the ability of EFQ in maintaining proportional power sharing

among applications through two experiments. The first experiment checks whether

EFQ can achieve a proportional sharing of the system-wide power, the Linux-CFS

scheduler is employed as a reference. The second experiment verifies whether EFQ

can protect the power share of specific applications in a dynamic environment.

7.1.1 Proportional sharing of the system-wide power

In Figure 7.1, benchmark batch_fft_io is scheduled against benchmark batch_mix with

a 1:1 weight ratio; the power share of benchmark batch_fft_io under the EFQ

scheduler is compared with the one under the Linux-CFS scheduler. In reference to

Table 6.2 of section 6.4, the power of batch_fft_io changes from 759 Pus (cpu only) to

EXPERIMENTAL RESULTS

169

1402 Pus (cpu and io) at time 6 KTus; the power of batch_mix changes from 758 Pus

(fft) to 886 Pus (rad2deg, at 28 KTus) and 1071 Pus (stringsearch, at 52 KTus).

Figure 7. 1: Comparison of the System-Wide Power Share under EFQ and Linux-CFS

As can be observed, under the Linux-CFS scheduler, the power share of

batch_fft_io varies when the benchmark power changes along the time. Initially,

batch_fft_io is allocated a 50% power share due to the equal power of the two

benchmarks; when batch_fft_io begins performing I/O operations at time 6 KTus, its

power share increases to 65%; later, the share drops to 61% at time 28 KTus and 57%

at time 52 KTus as the power of batch_mix increases. The Linux-CFS scheduler

achieves proportional share of the CPU, but totally ignores the energy consumption

on I/O operations. Therefore, batch_fft_io is allowed to take a power share that is

always larger than 50%; at time 76 KTus, it finishes the work before batch_mix.

Under the EFQ scheduler, however, no matter how the power changes, the power

share of batch_fft_io is constantly maintained at 50% before batch_mix leaves the

energy competition at time 70 KTus. This is because EFQ computes the starting

energy tag by accounting the energy consumption as a global resource, regardless of

in which device the energy is spent. One task, such as batch_fft_io, will be delayed in

EXPERIMENTAL RESULTS

170

the CPU dispatching if it consumes a large amount of energy on I/O operations; this

helps to maintain a user-desired proportional share of the system power.

7.1.2 Power share protection

An EFQ scheduler should protect the power share of some specific tasks upon the

change of the scheduling environment. Figure 7.2 shows the EFQ scheduling results

when the task set under scheduling is dynamically changed and the total available

energy is limited at 80,000 KEus. The benchmark characterizations for this

experiment are given in Table 7.1, the readers are advised to refer Table 6.2 of section

6.4 for more details on the selected benchmarks.

Table 7. 1: Benchmark Characterizations for Power Share Protection Experiment

rt_fft int_stringsearch batch_cubic batch_rad2deg

Power (Pus) 758 1071 741 886

Total energy request (KEus) 23496 11776 46045 21621

Reserved share 0.3 0.15 0 0

Initial weight 0 0 1 10

User preference high high low middle

Refer to Table 6.2 of section 6.4 for more details of the selected benchmarks

Figure 7. 2: Power Share Protection under EFQ

EXPERIMENTAL RESULTS

171

In Table 7.1, the total energy request is obtained by running each benchmark

individually on the test-bench. The benchmark rt_fft and int_stringsearch are assumed

as the most user-preferred applications, they are expected to finish the work before

power off; therefore, those two benchmarks are reserved a power share of 30% and

15%, respectively, to ensure the meeting of their total energy requests. The

benchmark batch_cubic is a background task, it is the least user-preferred task, and

therefore, is only assigned an initial weight of 1. Finally, the benchmark

batch_rad2deg is a short and urgent task that is launched in the middle of the

experiment (20 KTus later). To accelerate the execution, batch_rad2deg is assigned a

weight of 10 to give priority on energy competition with batch_cubic; however,

batch_rad2deg should by no means reduce the power shares of rt_fft and

int_stringsearch.

Note that the power share reservation in this experiment is only to show the

power protection under EFQ. A higher power share is required by rt_fft and

int_stringsearch if the time constraints are considered; this issue will be discussed in

the next section.

The scheduling results in Figure 7.2 verify the power protection under EFQ; they

match the ones that are observed under the SystemC-based and LinSched-based

simulation test-benches. As can be observed, the power shares of benchmark rt_fft

and int_stringsearch are constantly near 30% and 15%, respectively, without being

affected by the launch and leave events of batch_rad2deg. Therefore, the two most

user-preferred benchmarks are guaranteed to finish the work before the energy budget

is exhausted at 98 KTus. As for the benchmark batch_rad2deg, upon its joining to the

energy competition at 20 KTus, a power share of 50% is immediately allocated to

enable a fast execution and early complication (at 72 KTus). The benchmark

batch_cubic is executed as the least preferred task; although it can take the whole

remaining power share of 55% when batch_rad2deg is idle, its power share is reduced

to a level as low as 5% between 20 KTus and 72 KTus; thus, it is not guaranteed to

finish the work before power off.

EXPERIMENTAL RESULTS

172

As the above experimental results demonstrate, energy management in EFQ is

straightforward; this enables the achievement of advanced energy goals (such as the

one in Figure 7.2) that are impossible in Linux-CFS and other schedulers.

7.2 Time-constraint compliance

This section evaluates the time-constraint compliance under the SEFQ and BSEFQ

scheduling algorithms. The benchmark rt_fft and benchmark int_stringsearch are run

against batch applications, and their real-time performances are assessed based on the

number of deadline misses as well as the response time.

The remaining of this section is separated into two parts. The first part evaluates

the basic ability of EFQ in achieving time-constraint compliance; the time-sensitive

benchmarks, rt_fft and int_stringsearch, are characterized with variable workloads.

The second part evaluates the robustness of achieving time-constraint compliance

with EFQ, upon the change of energy estimation error and task number; for simplicity,

rt_fft and int_stringsearch are characterized with constant workloads.

7.2.1 Time-constraint compliance under variable workloads

7.2.1.1 Experimental task characterizations

To evaluate the performance of time-sensitive tasks with fluctuating workloads, the

task characterizations of Table 7.2 are employed in this experiment. Both rt_fft and

int_stringsearch are time-sensitive tasks with a variable workload in each period.

Specifically, the benchmark rt_fft has an average CPU utilization of 35.5% and a

worst-case CPU utilization of 54.5%; the benchmark int_stringsearch has an average

CPU utilization of 19% and a worst-case CPU utilization of 31.2%. The readers are

advised to refer to Table 6.3 for more detailed benchmark characterizations.

Unlike batch tasks whose power share can be infinitely close to one, the

maximum long-term power share and worst-case power share (definitions refer to

section 3.3) of periodic tasks are limited to certain thresholds. These share thresholds

can be computed based on the power and CPU utilization of the benchmarks.

EXPERIMENTAL RESULTS

173

Table 7. 2: Benchmark Characterizations with Variable Workloads

rt_fft
int_

stringsearch

batch_

cubic

batch_

isqrt

Power (Pus) 758 1,071 741 755

Period (Tus) 200 1,000 N/A N/A

Average CPU utilization 35.5% 19.0% 100% 100%

Long-term average power (Pus) 269 203 741 755

Maximum long-term power share 0.333 0.251 lim (x → 1) lim (x → 1)

Worst-case CPU utilization 54.5% 31.2% 100% 100%

Worst-case power (Pus) 413 334 741 755

Worst-case power share 0.509 0.393 lim (x → 1) lim (x → 1)

Refer to Table 6.2 and Table 6.3 of section 6.4 for more details of the selected benchmarks

According to Table 7.2, the long-term average power of rt_fft and

int_stringsearch is 269 Pus and 203 Pus, respectively; and based on the average CPU

utilization of the two periodic time-sensitive tasks, the (remaining) average CPU

utilization of all batch benchmarks is 0.455. Because the weight ratio of benchmark

batch_cubic and batch_isqrt can vary over the time, the average power of all batch

tasks is in the range of:

[741 × 0.455, 755 × 0.455] = [337,344] 𝑃𝑢𝑠

For simplicity, the lowest power value of 337 Pus is conservatively (and practically)

referred to compute the maximum long-term power share and the worst-case power

share for periodic benchmarks. Specifically, the maximum long-term power shares of

benchmark rt_fft and int_stringsearch are:

269

269 + 203 + 337
=

269

809
= 0.333, 𝑎𝑛𝑑

203

809
= 0.251, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.

The worst-case power share of a periodic benchmark is practically computed based on

its worst-case power and the average power of other benchmarks (refer to section 3.3).

EXPERIMENTAL RESULTS

174

When benchmark rt_fft has a worst-case power of 413 Pus, the average power of

benchmark int_stringsearch is 203 Pus, and the average power of the two batch tasks

is at least:

(1 − 0.545 − 0.19) × 741 = 196 Pus.

Thus, the worst-case power share for benchmark rt_fft is around:

413

413 + 203 + 196
=

413

812
= 0.509.

When benchmark int_stringsearch has the worst-case power of 334 Pus, the average

power of benchmark rt_fft is 269 Pus, and the average power of both batch tasks is at

least:

(1 − 0.355 − 0.312) × 741 = 247 Pus.

Thus, the worst-case power share of benchmark int_stringsearch is around:

334

334 + 269 + 247
=

334

850
= 0.393

Note again that the above values of the maximum long-term power share and the

worst-case power share are all conservative ones that are computed in reference to the

power of benchmark batch_cubic, the exact values are slightly smaller due to the

existence of benchmark batch_isqrt.

7.2.1.2 Experimental results analysis

Table 7.3 shows the scheduling results under SEFQ and BSEFQ. The results are

based on the averaging of 10 sets of experimental data. Benchmark rt_fft has a total

number of 500 periods, and benchmark int_stringsearch has a total number of 100

periods. Note that, because the resolution of power share assignment is 0.01 according

to the niceness table (refer to Figure 5.7 of section 5.1.2), the reserved power shares in

Table 7.3 cannot be exactly the same as the values of the maximum long-term power

share and the worst-case power share of benchmark rt_fft and int_stringsearch.

EXPERIMENTAL RESULTS

175

Table 7. 3: Time-constraint Compliance under Variable Workloads

rt_fft

reserved

share

int_stringsearch

reserved share
Warp value

rt_fft

Num.

deadline

misses

int_stringsearch

Mean response

time (Tus)

Max.

response

time

(Tus)

SEFQ1 0.34 0.26 N/A 179 1,439 4,227

SEFQ2 0.51 0.40 N/A 0 401 916

SEFQ3 0.50 0.39 N/A 1 426 970

BSEFQ1 0.34 0.26
rt_fft >

int_stringsearch
0 260 587

BSEFQ2 0.34 0.26
rt_fft <

int_stringsearch
55 170 335

In the first scheduling test under SEFQ (SEFQ1), both benchmark rt_fft and

int_stringsearch are reserved a power share that is close to the maximum long-term

power share. Although all of their energy demands are met in the long-term, the

performances of time-sensitive tasks are very poor. Benchmark rt_fft misses 179

deadlines out of 500 periods. In the case of benchmark int_stringsearch, the mean

response time is about 450 Tus larger than its period of 1,000 Tus, and the maximum

response time is around four times larger than the period.

The real-time performances are largely improved in the second scheduling test

under SEFQ (SEFQ2), in which benchmark rt_fft and int_stringsearch are both

reserved a power share that is close to the worst-case power share. In this case,

benchmark rt_fft meets all deadlines and benchmark int_stringsearch achieves a

maximum response time that is less than 1,000 Tus.

However, the scheduling delay under SEFQ is easily affected by the reserved

power shares of the time-sensitive tasks. As shown in the third scheduling test under

SEFQ (SEFQ3), when the reserved power share is slightly smaller than the worst-case

power share of rt_fft and int_stringsearch, benchmark rt_fft experiences the risk of

missing a few deadlines (deadline misses range from 0 to 3 in 10 sets of scheduling

results) and benchmark int_stringsearch experiences an increase of the response time

(maximum response time is approaching its period of 1,000 Tus). Therefore, the

reserved power shares for time-sensitive tasks should be conservatively and carefully

determined for ensuring strict time-constraint compliance under SEFQ.

EXPERIMENTAL RESULTS

176

Under BSEFQ, benchmark rt_fft and int_stringsearch are both reserved a power

share that is close to the maximum long-term power share, and the real-time

performances are dependent on the priorities (indicated by the warp value) of

time-sensitive tasks.

In the first scheduling test under BSEFQ (BSEFQ1), benchmark rt_fft is assigned

a higher warp value to allow its energy requests being served immediately after

beginning a new period. Therefore, its time-constraint compliance is strictly

guaranteed. In the case of benchmark int_stringsearch, its response time is

significantly better than the ones under SEFQ. This is because when being warped

with a lower warp value, the energy requests of benchmark int_stringsearch are

continuously scheduled right after the ones of benchmark rt_fft and no energy request

of batch tasks is scheduled ahead of it.

In the second scheduling test under BSEFQ (BSEFQ2) where the interactive task

is assigned the highest warp value, benchmark int_stringsearch achieves the optimal

response time while benchmark rt_fft misses around 11% of its deadlines. This is

because benchmark int_stringsearch has a longer period and its energy requests are

always scheduled ahead of those of benchmark rt_fft; a deadline may be missed each

time benchmark int_stringsearch begins a new period.

Anyhow, the time and the number of deadline misses are predictable in the above

case. A soft real-time application, such as video decoder, can abandon the decoding

work of one frame that is going to miss its deadline and replace the current frame with

the previous one that has already been decoded, this helps to minimize user

experience degradation and reduce unnecessary energy expenditures.

Based on the above experimental results, we can reach the same conclusion as in

the simulation: BSEFQ is more flexible and effective in supporting different types of

time-sensitive tasks in comparison with SEFQ. Under BSEFQ, if benchmark

int_stringsearch is the most user-preferred application and a maximum response time

that is less than 500 Tus is required by the user, it should be assigned the highest

priority (as in BSEFQ2) to achieve the optimal response time at the cost of missing a

few predictable deadlines in benchmark rt_fft.

EXPERIMENTAL RESULTS

177

In a more general case, if a response time that is less than the period of

benchmark int_stringsearch is acceptable by the user, the highest priority should be

assigned to the benchmark rt_fft which has a smaller period (in a rate-monotonic

manner, refer to section 3.4.4), so that all benchmarks can finish their work before the

beginning of the next period (as in BSEFQ1). Note that benchmark int_stringsearch

can also be seen as a task that has periodic deadlines.

To maintain the long-term proportional fairness under BSEFQ, each

time-sensitive task is reserved a share that approaches its maximum long-term power

share; therefore, the total share reserved for time-sensitive tasks is around 0.6 in Table

7.3. The reserved power share does not need to be accurately the value of the

maximum long-term power share because the scheduling latency under BSEFQ is

dominated by the warp mechanism.

Under SEFQ, however, the deadline misses are not as predictable as the ones

under BSEFQ, and the scheduling latency is sensitive to the reserved power share. As

a result, the power shares of time-sensitive tasks have to be overly and carefully

reserved to ensure the compliance of time constraints. According to Table 7.3,

although the total power share of benchmark rt_fft and int_stringsearch is around 0.6

in average, a total power share of at least 0.91 has to be reserved under SEFQ, leaving

a very small power share that is less than 0.09 for later-joined time-sensitive tasks.

7.2.2 Robustness of time-constraint compliance

7.2.2.1 Experimental task characterizations

To evaluate the robustness of time-constraint compliance under EFQ scheduling

algorithms, the task characterizations in Table 7.4 are employed in this experiment.

Without loss of generality, the periodic benchmarks are characterized with constant

workloads over the time. The readers are advised to refer to Table 6.3 for more

detailed benchmark characterizations.

EXPERIMENTAL RESULTS

178

Table 7. 4: Benchmark Characterizations for Robustness Validation of Time-constraint

Compliance

rt_fft int_stringsearch batch_cubic batch_isqrt

Energy packet size (Eus) 758 1071 741 755

Period (Tus) 200 1,000 N/A N/A

CPU utilization 36% 19.3% 100% 100%

Long-term average power (Pus) 273 207 741 755

Max. long-term & worst-case share 0.336 0.255 lim (x → 1) lim (x → 1)

Refer to Table 6.2 of section 6.4 for more details of the selected benchmarks

As usual, the maximum long-term power share of periodic tasks can be computed

based on the power and CPU utilization of the benchmarks. For benchmark rt_fft and

int_stringsearch, the maximum long-term power share is 0.336 and 0.255,

respectively. To ensure strict time-constraint compliance under SEFQ, a

time-sensitive task should be reserved a power share that is larger than its worst-case

power share, which equals the maximum long-term power share in this case due to the

constant workloads that are employed. In this experiment, benchmark rt_fft and

int_stringsearch are reserved a power share of 0.35 and 0.26, respectively.

7.2.2.2 Results analysis: robustness upon energy estimation error

EFQ computes the starting energy tags based on the energy packet size (energy

consumption during an allocated time quantum, refer to section 3.2), which should be

estimated in the real-system scheduling. The error between the actual energy packet

size and the estimated one is called energy estimation error.

Figure 7.3 compares the performance of rt_fft and int_stringsearch under SEFQ

and BSEFQ when there are different levels of energy estimation error. As can be

observed, both SEFQ and BSEFQ can achieve a good real-time performance when the

energy estimation error is low (less than 2%). Especially, BSEFQ provides strict

time-constraint compliance and a robust response time that are unaffected by the

energy estimation error. This is benefited from the warp mechanism, with which the

benchmark rt_fft and int_stringsearch can be immediately dispatched after a new

EXPERIMENTAL RESULTS

179

period begins. However, the real-time performance under SEFQ is non-robust to the

energy estimation error. When the error increases over 10%, a great number of

a) rt_fft deadline misses

b) int_stringsearch mean response time

c) int_stringsearch maximum response time

Figure 7. 3 : Real-time Performances upon Different Levels of Energy Estimation Error

EXPERIMENTAL RESULTS

180

deadline misses in rt_fft and a significant increase of the response time in

int_stringsearch are observed.

7.2.2.3 Results analysis: robustness upon task number change

Under the EFQ scheduler, the performance of rt_fft and int_stringsearch may also be

affected by the number of active tasks that are competing for the system resources. In

the next experiment, the number of background batch tasks is gradually increased to

assess the robustness of time-constraint compliance under SEFQ and BSEFQ. The

scheduling results are compared in Figure 7.4.

As can be observed, a good and stable real-time performance is achieved both

under SEFQ and BSEFQ when the number of background batch tasks is smaller than

10. Especially, due to the scheduling priority given to the time-sensitive tasks with the

warp mechanism, stringent time-constraint compliance and a robust response time are

achieved under BSEFQ regardless of the batch task number.

Under SEFQ, however, the real-time performance is significantly deteriorated

when the number of batch tasks is over 11. This is because the dispatch delay bound

and the scheduling window (the length of time within which each task is scheduled

once) under SEFQ can increase with the number of active tasks. When the scheduling

window is small, time constraints can be met with a conservative power share

reservation; but when the scheduling window increases to a considerable length, the

real-time performance of benchmark rt_fft and int_stringsearch will be greatly

deteriorated.

One simple yet effective solution to enhance the robustness of SEFQ is to

increase the reserved power share for time-sensitive tasks; however, this method can

causes over-reservation problems and thus is only applicable when the CPU workload

is moderate. Instead, BSEFQ can support more stringent and robust time-constraint

compliance upon energy estimation errors and task number variations without

incurring the over-reservation problem.

EXPERIMENTAL RESULTS

181

a) rt_fft deadline misses

b) int_stringsearch mean response time

c) int_stringsearch maximum response time

Figure 7. 4: Real-time Performances upon Different Number of Background Batch Tasks

EXPERIMENTAL RESULTS

182

7.3 User experience optimization under energy limit

This section aims to experimentally explore the potential of employing EFQ

algorithms in optimizing the user experience of energy-limited systems. To achieve

the goal, it is firstly required to set up some assumptions on the experimental system.

In section 7.3.1, we characterize the energy loads of the experimental benchmarks and

build assumptions on the task user preference and energy allocation. Then in section

7.3.2, we explore the user experience optimization with EFQ under the experimental

assumptions of section 7.3.1.

7.3.1 Experimental assumptions and task characterizations

For the experiments of this section, the task characterizations in Table 7.5 are

employed. Time-sensitive benchmark rt_fft and int_stringsearch are run against batch

benchmark batch_cubic and batch_fft_io. Without loss of generality, the periodic

time-sensitive benchmarks are characterized with constant workloads (refer to Table

6.2 of section 6.4). The power of benchmark batch_fft_io is initially 759 Pus, it can

increase to 1,402 Pus when there are extra I/O activities. The maximum long-term

power share of periodic time-sensitive benchmarks varies with the average power of

the two benchmarks, which is at least 741 Pus (when the weight ratio of batch_cubic

to batch_fft_io is infinitely large). Therefore, according to Table 7.4, the maximum

long-term power shares of benchmark rt_fft and int_stringsearch are respectively less

than 33.6% and 25.5%.

Table 7. 5: Benchmark Characterizations for Demonstration on User Experience Optimization

rt_fft
int_

stringsearch

batch_

cubic

batch_

fft_io

Power (Pus) 758 1,071 741 [759, 1,402]

Period (Tus) 200 1,000 N/A N/A

CPU utilization 36% 19.3% 100% 100%

Long-term average power (Pus) 273 207 741 [759, 1,402]

Max. long-term power share < 33.6% < 25.5% 100% 100%

Refer to Table 6.2 of section 6.4 for more details of the selected benchmarks

EXPERIMENTAL RESULTS

183

The experiments of this section are based on the following assumptions. First, it

is assumed that the residual energy in the battery is 1,200,000 KEus (1,200 joules)

and the user-desired target lifetime of the system is 1,600 KTus (1,600 seconds ≈ 27

minutes). Then, it is assumed that benchmark int_stringsearch is the most

user-preferred task, its user-acceptable response time is 500 Tus, within which the

user can hardly perceive the delay; benchmark rt_fft is the second user-preferred task,

its acceptable deadline miss ratio is 10%; the two batch benchmarks are the least

user-preferred tasks, their performance is solely measured by the amount of finished

work.

To achieve a battery lifetime of 1,600 KTus for the system, the target lifetime is

divided into 20 epochs, with each epoch lasting 80 KTus (80 seconds) and containing

60,000 KEus energy. It means an amount of 60,000 KEus energy is infused to drive

the execution of tasks in each 80 KTus epoch. The 60,000 KEus energy should be

properly allocated to the different benchmarks based on their energy requirements as

well as the user preferences.

Table 7.6 summarizes the user preference and energy allocation over the

benchmarks. As the most user-preferred task, benchmark int_stringsearch is expected

to finish 80 periods of work and is estimated to consume 16,560 KEus energy,

because its period is 1,000 Tus and its average power is 207 Pus. Considering that the

average power of a benchmark can have slight deviation in the real system, a total of

16,860 KEus energy (with a margin of 300 KEus) is reserved to benchmark

int_stringsearch to ensure its normal execution during each epoch. As the second

preference, benchmark rt_fft is expected to finish 400 periods of work and is

estimated to consume 21,840 KEus energy, considering its period of 200 Tus and its

average power of 273 Pus. Therefore, a total of 22,140 KEus energy is reserved to

benchmark rt_fft. Finally, the remaining 21,000 KEus energy is allocated to

benchmark batch_cubic and batch_fft_io in a ratio of 1:2 based on the user

preference.

Note that the average powers of benchmark rt_fft and int_stringsearch in the

experiments are assumed as constant in different epochs. In a system where the

EXPERIMENTAL RESULTS

184

average powers of periodic time-sensitive tasks are variable over epochs, the energy

allocation among benchmarks may have to be adjusted in different epochs.

Based on the above assumptions, the demonstration of the user experience

optimization of an energy-limited system can be made on the basis of one epoch. In

the remaining of this section, all results are analyzed on an epoch basis.

Table 7. 6: Characterization of User Preference and Energy Allocation

 rt_fft int_stringsearch batch_cubic batch_fft_io

User preference high highest low middle

User requirement
miss ratio <

5%

response time <

500 Tus

As much as

possible

As much as

possible

Estimated energy request (KEus) 21,840 16,560 N/A N/A

Energy allocation# (KEus) 22,140 16,860 7,000 14,000

Energy budget per epoch is 60,000 KEus, a margin of 300 KEus is considered in the energy allocation

7.3.2 Experimental results analysis and discussion

This section aims to explore the use experience optimization with EFQ via

experimental results analysis and discussion.

7.3.2.1 Results analysis: optimized use experience with EFQ scheduling

Based on the above energy allocation in each epoch, the user experience of the system

is dependent on how each benchmark is scheduled to consume their energy quotas.

Table 7.7 describes the optimal user experience that can be achieved under EFQ,

and Figure 7.5-a) shows the power change of the benchmarks within one epoch under

EFQ. Because the user can hardly appreciate the difference of delay that is less than

500 Tus, a higher priority (warp value) is assigned to benchmark rt_fft for ensuring

stringent deadline compliance. Benchmark rt_fft and int_stringsearch are assigned an

initial share of 0.34 and 0.26, respectively, and the two batch benchmarks are

assigned initial weights in a ratio of 1:2.

EXPERIMENTAL RESULTS

185

Table 7. 7: Epoch-based User Experience Optimization under EFQ

 rt_fft int_stringsearch batch_cubic batch_fft_io

Initial share / weight 0.34 0.26 1 2

Completed periods of work 400 80 N/A N/A

Number of deadline misses 0 N/A N/A N/A

Mean response time (Tus)
*
 N/A < 230 N/A N/A

Maximum response time (Tus)
*
 N/A < 340 N/A N/A

Actual energy consumption (KEus)
#
 21,805 16,820 7,001

#
 14,006

#

Residual energy per task (KEus) 335 40 0 0

Total residual energy (KEus) 60,000 – 59,632 = 368

* Because the response time may vary slightly in repeated experiments, only the upper limit value is roughly given

The given values of energy consumption are only based on one experiment, they may vary slightly in several

repeated experiments; batch tasks consume slightly more than their energy quotas because the time interval for

checking the residual energy cannot be infinitely small.

a) EFQ

b) Linux scheduler

Figure 7. 5: Power Management and Optimization within One Epoch

EXPERIMENTAL RESULTS

186

As can be seen from the experimental results under EFQ, both benchmark rt_fft

and int_stringsearch are executed constantly and normally during the whole epoch.

Specifically, benchmark rt_fft completes 400 periods of work and strictly meets all

the deadlines; benchmark int_stringsearch completes 80 periods of work and achieves

a response time that is acceptable to the user. Besides, benchmark batch_cubic and

batch_fft_io are dispatched to consume their energy quotas in a power ratio of 1:2. As

a result, the two batch benchmarks use up their energy quotas at almost the same time

(around 50 KTus). At the end of the epoch, a total of 368 KEus energy is remained in

the resource containers of all benchmarks. This is the cost of ensuring a safe energy

allocation for user-preferred tasks; however, it is a small amount (0.6%) in

comparison with the total energy of one epoch.

In the case that user-preferred tasks are overly allocated energy quotas and a big

amount of residual energy is observed at the end of one epoch, the energy allocation

in the next epoch should be adjusted to reduce the residual energy (refer to section

2.1.4.1). In any case, once the cumulative energy of a resource container reaches to its

capacity limit, the overflowed energy will be redistributed to the resource containers

of bench tasks.

7.3.2.2 Extended discussion in comparison with Linux scheduler

Figure 7.5-b) shows the power management within one epoch under the default Linux

scheduler. From the graph, we can see the powers of rt_fft and int_stringsearch are

also constantly guaranteed in the whole epoch. This is because, under the Linux

scheduler, rt_fft belongs to the real-time class so that is treated as an absolutely

higher-priority task than others, and int_stringsearch is assigned a niceness value that

is far greater than those of the two batch benchmarks. For the above reasons, the

performance of rt_fft and int_stringsearch are also guaranteed to meet the user

requirements.

However, because of the absolute higher-priority given to real-time class tasks,

the default Linux scheduler may suffer several limitations. First, if the real-time task

becomes abnormally behaved by over-requesting system resources, the power and

EXPERIMENTAL RESULTS

187

performance of int_stringsearch may not be guaranteed even it is assigned a large

niceness value. The same situation may also happen if multiple real-time tasks are

simultaneously executed in the system. This is not a problem under the EFQ scheduler

because of the maximum time that one task can run with priority is restricted. This

point will be verified in the next section (section 7.3.2.3) through an experiment

assuming abnormal energy requesting behaviors from the real-time benchmark rt_fft.

Second, in case the performance requirement on int_stringsearch has changed and a

shorter response time (e.g. 200 Tus) is preferred, then, the Linux scheduler will fail to

optimize the user experience, while EFQ can still achieve the optimization goal by

exchanging the warp values of benchmark rt_fft and int_stringsearch. This point is

quite obvious so it will not be expanded with experiments.

Another limitation of the Linux scheduler in power optimization is that it has no

control of the energy consumptions on non-CPU devices. As shown in Figure 7.5-b),

when batch_fft_io starts I/O operations on the SD card, the power ratio of the two

batch tasks deviates from the initial ratio of 1:2, causing the earlier idle of

batch_fft_io. This is because the Linux niceness values can only determine the sharing

of CPU time quanta among competing tasks. While the activities in other devices are

not considered when making the CPU scheduling decisions, the sharing of system

power is totally out of the Linux scheduler’s control. In comparison, EFQ can achieve

proportional sharing of the system power (as shown in Figure 7.5-a)) by accounting

system-wide energy consumption in the CPU dispatching. This is beneficial for the

system to optimize the energy utilization and provide guaranteed services to different

applications. In the experiment of the next section (section 7.3.2.3), we will show how

guaranteed power consumption can affect the energy utilization.

7.3.2.3 Results analysis: preserving user experience upon abnormal

behaviors

Because the most user-preferred task may not be assigned the highest priority, its

power and performance should be protected by the scheduler when any task with a

EXPERIMENTAL RESULTS

188

higher priority is behaving abnormally with excessive energy demands. For simplicity

and without loss of generality, the following experiment only considers three

benchmarks: rt_fft, int_stringsearch, and batch_cubic; the remaining energy quota of

21,000 KTus (refer to Table 7.6) is all assigned to benchmark batch_cubic.

Figure 7.6 shows the desired power consumptions when all tasks are behaving

normally. Figure 7.7 demonstrates the power consumptions under the Linux scheduler

and the BSEFQ when benchmark rt_fft is ill-behaved and over-requesting a workload

of 173 Tus per period (86.5% CPU utilization) during time 20 to 40 KTus. Table 7.8

compares the system performance under the two schedulers.

Figure 7. 6: Desired Power Consumptions when all Tasks are Behaving Normally

Table 7. 8: Comparison of System Performance under BSEFQ and Linux Scheduler when the

Benchmark rt_fft is Abnormally-behaved

Warp time

limit (Tus)

int_stringsearch

Mean Response time

(Tus) *

int_stringsearch

Maximum Response time

(Tus) *

rt_fft

Deadline

miss ratio

BSEFQ
75 to 170 < 260

< 360 >= 25%

>= 175 > 4400 > 7000 0%

Linux

Scheduler
N/A > 3700 > 6300 0%

* Because the response time may vary slightly in several repeated experiments, only the upper or lower limit value

is roughly given.

EXPERIMENTAL RESULTS

189

a) Linux scheduler

b) BSEFQ, warp time limit = 75 Tus

c) BSEFQ, warp time limit = 130 Tus

Figure 7. 7: Protecting Task Power upon Abnormal Behaviors from Benchmark rt_fft

EXPERIMENTAL RESULTS

190

In Figure 7.7-a), the Linux scheduler treats benchmark rt_fft as an absolute

higher-priority task over others; therefore, it allows benchmark rt_fft to excessively

consume energy with a power as high as 650 Pus during the ill-behaved period. The

high power pulse in rt_fft causes the depletion of its energy quota at around 55 KTus.

More importantly, it reduces the remaining power share that is available for

int_stringsearch and batch_cubic. Because the niceness value of int_stringsearch is

set as far greater than that of batch_cubic, the power share left by rt_fft is totally

allocated to int_stringsearch, causing the power of int_stringsearch and batch_cubic

to be around 150 Pus and 0 Pus, respectively, during time 20 to 40 KTus.

The reduced power in benchmark int_stringsearch causes the degradation of the

system performance from two aspects. First, as shown in Table 7.8, although the

deadline miss ratio of rt_fft is 0% under the Linux scheduler, both the mean response

time and the maximum response time of int_stringsearch are significantly greater

than the user-acceptable level of 500 Tus. It makes no sense to achieve strict

time-constraint compliance for a less-preferred yet ill-behaved task at the cost of

causing an unacceptable response time to the more-preferred interactive task. Second,

because of the reduced power of 150 Pus during the 20 KTus ill-behaved period, a

residual energy of more than 1200 KEus (2%) are left by the benchmark

int_stringsearch at the end of one epoch time 80 KTus. This residual energy appears

as a 207 Pus power that lasts until time 85 KTus in Figure 7.7-a). At the same time,

benchmark batch_cubic is forced to idle before the 80 KTus epoch: the total energy

available in one epoch is not fully utilized to maximize the system performance as

well as the user experience.

In comparison with the Linux scheduler, BSEFQ performs better in preserving

the system performance and user experience upon abnormal behaviors.

In Figure 7.7-b), because a warp time limit of 75 Tus is applied to benchmark

rt_ff, it is scheduled by BSEFQ as the highest-priority task only within the allowed

period of time. Once 75 Tus expires, benchmark rt_fft has to compete for the energy

with other tasks based on its weight. Therefore, the power of rt_fft is controlled under

290 Pus, and the power of int_stringsearch is guaranteed to be 207 Pus during the

EXPERIMENTAL RESULTS

191

whole epoch. The available energy within one epoch is fully utilized, which provides

an opportunity to optimize the user experience upon abnormal behaviors. Because the

power of rt_fft is restricted during its ill-behaved period, the unfinished work is

postponed to its later periods, causing the power to be continuously maintained at the

abnormal level (290 Pus) for a time longer than 20 KTus. The length of time that the

abnormal power level continues is dependent on the selected warp time limit.

In Figure 7.7-c), because a larger warp time limit of 130 Tus is applied, the

maximum power of rt_fft is restricted at 450 Pus, and the length of time that rt_fft

stays at the abnormal power level is apparently shorter than the one in Figure 7.7-b).

The task performance under BSEFQ is also dependent on the warp time limit.

According to the results in Table 7.8, when the warp time limit is larger than 175 Tus,

benchmark rt_fft is allowed to take an overly high power pulse to meet all of its

deadlines while benchmark int_stringsearch is suffering a terribly long response time.

However, as long as the warp time limit is properly set (between 75 and 170 Tus), the

response time of benchmark int_stringsearch is guaranteed to be no greater than the

user-acceptable delay (500 Tus), and the deadline miss ratio of benchmark rt_fft is at

least 25% because the deadlines during the 20 KTus abnormal period are all missed.

Note that the deadline miss ratio under BSEFQ is dependent on not only the warp

time limit but also the specific real-time application. If a real-time application can

abandon its unfinished service quanta and skip to the next period, the deadline miss

ratio is constantly 25% no matter how the warp time limit changes (within the 75 to

170 Tus range). Otherwise, as the warp time limit increases, more time quanta of

benchmark rt_fft is served ahead of those of benchmark int_stringsearch, therefore,

the deadline miss ratio of rt_fft is reduced while the response time of int_stringsearch

is increased. In a real system where time-sensitive tasks can have a variable workload

per period, it is more practical to assign a compromised value to the warp time limit,

so that, on one hand, the time-constraint compliance under normal energy load can be

guaranteed, and, on the other hand, high power pulses caused by abnormal energy

request can be restricted under a proper level.

EXPERIMENTAL RESULTS

192

7.4 Summary

In this chapter, the EFQ algorithm is evaluated through specifically-designed

experiments that are performed in the Linux experimental platform with the

Pthread-based multithreading test-bench program. The default Linux scheduler is

employed as a reference to highlight the EFQ scheduling properties. The EFQ

algorithm is evaluated from the ability of managing the power share and guaranteeing

the time-constraint compliance to the potential of optimizing the mobile system user

experience under the energy limit. Next, the experimental results will be summarized

from these three aspects.

First, EFQ provides a straightforward way to manage the power share of each

task by scheduling tasks based on their system-wide energy consumption.

Experimental results show that the system power can be proportionally shared among

the tasks in a user-desired ratio under the EFQ scheduling, regardless of how the task

power changes and in which device the energy is spent. This is impossible to achieve

under the default Linux scheduler. In addition, it is also shown through experiments

that EFQ can protect the power share of specific tasks upon the change of the

scheduling environment. With this property, the power share of user-preferred or

time-sensitive tasks can be guaranteed so that they can finish a target amount of work

with a stable performance when the total energy budget is limited.

Second, BSEFQ can support effective and flexible time-constraint compliance in

GPOSs. Through a series of comparative experiments on SEFQ and BSEFQ, it is

found that, the time-constraint compliance under SEFQ is susceptible by the task

number and the energy estimation error. Therefore, in order to ensure the

time-constrain compliance, the power share of time-sensitive tasks should be overly

and conservatively allocated, which is applicable only if the CPU workload is

moderate. In contrast, with a power share that is no less than the maximum long-term

power share, BSEFQ can provide robust and effective time-constraint compliance

upon the increase of task number and energy allocation error. And since BSEFQ can

adjust the warp values of different time-sensitive tasks, it allows a flexible tradeoff of

EXPERIMENTAL RESULTS

193

their performance.

Finally, in comparison with the default Linux scheduler, EFQ is more flexible

and effective in optimizing and preserving the mobile system user experience under

the energy limit. Experimental results demonstrate that, by sharing the system power

proportionally to the ratio of the energy allocation, EFQ can guarantee that each task

has the opportunity to use up its energy quota in a stable rate. This is pivotal in

ensuring a stable performance for each task and maximizing the battery energy

utilization. Besides, it is also demonstrated that, upon the appearance of high energy

load or abnormal behaviour with excessive energy demands from a high-priority task,

EFQ can trade off the power share and performance of the task by adjusting the

maximum time that the task can run with high priority. Thus, the power share of other

user-preferred tasks can be protected and the system user experience can be optimally

preserved. In the case of the default Linux scheduler, since the power share of each

task is not absolutely protected from competition, certain task may suffer power share

reduction and fail to use up its energy quota. This leads to the loss of opportunity to

maximize the energy utilization and optimize the user experience.

CONCLUSIONS

194

Chapter 8

Conclusions

This chapter is divided into three sections. The first section summarizes the work of

this dissertation and discusses its contributions; the second section analyzes the

limitations of the work and suggests the directions for future research; and the final

section highlights again the general contribution of this work in reference to the

research community of power management.

8.1 Summary and discussion

The user experience of modern GPOS-based mobile devices is increasingly limited by

the battery capacity, how to optimize the mobile system user experience under the

battery energy limit is a challenging problem that needs to be tackled by system

designers and researchers. Considering that, on the one hand, a user-desired battery

lifetime is one of the most important, though unstable, contributing factors of the

mobile system user experience, and on the other hand, energy-centric power

management (PM) schemes can provide strong guarantees regarding the battery

lifetime, this dissertation work has investigated on the optimization of the mobile

system user experience from the perspective of energy-centric processor scheduling in

an energy-centric context.

Energy-centric processor scheduling is the core module of an energy-centric PM

scheme in managing the energy flows to the applications and guaranteeing the

application performances. So the first question faced in this dissertation work is: what

are the requirements of energy-centric processor scheduling with regard to the mobile

system user experience optimization under the energy limit. To answer this question,

we have focused on the general contributing factors of the mobile system user

experience that are independent of specific user preferences, mapped them to the

processor scheduling, and determined three essential requirements on the

CONCLUSIONS

195

energy-centric processor scheduling, which are proportional power sharing,

time-constraint compliance, and when necessary, a tradeoff between the power share

and the time-constraint compliance.

With the general requirements determined, the next step is to design the

energy-centric processor scheduling algorithm. We have firstly investigated the

traditional GPOS scheduling algorithms and comparatively discussed the possibilities

of applying these algorithms on energy-centric processor scheduling, and then,

proposed the development of energy-based fair queuing (EFQ) for energy-centric

processor scheduling by extending traditional fair queuing algorithms and the

Generalized Processor Sharing (GPS) model into the energy management domain. As

the basis of energy-based fair queuing, a practical energy-centric scheduling model

has been built up by considering the energy as a proportionally shared resource in the

GPS model, the management of proportional power shares has been analyzed and

effective mechanisms of power share protection and reallocation have been proposed.

Based on the energy model, the challenges of EFQ algorithm development have been

analyzed; it has been found out that performing EFQ scheduling is restricted by the

unpredictability of the energy packet size, the volatility of the system power and the

practical issues such as the implementation complexity and the scheduling overhead.

With these challenges in mind, the starting-energy fair queueing (SEFQ) has been

proposed. It is simple to implement and can achieve near-optimal fairness bound for

proportional power sharing under variable system power with low computing-time

complexity.

After the proposal of SEFQ, the time-constraint compliance under energy-based

fair queuing scheduling has also been analyzed. It has been found out that achieving

time-constraint compliance under EFQ scheduling requires an overly-reserved power

share for each time-sensitive task. To further improve the support of real-time and

multimedia scheduling in EFQ, the borrowed starting-energy fair queuing (BSEFQ)

has been proposed by combining a real-time friendly mechanism named warping into

the SEFQ. The warping mechanism in BSEFQ can improve the scheduling latency of

time-sensitive tasks by giving time-limited priority to them; this breaks the short-term

CONCLUSIONS

196

fairness in energy sharing but maintains the proportional power sharing in the

long-term. Besides, by adjusting the maximum time each time-sensitive task can run

in warping, the power share and time-constraint compliance of time-sensitive tasks

can be flexibly traded off. Based on the theoretical proposal of SEFQ and BSEFQ, a

high-level modelling and simulation of EFQ scheduling has been implemented in

SystemC; the simulation results have shown that the proposed EFQ algorithm can

meet the general requirements of energy-centric processor scheduling in the

achievement of proportional power sharing, time-constraint compliance, and a

trade-off between the power share and time-constraint compliance upon the

appearance of highly variable or abnormally behaving energy requests.

The proposed EFQ algorithm has been implemented in the Linux kernel, a Linux

scheduling simulation test-bench has been developed to learn the Linux scheduling

subsystem and debug the Linux-based EFQ implementation. It has been found out

that the completely fair scheduler (CFS) of Linux is a variant of the fair queuing in

processor scheduling and it shares the same basic principles with the EFQ algorithm.

Therefore, the organizational structure of the Linux-CFS scheduler has been

maximally utilized to implement the EFQ algorithm, and it has been turned out that

the EFQ algorithm is simple and low-overhead to implement in Linux. The

Linux-based EFQ scheduler has been evaluated in an experimental test-bench, in

which a multithreading test-bench program is utilized to create EFQ threads with the

power information self-contained. The experimental results have demonstrated the

effectiveness of the EFQ algorithm in managing system-wide power shares and

guaranteeing time-constraint compliance. Based on the verified properties of the EFQ

algorithm, the potential benefits of employing EFQ scheduling in optimizing and

preserving the mobile system user experience have been explored through

specifically-designed experiments. The experimental results have demonstrated that

energy-based fair queuing is more effective than traditional processor scheduling

algorithms, such as those of the default Linux scheduler, in user experience

optimization for energy-limited mobile systems.

CONCLUSIONS

197

8.2 Limitations and future work

This work explores the optimization of mobile system user experience with

energy-centric processor scheduling; it experiences some limitations due to the

assumptions and conditions that are made on the applications and the processor

scheduling surroundings. To further improve and extend the work, a variety of

directions can be followed for future research.

The main limitation of this thesis work is the lack of the support of a complete

energy-centric system. Because the energy allocation module has not been

implemented, the energy management and energy utilization optimization over a

user-specified battery time cannot be demonstrated; and because the energy

accounting module has not been implemented, a real-time and on-line feedback of the

energy consumption to each application is impossible and the energy consumption on

various hardware devices cannot be fully explored to guide the EFQ scheduling.

Despite of the above limitation, the main properties of EFQ scheduling have been

successfully evaluated by first profiling the power consumption on CPU and SD card

I/O and then self-containing the power information of each thread in our experimental

test-bench. To further explore the dynamic computing and adjusting of the task

weight and power share and better demonstrate the potential benefits of employing

EFQ in optimizing the user experience of energy-limited mobile systems, the energy

allocation and energy accounting modules should be implemented in the future to

form a complete energy-centric system.

Another limitation of the work is the simplicity of the mobile applications. In this

thesis work, each application is modelled as a single-threaded process that is

independent to other applications, and the applications are programed based on a set

of simple benchmarks with specifically-designed workloads. This is practical and

effective when designing a very basic processor scheduling algorithm and assessing

its properties. To further evaluate the scheduling behaviors of the EFQ algorithm in a

realistic mobile system, multithreading applications with real workloads and

inter-process communication should be employed in the experimental test-bench.

CONCLUSIONS

198

Correspondingly, the threads of different applications should be organized in groups

and the EFQ algorithm should be enhanced to support proportional share group

scheduling; also, more challenges on energy accounting and application weight

adjustment are expected to arise.

Besides of the future work on energy-centric system and test-bench applications,

this work can be further extended from the following two aspects. First, as many

modern mobile systems are commonly featured with multi-core processors, the

energy-based fair queuing algorithm can be extended to support load balancing and

multi-core proportional power share scheduling. Second, classical energy-efficient

policies, such as DVFS, DPM, and application-self-adaptation, can be combined into

the energy-centric power management framework to further save energy and optimize

the user experience of energy-limited mobile systems.

8.3 Final words

This work considers the guarantee of a user-desired battery lifetime as the

fundamental requirement of a mobile system user under the energy limit, and explores

the user experience optimization of energy-limited mobile systems from the

perspective of energy-centric processor scheduling in an energy-centric context,

where a strong guarantee of the battery lifetime is possible. The energy-based fair

queuing (EFQ) algorithm has been proposed and implemented in Linux for

performing the energy-centric processor scheduling, and an experiment-based

assessment has demonstrated the effectiveness of EFQ in power management,

performance guarantee and, user experience optimization for energy-limited mobile

systems. In that context, this is the first presentation of a formally-structured and

concretely-implemented energy-centric processor scheduling algorithm. In addition,

this is the first work to explore the employment of energy-centric processor

scheduling in the optimization of mobile system user experience under the energy

limit.

BIBLIOGRAPHY

199

Bibliography

[1] U. Reiter, “Perceived quality in consumer electronics – from quality of service to quality of

experience,” 13th IEEE International Symposium on Consumer Electronics (ISCE 2009),

Kyoto, Japan, May. 2009.

[2] S. Kim, H. Kim, J. Hwang, J. Lee, and E. Seo, “An event-driven power management scheme for

mobile consumer electronics,” IEEE Trans. Consumer Electron., vol. 59, no.1, pp. 259-266,

Feb. 2013.

[3] S. Lim, S. W. Lee, B. Lee, and S. Lee, “Power-aware optimal checkpoint intervals for mobile

consumer devices,” IEEE Trans. Consumer Electron., vol. 57, no. 4, pp. 1637-1645, Nov. 2011.

[4] H. Zeng, C. S. Ellis, and A. R. Lebeck, “Experiences in managing energy with ECOSystem,”

IEEE Pervasive Computing, vol. 4, no. 1, pp. 62–68, 2005.

[5] R. Neugebauer and D. McAuley, “Energy is just another resource: energy accounting and

energy pricing in the Nemesis OS,” In Proceedings of the 8th IEEE Workshop on Hot Topics in

Operating Systems (HotOS-VIII), May. 2001.

[6] B. Li, and S. Park, “Energy efficient burst scheduling in mobile TV services,” IEEE Trans.

Consumer Electron., vol. 59, no.1, pp. 24-30, Feb. 2013.

[7] J. Lorch and A. Smith. “Software Strategies for Portable Computer Energy Management,” IEEE

Personal Commun., vol. 5, pp. 60–73, June 1998.

[8] L. Benini and G. De Micheli. “Dynamic Power Management: Design Techniques and CAD

Tools,” Norwell, MA: Kluwer, 1998.

[9] L. Benini, A. Bogliolo, S. Cavallucci, and B. Riccó. “Monitoring System Activity for

OS-directed Dynamic Power Management,” In Proceedings of the International Symposium on

Low Power Electronics and Design, pp. 185–190, Aug. 1998.

[10] T. Pering, T. D. Burd, and R. W. Brodersen. “The Simulation and Evaluation of Dynamic

Scaling Algorithms,” In Proceedings of the International Symposium on Low Power Electronics

and Design, August 1998.

[11] W. Yuan and K. Nahrstedt. “Energy-efficient Soft Real-time CPU Scheduling for Mobile

Multimedia Systems,” In Proc. 19th ACM Symp. Operating Systems Principles (SOSP 03),

ACM Press, pp. 149–163, 2003.

[12] J. Lorch and A. Smith. “Improving Dynamic Voltage Scaling Algorithms with PACE,” In Proc.

of ACM SIGMETRICS 2001 Conference, June 2001.

BIBLIOGRAPHY

200

[13] P. Pillai and K. G. Shin. “Real-time Dynamic Voltage Scaling for Low-power Embedded

Operating Systems,” In Proc. of 18th Symposium on Operating Systems Principles, Oct. 2001.

[14] J. Flinn and M. Satyanarayanan. “Energy-aware Adaptation for Mobile Applications,” In

Symposium on Operating Systems Principles (SOSP), pages 48–63, December 1999.

[15] J. Flinn, M. Satyanarayanan, “Managing battery lifetime with energy-aware adaptation,” ACM

Transactions on Computer Systems (TOCS), v.22 n.2, p.137-179, May 2004.

[16] C. S. Ellis. “The Case for Higher-Level Power Management,” In Proceedings of the 7th

Workshop on Hot Topics in Operating Systems, Rio Rico, AZ, March 1999.

[17] A. Vahdat, C. Ellis, and A. Lebeck. “Every Joule is Precious: The Case for Revisiting Operating

System Design for Energy Efficiency,” In Proceedings of the 9th ACM SIGOPS European

Workshop, September 2000.

[18] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. “Ecosystem: Managing Energy as a First

Class Operating System Resource,” Proc. 10th Int’l Conf. Architectural Support for

Programming Languages and Operating Systems (ASPLOSX), ACM Press, pp. 123–132, 2002.

[19] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zeldovich, “Energy

management in mobile devices with the cinder operating system,” Proceedings of the sixth

conference on Computer systems, April 10-13, 2011, Salzburg, Austria.

[20] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. “Currentcy: A Unifying Abstraction for

Expressing Energy,” Proc. USENIX Ann. Technical Conf., USENIX, pp. 43–56, 2003.

[21] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., and Walker, K. R.

Agile application-aware adaptation for mobility. In Proceedings of the 16th ACM Symposium

on Operating Systems and Principles, pages 276–287, Saint-Malo, France, October 1997.

[22] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden.

“The Design and Implementation of an Operating System to Support Distributed Multimedia

Applications,” IEEE Journal on Selected Areas In Communications, 14(7): 1280-1297, Sept.

1996.

[23] G. Banga, P. Druschel, and J. C. Mogul. “Resource Containers: A New Facility for Resource

Management in Server Systems,” In Third Symposium on Operating Systems Design and

Implementation, February 1999.

[24] J. Flinn and M. Satyanarayanan. “PowerScope: A Tool for Profiling the Energy Usage of

Mobile Applications,” Second Workshop on Mobile Computing Systems & Applications

(WMCSA’99), New Orleans, February, 1999.

BIBLIOGRAPHY

201

[25] F. Bellosa, “The benefits of event-driven energy accounting in power-sensitive systems”, In

proceedings of the 9th ACM SIGOPS European Workshop, pp.37-42, Sept. 2000.

[26] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati, “Portable, scalable,

per-core power estimation for intelligent resource management”, In Proceedings of the 2010

International conference on Green Computing, pp135 –146, Ago. 2010.

[27] Benjamin C. Lee , David M. Brooks, “Accurate and efficient regression modeling for

microarchitectural performance and power prediction,” ACM SIGOPS Operating Systems

Review, v.40 n.5, December 2006

[28] K. Singh , M. Bhadauria , S. A. McKee, “Real time power estimation and thread scheduling via

performance counters,” ACM SIGARCH Computer Architecture News, v.37 n.2, May 2009

[29] C. Lively, X. F. Wu, V. Taylor, S. Moore, H. Chang, and C. Su et al, “Power-Aware Predictive

Models of Hybird (MPI/OpenMP) Scientific Applications on Multicore Systems”,

International Conference on Energy-Aware High Performance Computing, Sept. 2011.

[30] David C. Snowdon, Stefan M. Petters, and Gernot Heiser. “Accurate on-line prediction of

processor and memory energy usage under voltage scaling,” In 7th Int. Conf. Emb. Softw.,

Salzburg, Austria, Oct 2007.

[31] X. Yu, R. Bhaumik, Z.Y. Yang, M. Siekkinen, P. Savolainen, and A. Ylä-Jääski, “A

System-level Model for Runtime Power Estimation on Model Devices”, IEEE/ACM Int’l

Conference on & Int’l Conference on Cyber, Physical and Social Computing, pp.27-34,

Dec.2010.

[32] T. Cignetti, K. Komarov, and C. Ellis, "Energy estimation tools for the Palm," in Proc. of the

ACM Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2000, pp. 96-103.

[33] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler, "Energy metering for free: augmenting

switching regulators for realtime monitoring," in Proc. Int. Conf. Information Processing in

Sensor Networks (IPSN) St. Louis , MO , USA, April 2008.

[34] Mian Dong and Lin Zhong, "Self-constructive, high-rate energy modeling for battery-powered

mobile systems," in Proc. ACM/USENIX Int. Conf. Mobile Systems, Applications, and

Services (MobiSys), June 2011.

[35] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M. Mao, and L. Yang, "Accurate online

power estimation and automatic battery behavior based power model generation for

smartphones," in Proc. Int. Conf. Hardware-Software Codesign and System Synthesis

(CODES+ISSS), Scottsdale, AZ, USA, October 2010.

BIBLIOGRAPHY

202

[36] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y. M. Wang, "Fine-grained power modeling for

smartphones using system call tracing," in Proc. European Conf. Computer Systems (EuroSys),

Salzburg, Austria, April 2011.

[37] R. Fonseca, P. Dutta, P. Levis, I. Stoica, C. A. Berkeley, and C. A. Stanford, "Quanto: tracking

energy in networked embedded systems," in Proc. USENIX Symp. Operating System Design

and Implementation (OSDI) San Diego, CA, USA, December 2008, pp. 323–338.

[38] A. Silberschatz, P. B. Galvin, G. Gagne, Operating System Concepts, 7th edition, John Wiley &

Sons, 2014. ISBN 0-471-69466-5

[39] W. Mauerer, Professional Linux Kernel Architecture, Wrox, 2008. ISBN 0-470-34343-5

[40] J. Nieh and M. S. Lam. “A SMART Scheduler for Multimedia Applications,” ACM

Transactions on Computer Systems, 21(2), pp. 117-163, May 2003.

[41] Mach Scheduling and Thread Interfaces.

https://developer.apple.com/library/mac/documentation/darwin/conceptual/kernelprogramming/

scheduler/scheduler.html

[42] Dario Faggioli, Fabio Checconi, Michael Trimarchi, Claudio Scordino, An EDF scheduling

class for the Linux kernel, 11th Real-Time Linux Workshop (RTLWS), Dresden, Germany,

September 2009.

[43] C.W. Mercer, S. Savage, and H.Tokuda. Processor Capacity Reserves: Operating System

Support for Multimedia Applications. In Proceedings of the IEEE International Conference on

Multimedia Computing and Systems, Boston, MA, PP. 90-99, 1994.

[44] Giorgio C. Buttazzo, Rate monotonic vs. EDF: judgment day, Real-Time Systems, v.29 n.1,

p.5-26, January 2005

[45] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment. Journal of the ACM (JACM), Volume 20 Issue 1, Pages 46 - 61,

Jan. 1973.

[46] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E.

Hyden. The Design and Implementation of an Operating System to Support Distributed

Multimedia Applications. IEEE Journal of Selected Areas in Communications (JSAC) 14, 7

(Sept.), pp. 1280-1297, 1996.

[47] M. Dertouzos. Control Robotics: The Procedural Control of Physical Processors. In Proceedings

of the IFIP Congress. Stockholm, Sweden, pp. 807-813, 1974.

[48] M. B. Jones, D. Rosu, and M. C. Rosu. CPU Reservations and Time Constraints: Efficient,

Predictable Scheduling of Independent Activities. In Proceedings of the Sixteenth ACM

Symposium on Operating Systems Principles. St. Malo, France, pp. 198-211, 1997.

https://developer.apple.com/library/mac/documentation/darwin/conceptual/kernelprogramming/scheduler/scheduler.html
https://developer.apple.com/library/mac/documentation/darwin/conceptual/kernelprogramming/scheduler/scheduler.html

BIBLIOGRAPHY

203

[49] Giorgio Buttazzo , Giuseppe Lipari , Luca Abeni , Marco Caccamo, Soft Real-Time Systems:

Predictability vs. Efficiency (Series in Computer Science), Plenum Publishing Co., 2005

[50] J. Nieh and M.S. Lam. The Design, Implementation and Evaluation of SMART: A scheduler for

Multimedia Applications. In Proceedings of the Sixteenth ACM Symposium on Operating

Systems Principles. ACM, St. Malo, France, pp. 184-197, 1997.

[51] L. Abeni , G. Buttazzo, Integrating Multimedia Applications in Hard Real-Time Systems,

Proceedings of the IEEE Real-Time Systems Symposium, p.4, December 02-04, 1998

[52] L. Abeni, G. Lipari, and G. Buttazzo. Constant bandwidth vs. proportional share resource

allocation. In Proceedings of the 1999 IEEE International Conference on Multimedia

Computing and Systems (ICMCS ’99), June 1999.

[53] Lui Sha , Tarek Abdelzaher , Karl-Erik Årzén , Anton Cervin , Theodore Baker , Alan Burns ,

Giorgio Buttazzo , Marco Caccamo , John Lehoczky , Aloysius K. Mok, Real Time Scheduling

Theory: A Historical Perspective, Real-Time Systems, v.28 n.2-3, p.101-155,

November-December 2004

[54] I. Stoica, H. Abdel-wahab, and K. Jeay. On the Duality between Resource Reservation and

Proportional Share Resource Allocation, In Proc. of Multimedia Computing and Networking,

pp. 207-214, 1997.

[55] I. Stoica, H. Abdel-Wahab, K. Jeffay, and S. K. Baruah. A Proportional Share Resource

Allocation Algorithm for Real-time, Time-shared Systems. In Proceedings of the 17th IEEE

Real-Time Systems Symposium (RTSS '96), pages 288-299, Dec. 1996.

[56] J. Regehr. Some Guidelines for Proportional Share CPU Scheduling in General-purpose

Operating Systems, In The 22nd IEEE Real-Time Systems Symposium (RTSS 2001), London,

UK, December 3-6 2001.

[57] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in

integrated services networks: the single-node case,” IEEE/ACM Transactions on Networking,

Vol. 1, Issue. 3, pp. 344-357, Jun. 1993.

[58] I. Stoica, H. Abdel-Wahab. Earliest Eligible Virtual Deadline First: A Flexible and Accurate

Mechanism for Proportional Share Resource Allocation. Technical Report TR-95-22, CS Dpt.,

Old Dominion Univ., Nov. 1995.

[59] S.J. Golestani. A Self-Clocked Fair Queueing Scheme for High Speed Applications. In

Proceedings of INFOCOM’94, 1994.

[60] D. Stiliadis and A. Varma, Latency-rate Servers: A General Model for Analysis of Traffic

Scheduling Algorithms, In Proc. IEEE INFOCOM ’96, San Francisco, CA, pp. 111–119, Apr.

1996.

BIBLIOGRAPHY

204

[61] Stiliadis D., and A. Varma. Rate-Proportional Servers: A Design Methodology for Fair

Queueing Algorithms. IEEE/ACM Transactions on Networking, Vol. 6, No 2, pp. 164-174.

April 1998.

[62] J. S. Goddard and J. Tang. EEVDF Proportional Share Resource Allocation Revisited, in

Work-in-Progress Sessions of the 21st IEEE Real-Time Systems Symposium (RTSSWIP00),

Nov. 2000.

[63] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible Proportional-Share Resource

Management. Proceedings of the First Symposium on Operating Systems Design and

Implementation, November 1994.

[64] P. Goyal, X. Guo, and H. M. Vin. 1996. A hierarchical CPU scheduler for multimedia operating

systems. Proc. Second USENIX Symposium on Operating System Design and Implementation

(OSDI), pp 107-122, 1996.

[65] R. E. Al-Ouran, Linux Implementation of a New Model for Handling Task Dynamics in

Proportional Share Based Scheduling Systems, Ohio University, 2010.

http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1275681466

[66] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, "Weighted Round Robin Cell Multiplexing

in a General Purpose ATM Switch", IEEE JSAC, pp. 1265-1279, October 1991.

[67] M. Shreedhar, G. Varghese, "Efficient Fair Queuing Using Deficit Round Robin," IEEE/ACM

Trans. Networking, 1996, Vol.4 No. 3, pp. 375-85.

[68] P. Goyal, H. M. Vin, and H. Cheng. Start-Time Fair Queueing: A Scheduling Algorithm for

Integrated Services Packet Switching Networks. IEEE/ACM Transaction on Networking, Vol.

5, No. 5, October 1997.

[69] C. A. Waldspurger and W. E. Weihl. Stride Scheduling: Deterministic Proportional Share

Resource Management. Technical Memorandum, MIT/LCS/TM-528, Laboratory for CS, MIT,

July 1995.

[70] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet Switching Networks,

Proceeding of the ACM SIGCOMM’90. pp. 19-29. September 1990.

[71] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queueing. In Proceedings of

IEEE INFOCOM'96, pages 120-128, San Francisco, CA, March, 1996

[72] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm.

Proc. Sigcomm '89, 19(4):1-12, September 1989.

[73] K. Lee. Performance Bounds in Communication Net-works With Variable-Rate Links. In

Proceedings of ACM SIGCOMM’95, pages 126-136, 1995.

http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1275681466

BIBLIOGRAPHY

205

[74] K. J. Duda and D. R. Cheriton. 1999. Borrowed-virtual-time (BVT) scheduling: supporting

latency-sensitive threads in a general purpose scheduler. In Proceedings of the 17th ACM

Symposium on Operating System Principles, Dec. 1999.

[75] A. Bavier, L. Peterson, and D. Mosberger. BERT: A Scheduler for Best-Effort and Realtime

Paths. Technical Report TR-602-99, Department of Computer Science, Princeton University,

1999.

[76] IEEE 1666-2011 standard for standard SystemC language reference manual, IEEE, New York,

USA, January, 2012.

[77] D. C. Black, J. Donovan, SystemC: From the Ground Up, 2nd ed., Springer 2009. ISBN

0-387-69957-0

[78] J. Wei, E. Juarez, F. Pescador and M. J. Garrido, “Starting-energy fair queuing (SEFQ): a novel

class of energy-aware scheduling algorithms for mobile systems,” 16th IEEE International

Symposium on Consumer Electronics (ISCE 2012). Harrisburg, USA, 4-6 June. 2012.

[79] J. M. Calandrino, D. P. Baumberger, T. Li, J. C. Young, and S. Hahn, “LinSched: the Linux

scheduler simulator,” In Proceedings of the 21st international conference on parallel and

distributed computing and communications systems, 2008. p. 171–6.

[80] LinSched: The Linux Scheduler Simulator. http://www.cs.unc.edu/~jmc/linsched/

[81] LinSched for 2.6.35 released. http://lwn.net/Articles/409680/

[82] LinSched for v3.3-rc7. http://lwn.net/Articles/486635/

[83] BeagleBoard System Reference Manual Rev. C4, December 2009.

[84] The Ångström Distribution. http://www.angstrom-distribution.org/

[85] J. Herrera, Desarrollo de un Emulador de Baterías para el Estudio del Consumo de la Tarjeta

BeagleBoard, PFC EUITT-UPM, Jul 2011.

[86] USER’S GUIDE, Agilent Technologies, Model 66319B/D, 66321B/D, Mobile Communications

DC Source. http://cp.literature.agilent.com/litweb/pdf/5964-8184.pdf

[87] BeagleJuice WiKi. http://antipastohw.pbworks.com/w/page/31143822/BeagleJuice

[88] M. R. Guthaus , J. S. Ringenberg , D. Ernst , T. M. Austin , T. Mudge , R. B. Brown, “MiBench:

a free, commercially representative embedded benchmark suite,” Proceedings of 4th Annual

IEEE Workshop on Workload Characterization, pp. 3-14, December 02-02, 2001.

http://www.cs.unc.edu/~jmc/linsched/
http://lwn.net/Articles/409680/
http://lwn.net/Articles/486635/
http://www.angstrom-distribution.org/
http://cp.literature.agilent.com/litweb/pdf/5964-8184.pdf
http://antipastohw.pbworks.com/w/page/31143822/BeagleJuice

	frontpage
	Doctoral Dissertation - v6.0

