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Abstract—Hyperspectral Imaging (HSI) can be used as a
non invasive medical diagnostic method when used in combina-
tion with Machine Learning (ML) algorithms. The significant
captured data in HSI can be useful for classifying different
types of brain tissues, since they gather reflectance values from
different band widths below and beyond the visual spectrum.
This allows ML algorithms like Support Vector Machines (SVM)
and Random Forest (RF) to classify brain tissues such as
tumors. Predicted results can be used to create visualizations
and support neurosurgeons before injuring any tissue. This
way neurosurgeons can be more precise, reducing any possible
damages on healthy tissues. In this work, a proposal for the
classification of in-vivo brain hyperspectral images using SVM
and RF classifiers is presented. A total of four hyperspectral
images from four different patients with glioblastoma grade IV
(GBM) brain tumor have been selected to train models and,
therefore, classify them. Five different classes have been defined
during experiments: healthy tissue, tumor, venous blood vessel,
arterial blood vessel and dura mater. Results obtained suggest
that SVM usually performs better than RF, generally achieving
up to 97% of mean accuracy (ACC). However, RF performance
had better results than SVM when classifying images used during
training, obtaining almost 100% of mean ACC for all 5 classes
described. This study shows the robustness of SVM and the
potential of RF for real-time brain cancer detection.

Index Terms—Hyperspectral, Machine Learning, SVM, Ran-
dom Forest, Medical, classification

I. INTRODUCTION

In recent years, technological advances and their appli-
cations in the medical sector have led to improvements in
the diagnosis and treatment of many diseases. Nonetheless,
cancer continues to be one of the major causes of morbidity
and mortality worldwide [1]. In this sense, approximately
2% of cancer deaths are caused by brain tumors. Glioma
is the most common cerebral tumor in adults, particularly
glioblastoma multiforme, which is an aggressive high-grade
brain tumor [2]. Surgery remains an inevitable phase for
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treating many brain tumors, albeit all risks involved and its
high complexity. Nowadays, new existing technologies have
been allowing more complete resections with less morbidity.
However, resection is not always possible and depends on
tumor characteristics. In case of glioblastomas, their high
capacity to infiltrate healthy brain tissue makes it difficult
to distinguish between malignant tumor borders and healthy
tissue [3]. Hyperspectral imaging (HSI) can be used to find
a solution to this problem, providing a tool to assist neuro-
surgeons accurately and help them distinguish between brain
tumor and healthy tissue during surgery. HSI is an appropriate
technique for medical applications since it requires no contact
with the patient, it is non-ionizing as well as non-invasive [4].
This technology collects spectral information with more detail
than the human eye, processing information below and beyond
the visible spectrum. The goal is to obtain spectral signatures
for each pixel using three-dimensional datasets with spatial
and spectral information, well known as hyperspectral cubes.
Extracting spectral signatures for different types of in-vivo
brain tissues helps to construct ground truth maps allowing
Machine Learning (ML) algorithms to classify new brain
tissues [5]. Ground truth maps, generated with neurosurgeon
support, contain reference information from the original image
taken during surgery to indicate, with a high level of accuracy,
different type of tissue for every pixel. This information can be
used to train models, classify images and validate prediction
results, which can then be used to create visualizations in the
form of classification maps, providing an accurate tool for the
neurosurgeon to excise precisely the brain tumor.

In this work, a multi-class brain tumor classification method
based on HS imaging and supervised ML techniques is
presented. The paper is organized as follows: Section II
gives background knowledge while Section III methods and
materials used are outlined. Then, Section IV describes the
test bench implemented to verify the proposal whilst obtained
results and discussions are presented in Section V. Finally,
Section VI concludes the paper with the conclusions and the
undergoing work.978-1-7281-9132-4/20/$31.00 ©2020 IEEE
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II. BACKGROUND

A. Hyperspectral Imaging

Snapshot hyperspectral imaging is a modality of HSI char-
acterized by capturing hyperspectral images in a single time
instant without moving the camera. These cameras include a
multi-band sensor matrix allowing them real-time HSI cubes
acquisition, providing a useful tool in numerous fields [6].
Several studies have also considered the use of HSI for
medical applications to analyze and diagnose different kinds
of diseases, in particular, cancer detection. Successful studies
about breast cancer borders detection have also been presented
lately by Kho et al. using HSI to help resections during surgery
[7]. Others kind of cancer, melanoma [8], and tongue cancers
[9], have been detected using this technology in other studies.
In case of brain cancer, other works have been developed
supporting the effectiveness of using HSI for tumor detection.
HELICoiD project [5], has been developed by Fabelo et al.,
in which a HSI line scan system based, able to capture
826 spectral bands, for detecting brain tumors during surgery
is being refined. Results obtained in the HELICoiD project
present great achievements on using HSI and ML techniques
for real-time brain cancer detection.

B. Machine Learning

ML is a sub-field of Artificial Intelligence (AI) which is
getting lot of attention in recent years. ML algorithms aspire
to mimic human brains by learning from observation coming
from huge volumes of data. This way, computing models can
be trained to analyze and predict new data. Trained models can
be used for classification or regression purposes, depending
on the problem to be solved. For brain tumor detection,
classification ML models have been normally used in order to
identify a finite number of brain tissues. When combining data
gathered using HSI with ML techniques, predictive models can
be trained to accurately discriminate between different brain
tissues, using their spectral features to make predictions [5].

Various ML techniques have been used nowadays, including
supervised learning, unsupervised learning, semi-supervised
learning or reinforcement learning. But for the purpose of this
study, supervised learning was the option chosen. The main
difference of supervised learning is that every observation of
the data is labeled. With classified data, models can be trained
since every input has its correspondent output. When they
analyze to generalize from the training data in a logical way
to unseen cases, algorithms correctly determine class labels
for unseen observations. Within this ML technique multiple
algorithms can be used to train models. SVM and RF have
been used in this work and are described in more detail below:

1) Support Vector Machines: This algorithm maps input
vectors into a high dimensional feature space, where a maxi-
mal margin hyperplane is build [10]. Different kernel functions
can be specified for the decision function depending on the
problem. They could be used to implement a multi-class
classification on a dataset, providing in advance a subset of
labeled data needed for model training.

2) Random Forest: This algorithm is based on an ensemble
of decision trees grown with bootstrap samples of the training
data [11]. For each tree of the forest, random subsets of
features are used at each decision split. When predicting new
data, labels are assigned by the forest depending on the most
predicted label from all trees of the ensemble.

C. Cross-Validation

Cross-validation prevents overfitting and helps to determine
which model will generalize best to a different dataset. Two
main types of cross-validation methods can be found, exhaus-
tive cross-validation and non-exhaustive cross-validation:

1) Exhaustive cross-validation: Methods which learn and
test every possible way to split the dataset into a training and
a validation set; leave-p-out cross-validation and leave-one-out
cross-validation are examples of exhaustive cross-validation.

2) Non-exhaustive cross-validation: Methods which will
not compute every possible way of separating the dataset.
K-fold cross-validation and Holdout method are examples of
non-exhaustive cross-validation.

III. METHODS AND MATERIALS

This section describes which methods have been used to
acquire and process data before training ML models. A de-
scription about model selection have been included as well as
the metrics used to evaluate the performance of the classifiers.

A. Acquisition System

The system used to acquire data is composed by a hyper-
spectral camera and a light source. The camera is based on
a snapshot mosaic model [12], with a scan capacity of 170
cubes/second. Its spatial resolution is 217x409 pixels and the
spectral information is distributed within 25 bands along the
spectral range between 655 nm and 975 nm. This model is
very convenient for medical applications due to its small size
and weight, 26x26x26 mm and 32 g. Illumination in the scene
is provided by a halogen light source [13] with two fiber optic
light guides with 180 cm length and 1.2 cm diameter.

B. Data pre-processing

Before using HSI gathered data, a pre-processing have been
applied for every image taken in order to homogenize the
spectral signatures of each pixel. The pre-processed stage
consists of the following 4 phases:

1) Hyperspectral cube generation: Snapshot raw images
consisting of a repetitive mosaic of blocks of 25 (5x5) wave-
lengths are converted into cubes of 25 bands.

2) Calibration: White and dark reference images are taken
with the hyperspectral acquisition system before a surgery
begins in the same lighting conditions than those of in-vivo
brain resections. White reference images are obtained with a
reference reflectance target [14] while dark reference images
are obtained covering the camera lens. A calibrated image per
band, Ic, is obtained applying Equation 1:

Ic =
I −D

W −D
(1)
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where I is a single band of a captured hyperspectral cube, D
is the corresponding dark reference for that band and W is
the white reference obtained for the same wavelength.

3) Spectral Correction: The wavelength response curves
of the IMEC snapshot sensor used, have high sensitivity
which produces overlap (cross talks) with neighbor wavelength
curves. Due to these non-negligible secondary lobes of wave-
length filters, a spectral correction process is required [15].
A spectral-corrected image has been obtained multiplying the
signal with a correction matrix, as shown in Equation 2:

Isc = Ic × SCM (2)

where Ic is a single band of a calibrated hyperspectral cube
and SCM is the correction matrix (25x25), in which each row
is a set of virtual band spectral correction coefficients. The
correction matrix have been provided by the manufacturer.

4) Normalization: Illumination changes might lead to dif-
ferences in brightness levels between similar tissues. Thus,
data normalization is necessary to reduce this effect. Nor-
malization coefficients are computed following Equation 3.
These coefficients are the root mean square value (RMS) of
the spectral signatures. As can be seen in Equation 4, they
are employed to transform the spectral corrected cube into a
normalized one. Note that the shape of the spectral signatures
is preserved in this transformation.

c [i, j] =

√∑B
k=1 (Isc [i, j, k])

2

B
(3)

INorm [i, j, k] =
Isc [i, j, k]

c [i, j]
(4)

where Isc is the spectral corrected cube with dimensions R×
C ×B (Rows× Columns×Bands).

C. Classification algorithms

The following supervised learning algorithms have been
used to train classification models:

1) Support Vector Machines: A python scikit-learn library
[16] has been used to train SVM models with a linear kernel.

2) Random Forest: Python scikit-learn implementation [16]
has been used to train classification RF models.

D. Model Selection and Metrics

SVM and RF models have been selected using double 5-fold
cross-validation and triple 5-fold cross validation, depending
on the experiment. Models have been trained with 80% of the
available ground-truth data and assessed with the remaining
20%. Best trained models with both supervised ML algorithms
have been selected evaluating the overall accuracy (OACC) of
the classifiers during the 5-fold cross-validation for every class,
using Equation 5:

OACC =
Number of correct predictions
Total number of predictions

(5)

To evaluate classifier performances, three metrics have been
obtained from confusion matrices: accuracy (ACC), sensitivity

TABLE I
DETAILED NUMBER OF PIXELS FOR EVERY CLASS AND PATIENT IMAGE

USED IN THE DATASET OF THE STUDY.

Class ID029 ID030 ID034 ID035

Healthy-Tissue 3752 2587 1186 3864
Tumor GBM 64 2737 1464 1389
Venous-Blood 98 487 181 837
Arterial-Blood 11 381 176 58

Dura-Mater 1599 1366 780 586

Total 5524 7558 3787 6734

(SEN) and specificity (SPE). ACC allows to determine how
well models globally classify data. SEN indicates the ability
of classifiers to predict correctly a class of interest, while
SPE shows models capacity to properly differentiate all classes
from the class of interest. These metrics have been calculated
for each class following Equations 6, 7 and 8:

ACC =
TP + TN

TP + TN + FP + FN
(6)

SEN =
TP

TP + FN
(7)

SPE =
TN

TN + FP
(8)

where TP means true positives, TN true negatives, FP false
positives and FN false negatives.

IV. TEST BENCH

This sections presents the database used for the verification
process as well as the conducted experiments.

A. Database

Hyperspectral images have been obtained during real
surgery procedures inside the operating theater, at the Uni-
versity Hospital 12 de Octubre of Madrid (Spain), using the
acquisition system described above. All images in Table I have
been captured from in-vivo brain surfaces after craniotomy
and durotomy. After acquiring the images and confirming
tumor diagnostic with pathological analysis, neurosurgeons
label different tissues of brain images to reference five different
classes: healthy tissue, tumor, venous blood vessel, arterial
blood vessel and dura mater. More details about the labelling
tool used can be found in [5]. The aim is to create a ground-
truth map for every hyperspectral image, allowing to train
the supervised learning algorithms described above. For our
analysis, images corresponding to four patients with glioblas-
toma grade IV tumor (GBM) have been used: ID0029C02,
ID0030C02, ID0034C02 and ID0035C02. These patients have
been identified with a unique reference number using the
following format: ID patient number - C number of capture.
For simplicity, in the rest of the document these patients will
be identified as ID029, ID030, ID034 and ID035. The four
captures have been taken with the same exposure time, 70
ms. Table I contains the number of pixels labelled for each
class and patient.
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B. Experiments

1) Experiment A: SVM and RF models have been trained
for both ML algorithms using 80% and 20% of patients
ground-truth as training and test data, respectively. The best
SVM and RF models are determined using a triple cross-
validation process to evaluate the best 80% of every patient. In
addition, the entirety of each patient image has been predicted
with the best models.

2) Experiment B: Four models have been trained for both
algorithms with 3 patient images using 100% of their data.
Each of these models have been selected after a double cross
validation to make sure every pixel has been used as training
and test data. Additionally, the remaining image not used
during training has been used to make predictions.

V. RESULTS AND DISCUSSION

This section describes the obtained results from experiments
A and B. RF results come from models trained with 100 trees.
The number of trees has been selected as a trade-off between
training time and overall accuracy.

Figure 1 shows the different pre-processed spectral signa-
tures in the dataset. Different classes have been plotted with
different colors, where the shaded area represents the standard
deviation of the data. These signatures correspond to the
average of ground-truth labelled pixels over the four selected
patients. Each type of tissue has a characteristic signature
which ML models leverage on to differentiate them out of
the rest. However, there are discrepancies between the classes
healthy tissue, tumor GBM, arterial blood, venous blood and
dura mater within different patients. These differences can be
represented numerically with the correlation matrix of tumor
GBM class in Table II.

Patient ID029 does not have a good correlation with other
patients. Although the pathology report confirms a GBM
tumor, the region of tumor captured on brain surface has a
different grade caused by its infiltrative nature. Patient ID030
also has a good correlation with patient ID034 and ID035, over
67% and 96% respectively. Best results have been obtained
with patient ID034, which has a correlation over 60% with
patient ID035. Classification results may be affected by these
differences, especially in experiment B, where data of the
patient to be classified have not been included in the model.

TABLE II
CORRELATION MATRIX OF TUMOR GBM PRE-PROCESSED SPECTRAL

SIGNATURE BETWEEN PATIENTS.

ID029 ID030 ID034 ID035

ID029 1 -0.358 0.286 -0.302
ID030 -0.358 1 0.668 0.96
ID034 0.286 0.668 1 0.609
ID035 -0.302 0.960 0.609 1

A. Experiment A

After selecting models with the best OAAC from the triple
cross validation, mean accuracy for all four patients and all 5
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Fig. 1. Mean and standard desviation of the pre-processed spectral signatures
of each class in the dataset.

TABLE III
OVERALL ACCURACY OF SVM AND RF AFTER CLASSIFYING THE FOUR

PATIENT IMAGES FOR EXPERIMENT A.

ID029 ID030 ID034 ID035

SVM 0,9756 0,9147 0,9480 0,9837
RF 0,9928 0,9880 0,9939 0,9994

classes can be seen in the top image of Figure 2. Both SVM
and RF models have performed above 95% for each class.
RF classification method presents better results than SVM in
terms of performance. Effectively, as can be seen in Table III
where the overall accuracy is shown, RF has achieved better
results than SVM for all patients of experiment A.

The detailed performance of the RF model is shown in the
middle and bottom images in Figure 2, where SEN and SPE
metrics for tumor GBM class represent values over 95% in
most cases, except for the SEN value of patient ID029. As
can be seen in Table II patient ID029 does not correlate well
with other patients, which may explain why the SEN value is
lower than the rest of patients.

Additionally, classification maps for patient ID030 are pre-
sented in Figure 3 to ease the visualization of prediction
results. The top left image is the actual grey scale image
of the patient, while the top right is the Ground Truth for
that grey scale image. In the bottom side, two classification
maps acquired with SVM and RF models are presented. Small
differences can be seen between both maps, but RF classifies
better Arterial-Blood than SVM when comparing the right side
of the Ground Truth with the classification maps.

B. Experiment B

In experiment B models with the best OACC, for both
algorithms, have been selected after a double cross validation,
providing a total of eight models, four per algorithm. Top
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Fig. 2. Experiment A: Mean accuracy of all 5 classes for the four patients
after classifying completely each patient image with the best SVM and RF
model. Sensitivity and specificity of the tumor GBM class are also displayed
for every patient with RF model.

Fig. 3. Experiment A: result patient ID035. (A) Image, (B) Ground Truth map,
(C) Classification Map of SVM, (D) Classification map of Random Forest.
Green: healthy tissue, Red: Tumor GBM, Blue: Venous Blood Vessels, Cian:
Arterial Blood Vessels, Pink: Dura Mater.

image in Figure 4 represents the mean ACC of every class
including the four patients for the best SVM and RF models.
As can be seen, SVM performs better than RF, where all
classes range between 75% and up to 97%. On the other hand,

TABLE IV
OVERALL ACCURACY OF SVM AND RF AFTER CLASSIFYING THE FOUR

PATIENT IMAGES FOR EXPERIMENT B.

ID029 ID030 ID034 ID035

SVM 0,8208 0,7935 0,7927 0,1298
RF 0,2341 0,5583 0,2656 0,0876

RF models have performed worse than SVM in all cases, with
values ranging from 55% to 79%. This can also be seen in
Table IV where the overall ACC is shown for SVM and RF
models after classifying patient images whose pixels are not
considered for training.

Since SVM outperforms RF in experiment B, the rest
of the plots in Figure 4 only display SVM results. Middle
image in Figure 4 shows the SEN of all four SVM models
after predicting the patient image not used during training.
Classification models for patient images ID030 and ID034
have globally performed better. As can be seen in Table IV,
the SVM model trained with data from all patient images but
patient ID029 has the best OACC score. However, as can be
see in the middle plot of Figure 4, the SEN metric of the tumor
class is dramatically low. Looking at Table II, patients ID030
and ID034 correlate well with other patients, explaining why
the SEN value is better than the rest of patients.

As can be seen in the bottom plot of Figure 4, the SVM
classifier predicts for patient ID035 mostly all data as arterial
blood. This fact can be confirmed with the obtained confusion
matrix of the patient. Looking at the confusion matrix after
classifying patient ID035, most data from healthy tissue,
tumor GBM tissue, dura mater and venous blood classes
have been classified as arterial blood. When comparing the
average spectral signatures per class of the training samples
to those obtained from the ground-truth of patient ID035, a
high correlation exist between the arterial blood class from the
model and all classes from the patient. This explain why the
classifier predicted mostly all patient image as arterial blood.

Visualizations of classification maps for patient ID030 are
shown in Figure 5. The top left image is the actual grey scale
image of the patient, while on the top right the ground truth
for that grey scale image is displayed. Both images at the
bottom show the classification maps acquired with the SVM
and RF models respectively. SVM classified and delimited
healthy tissue from the venous blood better than RF.

VI. CONCLUSION AND FUTURE WORK

The use of HSI and ML algorithms provides a non-invasive
and effective method for cancer detection. In this paper, HSI
and ML (SVM and RF algorithms) have been used to classify
in-vivo brain tissues in four patients with glioblastoma grade
IV tumor. Both algorithms have shown satisfactory results
when classifying brain cancer from only 25 spectral bands
captured by a snapshot camera. Results demonstrate that
SVM behaves better than RF when predicting new data not
used during training, reaching mean ACC values up to 97%
for the different brain tissues. Contrarily, RF performance
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Fig. 4. Experiment B: Mean accuracy of all 5 classes for the four patients
after classifying completely each patient image with the best SVM and RF
model. Sensibility and specificity of each patient and class with SVM model.

Fig. 5. Experiment B: result patient ID030. (A) Image, (B) Ground Truth map,
(C) Classification Map of SVM, (D) Classification map of Random Forest.
Green: healthy tissue, Red: tumor GBM, Blue: Venous Blood Vessels, Cian:
Arterial Blood Vessels, Pink: Dura Mater.

is better than SVM when prediction is carried out on the
same patient data employed for training. Results show that

mean values are above 99% for the different five classes. This
study may suggest the use of HSI and ML for real-time brain
cancer detection during surgery. In the future, the authors will
continue working on improving ML algorithms for real-time
classification while exploring Incremental Learning.
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