

DEPARTAMENTO DE INGENIERÍA TELEMÁTICA Y ELECTRÓNICA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y
SISTEMAS DE TELECOMUNICACIÓN

Control algorithms for energy optimization

in multimedia hand-held devices

TESIS DOCTORAL

Qiong Tang
Master Northwestern Polytechnical University

DIRECTORES

Ángel Manuel Groba Gonzalez

Doctor Ing.de Telecomunicación por la Universidad Politécnica de Madrid

Eduardo Juárez Martínez
Docteur ès Sciences Techniques por el École Polytechnique Fédéral de Lausanne

2017

i

Resumen

La industria de la microelectrónica ha impulsado las capacidades de los dispositivos

móviles multimedia, pero la batería, que es la única fuente de energía de este tipo de

dispositivos, está experimentando un desarrollo relativamente lento. Por lo tanto, la

determinación de cómo optimizar el consumo de energía de los dispositivos móviles bajo un

requisito de rendimiento predefinido se ha convertido en un problema crítico. Además, según un

informe reciente, el consumo de vídeo para tablets y teléfonos inteligentes creció un 35% en el

año 2014 y ha crecido un 170% desde 2013. En realidad, la reproducción de vídeo móvil ha

experimentado un crecimiento significativo del 2084% de 2011 a 2015. Como ejemplos de las

tareas que mayor consumo de energía implican, la codificación, decodificación y presentación de

secuencias de vídeo se encuentran entre los principales temas de investigación sobre la gestión

de la energía en los sistemas multimedia. Además, cada nuevo estándar de vídeo también tiende

a aumentar la necesidad de energía de las tareas de vídeo con respecto a las normas anteriores.

Esta tesis presenta una solución basada en algoritmos de control para la regulación del

consumo de potencia bajo las limitaciones de capacidad de la batería de los dispositivos

portátiles multimedia mientras se ejecuta una aplicación de decodificación de vídeo y se

mantiene una calidad razonable de experiencia de usuario. Se propone un sistema general de

control que incluye un subsistema de control de bucle cerrado en tiempo real y un gestor de

control de potencia, y se ha implementado en el sistema operativo de una placa de desarrollo de

bajo coste. En lugar de utilizar un sensor de consumo específico, se propone un estimador de

potencia basado en eventos del sistema como señal de realimentación en el subsistema de bucle

cerrado. El estimador de potencia obtiene periódicamente valores de cuenta de eventos

significativos y calcula las estimaciones de consumo de potencia a través de modelos

matemáticos. Este estimador de potencia se ha implementado en un kernel de Linux y se ha

evaluado mientras se ejecuta una aplicación de decodificación de vídeo en una plataforma de

desarrollo de sistemas empotrados. Posteriormente, antes de la implementación del sistema de

control en tiempo real, se utilizan datos de estimación fuera de línea para obtener un modelo de

sistema que permite la aplicación de métodos clásicos de teoría de control para analizar y diseñar

ii

diferentes controladores. Los resultados de la simulación muestran que los controladores

integrales mantienen la estabilidad del sistema y logran un error medio en régimen permanente

nulo con tiempos de establecimiento cortos, incluso en presencia de ruido de estimación o

perturbaciones. A partir de estos resultados de simulación, los controladores han sido

implementados en el sistema de desarrollo y los resultados reales coinciden con los resultados de

simulación. El sistema de control es capaz de regular la potencia consumida y la tasa de descarga

de la batería en presencia de fluctuaciones en la demanda de consumo de energía del

descodificador, lo que presenta buenos resultados para garantizar una determinada duración de la

batería1.

1 La expresión "duración de la batería" se refiere en esta tesis al intervalo de tiempo durante el cual el dispositivo puede funcionar, partiendo

de una batería completamente cargada hasta el agotamiento de la misma.

iii

Abstract

The micro-electronics industry has been boosting the capabilities of multimedia mobile

devices, but the battery, which is the only power source of most mobile devices, is experiencing

relatively slow development. Therefore, determining how to optimize the energy consumption of

mobile devices under a predefined performance requirement has become a critical issue. Besides,

according to a recent report, tablet and smartphone video consumption grew 35% in the year

2014 and has grown 170% since 2013. Actually, mobile video playback has experienced a

significant growth of 2084% from 2011 to 2015. As some of the most energy-consuming tasks,

encoding, decoding and presentation of video sequences are among the main subjects of research

on power management in multimedia systems. In addition, every new video standard also tends

to increase the energy requirement of video tasks with respect to the previous standards.

This dissertation presents a solution based on control algorithms for power regulation

under the limited battery capacities of multimedia hand-held devices while executing a decoder

application and maintaining a reasonable quality of user experience. A control system, which

includes a real-time closed-loop control subsystem and a power-control governor, is proposed

and it has been implemented in the operating system of a low-cost development board. Instead of

using any specific power sensor, a power estimator based on monitored system events of

multimedia mobile devices is proposed as the feedback signal in the closed-loop subsystem. The

power estimator periodically obtains significant-events count values and calculates power-

consumption estimations through mathematical models. This power estimator has been

implemented in a Linux kernel and evaluated while running a video decoder application on an

embedded development platform. Afterwards, prior to the implementation of the real-time

control system, off-line estimation data are used to get a system model, which enables the

application of classic control-theory methods to analyze and design different controllers. The

simulation results show that integral controllers keep the system stability and achieve null

average steady-state error with short settling times, even in the presence of estimation noise or

disturbance. From these promising simulation results, the controllers have been implemented in

the development board and the real results match simulation results. The control system is able to

regulate the power consumption and the battery discharge rate in the presence of fluctuations in

iv

the decoder power-consumption demand, which presents good results to guarantee a certain

battery lifetime2.

2 The term “battery lifetime” refers in this manuscript to the length of time for which the device can run, starting from a fully charged battery.

v

Acknowledgement

First, I would like to thank my supervisors, Dr. Ángel M. Groba and Eduardo Juárez, for

their valuable feedback and support throughout this work. Their support, diligence, and

commitment to high-quality research have contributed significantly to this thesis. I am also

grateful to all the professors and lab mates in GDEM-CITSEM: César Sanz, Matías J. Garrido,

Fernando Pescador and Pedro J. Lobo, for their efforts in providing and creating such a friendly

and helpful working environment in the lab. Thanks also to my colleagues: Rong Ren, Jianguo

Wei, Henry O. Cruz and Miguel Chavarrías. I have learned a lot from each of them; our

friendships have made my time at GDEM an enjoyable and unique experience. Thanks to Paula

and Enrique, I have benefited a lot through the cooperation and the exchange of ideas with them.

Finally, I would like to acknowledge and appreciate the financial support from China

Scholarship Council (CSC) and GDEM. Besides, I would like to express my love and

appreciation to my parents. Thanks for them to bring me up and support good quality of

education for me. During these years, I met difficulties and setbacks that taught me to grow and

hone my character. I benefit from the doctoral stage of study, and no matter where I work in the

future, I will keep a serious and focused researcher, and strive to do everything for the

community to contribute to their own strength. I would like to thank all my friends: Rong Ren,

Jianguo Wei, Xiaomin Zhao, Meijuan Zhang, Henry, Jesús, Ana and Carmen, for their love and

concern.

vi

vii

Content
Resumen .. i

Abstract ... iii

Acknowledgement ... v

List of Figures ... xi

List of Tables ... xv

List of Acronyms ... xvii

Chapter 1 Introduction ... 1

1.1 Background and challenge ... 1

1.2 Motivation .. 3

1.3 Objectives ... 5

1.4 Contribution ... 6

1.5 Methodology and organization ... 8

Chapter 2 Related work ... 11

2.1 OS- and Application-level Power Management ... 11

2.1.1 Introduction ... 11

2.1.2 Power-aware schemes .. 12

2.1.3 Battery lifetime-aware management .. 13

2.2 Control algorithms for energy optimization ... 13

2.3 Decoder-specific schemes .. 14

2.4 Comparison and discussion .. 15

2.5 Summary .. 17

Chapter 3 Power estimator ... 19

3.1 PMC events selection ... 19

3.1.1 PMC introduction .. 19

3.1.2 PMC event redundancy ... 20

3.1.3 PMCs filter Method ... 20

3.2 Accessing PMCs .. 22

viii

3.2.1 Accessing PMCs form userspace .. 23

3.2.2 Accessing PMCs from kernel space .. 23

3.3 Modeling power estimator ... 26

3.3.1 MARS method ... 26

3.3.2 Building the power estimation model .. 31

3.4 Summary .. 32

Chapter 4 Real-time control system ... 33

4.1 Introduction .. 33

4.2 Theoretical model of the closed-loop control subsystem ... 34

4.2.1 Plant model .. 35

4.2.2 System transfer-function calculation ... 39

4.2.3 Controller design ... 40

4.3 PCG .. 45

4.3.1 Battery discharge estimator ... 46

4.3.2 Budget calculator ... 47

4.4 Summary .. 48

Chapter 5 Test bench ... 51

5.1 Test-bench and methodology overview ... 51

5.1.1 Test-bench architecture .. 51

5.1.2 Experimental methodology ... 53

5.2 Experimental platform .. 55

5.2.1 The hardware environment .. 55

5.2.2 The software environment ... 57

5.2.3 Cpufreq governors ... 58

5.4 Power supply and measurement system ... 61

5.5 PMC Programming Tool .. 63

5.6 Decoder application .. 65

5.6.1 MPEG-4 part2 .. 65

5.6.2 Decoder development environment ... 65

5.7 Summary .. 67

ix

Chapter 6 Simulation and implementation .. 69

6.1 Platform PMC and DVFS enabling .. 69

6.2 PMCs access ... 70

6.2.1 PMC implementation based on PAPI .. 70

6.2.2 PMC driver in kernel space ... 73

6.3 Power consumption estimator .. 75

6.3.1 Estimation model ... 76

6.3.2 PAPI-based estimator .. 79

6.3.3 OS-level estimator ... 79

6.3.4 Comparison of both estimators .. 80

6.4 Control system simulator ... 80

6.4.1 Closed-loop control subsystem simulator .. 81

6.4.2 PCG simulator ... 82

6.5 Choice of controller gains .. 85

6.6 Linux-based control system implementation ... 88

6.7 Summary .. 90

Chapter 7 Experiments and Results ... 91

7.1 Estimators validation and evaluation ... 91

7.2 Test of closed-loop subsystem ... 93

7.2.1 Test case .. 93

7.2.2 Results of closed-loop subsystem and their discussion ... 93

7.3 Test of Disturbance .. 99

7.4 Test of PCG .. 105

7.5 Summary .. 107

Chapter 8 Conclusion and future work .. 109

8.1 Summary .. 109

8.2 Limitations and future work ... 111

8.3 Final words ... 112

8.4 Publications .. 112

References .. 115

x

xi

List of Figures

Figure 1-1Block diagram of the Methodology and Thesis Organization 9

Figure 3-1 Linear and cubic basis functions ... 31

Figure 3-2 Structure diagram of power estimation modeling procedure. 32

Figure 4-1 General topology of the control system. ... 34

Figure 4-2 General topology of the proposed closed-loop consumption control system

based on estimation feedback. .. 35

Figure 4-3 Detail of the real board consumption profile for increasing OPPs 36

Figure 4-4 Actual consumption and model response for OPP26 to OPP27 step 37

Figure 4-5 (Open-loop) estimated consumption for an OPP26 to OPP27 step 38

Figure 4-6 Conceptual and mathematical block diagram of the system model. 39

Figure 4-7 System root locus with BRR-I (up) and FRR-I (down) controllers 42

Figure 4-8 System root locus with TR-I controller ... 43

Figure 4-9 System root locus with PI controller and c=0.5. ... 44

Figure 4-10 System root locus with PID controller and c1=c2=-1. 45

Figure 4-11 Example of the relationship between the system power consumption and

execution time. .. 46

Figure 5-1 Block diagram of the test bench .. 52

Figure 5-2 Overview of the Experimental Methodology. ... 54

Figure 5-3 Block Diagram of BeagleBoard .. 56

xii

Figure 5-4 Procedure of cpufreq scaling ... 59

Figure 5-5 Block diagram of the power supply and measurement system 61

Figure 5-6 Software user interface of Agilent acquisition system 62

Figure 5-7 PAPI structure ... 63

Figure 6-1 PAPI Tool Integration ... 71

Figure 6-2 Flow chart of using PAPI .. 72

Figure 6-3 Flow chart of using PMC driver.. 74

Figure 6-4 Bit arrangement of the PMNC register ... 75

Figure 6-5 Errors of 78 models ... 77

Figure 6-6 Model errors of mixed sequences ... 78

Figure 6-7 Diagram of the control system simulator. ... 81

Figure 6-8 Simulation model of the nonlinear closed-loop subsystem............................. 81

Figure 6-9 Transfer function of the discrete OPP quantization effect. 82

Figure 6-10 Block diagram of the PCG .. 83

Figure 6-11 Block diagram of battery discharge estimator into the simulator 83

Figure 6-12 Power budget profile examples ... 85

Figure 6-13 Modulus of dominant closed-loop system pole vs integral gain for the I

controllers. ... 86

Figure 6-14 Modulus of closed-loop system poles vs KPI for the PI controller 87

Figure 6-15 Modulus of closed-loop system poles vs KPID for the PID controller 87

Figure 6 -16 Flow chart of control system implementation code 89

xiii

Figure 7-1 Power estimations and real power consumption ... 92

Figure 7-2 System time response for the P controller ... 94

Figure 7-3 System time response for the BRR-I controller .. 95

Figure 7-4 System time response for the TR-I controller ... 96

Figure 7-5 System time response for the FRR-I controller... 97

Figure 7-6 System time response for the PI controller ... 97

Figure 7-7 System time response for the PID controller .. 98

Figure 7-8 MPU Workload for different complexity sequences and OPPs 100

Figure 7-9 Average Estimation and consumption of different complexity sequences and

OPPs .. 102

Figure 7-10 Closed-loop subsystem response to disturbance ... 104

Figure 7-11 Detail of the active OPP when the consumption demand of the decoding task

increases .. 105

Figure 7-12 Battery lifetime under dynamic governors when decoding the simpler

sequence .. 106

Figure 7-13 Battery lifetime under dynamic governors when decoding sequences of

different complexity .. 107

xiv

xv

List of Tables

Table 3-1 CP15 Performance Monitors in Cortex A8 processor 24

Table 4-1 SoC and General Power-Budget Profiler ... 48

Table 5-1 Features of BeagleBoard .. 55

Table 5-2 OPP data .. 58

Table 5-3 Common Preset Events of Cortex A8 processor .. 64

Table 5-4 Tools and packages used for building the decoder application 65

Table 6-1 Selected Events and Functionality [74] .. 76

Table 6-2 Resolution distribution ... 78

Table 6-3 Gain and system dominant pole for each controller ... 88

Table 7-1 Estimation Error ... 92

Table 7-2 MPU Workload for different Sequences and OPPs ... 99

Table 7-3 Average Estimation and consumption of different complexity sequences 100

xvi

xvii

List of Acronyms

AAPE = Average Absolute Percentage Error

API = Application Programming Interface

APPs = Applications

BRR = Backward Rectangular Rule

CCNT = Cycle Count

CNTENC = Count Enable Clear

CNTENS = Count Enable Set

CPU = Central Processing Unit

CTU = Coding Tree Unit

DCT = Discrete Cosine Transform

DPM = Dynamic Power Management

DSP = Digital Signal Processors

DVFS = Dynamic Voltage and Frequency Scaling

EVTSEL = Event Selection

FLAG = Overflow Flag Status

FRR = Forward Rectangular Rule

GPP = General Purpose Processors

GPU = Graphics Processor Unit

INTENS = Interrupt Enable Set

MARS = Multivariate Adaptive Regression Splines

MMU = Memory Management Unit

MPU = MicroProcessor Unit

NNZ = Number of NonZero

OPP = Operating Performance Point

PAPI = Performance Application Programming Interface

PC = Program Counter

PuC = Platform under Control

PCG = Power Control Governor

xviii

PCL = Performance Counter for Linux

PI = Proportional Integral

PID = Proportional Integral Derivative

PM = Power management

PMC = Performance Monitor Counters

PMCNT = Performance Monitor Count

PMNXSEL = Performance Counter Selection

PSM = Power-Saving Mode

PMU = Power Management Unit

QoE = Quality of Experience

QP = Quantization Parameters

QoS = Quality of Service

SoC = State of Charge

SP = Simple Profile

STB = Set-Top Box

SWINCR = Software Increment

TR = Tustin’s bilinear Rule

USEREN = User Enable

VoIP = Voice over IP

1

Chapter 1 Introduction

1.1 Background and challenge

Currently, there is a pervasive utilization of hand-held terminal devices, such as mobile

phones, tablets, smart watches and so on. The multimedia devices are essential in people’s daily

life. Smartphones and other types of hand-held sets with multimedia capabilities are increasingly

utilized in communication and entertainment, and at the same time, mobile computing and

communication technologies are also rapidly advancing. However, as the only power source of

most mobile devices, the battery capacity has not experienced an equivalent increase. Therefore,

optimally utilizing the limited battery energy on mobile devices under a predefined performance

requirement becomes a critical issue. Mobile devices have already changed the habits of daily

life due to its integration with some main multimedia functions, such as TV, radio, game

console, camera, and video telephony and so on. With the support of various applications (APPs),

the users can simultaneously watch online videos, carry out video, audio and text chat, or

download video playbacks. The increased complexity and functionality in many mobile devices

has motivated a transformation of the system usefulness assessment from a quality of service

(QoS) approach to a quality of experience (QoE) approach [1][2].

In one report from Ericsson in 2016 [3], video viewing is being gradually switched from

traditional big-screen devices to online-streaming on smartphones. Especially in teen behaviors,

between 2011 and 2015, teens increased their TV/video viewing at home on smartphones by 85

percent and nearly halved their time spent watching on a traditional TV screen. According to the

latest report from Ooyala [4], 46% of all video plays in the fourth quarter of 2015 were on

mobile devices like tablets and smartphones. In fact, tablet and smartphone video

consumption grew 35% in the year 2014 and have grown 170% since 2013. Actually, mobile

video playback has experienced a significant growth of 2084% from 2011 to 2015. As some of

the most energy-consuming tasks, encoding, decoding and presentation of video sequences are

among the main subjects of research on power management in multimedia systems. In fact, the

introduction of new standards, such as High-efficiency Video Coding (HEVC) [5], is increasing

the energy requirement of video tasks with respect to the previous standards, such as H.264/AVC

[6]. Given that the energy capacities of the batteries used in those small sets are not expected to

2

satisfy user needs [7], research on optimizing the energy consumption of the systems becomes

imperative.

The research of this thesis is a continue branch of the energy-centric scheduling module

[8], the energy-centric scheduling module is in charge of scheduling the battery energy to the

applications to maximize the battery energy utilization. To achieve that, the energy consumption

of hardware devices should be accurately modeled and correctly accounted to the corresponding

application that causes the device activities. When the mobile devices are running different

applications, the scheduler can allocate energy to different applications. With respect to video

decoders, they are some of the most energy consuming applications and the research group has

experience of researching in a number of decoders [14]. Thus, this thesis focuses on control

algorithms for energy optimization in multimedia devices while running video-decoder

applications, which can significantly mitigate the system energy consumption problems.

When the users run video-related applications on a battery based mobile device, they

typically have different preferences for the applications and there is a need of how long the

battery should last for their current applications. While the ability to ensure the target battery

lifetime increases the confidence and security of the user using the mobile system [8], in many

cases, the mobile devices can only provide a notice of the remaining battery capacity, but cannot

guarantee the target battery lifetime against video applications, which consume most energy. For

example, when the user is watching a football match, to reduce the power consumption and keep

the device working until the end of the match is more desirable than to offer a good video

quality; when the user is carrying out a video call, the quality of video decoding will help the

user to be more comfortable to chat with friends and family; when the user is having a video

meeting, a failure to achieve the expected battery lifetime will reduce the QoE of the system or

even bring economic losses to the users. Therefore, how to dynamically achieve the user

requirements in real time and under the battery energy restriction is one of the most fundamental

requirements of mobile system users. This is also an essential element in the assessment of QoE.

For the above objective, to equip the mobile devices with a high-capacity battery seems to be a

simple and direct solution. Unfortunately, little industrial progress is achieved in the technology

to enhance the battery capacity and density in the past few decades. On the contrary, nowadays,

the continuous pursuit of designing mobile devices to be thinner and lighter poses further

restriction on the battery size and capacity. For the above reasons, there is no doubt that breaking

3

the bottleneck of hardware limit from the software perspective is a smart choice.

To guarantee the expected battery lifetime, the power consumption of the multimedia

applications should be known but the majority of current consumer mobile devices does not

integrate any power measurement equipment. Adding power measurement sensors to the

consumer mobile devices is not a good solution because extra cost of hardware will be incurred;

besides, this solution is not applicable to those already sold devices and has a long time-to

market. Therefore, monitoring the energy consumption in real time without the assistance of

specific power measurement sensors becomes a new challenge. If this difficulty is overcome,

online power measurement and optimization can be widely applied to the existing mobile

devices with no extra hardware cost. Now, there are some APPs which can estimate the battery

lifetime generally when the mobile devices are under different work situations. For example,

some APPs can list the standby time, call time, or even online/offline video viewing time.

However, those APPs can only play the role of notifying the users instead of controlling the

mobile devices. Therefore, in order to conveniently monitor power consumption, one innovation

of this thesis is to regulate the power consumption of embedded multimedia systems without the

need of adding power monitors but relying on power estimations derived from commonly

available resources in mobile devices. Besides, some mobile operating systems support different

power saving modes, such that user can select power saving, balance mode or high performance

mode. But there are not battery lifetime-oriented modes. How to estimate the energy

consumption and control the battery lifetime in real time is worth to explore. Our research

direction field can fill the gap between current solutions and user needs. The aim of this work is

to guarantee the battery lifetime while running applications.

Against the above challenges, system designers have to explore the way to optimize

energy consumption of mobile systems while maintaining a reasonable QoE under the battery

storage limit. Under this background, a method to optimize energy consumption from the

operating system can ease the urgent needs of video decoding in mobile devices. The way to

solve the challenges can contribute to a new generation of mobile devices.

1.2 Motivation

Embedded and mobile multimedia systems require, like others, the optimization of the

quality of experience (QoE) they offer to the user. However, their common battery dependency

makes also necessary the optimization of their energy consumption. Indeed, for example, the

4

wide spectrum of usual available applications for current smartphones make them to have quite

limited operating times, especially when they execute common video encoding, decoding and/or

presentation applications. Therefore, there is an increasing effort into trying to reduce the energy

consumption of this kind of systems from different points of view. Hardware and software are

the two aspects that are considered to optimize energy consumption. In order to easily transplant

the energy consumption optimization methods, software design is a very convenient way to

investigate. There are two directions, one is from the applications in the user space, and other is

through the operating system.

The first direction investigates how APPs can save energy consumption. Redundancy

reduction and multiple modes switching are typical methods of power management. Redundancy

reduction concerns basic solutions like simplifying the framework of the APPs and reducing

unnecessary operations of computing or communication. Multiple modes switching can support

more ways to save energy depending on the user requirements, which means, against the

different states of battery, the APPs can choose high performance with high energy consumption

or low performance with low energy consumption. One typical application of multiple modes

switching in video decoding is: when there is enough battery, high-definition video is streamed

to the mobile devices, and when the battery is low, low-definition and small-sized video is

delivered to save energy and extend battery lifetime.

The second research direction is how to control the energy consumption in general

through the operating-system level. The operating system plays an important role because it is

aware of the power consumption status of the platform and the battery discharging rate, as well

as, it can monitor the users’ requirements and the applications performance through special

interfaces. Therefore, research in this field is popular and there are numbers of technologies of

power optimization through operating system. Unfortunately, the majority of them are not strong

power-aware enough to provide a battery lifetime guarantee.

The work of this dissertation focuses on implementing control algorithms for energy

optimization by controlling power consumption in multimedia mobile devices when they are

decoding video, while also maintaining a reasonable quality of user experience (QoE). For this

reason, a control system has been proposed for the platform under control (PuC), in which the

microprocessor unit (MPU) executes a video decoder application.

5

1.3 Objectives

Currently, multimedia hand-held devices like smartphones have operating times less than

a few hours and the QoE is a fundamental issue that determines the degree of use of a platform.

Therefore, it is necessary that QoE and energy consumption are considered jointly in present

multimedia embedded systems. Since it is not foreseeable that the density of energy stored in

lithium batteries will increase considerably in coming years, the only improvement of batteries

will not significantly increase the operating time of terminals.

And within these multimedia systems, the functionalities of video encoding, decoding

and presentation consume a very important part of the energy available in the terminals.

Moreover, the introduction of emerging standards as HEVC is increasing this balance.

In this thesis, the main objective is to apply the control theory to the optimization of

power consumption in this kind of systems. In order to implement it in multimedia devices, the

main objective can be separated into the following sub-objectives.

1. Activate the dynamic voltage and frequency scaling subsystem (DVFS): One of the

features of these systems that can be used to act on their own power consumption is the

processor DVFS subsystem. With DVFS, clock rates and voltages can be scaled by software

based on the performance requirements of the application. For each operating performance point

(OPP), a software module sends control signals to external regulators in order to set the

minimum allowable voltage. DVFS is a method commonly employed to reduce energy

consumption and extend battery lifetime for mobile devices. It provides an efficient energy

saving mechanism for components that remain in active states. In this manuscript, DVFS is

supported by processors designed for decoder applications such as hand-held devices, in which

multiple voltage and frequency levels can be utilized by the system software in different

conditions to save on energy consumption. For example, when an application does not need to be

run at the highest performance, it may reduce the frequency and voltage so as to reduce the

power consumption while remaining reasonable QoE.

2. Set-up of an estimation model: In order to have a feedback line with power

consumption information and given that conventional devices do not offer it, certain power

estimation methodology is required to estimate the power consumption of video decoders at each

OPP. The methodology should be able to identify the most appropriate training data and power-

related events to be counted, to cover the main application characteristics. It is needed to build a

6

dynamic power estimation model of a video decoder, considering the observation of a set of

actual consumption experimental results. In the operating system, since it is hard to know the

actual power consumption directly, the estimation model is required to calculate the power

values, which can be fed to the control system back as well as to the user interface.

3. Implement a general power estimator: Once the estimation model has been built, it

should be applied into the power estimator in order to avoid the need of a hardware power

monitor subsystem, different approaches should be explored to estimate the power consumption.

The power estimating approaches will be compared to select the suitable one that will work as

the feedback. The estimator used in the control system should satisfy two requirements: the first

one is that the estimator should accurately reflect the power consumption of the applications; the

second one is that it should decouple the user multimedia application execution from the power

control system.

4. Design and implement different control algorithms: once the PuC is provided with

suitable input action and output feedback signals, different closed-loop control strategies will be

applied. This implies the steps of system modeling, simulation and implementation. Through

suitable experiments, the benefits of the each proposed control algorithm will be showed in

maximizing the user experience in battery-limited multimedia mobile systems.

5. Implement the Power Control Governor (PCG): once the closed-loop control

subsystem is verified, a battery discharge estimator that implemented into the operating system

will estimate the battery state of charge (SoC) based on the feedback power estimation. Then, a

power budget generator will complete the PCG to generate a suitable set-point for the closed-

loop control subsystem. Therefore, the power budget generator will provide multiple

personalized battery discharge mechanisms to guarantee a target battery lifetime while satisfying

user requirements. The whole control system should be tested with stable workload and varying

workload in order to be compared with other methods.

1.4 Contribution

 This work investigates control algorithms for energy optimization by controlling power

consumption in multimedia hand-held devices. Hand-held devices are battery based mobile

devices that are under energy limit. This thesis focuses on saving energy by controlling power

consumption to extend the battery lifetime in order to satisfy the users’ requirements while

7

maintaining a reasonable QoE. Based on this starting point, this work explores the design of

control algorithms for controlling power consumption in order to guarantee a certain battery

lifetime in mobile systems. The main contributions of this dissertation are the following:

1. Energy optimization for one of the most energy-consuming multimedia applications.

Among the various APPs, capture, encoding, decoding and presentation of video sequences are

some of the most energy-consuming tasks for that type of equipment. This thesis focuses on

energy optimization of decoder multimedia applications, which can significantly alleviate the

energy consumption problems.

2. General and simple mathematical model of PuC. The design of the system controller is

based on a suitable model of the PuC. In order to facilitate the application of the classic control

theory, a simple and general model of the PuC has been obtained and validated in an application

case. Although the proposed classic control algorithms have generated promising results, this

model could also be refined and sophisticated for applying different advanced closed-loop

control strategies.

3. Precise PMC-based power-awareness model. Power-awareness of mobile devices while

running applications includes sensors monitoring, estimation and prediction. After selecting the

high energy-related PMCs, PMC-based power model is built which is close to the actual power

consumption of PuC while running video decoder and without needing specific power sensors.

4. Generally applicable estimation subsystems. To widely apply the estimation subsystem on

various mobile devices, it was implemented within the operating system, such that it is able to

calculate power estimation samples in real time, periodically and independently of the

application in order to act as feedback for the control system.

5. Power control governor. The proposed PCG can calculate the set-point of the closed-loop

subsystem based on the feedback of power-consumption estimation. Besides, the PCG supports

personalized and multiple battery-discharge profiles to regulate video decoding power

consumption, while maintaining a reasonable QoE.

6. Closed-loop power control subsystem. Under battery limit, the target battery lifetime can

be achieved if the power consumption is controlled. Depending on the desired battery lifetime,

the proposed closed-loop control subsystem is correspondingly given a suitable set-point by the

PCG to guarantee the battery lifetime in real time. Besides, the closed-loop power control

8

subsystem can quickly respond to workload variations in order to keep stable the power

consumption.

7. Multiple controllers. A set of classic linear controllers has been designed to check their

effects on the power control. They imply different system behaviors, which is a heuristic

exploration for adjusting the power consumption of mobile devices while executing applications.

8 The real-time control system. The proposed control system, which includes a PCG and a

closed-loop subsystem, can dynamically adjust the battery lifetime depending on the users

requirements while maintaining a reasonable QoE in real time. The battery lifetime management

is based on users’ current activities. Even in the face of disturbances, the control system can

control power consumption of the video decoder application regardless of the complexity of the

video sequences.

9. Linux-based implementation of the control system. The proposed control system is

implemented in the Linux kernel. Experiments based on a concrete computing platform and

different decoded sequences are tested to evaluate the Linux-based control system, the accuracy

of the feedback estimator and the extended battery lifetime.

10. Experimental and analytical exploration of energy optimization for battery-based mobile

systems. Through a comparative analysis of the experimental results under the PCG and the

default Linux cpufreq governors, this work explores a method to extend battery lifetime based on

a power control system, while maintaining a reasonable QoE.

1.5 Methodology and organization

 To achieve the above objectives Figure 1-1 indicates the methodology and organization

of this thesis. Through the block diagram, it can be seen the structure of the dissertation around

the design, simulation and implementation of the control system.

9

Figure 1- 1 Block diagram of the Methodology and Thesis Organization

 Chapter 1 introduces the background and challenges of energy optimizing in battery-

limited mobile devices. It lists the issues that need to be solved and also proposes the objectives

of this thesis. Chapter 2 concerns the related research field, from the origin of the power

management until the advanced techniques to optimize the energy consumption. Besides,

comparisons of the related work with the control system are proposed in this dissertation.

Chapter 3 presents the method of building estimation model and setting up the software

estimator, which can be used as feedback so that no hardware sensors are required. Different

approaches have been explored and their features have been compared in order to select the most

suitable one for the next step. In Chapter 4 the control system is designed and the whole system

is separated in two parts: closed-loop control subsystem and PCG. The former introduces the

method of modeling the PuC and designing the controller. The latter presents the method to

design the PCG, which can control the battery lifetime by using the feedback estimation and

dynamically supports set-points for the closed-loop subsystem. Chapter 5 describes the test-

bench and experimental methodology. The computing platform is introduced from both hardware

and software point of view. The tools used to measure the power consumption, construct the

applications and access performance monitor counters (PMC) are introduced in detail, besides,

the system simulator is also explained. After that, Chapter 6 presents the implementation of the

control system in a Linux-based test bench. The implementation consists of the two approaches

of the estimator, classic controllers and the PCG. Considering the complexity and difficulty of

the Linux implementation work, a simulation tool is employed for verifying the behaviors of

10

different controllers and the PCG. In Chapter 7, the results are analyzed and discussed. The

accuracy of the estimator has been verified and, based on that, the behavior of controllers has

been compared with the simulation results to check the correctness. What’s more, the whole

control system is tested under constant workload and variable workload and the results compared

to other approaches. Finally, Chapter 8 concludes the thesis work and suggests directions for

future research.

11

Chapter 2 Related work

Given the increasing concern on saving energy whenever is possible, a great number of

research developments can be found related to energy consumption optimization in

microprocessor-based systems, even with the application of control techniques [9][10]. The

development of the power control system needs an investigation of the related works on both

energy awareness and control algorithms. In this chapter, different power management

mechanisms are firstly surveyed, with a focus on the power awareness of multimedia

applications and battery lifetime management of the mobile devices. Then, the control algorithms

against different embedded systems and applications are investigated and comparatively

discussed. Besides, the investigations of generating energy consumption models of video

decoder applications are introduced. After that, the related works on power estimation and

control algorithms are summarized, and finally the possibility of applying control algorithms for

energy optimization is discussed.

2.1 OS- and Application-level Power Management

2.1.1 Introduction

In recent years, there has been continuous consideration, research, and innovation of the

energy management of mobile devices, not only in battery-operated systems [11][12] but also in

wireless networks [13] and multimedia applications [14]-[17]. To reduce power consumption of

embedded processors, a Power Management Unit (PMU) with Power management (PM)

capability is often employed. PM observes the state of the system and the workload to control the

power-performance tradeoff of the system by issuing a given PM policy. Most PM schemes fall

into two categories: Dynamic Power Management (DPM) [18]-[20], which is designed to deliver

peak performance of CPU and disk and then reset the system into the idle mode, and Dynamic

Voltage and Frequency Scaling (DVFS) [21]-[24], which is a framework to change the frequency

and/or operating voltage of the processor based on system performance requirements. The design

principle of both DPM and DVFS is to allow the devices to perform needed tasks with the

minimum amount of required power. To achieve this objective, these two PM schemes firstly

allow the applications to be executed with the desired performance requirements, and after the

12

performance goal is achieved, it starts to save energy consumption. Therefore, these PM schemes

can be considered as low power-aware which cannot adjust the energy consumption depending

on the battery discharging status. In order to guarantee the battery lifetime and maintain the

reasonable QoE, the power consumption of applications and the battery lifetime should be

managed.

2.1.2 Power-aware schemes

To monitor the power consumption of APPs, a number of research works have been

carried out from different aspects. One example of energy management for multimedia

applications in battery-based devices is that of Kamat [11], which conserves the battery power by

intelligently exploiting the features and redundancy that are specific to multimedia applications.

Energy awareness is built into each application and depending on the battery state, which is

monitored by a sensor. Mercati et al. [25] proposes the Applications-dependent Power states

(AP-states) to monitor the frequency of Central Processing Unit (CPU) and Graphics Processor

Unit (GPU) as well as the execution time of each APP. Then, the average power consumption of

each APP can be calculated by the pairs of frequency and execution time. Hwang et al. [26]

proposed a PMU design that is a hardware-based method of collecting and analyzing the pattern

of Program Counter (PC) values to make predictions on when the next I/O device accesses will

resume. There are also previous approaches to this type of estimation, such as Wang et al. [27],

where the L2 cache power consumption is estimated by using the processor PMCs (Performance

Monitor Counters), or Lively et al. [28], and Xiao et al. [29], where those PMCs are used in

combination with the multivariate adaptive regression splines (MARS) method to model an

energy consumption pattern.

There are many methods to access PMCs, for instant, in windows 2000 and later versions

there are graphic tools, such as System Monitor, Performance Logs and Alerts, and Server

Performance Advisor, that can indicate how the system performs by counting the data which are

consumed by applications. Besides, Linux provides tools, such as perf [30] and perfmonX [31],

which are performance monitor interfaces to access PMCs from user space. Red Hat Enterprise

Linux 6 includes Performance Counter for Linux (PCL) which is a new kernel-based subsystem

for collecting and analyzing performance data. The system-activity-related parameters, also

known as PMC events, may vary based on the performance monitoring hardware and the

13

software configuration of the system. To sum up, in order to regulate the power consumption of

commonly embedded multimedia systems without the need of adding power monitors, to

estimate the power consumption based on PMCs is a smart choice.

2.1.3 Battery lifetime-aware management

Battery lifetime-aware schemes are aware of the battery discharging state and are able to

adapt the application performance according to the user requirements while maintain a

reasonable QoE [32]. Under battery lifetime-aware schemes, the target battery lifetime can be

achieved if the applications can adapt their performance based on remaining battery energy [33].

Flinn et al. [34] firstly proposed the Odyssey platform [35][36], which achieves the battery

lifetime by periodically measuring the residual battery energy, and predicting future energy

demand based on historical power usage. The behaviors of applications will self-adapt based on

the energy demands. Kamat [11] built the energy awareness into each application and the battery

lifetime is extended by changing the operating point of the applications. Mercati et al. [25]

presents a method to maximize performance of applications while letting the device battery to

last at least for a certain required lifetime. In their research, the power consumption of frequently

used APPs are measured to estimate the battery lifetime while running different APPs. Nemesis

[37] requires applications to be energy-aware and cooperative, but introduces a model of Quality

of Service (QoS) to provide feedback to the applications. Since there are millions of applications,

battery-lifetime-aware management through operating system is more economic than through

applications that have to be programmed as self-adaptive.

2.2 Control algorithms for energy optimization

Efforts towards research and innovation of control algorithms for saving energy have

increased during the last years, and across a wide variety of microprocessor-based areas. A great

number of these research lines are based on control systems. The application of closed-loop

techniques appears in the literature of all these fields with widespread use of DVFS. However,

where there is a broader variety of proposals is in how to feed back the closed-loop system,

mainly because there is not a clear feedback signal available in conventional platforms, as

mentioned above.

In [38] and [39] the controlled variable is the processor utilization factor (U), which is

varied through the DVFS system by means of a PI controller. The energy savings increase as U

14

approaches 100%, meeting the task deadlines. Also based on targeting a suitable value of U, in

[40] the feedback signal is the memory access rate (MAR), calculated from PMC values. Some

examples based on DVFS are [41], in which a PID controller is used to minimize the energy-

delay product by controlling the number of data/instructions stored in uniprocessor multiple-

clock domain queues and threads in chip multiprocessor queues; and [42], where a nonlinear

controller is used in queue-based streaming applications.

Other closed-loop approaches are those in which the controlled variable is a time for which a

relationship with energy consumption can be found. For example, end-to-end delay in [43] or

average slack time in [44] and [45], all of them are based again on DVFS. There are cases in

which the control loop adapts the DVFS OPP to the rightly needed frequency by estimating the

processor workload, like [46] where the clock cycles for each game frame are estimated by a PID

controller; and [46] where a Kalman filter estimates the computation time needed by MPEG-2

decoded frames. Another example, presented in Ramakrishnan et al. [47], is a fuzzy-logic-based

closed-loop control system whose feedback information is actual received-signal strength. In this

system, a base station receiver detects the received power level from a mobile station through a

reverse channel. Then from that power level, the base station makes an estimation of power

control bits and transmits through forward channel control bits to the mobile station so as to

adjust the transmitting power of mobile station to the desired level. Other examples are Wang et

al. [48], and Mishra et al. [49], in which linear controllers are inserted in loops where the

feedback signal is the processor utilization factor, related to its power consumption. In cases like

Garg et al. [50], the feedback signal is the occupancy of some system queues, given that a

constant occupancy would imply that the consumed energy is the optimal one. Other approaches

relate the energy consumption with the processor workload, which acts as feedback signal, such

as in Bang et al. [46] or in some Linux cpufreq governors [51][79][80]. When the actual power

consumption is directly used as the feedback signal, as in Wang et al. [10] and Kamat [11], some

specific power sensors are needed in the system, which is not always possible.

2.3 Decoder-specific schemes

As one of the most energy-consuming multimedia application of mobile devices, there

are many researches on energy estimation models of video decoders. Herglotz [58] investigates

the energy required by a CPU when decoding videos on mobile platforms. A model is derived

that describes the energy consumption of the new HEVC decoder for intra-coded videos. Ren et

15

al. [14] proposed a platform-independent energy estimation methodology, which can estimate

the energy consumption of reconfigurable video coding (RVC)-CAL video codec specifications.

Monteiro et al. [59] presents analysis of energy consumption of software HEVC decoder,

specifically to estimate the energy consumption in all levels of cache hierarchies. X. Li et al. [60]

proposes an analytical power consumption model for H.264/AVC video decoding using

hardware accelerator on popular mobile platforms and the model is expressed as the product of

the power functions of video spatial resolution (i.e., frame size) and temporal resolution.

Benmoussa et al. [61] developed a model, which describes the relationship between performance

and the energy consumption of H.264/AVC video decoding on both Digital Signal Processors

(DSP) and General Purpose Processors (GPP) in terms of video bit-rate, clock frequency and a

set of comprehensive hardware and video related coefficients. The entire energy model included

four sub-models: quantization parameters (QP) -rate model, dynamic power model, static power

model, and time model. The coefficients of those parameters were obtained by consumption

measurements and regression analysis. Their model achieves a balance between an abstract high

level model and a detailed lower level one while guaranteeing very good prediction properties

for the tested videos. Mallikarachchi et al. [62] proposes an energy model whose parameters

describe the relationship among energy requirements of decoder, the number of nonzero DCT

coefficients (NNZ) and the QP. The proposed model determines the NNZ for a given Coding

Tree Unit (CTU) and predicts the energy requirements of the decoder, thereby facilitating the

encoder to determine the appropriate level of quantization required for a CTU to generate a bit

stream that operates within the decoder's limited energy budget. As the above-mentioned

schemes are quite specific to the decoder details, a more general approach will be explored at the

system level in this dissertation, which is based on the power consumption of the whole decoder

application rather than on some of its parameters.

2.4 Comparison and discussion

As it has been introduced in Chapter 1, this thesis aims to accurately calculate the

remaining battery energy based on power estimation of a video decoder application. And the

closed-loop control subsystem and PCG are integrated into the operating system, which is not

affected by user space. The control system can adjust the power consumption depending on the

user requirements in order to guarantee the battery lifetime. Some heuristic optimization

algorithms are listed and compared as below.

16

One example of power saving mechanism in multimedia mobile devices is Kim et al.

[52], which implemented a load-based processor hotplug algorithm. This algorithm periodically

monitors the average load of online cores and turns off the surplus cores according average load.

In turn, multi-core consists of several single cores, therefore power control of a single core is an

energy-saving mechanism which can collaborate with multi-core hotplug algorithm to enhance

overall power saving. And, instead of hotplug multi core, saving energy based on each

independent core itself can fundamentally optimize energy consumption in lower level. The

research of this thesis is based on energy optimization of the most basic unit to provide the most

basic guarantee for more complex mobile devices.

Other recent example refers to the set-top box (STB) as a small multimedia device, which is

widely used in smart homes. Jung et al. [17] indicate a power saving method by using bitmap-

based activity logs to turn on/off some STB functions. What’s more, the passive standby mode

uses activity logs, which are represented in a bitmap form, to find a pattern and to predict the

next user activity. Similarly, Lee et al. [53] also suppose a hybrid system model to perform

future idle period prediction. But the work developed in this thesis is a real-time control system,

which can dynamically adjust the power saving state depending on user current activity, which

can accurately satisfy the users’ requirements.

Besides, Choi et al. [54] investigated a Power-Saving Mode (PSM) for mobile Voice

over IP (VoIP) devices in wireless networks. And they evaluated the performance of the VoIP

PSM and derived a theoretical maximum bound of sleep interval that minimizes the total power

consumption of mobile stations while still guaranteeing VoIP QoS. Lim et al. [55] proposed a

solution for finding out the optimal checkpoint interval, which minimizes the energy expenditure

of a mobile device in remote check pointing wireless environments. There are other researches

about the development of 3G/4G networks, such as Huang et al. [56] and Fowler et al. [57].

Although the work of this thesis focuses on the video-decoding task as the main power-

consuming application, it could also be considered to be conveniently transplanted to other

systems with suitable adaptations. For example, it could be introduced into power saving

mechanisms related to 3G/4G like those referenced above. I.e., when the wireless interface

transfers the multimedia data packets, the proposed closed-loop subsystem could feed the power-

consumption estimation back, which could help the wireless module to adjust the power saving

model [56] while satisfying QoE. .

17

In addition, comparing with other related work, such as the work of Ren [14], in which it

can be highlighted that power measurements are correlated off-line with counts of some suitable

events by using the processor PMCs. From that correlation, static power estimations are obtained

for the processor decoding video at a fixed OPP. In order to implement power optimization in

mobile devices, the power estimation should react to variable OPPs. One further innovation of

this thesis is an accurate PMC-based estimator, which can be applied with all 27 OPPs. What’s

more, the estimation subsystem was implemented within the operating system, such that it is able

to calculate power estimation samples in real time, periodically and independently of the video-

frame rate in order to act as feedback for the control system.

Besides, currently, operating systems also provide dynamic governors that support energy

saving. For instance, in Linux operating system, there are two dynamic governors, ondemand

and conservative [51][79][80], which can reduce energy consumption depending on the system

workload. Although they can extend the battery lifetime to a certain degree, the battery lifetime

varies depending on the workload. The work of this thesis not only can extend longer battery

lifetime, but also guarantee the work time of mobile devices to satisfy user’s requirements

regardless of the video decoding workload. Considering that the original Linux dynamic

governors are widely used to optimize energy consumption and that they are highly related to

this work, more quantitative comparison details are explained in Chapter 7.

As a summary, comparing with other control algorithms, the work of this thesis can

dynamically adjust the battery lifetime between the shortest battery lifetime (under the best

performance) and the longest (under the lowest performance) while still maintaining a reasonable

QoE, as well as guarantee the battery lifetime regardless of the workload variation. The work of

this manuscript is based on the basic processing unit that can be integrated into other multi-core

devices to optimize energy consumption. “In order to get a more meaningful comparison, the

results obtained are finally contrasted with other highly related works which a coherent

comparison can be set with, such as original Linux governors (see Section 7.4). Besides, the

accuracy of the power estimation model is compared with Ren et al. [74] in Section 8.1.

2.5 Summary

In this chapter, the related works on OS- and application-level power management,

control algorithms for energy optimization, and decoder-specific power management have been

surveyed. In some specific cases, the target system includes a power monitor unit that is able to

18

feed actual consumption data back to the closed-loop controller. In order to generally apply the

OS-level power management to common mobile devices, there is research using third party-

tools, graphic tools and hardware tools to monitor the power consumption of the applications. To

directly and conveniently achieve power management, the aim of this thesis is to reach a control

system which can regulate the power consumption of an embedded multimedia system without

the need of adding power monitors but relying on power estimations derived from commonly

available information. Therefore the researches that access the PMCs to estimate the power

consumption while executing applications give a good inspiration to this thesis. What’s more,

since a good control of the battery lifetime is pivotal to the user experience of mobile terminal,

battery-lifetime-aware management schemes have also been investigated. The researches of

battery-lifetime-aware usually have two focal points, one is to merge energy-awareness into the

applications, and another one is battery lifetime management through the operating system.

Considering that the inclusion of energy self-adaptation into applications would imply to modify

lots of them, the later solution is more convenient and economical. Besides, a great number of

research lines are related to control algorithms for energy optimization. Some of them apply

closed-loop and DVFS techniques to control the energy consumption and there are various

feedback signals, such as memory access rate, actual received-signal strength, occupancy of

some system queues, processor utilization factor and so on. There is not a clear feedback signal

available in all conventional platforms to promote the application of closed-loop control;

therefore, the idea of using commonly available information, such as PMCs is a practical choice.

Then, comparing with other control-based research lines, the idea of this thesis can complement

and cooperate with other energy-saving control algorithms. Finally, video decoder application is

one of the most energy-consuming multimedia applications. This thesis focuses on energy

optimization of decoder multimedia application, which can significantly alleviate the energy

consumption problems. Previous researches about decoder-specific power management give

inspiration to us, but they are quite specific to the decoder details, a more general approach will

be explored at the system level in this dissertation.

19

Chapter 3 Power estimator

Chapter 2 has introduced some researches that focus on energy optimization in mobile

devices while running different multimedia applications. Among those researches, sometimes

control techniques are applied in the operating system that can conveniently and effectively

control the power consumption in order to guarantee the battery lifetime. The present work aims

to base the control system in a feedback signal as close to the actual power consumption as

possible, but without needing specific power monitoring sensors that are not available in many

common consumer mobile platforms. The adopted solution is to estimate the power consumption

from commonly available system event counters. The proposed power consumption estimation

method used to feed power consumption information back to the controller is specifically based

on Ren et al. [14], where energy measurements are correlated off-line with counts of some

suitable events by using the processor PMCs. This chapter focus on the integration of the power

estimator in both OS and decoder application, as a part of the whole control system. It is based

on event counts taken from the PMCs of the MPU.

To simplify the work and focus on the power estimator, this chapter starts introducing

PMCs and the method of filtering the PMCs that are highly related with power consumption.

Then, two methods of accessing PMCs from user space and kernel space are indicated. After that,

how to build power estimation model is explained.

3.1 PMC events selection

3.1.1 PMC introduction

PMCs are used as a valuable tool for measuring performance of a program that can be

analyzed to identify the bottlenecks in the program. These counters are hardware registers

attached within the processor that measure various programmable events occurring in the

processor, such as instructions executed, cache misses or branches miss predicted. These

counters are present in most modern processors such as Intel Core and ARM Cortex. They do not

require any additional overhead and supports a wide range of events. Implementation of PMCs in

different processors could differ from the quantity or the monitored types of events. In a broad

sense, PMCs consist of three types: a cycle counter, event counters and counters controlling. The

20

cycle counter is programmed to increment on every clock cycle; an event counter can be

configured to select one specific event and increments as this event occurs; counters controlling

is used to control the according PMC to carry out various operations which include enable, reset,

start, stop or enable interrupts on counter overflow.

3.1.2 PMC event redundancy

The main concept of the PMC-based estimator is to relate the energy behavior to the

occurrence of several events [1], which depend on the hardware monitoring capabilities. The

platforms support several PMC events and the available PMC events are different against

different platforms.

Introducing as many PMC events as possible is a simple way to estimate power

consumption, but it will cause high overhead. Therefore, suitable PMC events should be selected

to build the estimation model in order to guarantee the accuracy of power estimator and low

overhead. What’s more, considering the system integrity and continuity, there are dependencies

among PMC events. It means the information provided by one PMC event can be predicted or

explained by others PMC events, so some of the PMC events are highly correlated. If two PMC

events are perfectly correlated, they include the same content to build the estimator, which will

increase unnecessarily the number of PMC events. Since multi-collinearity will lead to PMC

event redundancy, a filter method is needed to be applied in order to reduce the PMC events

redundancy.

3.1.3 PMCs filter Method

In order to reduce the PMC redundancy and maintain the accuracy of power estimator,

the utilized PMCs filter method includes two parts: the spearman rank correlation coefficient is

introduced to calculate the dependence relationship between different PMC events which is used

to reduce the information redundancy; another part has to do with the method of selecting

energy-related PMC events.

3.1.3.1 Spearman Rank Correlation Coefficient

Spearman's rank correlation coefficient (ρ) is a non-parametric statistic parameter that is

used to describe the statistical dependence and the relationship between two variables. One

21

variable is a strictly monotone function of the other if the Spearman correlation coefficient is +1

or -1 when there are no repeated values of the sampling data. These two values, +1 and -1, are

called perfect Spearman correlation.

For example, let Xi and Yi be two variables. When there is no repeated value in the

original data samples, the correlation coefficient sr can be calculated by equation 3-1, otherwise

r is calculated by equation 3-2.

)1(

6
1r

2

2

s 
 

nn

di
 3-1

22)()(

))((
r

yyxx

yyxx

iii

iii




 3-2

Where di denotes the difference between the ranks of each observation on the two variables, the

original variables iX and iY are converted into ranks ix and iy . Let x denote the average

descending rank of ix , y denote the average descending rank of iy, n denote the size of a

sample and i denote the paired score.

Judging the variable dependence with the correlation coefficient is mainly based on

experience. For example, if the value of the correlation coefficient is between 0.8 and 1.0, it can

be considered that the two variables are strongly related; and when the value belongs to the

interval [0.6,0.8], the variables are highly related. If the value is larger than 0.4 and smaller than

0.6, that means there is a moderate relationship between them; otherwise, they only have weak

relationship.

A more accurate method to interpret the correlation coefficient is to calculate the

coefficient of determination (r2). The coefficient of determination is the square of the correlation

between predicted scores and actual scores and it ranges from 0 to 1. When r2 equals to 0, it

means the dependent variable cannot be predicted from the independent variable and when r2

equals to 1, it means the dependent variable can be predicted without error from the independent

variable. If r2 is between 0 and 1, it indicates the extent to which the dependent variable is

predictable. For example, if r2=0.850, it means that 85% of the total variation in yi can be

22

explained by the linear relationship between xi and yi. The other 15% of the total variation in yi

remains unexplained.

3.1.3.2 PMC Event Selection method

Not all the performance monitor events are relevant to power estimation; therefore, the

events with higher correlation to power consumption should be selected. Assuming a linear

correlation between PMCs and power consumption, equation 3-3 is employed to predict the

system power consumption:

idle

n

i
ii PPMCPower 

1

 3-3

Where αi is the linear parameter of power weights, n is the number of selected PMCs and Pidle is

a constant representing the idle processor power consumption. There are also some non-linear

relationships, but this work shows high accuracy with a fully-linear model.

The filtering procedure can identify the set of events that are most significantly related to

the power consumption. Then, the Spearman’s rank correlation r is computed between each

event and power consumption. After this step, a threshold α is established to eliminate any event

below this threshold. On the other hand, to reduce event redundancy, correlations r (i,j) between

each pair of events ‘i’ and ‘j’ are computed to identify the event relationship. The purpose is to

eliminate those events whose information can also be obtained from other events. Hence, starting

from the event ‘a’ with the largest correlation r a, those events ‘j’ whose correlation r (a,j)

exceeds certain threshold β are eliminated. Then, the procedure continues with event ‘b’, with

correlation value r b, to eliminate the events ‘j’ whose r (b,j) exceeds β. This process is

repeated until there are no more events to eliminate. Finally, the remaining events are orthogonal

to each other and highly related with power consumption. In this work, specifically, α is set to

0.5 and β is set to 0.9 because this leads to the best results.

3.2 Accessing PMCs

PMCs can be accessed through both user space and kernel space. If accessing PMCs from

userspace, a suitable PMCs monitor tool should be used. The used tool not only supports the PuC

23

in this work, but also can be easily applied for other normal different platforms. If accessing

PMCs from kernel space, corresponding source code should be added such that the PMCs can be

periodically accessed.

3.2.1 Accessing PMCs form userspace

PMCs can be accessed from user space though third-party tools. In Windows operating

system, there are some tools with graphical monitoring view of system working state by counting

the data consumed by applications. In Linux operating system, performance counters for

Linux (PCL) is a new kernel-based subsystem that provides a framework for collecting and

analyzing performance-related data. The PMC events will vary based on the performance

monitoring hardware and the software configuration of the system, such as perf_event [30]

which is an application programming interface (API) of the Linux kernel and perfmonX [31]

which is a hardware-based performance monitoring interface for reading the PMCs from user

space. Since the hardware used in this work does not support perfmonX nor perf_event, another

tool is considered to easily and effectively access PMCs. In Linux operating system,

Performance Application Programming Interface (PAPI) is a widely used third-party tool which

can easily access PMCs from the application level. Besides, the interface of PAPI is the same for

all platforms. Therefore, in this work PAPI is used to monitor PMCs for preliminary tests. The

implementation details will be explained in Chapter 6.

3.2.2 Accessing PMCs from kernel space

In order to completely decouple the user applications from the power control system, the

power estimator has been included into the OS, which directly and periodically accesses the

PMCs for carrying out the estimation task at kernel level. The need of including the estimator

into the OS implies to know the processor low-level details and to develop the code to access the

registers.

The work of this thesis focuses on control algorithms for energy optimization in

multimedia devices; therefore a development board with a single-core is considered to be the

smallest unit of study. Cortex A8 is the general-purpose processor included in the experimental

test bench used in this work and it has four PMCs, which are accessed, in system control

coprocessor (CP15) space. CP15 can control and provide status information for the functions

24

implemented in the processor. It has some main functions, such as overall system control and

configuration, cache configuration and management, Memory Management Unit (MMU)

configuration and management, preloading engine for L2 cache and system performance

monitoring. Performance monitor registers are mapped into the CP15 register and the purpose of

it is to monitor and count system events, such as cache misses, TLB misses, pipeline stalls and

other related features. Performance monitor registers can help system developers to profile

energy-related behaviors of the processor when it executes different applications. It can generate

interruptions when the number of events reaches a given value.

Table 3-1 shows a summary of the register allocation and reset values of the performance

monitor registers C9, which is used to control CP15 and reserved encodings for implementation-

defined performance monitors. In the table, CRn is the register number of CP15, Op1 is the

Opcode_1 value for the register, CRm is the operational register, Op2 is the Opcode_2 valued for

the register, and security state can be either secure (S) or non-secure (NS). R/W means read/write

access in privileged modes only and X indicates the register access depends on another register

or an external signal.

Table 3-1 CP15 Performance Monitors in Cortex A8 processor

CRn Op1 CRm Op2 Register or Operation Security State
 NS S

 c9 0 c12 0 Performance Monitor Control(PMNC) R/W,X R/W,X
 1 Count Enable Set (CNTENS) R/W,X R/W,X
 2 Count Enable Clear (CNTENC) R/W,X R/W,X
 3 Overflow Flag Status (FLAG) R/W,X R/W,X
 4 Software Increment (SWINCR) R/W,X R/W,X
 5 Performance Counter Selection (PMNXSEL) R/W,X R/W,X

c13 0 Cycle Count (CCNT) R/W,X R/W,X
 1 Event Selection (EVTSEL) R/W,X R/W,X
 2 Performance Monitor Count (PMCNT) R/W,X R/W,X

c14 0 User Enable (USEREN) R/W R/W
 1 Interrupt Enable Set (INTENS) R/W R/W

The purpose of the performance monitor control (PMNC) register is to control the

operation of the four performance monitor counts registers and the cycle count register, as well

as to inform about the hardware processor and the number of PMCs available in the hardware.

Besides, in order to enable or disable any PMCs, the count enable set (CNTENS) or count enable

clear (CNTENC) register is needed. When reading these two registers, any enable that reads as 0

25

indicates the counter is disabled and any enable that reads as 1 indicates the counter is enabled.

When writing to the enable-bit of CNTENS with the value of 0 is ignored, and when writing with

the value of 1 indicates to enable the counter. Similarly, writing into CNTENC with the value of

0 cannot update the counter state while writing with the value of 1 clears the enable-bit to 0 to

disable the counter. The overflow flag status (FLAG) register can enable or disable any of the

PMCs to produce an overflow flag. When reading this register, overflow flag that is read as 0

indicates the counter has not overflowed, and once there is any overflow that reads as 1 indicates

the counter has overflowed. And, if the interrupt overflow enable bit is written with a value of 0

it is ignored, while any overflow flag written with a value of 1 clears the counter overflow. The

purpose of the software increment (SWINCR) register is to increment the count of PMC register.

When writing to this register, the value of 1 increment the counter and the value of 0 does

nothing. The performance counter selection (PMNXSEL) register can select a PMC register

through writing the corresponding bit value into the SEL field. The purpose of the cycle count

(CCNT) register is to count the number of clock cycles since the register was reset. It should be

disabled before any software can write into it; otherwise, any attempt to write to this register

when it is enabled will lead to unpredictable result. Moreover, the event selection (EVTSEL)

register can select the events which PMC registers are needed for counting. In Cortex A-8

processor, the four PMCNT registers (PMCNT0-PMCNT3) are selected by the PMNXSEL

register and each of them counts instances of an event that is selected by the EVTSEL register.

Bits [31:0] of each PMCNT register contain an event count. Accessing the PMCNTs in user

space needs to enable the user mode of the PMCNTs, and user enable (USEREN) register is used

to control this configuration. The purpose of the interrupt enables set or interrupt enable clear

(INTENS) register is to determine if any of the PMCNTs, PMCNT0-PMCNT3 or CCNT,

generates an interrupt on overflow. When reading this register, any interrupt overflow enable bit

read as 0 indicates the interrupt overflow flag is disabled, and when any interrupt overflow

enable bit is read as 1, it indicates the interrupt overflow flag is enabled. Writing to this register

is similar, when any interrupt overflow enable bit is written with a value of 0, it will be ignored.

Any interrupt overflow enable bit written with a value of 1 sets the interrupt overflow enable bit.

PMCs can be accessed by reading or writing CP15 with the ARM assembly MRC and

MCR instructions, respectively.

26

The instruction MRC can transfer an internal co-processor register to an ARM-processor

register. It takes the form as below:

 MRC <co-pro>, <op>, <ARM reg>, <co-pro reg>, <co-pro reg2>, <op2>;

The register <co-pro reg> is written to <ARM reg>, by using operation <op>, while the

register <co-pro reg2> is written to <ARM reg> by using operation <op2>.

The form of instruction MCR is the same as MRC and MCR instruction also can transfer

a co-processor register to an ARM-processor register. It takes the form as below:

MCR <co-pro>, <op>, <ARM reg>, <co-pro reg>, <co-pro reg2>, <op2>;

The contents of the ARM register are written to the co-processor register using the given

operation code, which may be further modified by the second co-processor register and/or the

second operation code.

The process of accessing PMCs from kernel space can be described as below:

The PMNC can control the operation of the PMCs, with one register used to set up each

counter. The four PMCNT registers contain the event counts for the selected events being

counted. The MRC instruction can be used by programs or procedure running at any privilege

level to read these counters. After setting CNTENS and EVTSEL, PMCs start to work until

FLAG or CNTENC are enabled. Besides, the counters can be stopped by clearing the enable

counters flag or by clearing all the bits in the CNTENC. The PMCs are periodically recorded,

and the data can be used to analyze the performance of the applications.

3.3 Modeling power estimator

Modeling power estimator is to find the relationship between PMC events and real power

consumption. Chapter 2 introduced some methods to estimate power consumption by using

PMCs. Based on Ren et al. [1], in this work the mathematic method is MARS which can

accurately estimate the power consumption.

3.3.1 MARS method

Multivariate Adaptive Regression Splines (MARS) is an implementation of techniques to

predict the values of a continuous dependent or outcome variable from a set of independent or

predictor variables. MARS constructs the relationship between the dependent and independent

variables from a set of coefficients and basis functions that are entirely driven from the

regression data.

27

MARS partitions the input variable space by the tensor product of interval sets on each of

the n axes and the tensor product of spline functions are defined as the basis functions. Each

input axis is partitioned into K+1 intervals delineated by K points (“knots”) and the regions in

the n-dimensional space are taken to be the ሺܭ ൅ 1ሻ௡ intersections of all such intervals. Each

divided space corresponds to a coefficient and an input variable	ݔ௜. MARS model obtains its

prediction value by combining all basis functions. In the system, the input set contains the

independent variables ݔ ൌ ሺݔଵ, … , ௤ሻݔ , and the output set contains the dependent variables

ݕ ൌ ሺݕଵ, … , .௤ሻ. The method that generates the data is described by equation 3-4ݕ

),...,(1 qxxfy 3-4

Where	 f is a single valued deterministic function of its n-dimensional argument, q is the number

of independent variables,  is the additive stochastic component whose expected value is

defined to be zero.

MARS can obtain an approximated function f̂ to analyze and calculate the system

response through a series of training data, and it can be represented by summing up a set of basis

functions as indicated in equation 3-5:





M

m
mmp xBcxxf

1
1)(),...,(ˆ 3-5

mc are the coefficients of the expansion and M is the number of basis functions.

The basis function)(xBm is indicated in equation 3-6:

)()(),(),(1 mkmkkm
K
km PxbxB m 3-6

 mK is the number of factors in the tensor product; ݔሺ௞,௠ሻ is a subset of independent

variables;),(mkP is a set of functional parameters, i.e.),(),(kmkmmk tsP  . kmb is a constant or a hinge

function expression in 3-7.

28

 )()(),(  ttxstsxbkm

3-7

Where s is the truncated direction 1s ; t is the knot position of the basis function. The

subscript “+” of 3-6 indicates a positive part, i.e.:








 00

0

z

zz
z 3-8

To achieve the desired accuracy of objective function f̂ , MARS algorithm obtains the set of

basis functions through a forward and backward iterative process. Forward pass iteratively

divides the training data and fits the estimation models, which will produce a large number of

basis functions. The backward pass will selectively remove some basis functions with the

premise to ensure the highest suitability to fit the final model.

 In order to improve estimation accuracy and save computing time, a reasonable number

of counts should be selected. Therefore it is unnecessary to test whether each point is suitable for

a new basis function. There are a great number of data for knot calculation; therefore, a

minimum step size L for variable selection is introduced, which can reduce the selection of data.

The step L is calculated as in equation 3-9:

5.2

)1ln(
1

log

)(
2 













 mnN
L 3-9

Where α locates in a closed interval ሾ0.01, 0.05ሿ , which is a reasonable range for

narrowing the selection of candidate nodes, n is the number of predictors or input variables; the

quantity mN is the number of observations.

In the forward procedure, the entire iterative process will continue until the number of

basis functions reaches the maximum number of basis functions maxM or the minimal lack of fit

29

(LoF) is achieved, being LoF the difference between the real function f and the model function

f̂ .

As mentioned above, since MARS algorithm only allows building new basis functions

based on those previous generated basis functions, this will cause too many basis functions

constructed by the forward procedure. Besides, the original generated functions used to produce

subsequent basis functions have little influence on the final model. Therefore, in order to

improve the generalization ability, MARS backward procedure will remove the basis functions

which have small effect on the final model, until it finds the best model. The performances of

models are evaluated by using generalized cross validation (GCV), which is calculated as in

equation 3-10.

 
2

1

2

)(
1

)(ˆ1

)(





 







N

MC

xfy
N

MGCV

N

i
iMi

 3-10

Where ܰ is the number of observations;)(MC is the effective number of parameters and

 .is the number of hinge-function knots ܯ

The final model obtained by the MARS algorithm is expressed in equation 3-11:

 






mK

k
kmmkvkm

M

m
m txsccxf

1
),(

1
0)()(ˆ

 3-11

Where 0c is a constant basis function, M is the number of basis functions, mc is the

constant coefficient of every basis function and 1kms . In this thesis mK is set as 1 in order to

simplify the model, which also simplifies equation 3-11 to 3-12:

 




 )()(ˆ
)(

1
0 mmvm

M

m
m txsccxf 3-12

30

In order to make the model be continuous and have continuous first derivative, the hinge

function can be replaced by its corresponding cubic truncated form as equations 3-13 and 3-14:





















tx

txt

tx

tx

txrtxPtttsxC ,

,

)()(

0

),_,,1(_

_
3

_
2

_ 3-13






















tx

txt

tx

txrtxP

tx

tttsxC ,

,

0

)()(

)(

),_,,1(_

_
32

 3-14

with ݐ > ݐ > ିݐା, ݐ，ݐା and ିݐ are the knots of cubic function. P and r are as 3-15 to

3-18.

2)(

)32(




 




tt

ttt
P 3-15

3)(

)2(




 




tt

ttt
r 3-16

2)(

)23(




 




tt

ttt
P 3-17

3)(

)2(




 




tt

ttt
r 3-18

),,,( tttsxC is first order differentiable, but its second derivative is not continuous at

ݔ ൌ േ. Each knot t can define a linear truncated function, while a cubic function needs threeݐ

knots: ݐ，ݐା，ିݐ. Figure 3-1 shows an example of linear and cubic hinge functions [14]. The

cubic functions are smoother and accurate than linear functions, which do not introduce many

computable complexities.

31

 (a) Linear and cubic basis functions when s=1.

 (b) Linear and cubic basis functions when s=-1.

Figure 3 -1 Linear and cubic basis functions

3.3.2 Building the power estimation model

Since system activities can be quantified with PMCs, the power estimation model builds

the relationship between power consumption and a set of selected PMC events. Figure 3-2

describes the power estimation modeling procedure, in which the MARS method is employed to

fit the selected PMC events and power consumption due to its simplicity and high efficiency. In

order to estimate the power consumption of PuC, PMCs are recorded when executing the

application under different states of PuC. The current consumption of the PuC and supply

voltage have been measured and their multiplication is used as the power consumption input.

Section 3.3.1 explains the MARS modeling procedure and once the coefficients of independent

variables are set, the model can estimate the power consumption. Then, by comparing the

estimation with power consumption, the accuracy rate is calculated. When the accuracy is not

good enough, it means the estimation value cannot suitably reflect the power consumption. In

this case, some adjustments should be considered, such as re-select PMCs, remove spikes of

PMCs data, re-calculate average power consumption and so on. If the accuracy of the model is

adequately good, the estimation model can be used to estimate the power consumption of PuC.

32

Figure 3-2 Structure diagram of power estimation modeling procedure.

3.4 Summary

In this chapter, the power estimation modeling method has been presented. The model

based on PMCs that can reflect the power consumption while running the video decoder has

been introduced. To graduate the accuracy of the power estimation and do not cause too much

overhead, the PMCs strongly related with power consumption should be selected. Correlation

coefficient is a common method to evaluate the degree of relationship between two variables.

Based on Spearman’s rank correlation coefficient and coefficient of determination, suitable PMC

events have been selected. PMCs can be accessed through user space and kernel space. In this

dissertation, PAPI has been merged into the decoder to monitor the PMCs from userspace.

Moreover, PMCs can also be accessed from kernel space. Once the list of significant events has

been obtained, MARS method is applied to build the power estimation model. Based on selected

PMC events and power consumption of PuC, MARS function can calculate the parameters of

models. After checking and adjusting the accuracy of power estimation, the power estimator can

be refined and fixed.

33

Chapter 4 Real-time control system

4.1 Introduction

This section focuses on control algorithms for energy optimization in multimedia mobile

devices when they are decoding video, while also keeping a reasonable quality of user

experience (QoE). For this reason, a control system has been built in the PuC, in which the

microprocessor unit (MPU) executes a video decoder application. Figure 4-1 shows the general

topology of the control system, which includes a power-control governor (PCG) and a closed-

loop control subsystem. With respect to the closed-loop subsystem, depending on the power-

consumption set-point, the controller will operate on the multimedia platform (plant) input and

keep the plant output close to the set-point. For the plant input, the dynamic voltage and

frequency scaling (DVFS) mechanism of the MPU is employed because it is present in many

commercial platforms. DVFS enables to adjust the MPU dynamic power consumption by putting

it to work under different operating performance points (OPPs), i.e., voltage and frequency pairs.

Meanwhile, the plant output provides the feedback signal, which should be its own power

consumption. The feedback information not only works in the closed-loop subsystem, but also

feeds the PCG. The PCG consists of a battery-discharge estimator, which estimates the

remaining battery energy, i.e., the battery state of charge (SoC), and a power-budget generator,

which selects in real time a suitable power budget for the MPU to guarantee a certain battery

lifetime. The generated power budget is passed to the closed-loop control subsystem as its set

point. Due to its feedback feature, the closed-loop control subsystem is able to regulate the MPU

power consumption, and, hence, the battery discharge rate, according to the set-point, regardless

of possible fluctuations in the decoder power-consumption demand (which act as disturbances

over the closed-loop subsystem). One more interesting innovation is that PCG supports multiple

and personalized power-budget profiles to meet user requirements. Then, different control

algorithms have been implemented in the control system to verify the effectiveness and stability

of the system.

34

Figure 4-1 General topology of the control system.

In order to generally apply the control system in common multimedia mobile devices,

instead of using any special power sensor, the precise PMC-based OS-level real-time power-

consumption estimator has been used as the feedback-signal generator (see Figure 4-1). The

proposed estimator has been introduced in chapter 3.

4.2 Theoretical model of the closed-loop control subsystem

The general topology of the proposed closed-loop control subsystem is depicted in Figure

4-2. The idea is to regulate the power consumption according to a set point (target), i.e., the

system keeps the power consumption close to the set point, which will depend on the power

needs at each moment, regardless of possible consumption fluctuations (disturbances) in the

multimedia plant, i.e., the MPU executing the video decoder. For this purpose, a controller acts

on the plant depending on the system error between the target and the estimation-based feedback.

Both the feedback from, and the action to the plant are proposed to be based on features

generally available in common mobile processors, i.e., PMCs and DVFS, respectively. Anyway,

as also depicted in Figure4-2, an acquisition system has been used during the test phases to

confirm that the control system is working properly. Additionally, as depicted in Figure 4-1,

based on power-estimation feedback, the battery-discharge estimator will calculate the battery

state of charge (SoC). In that way, the power-budget generator can correspondingly select a

suitable power budget for the plant in order to guarantee battery lifetime. Therefore, the set-point

will dynamically change based on power budget.

35

Figure 4-2 General topology of the proposed closed-loop consumption control system based on estimation feedback.

4.2.1 Plant model

One mean of designing the system controller is to base it on a suitable model of the plant.

As a first approach to the problem, working with actual consumption data, a simplified model is

used to facilitate the application of the classic control theory. Later, this model could be refined

and sophisticated and different advanced closed-loop control strategies could be applied.

 For modelling purposes, the actual power consumption of the open-loop plant has to be

captured when it is decoding video under different OPPs. As exposed in more detail in Chapter 5,

this has been done for the experimental test bench by measuring the board current consumption.

 As an example, Figure 4-3 shows the real measured current of the board while

continuously decoding video and with OPPs increasing. The repetition of the capture experiment

for always the same video sequence indicates that there is a certain basis of (average)

consumption for each OPP, which is nearly constant for all repetitions, plus a number of big

consumption spikes that appear in different moments in each repetition. For this reason, those

spikes are not considered to be due to the video task executed in the CPU but to other “irrelevant”

sinks in the board. Moreover, it can be observed from the graph that, apart from the biggest

“random” consumption spikes, there is a second level of pseudo-periodic consumption peaks,

whose period decreases as the OPP frequency increases. These are due to accesses to the SD card

to get the video file data packets but not to decoding activities. Hence, these consumption peaks

should not be taken into account to model the plant, given that neither the power estimation

procedure will reflect them.

Plant

36

Figure 4-3 Detail of the real board consumption profile for increasing OPPs

If the zoom of Figure 4-3 is focused on how the consumption changes from one OPP to

another, the dynamics of this change can be analysed. From this analysis, a mathematical model

of the system plant can be obtained. Thus, for example, choosing a simple linear first-order

Laplace-based model, a transfer function of the plant, G(s), can be obtained [63]. Equation 4-1

shows G(s) for the experimental test bench:

63.363

63.363

11075.2

1
)(

3 



  ss

sG

4-1

G(s) in Equation 4-1 relates the current consumption with input OPP average current level3.

Figure 4-4 shows the comparison between the time response of this theoretical model and the

actual consumption for an input step from OPP26 to OPP27 levels in the experimental test bench.

The time response of G(s) has been compared also with the rest of steps of the OPP sequence

described in Figure 4-3 and its average validity has been verified.

3 The consideration of the measured OPP average current level as the input for the plant transfer function is for normalization purposes, i.e.,

unitary steady-state gain.

37

Figure 4-4 Actual consumption and model response for OPP26 to OPP27 step

The proposed model G(s) is a continuous one, which has to be discretized depending on

the action period T to be considered. If a digital-to-analog converter (zero-order hold) +

continuous process + analog-to-digital converter (sample & hold) scheme model is considered

for the discretization, a Z transfer function can be derived from the continuous model as equation

4-2 [64]:

pT

pT

ez

e
zG





1

)(4-2

Where p is the pole of G(s). As it can be deduced from Figure 4-4, the time needed by the

hardware to adapt to a new OPP to change the power consumption is quite short. Mainly, this

time should be always much shorter than the action period T in order to avoid unnecessary

overhead. Taking this into account, the value of the pole of G(z) in Equation 4-2 should tend to

zero. Then, the discrete-time transfer function of the plant can be simplified to the one shown in

equation 4-3 [65]. If the results finally prove the validity of this model, it will have the additional

advantage of its simplicity and generality.

zzA

zC
zG

1

)(

)(
)( 4-3

38

The z-1 term in G(z) represents that, for a reasonable low-overhead action period T, the

system adapts its power consumption after an OPP step in less than a sample time. On the other

hand, the unitary static gain of G(z), i.e., G(1)=1, represents a normalized model in which the

input, modelled with A(z) in 4-3, is the average power consumption value corresponding to the

active OPP and the output, modelled with C(z) in equation 4-3, is the power consumed by the

system for that OPP. As introduced above, this simple model is valid while the system sample

period is much longer than the settling time of the analogue power consumption process,

otherwise the system overhead would be unbearable.

The records of consumption estimation used to validate the estimator module are also

useful for modeling purposes. For example, if the power estimator is considered to be included

into the plant itself, the analysis of how it responds to a change in the OPP enables the plant

dynamics modelling. Thus, for example, Figure 4-5 shows the estimator output for the OPP

changing from number 26 to number 27 during a certain video sequence decoding in the

experimental test bench. Since the estimation period is long enough as to allow the estimator to

detect completely the new consumption level due to the OPP switch from one sample to the next,

as it can be seen at t=260s in Figure 4-5, the model of Equation 4-3 is also valid in terms of

power estimation apart from power consumption.

 Figure 4-5 (Open-loop) estimated consumption for an OPP26 to OPP27 step

39

4.2.2 System transfer-function calculation

In the ideal linear closed-loop control system model, the action signal to the plant input

comes from the controller output, as depicted in Figure 4-6. Hence, if the controller Z transfer

function is called F(z), then it can be expressed as F(z)=A(z)/E(z), where E(z), i.e., the controller

input, models the input-output error of the system (see Figure. 4-6).

 Figure 4-6 Conceptual and mathematical block diagram of the system model.

Because the output of the system model is the plant output, i.e., the power consumption

estimation, modelled with C(z) in equation 4-3, then the feedback transfer function is unitary;

therefore, the Z transform of the error sequence can be calculated as E(z)=R(z)-C(z), where the

system input, modelled with R(z), is the desired power consumption, i.e., the set point. All these

relationships can be better understood with the block diagram of the system model shown in

Figure 4-6. Taking into account the previous definitions, the Z transfer function of the whole

closed-loop system, M(z), can be calculated as indicated in equation 4-4.

)()(1

)()(

)(

)(
)(

zGzF

zGzF

zR

zC
zM




 4-4

Once a mathematical model of the system is obtained, different techniques can be applied

to design controllers and to foresee the corresponding system behaviour, as explained below.

Further simulation and implementation details are included in Chapter 6.

40

4.2.3 Controller design

Apart from other technological issues, the stability of the closed-loop system is one of the

characteristics that must be ensured. As a first approach, the simplest controller that can be used

in closed loop is a proportional (P) one [2]. It would lead to a system transfer function

MP(z)=KP/(z+KP) from 4-3 and 4-4 and where KP is the P-controller gain. With the system pole

in pMP=–KP, the (highest positive) critical gain in the limit of the system stability is KPc=1.

Because the closed-loop steady-state error, ess, is calculated with equation 4-5 as the

percentage of a stepped set point:

)1()1(1

100

GF
ess 

 4-5

For the P controller we have essP=100/(1+KP). Therefore, the lower bound for the closed-

loop system error in steady state is min(ess)=100/(1+max(Kp))=50% [1], which is too high. In

order to avoid this limitation and still keeping a classic linear controller, an integral action (I)

should be added to it. As stated above for the plant model, if the results finally prove the validity

of these simple controllers, they will have the additional advantage of its simplicity, which is a

desirable feature for an algorithm that has to be implemented in an embedded system with

limited resources.

Three types of I controllers are proposed, based on a forward rectangular rule (FRR), a

backward rectangular rule (BRR) and a trapezoid or Tustin’s bilinear rule (TR), respectively.

Their corresponding Z transfer functions, FF(z) for the FRR-I, FB(z) for the BRR-I and FT(z) for

the TR-I one, are shown in equation 4-6:

)1(2

)1(
)(;

1
)(;

1
)(













z

zTK
zF

z

zTK
zF

z

TK
zF T

T
B

B
F

F 4-6

where KF, KB and KT are the respective integral gains and T is the system sample period,

as previously defined. In all cases, the controller pole in z=1 ensures a null value of ess in

equation 4-5.

41

To calculate M(z) for the I cases, i.e., MF(z), MB(z) and MT(z), equation 4-3 and 4-6 should be

applied to equation 4-4, resulting in the three cases of equation 4-7, with the closed-loop system

poles indicated in equation 4-8, i.e., pMF, pMB and pMT.

2/)12/(

)1(2/
)(

1
)(;)(

2

2

TKzTKz

zTK
zM

TKz

TK
zM

TKzz

TK
zM

TT

T
T

B

B
B

F

F
F















 4-7

4

412)(2

1 ;
2

411

2 







TKTKTK
p

TKp
TK

p

TTT
MT

BMB
F

MF

 4-8

The difference of Z transfer functions between FRR and BRR is only a zero in z=0. The

zero-pole cancellation in a series of a BRR I and G(z) will enable shorter settling times than with

a FRR I when closing the control loop because the system dominant pole can be closer to z=0.

This can be deduced from the Z-plane root loci shown in Figure 4-7. In the FRR case, the

modulus of the system dominant pole is always greater than or equal to 0.5, whereas in the BRR

case the system dominant pole can reach the minimum value of 0 thus enabling settling times

shorter than the sample period. Thus, considering the BRR option, the closed-loop pole of the

system for a long enough sample period is pMB =1- KBT, being again KB the controller gain. Let

us consider a sample period T of 100ms, which seems to be a good trade-off value for keeping

reasonable relative overhead, immunity to jitter effects and frequency of control actions. For this

period, the critical gain which leads the system to instability (pMB =-1) is KB =20, whereas the

gain for the shortest settling time (pMB =0) is KB =10.

42

Figure 4-7 System root locus with BRR-I (up) and FRR-I (down) controllers

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Z real axis

Z
 im

ag
in

ar
y

ax
is

43

The root loci of TR I controller is shown in Figure 4-8, with two real/complex branches

which, starting from within the unit circle, allow the system stability.

 Figure 4-8 System root locus with TR-I controller

Some combinations of the previous linear controllers can also be used. Examples like

proportional-integral (PI) or even proportional-integral-derivative (PID) are well known in the

control domain. Their transfer functions, FPI(z) and FPID(z), are shown in 4-9, where KPI and KPID

are the respective gains, and c, c1 and c2 are zeros of the transfer functions. The inclusion of the

integral action in both cases keeps a controller pole in z=1, which still ensures a null value of ess

in 4-5.

     
 1)(;

1
)(21









zz

czczK
zF

z

czK
zF PID

PID
PI

PI 4-9

As it can be deduced from 4-9, once the period T is fixed, the PI combination offers two

degrees of freedom, i.e., KPI and c, whereas the PID combination offers three degrees of freedom,

i.e., KPID, c1 and c2. In order to test one case of each of these two combinations, the values of the

-2 -1.5 -1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Z real axis

Z
 im

ag
ia

nr
y

ax
is

44

zeros are fixed to achieve a system root locus that, at least, allows the closed-loop system

stability. Thus, for the PI combination, if a value of c=0 were chosen, then FPI(z) would be

analogous to FB(z), as it can be deduced from 4-6 and 4-9. In order to have a different behaviour,

a value of c=0.5 has been chosen, which leads to a root locus like the one shown in Figure 4-9,

with two real branches, one positive and finite and another negative and infinite. The coexistence

of both branches within the unit circle allows the system stability.

 Figure 4-9 System root locus with PI controller and c=0.5

For the PID combination, a common value of c1=c2=-1 leads to a system root locus like

the one shown in Figure 4-10, with two real/complex branches and another real, negative and

finite. Again, the coexistence of the three branches within the unit circle allows the system

stability.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Z real axis

Z
 im

ag
in

ar
y

ax
is

45

Figure 4-10 System root locus with PID controller and c1=c2=-1

Using the chosen values for the zeros and applying 4-3 and 4-9 to 4-4, the closed-loop

transfer function M(z) for both combinations appears in the two cases of 4-10, i.e., MPI(z) and

MPID(z). The poles of these two transfer functions are represented in Figure 4-11 and Figure 4-12

as functions of KPI and KPID, respectively.

 
 

 
  PIDPIDPID

PID
PID

PIPI

PI
PI

KzKzKz

zK
zM

KzKz

zK
zM











21

1
)(

5.01

5.0
)(

23

2

2

 4-10

4.3 PCG

In order to guarantee the battery lifetime of mobile devices under a predefined performance

requirement, a dynamic PCG is creatively added in the control system in order to adjust a

suitable set-point of the closed-loop control subsystem. The PCG consists of a battery discharge

estimator and a budget calculator, which depends on the current remaining battery. Different

-3 -2 -1 0 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Z real axis

Z
 im

ag
in

ar
y

ax
is

46

from the Linux original governors, PCG bases its work on the estimation power consumption

instead of the CPU usage. Another interesting innovation is that the PCG supports multiple and

personalized power budget profiles to meet user requirements.

4.3.1 Battery discharge estimator

For those cases in which the battery SoC cannot be measured directly or indirectly, this

work proposes a SoC estimator based on the value of power-consumption estimation (Power) of

the closed-loop subsystem (see Figure 4-1). Current SoC can be estimated in units of A·s at

every sample instant from previous-instant SoC (SoCpre), working voltage V and sample time T,

as indicated in 4-11.

SoC  SoCpre 

Power

V
T 4-11

The power consumption of a real system can be abstracted to a model in which the

system power consumption is a piecewise constant function of the execution time. Their

relationship is illustrated with the example of Figure 4-11 during different intervals. In the

proposed system, the power consumption depends on the video-decoding task and the active

OPP caused by the controller.

Figure 4-11 Example of the relationship between the system power consumption and execution time

47

From the power-consumption model illustrated in Figure 4-11, the energy E(n) removed

from the battery between t1 and tn could be calculated as in 4-12.

E(n)  Pi  ti
i1

n

 4-12

Where Pi denotes the system power consumption during interval i, ti denotes time interval i,

and n is the number of elapsed intervals.

4.3.2 Budget calculator

Corresponding to the value of SoC, the power-budget generator calculates a suitable

power budget in order to extend the battery lifetime while keeping a reasonable QoE. A power-

budget profile can describe the relationship between SoC and power budget, i.e., the set-point for

the closed-loop subsystem. Although even a quasi-continuous function could be used to calculate

the power budget from the SoC, given the quantized nature of the DVFS-based plant input of the

closed-loop subsystem, it is more suitable to use a discrete function with no more steps than the

number of available OPPs. Hence, Table 4-1 shows the general structure of the preset discrete

power-budget profiler, which can be particularized for different user requirements. A number n

of SoC thresholds, i.e., SoCTh(i) with i from 1 to n, can be defined such that the power budget is

changed each time the SoC crosses a threshold. In order to have a good tradeoff between QoE

and battery lifetime, the power budget should be decreased as the SoC crosses thresholds down,

like proposed in Table 4-1. It means that, for example after a battery recharge, when the battery

energy is higher than SoCTh(n), the power budget for the video decoder can be the highest one in

order to support very good QoE. With the energy state changing, the set-point is dynamically

changed following the power-budget profile. Thus, for example, when the SoC is in the interval

[SoCTh(1), SoCTh(2)), a suitable medium-low set-point should be selected. Finally, when the SoC is

lower than SoCTh(1), the mobile devices should consume as less power as possible in order to

guarantee battery lifetime. The threshold and set-point values can be adjusted by requirements of

users. Therefore, depending on feedback power consumption, PCG can generate a power-budget

profile which supports the set-point of the closed-loop subsystem.

48

Table 4-1 SoC and General Power-Budget Profiler

The ondemand and conservative governors are dynamic Linux cpufreq governors which

can change the OPPs following the different cpufreq policies. Ondemand and conservative can

increase or decrease the frequency depending on the workload and some parameters can be set in

order to decide when changing to another OPP. This is one of the methods to support power

optimization. However, PCG can dynamically extend the battery lifetime depending on the user

requirements and maintain it regardless of the complexity of the video sequences, whereas the

Linux dynamic governors vary the battery lifetime depending on the workload, as it will be

shown in Chapter 7.

4.4 Summary

In this chapter, a control system has been introduced, which includes a closed-loop

control subsystem and a PCG. Firstly, before designing the system controller, a suitable model of

the plant has been built. The model of the plant is fixed by analyzing the power consumption

behavior in OPP switching situations. Once the plant model has been obtained, a system model is

fixed so that classic controllers can be explored before having a system implementation.

Proportional (P) and integral (I) controllers, as well as some classic combinations of linear

controllers, are designed to verify the behavior of the closed-loop control subsystem in

subsequent chapters. The feedback of the closed-loop control subsystem is based on an OS-level

estimator which can accurately calculate the estimation power consumption in real time. The

feedback information is subtracted to the set-point in order to adjust the output close to the

desired power consumption by means of the controller. At the same time, the estimation value is

also taken by the PCG to estimate the battery SoC and then generate the power budget to lead the

set-point. On the other hand, the original Linux dynamic cpufreq governors adjust the OPPs

SoC Energy state Power budget

)(nThSoCSoC  High energy Set-point n (highest)

)1()( nThnTh SoCSoCSoC Medium-high energy Set-point n-1

 
 

)1()2(ThTh SoCSoCSoC  Medium-low energy Set-point 1

)1(ThSoCSoC  Low energy Set-point 0 (lowest)

49

depending on the CPU usage, and they can be configured when to change the OPPs. Their

cpufreq policies can save energy consumption without considering remaining battery. The

proposed PCG can estimate the remaining battery based on the feedback power estimation and it

supports multiple and personalized power budget profiles to meet user requirements.

50

51

Chapter 5 Test bench

The system proposed in Chapters 3 and 4 is implemented and tested as described in next

chapters. This chapter presents the test-bench design of the experiments. It starts with an

overview of the test-bench architecture, which includes an experimental platform and a power

supply and measurement system, as well as the experimental method. Then, it continues with an

introduction to the experimental platform from both hardware and software environments, and to

the power supply and measurement system. Besides, the tool used to access PMCs is presented.

To integrate the tool interface into the decoder application, the decoder and its reconfigurable

development environment are also described.

5.1 Test-bench and methodology overview

5.1.1 Test-bench architecture

The architecture of the test bench for the control system is shown in Fig. 5-1.

 (a) The test bench of User-level power estiamtion approach

52

(b) The test bench of OS-level power estimation approach

Figure 5-1 Block diagram of the test bench

As it can be observed, the test bench consists of two parts, the experimental platform and

the power supply and measurement system. The experimental platform includes a multimedia

application, encoded sequences, a Linux-based operating system, an ARM-based hardware and a

SD card. As explained in Chapter 3, there are two approaches of power estimation. Figure 5-1 (a)

shows the experimental platform when using the user-level power estimation approach. If the

PAPI-based power estimator is considered, the decoder application includes the PAPI interface

to access the PMCs, as well as the MARS model, which calculates the consumption estimation

based on PMCs. If the OS-level power estimator is used (Figure 5-1 (b)), the decoder application

does not need any modifications. The PAPI-based power estimation approach is used only as the

initial study of accessing PMCs to feedback power estimation, therefore, when the work applies

53

to the real-time control system, the OS-level power estimator is used for the feedback

information instead of the PAPI-based power estimator. The detail of comparing the two

estimators will be explained in Chapter 6. In addition, the control system includes a PCG and a

closed-loop control subsystem where the OS-level power estimator has been included. The PCG

can emulate the battery discharging and in simulation part it is employed to replace a real

Lithium-ion battery. And different video sequences are employed to test the control system. In

the following sections, an expanded description of the experimental platform through hardware

and software is given.

The power supply and measurement system is composed of a power source, an

acquisition system and a digital voltmeter & ammeter. The acquisition system can set the voltage

in 5 V and control the sampling frequency of digital voltmeter & ammeter. The digital voltmeter

& ammeter measures the voltage and current supplied by the power source to the experimental

platform. Then, a data-acquisition system takes samples of the measured voltage and current and

sends them to a PC-based software, through which the measuring sample time can be configured,

as well as the output voltage level. The digital voltmeter & ammeter is used to profile the power

consumption of the whole experimental platform. A detailed description of the power supply and

measurement system is provided in Section 5.3.

5.1.2 Experimental methodology

The control system relies on the online real-time power estimation which feeds the power

consumption of the application back. Therefore, the ideal way to address the control system is to

build a complete power-centric system with the power accounting module properly implemented.

The experimental methodology is explained in Figure 5-2. Two different approaches have

been considered to get power consumption estimations prior to the the final control-system

implementation. The first approach (Figure 5-2①) is based on a user-level implementation

through a third-party library, PAPI, which is used as the PMC driver and is included into the

user-level decoding application to read PMC event counts after decoding every frame. Besides, a

second alternative approach (Figure 5-2②) is added: in order to decouple the user application

from the power control system, the power estimator is moved from the user level to the OS,

which accesses directly and periodically the PMCs for carrying out the estimation task at kernel

level. The OS-level estimator is used to feedback the power consumption estimation.

54

Hardware

Os-level
estimator

Power budget Profile 1
Power budget Profile 2

...
Power budget Profile N Encoded

sequences

Battery
discharge
estimator

Power budget
generator

PCG

Controllers

P
FRR-I
BRR-I
TR-I
PI

PID

Kernel space

Record battery lifetime

Record SOC

Decoder

2

PAPI_based
estimator

1

PAPI
library

User space

Figure 5-2 Overview of the Experimental Methodology

The methodology includes three parts. The first part focuses on the power estimation of

decoder application while decoding different video sequences; the second part is to design and

test different controllers within the closed-loop control subsystem; and the third part is to add the

PCG, which will generate different power budget profiles in order to lead the set-point of the

closed-loop control system.

In the first part, each sequence is individually decoded on the experimental platform; and

in the meantime, the power consumption is profiled via the power measurement unit that

periodically samples the voltage and current of the experimental platform. After repeating this

process for those sequences, the power consumption of all sequences can be obtained. Besides,

the PMCs of PuC when decoding every sequence are also recorded. Based on PMCs and power

consumption, the generally applicable power estimation model was built at the end of the first

part. In the second part, different classic controllers have been introduced to the closed-loop

control subsystem, and it has been tested on the experimental platform to validate the results of

the controllers. In the third phase, the PCG has been added to the system in order to generate

suitable power budget profiles, which will generate the set-point for the closed-loop controllers.

55

5.2 Experimental platform

 To implement and analyze control algorithms for energy optimization, a simple and low-

cost single-core multimedia platform was chosen in a first approach. After knowing how the

control system works in the single-core hardware, the control algorithms can be enhanced to be

tested in multi-core platforms. Besides, in order to focus on energy optimization of the single-

core devices, less peripheral circuits and functions will be able to interfere into the energy

consumption. What’s more, the hardware should support the DVFS and PMC mechanisms.

Hence, the hardware for the experiments is a commercial board named BeagleBoard [66], which

runs the Ubuntu Linux operating system with the control system implemented in the kernel. In

the remaining of this section, the experimental platform will be introduced from two aspects: the

hardware and the software environments.

5.2.1 The hardware environment

As introduced above, the test bench is based on a single-core hardware development

platform for multimedia embedded systems: BeagleBoard. Its features are listed in Table 5-1.

Table 5-1 Features of BeagleBoard

Component Features

Processors

 One ARM Cortex-A8 core
Digital Signal Processor (DSP)
Image and Video accelerator
Image Signal Processor (ISP)

2D/3D graphic accelerator
Memory 512 MB LPDDR RAM ,SD/MMC Card Cage

Indicators
Power 2-User Controllable

PMU

Connector

Video Audio

DVI-D
S-Video Connector

LCD Expansion Connector
L+R Stereo out, L+R Stereo In

10/100 Ethernet

USB Port USB 2.0 OTG Port, USB Host Ports

Expansion
General Purpose Expansion (I2C, USB, MMC,DSS...)

Camera Expansion Connector

Debug 14 Pin JTAG, UART/RS-232 Port, GPIO Pins

User Interface Switches, Reset Button

56

A general description of the BeagleBoard architecture is given in Figure 5-3. As shown in

Figure 5-3, the BeagleBoard features an OMAP 3530 system-on-chip, which includes a 720

MHz ARM Cortex-A8 CPU for general purpose computation and a TMS320C64x+ DSP for

accelerated multimedia applications. Built-in storage and memory is provided for the OMAP

3530 through a Package-On-Package (POP) chip that includes 256MB of NAND flash and

256MB of SDRAM. Additional memory can be added to the BeagleBoard by installing a SD or

MMC card in the SD/MMC slot, or driving a USB thumb drive or hard drive through the USB

OTG port and the EHCI USB port. The TPS65950 is a power management chip (PMIC) that

provides different power domains and clock frequencies to the BeagleBoard, its 5V power source

can come from the USB OTG port connected to a PC powered USB HUB, or a 5V DC supply.

Besides, TPS65950 also provides stereo audio in and out. The video output of the BeagleBoard

is provided through a separate S-Video connector and a DVI-D connector that can partially

support High-Definition Multimedia Interface (HDMI). In addition, BeagleBoard provides a RS-

232 serial connector, a Join Test Action Group (JTAG) connector, and an expansion connector.

 Figure 5-3 Block Diagram of BeagleBoard

The functions of the BeagleBoard can be divided into four categories: computation,

storage, I/O, and communication. Note that the communication unit and the I/O unit are

combined together due to the lack of specific physical interface for network communication. But

57

there are several USB to network adapters on the market that can add Ethernet, Wi-Fi or

Bluetooth connectivity to the BeagleBoard by using the EHCI USB port or the USB OTG port in

the host mode.

In this thesis work, not all functions and devices of the BeagleBoard are employed for the

experiments. To simplify the work and focus on the energy consumptions caused by the ARM

Cortex-A8 CPU, the memory subsystem, and the related I/O buses, the BeagleBoard has been

configured as a minimal system that disables the unnecessary components such as the display

and network subsystems.

5.2.2 The software environment

The Ubuntu Linux is a special Linux distribution that is tailored for embedded systems

and shipped with the BeagleBoard. A full package of the Ubuntu distribution images includes an

X-loader (MLO), a U-boot (u-boot.bin), a Linux kernel image (uImage), and a Linux root

filesystem. To boot the Ubuntu Linux on the BeagleBoard from SD card, the SD card has been

formatted into two partitions, with the X-loader, U-boot and uImage held in the first partition and

the Linux root filesystem held in the second partition. The procedure of Linux booting is as

follows: when the BeagleBorad is powered on, the ROM program loads and executes the X-

loader, which further loads the U-boot and executes it; the U-boot reads its commands and loads

the Linux OS kernel image with the U-boot commands as arguments; once the kernel image is

fully loaded to the memory, it is uncompressed and begins the initialization procedure; at certain

point of the kernel initialization, the kernel mounts the root filesystem partition based on the U-

boot commands; after the Linux OS is fully booted, a login interface appears and the system is

ready for use.

In this work, a Linux 3.8.0 kernel, patched to support the platform DVFS mechanism, is

running in the processor. The DVFS subsystem is managed through the cpufreq Linux driver. As

already addressed in the previous chapter, this driver includes four predefined governors to fix

the MPU OPP, two static and two dynamic, which react to the system load. This is achieved by a

function called cpufreq_driver_target, one of whose input parameters is the target frequency of

the desired OPP to switch to. This function searches the target frequency among the ones of the

OPPs defined in an internal table and selects the appropriate one by applying a ceil- or a floor-

rounding algorithm, depending on another input parameter. The function then sets the frequency

58

and the voltage corresponding to the selected OPP. The default cpufreq definitions for the

BeagleBoard only consider 6 OPPs. In order to decrease this strong nonlinearity in the DVFS-

based plant input, additional valid OPPs were searched. The BeagleBoard supports voltage

scaling from 0.6V to 1.45 V with a step of 12.5 mV. After verified all possible pairs of frequency

and voltage, there are 27 valid OPPs. The characteristics of these 27 OPPs are shown in Table 5-

2. The first column is the OPP number, whereas the frequency and voltage of each OPP are

indicated in the second and third column, respectively. Besides, running the decoder application

to decode the 78 sequences under each OPPs while measureing the power consumption of the

board. The measured average current consumption for every OPP is listed in the fourth column.

Table 5-2 OPP data

No. MHz V A No. MHz V A
1 125 0.981 0.186 15 430 1.156 0.245
2 200 0.933 0.197 16 500 1.168 0.259
3 210 1.006 0.199 17 510 1.181 0.263
4 220 1.018 0.201 18 520 1.193 0.266
5 240 1.031 0.205 19 530 1.206 0.270
6 250 1.043 0.207 20 540 1.218 0.274
7 270 1.056 0.211 21 550 1.230 0.278
8 290 1.068 0.215 22 560 1.243 0.282
9 310 1.081 0.219 23 570 1.256 0.288
10 330 1.093 0.224 24 580 1.280 0.290
11 350 1.106 0.228 25 590 1.293 0.297
12 370 1.118 0.233 26 600 1.306 0.301
13 390 1.131 0.236 27 720 1.306 0.327

14 410 1.143 0.241

5.2.3 Cpufreq governors

As a special part of the Linux kernel, the DVFS mechanism, which acts on the plant, is

managed through the cpufreq Linux driver. This driver includes four predefined governors to fix

the MPU OPP, two static and two dynamic, which react to the system load. In the initial version

of Linux kernel, the cpufreq driver only offered the CPU to be set to a fixed frequency. Only the

two static governors “powersave” and “performance” were patched in, which set the frequency

statically to the lowest or highest frequency, respectively. Since kernel 2.6.9, “ondemand” and

“conservative” governors have been added, such that they can dynamically scale the CPU

frequency up or down in order to save power. The procedure of cpufreq scaling is shown in

59

Figure 5-4 [51]. In order to achieve dynamic frequency scaling, the cpufreq core should be able

to tell the cpufreq driver a “target frequency”. So the cpufreq driver was transformed by cpufreq

core to offer a "->target/target_index" call instead of the existing "->set policy" call. Through

cpufreq governors the frequency within the cpufreq policy can be decided.

Figure 5-4 Procedure of cpufreq scaling [51]

5.2.3.1 Ondemand governor

The cpufreq ondemand governor sets the CPU depending on the current usage and CPU

must have the capability to switch the frequency very quickly. Below are the main accessible

parameters of ondemand governor:

sampling_rate: The sampling rate is measured in microseconds, which indicates how often

the kernel monitors the CPU usage and makes decisions on what to do. Sampling rate is adjusted

by considering the frequency transition latency, which default value is transition_latency * 1000.

Sampling_rate_min: The sampling rate is limited by the hardware transition latency and

its default value is transition_latency * 100.

up_threshold: The parameter defines the threshold value, which means when the average

CPU usage is higher than the defined value during the sample time, the frequency will be

increased. For example, when the up_threshold is set as 95, this means that within a checking

interval, if the average usage of CPU is larger than 95%, the CPU frequency will be increased.

60

ignore_nice_load: This parameter takes 0 or 1. When it is set as the default value 0, all

processes are counted towards the CPU utilisation value. Otherwise, when it is set as 1, the

processes that are executed with a nice value will not be counted in the overall usage.

sampling_down_factor: This parameter controls the rate at which the kernel makes a

decision on when to decrease the frequency while running at top speed. When it is set as the

default value 1 decisions to revaluate load are made during the same interval regardless the

current clock speed. When it is set greater than 1, it acts as a multiplier for the scheduling

interval for revaluating load when the CPU is at its top speed. This improves performance by

reducing the overhead of load evaluation and helps the CPU to stay at its top speed when the

workload is heavy, rather than shifting back and forth in speed. This parameter has no effect on

behavior at lower speeds/lower CPU loads.

powersave_bias: This parameter takes a value between 0 and 100 which defines the

percentage (times 10) value of the target frequency that will be saved off of the target. For

example, when it set to 100, instead of setting the target frequency to 1000Mhz, ondemand

governor will target 1000MHz-(10%* 1000MHz)=900MHz. This is set to 0 (disabled) by default.

5.2.3.2 Conservative governor

The cpufreq conservative governor works similar to ondemand governor, which sets the

CPU frequency depending on the current usage. However, the behaviour of conservative

governor increases and decreases more gracefully the CPU speed rather than jumping to the

highest speed while the workload is variable. Below are the main accessible parameters of

conservative governor:

freq_step: This parameter describes what percentage steps the cpufreq should be smoothly

increased and decreased. The default value is 5 which means CPU frequency will increase in 5%

chunks of the maximum CPU frequency. The value of freq_step can be set between 0 and 100, in

which 0 will effectively lock the CPU at a fixed speed regardless of its load, while 100 means the

conservative governor will work the same as ondemand governor.

down_threshold: The parameter defines the threshold value, which means when the

average CPU usage is lower than the defined value during the sample time, the frequency will be

decreased. For example, the default value is 20, which means if the CPU usage is less than 20%

during every sample time, the frequency will be decreased.

61

 sampling_down_factor: This parameter controls the rate at which the kernel makes a

decision on when to decrease the frequency while running at any speed.

5.4 Power supply and measurement system

The power supply and measurement system is based on commercial equipment from Agilent,

i.e., Agilent 66321D [67]. As it has been mentioned in the architecture overview of the test-

bench, the power supply and measurement system consists of three functional modules: a power

source, a digital voltmeter & ammeter and a PC-based acquisition system. The block diagram of

the power supply and measurement system is shown in Figure 5-4.

Figure 5-5 Block diagram of the power supply and measurement system

Agilent 66321D internally includes a digital voltmeter & ammeter and a power source.

The power source supplies power to PuC while the digital voltmeter & ammeter measures the

supplied current and voltage. Besides, the acquisition system controls the sampling frequency

and the voltage output, which is fixed in a level of 5V to power on the BeagleBoard. To build the

power measurement system, the PC and the Agilent 66321D are connected through a USB to

General-Purpose Interface Bus (USB-GPIB). The voltage value chosen from the acquisition

62

system is programmed into the power supply via the USB-GPIB. In the meantime, digital

voltmeter & ammeter measure the voltage and current values of the PuC. Again, through the

USB-GPIO interface, the acquisition system can configure the measuring frequency of the digital

voltmeter & ammeter and obtain the voltage and current samples from it.

The software user interface of the Agilent acquisition system is shown in Figure 5-5. On

the left, the output voltage option is to set the voltage via the USB-GPIB interface (see in Figure

5-5①). The integration time option is used to set the sample time of digital ammeter, and in this

thesis work, the sampling period is set as 5 milliseconds (see in Figure 5-5②). At the middle of

the window, measured current is shown in real time and the historical data can be saved (see in

Figure 5-5③).

Figure 5-6 Software user interface of Agilent acquisition system

63

5.5 PMC Programming Tool

As section 3.2.1 has introduced, the tool used to access PMC in this thesis work is PAPI.

PAPI can easily and directly access PMCs from the application level. Besides, the interface of

PAPI is the same for all platforms so that it is widely used. PMCs. Based on Ren et al. [14],

PAPI is used as the initial approach to access PMCs. As it can be seen in Figure 5-6, PAPI can

be divided into two layers of software.

Figure 5-7 PAPI structure

The upper layer is a portable layer that consists of the API in low level and high level, as

well as machine independent support functions. High-level interface is used for collecting simple

measurements and it simply provides the ability to start, stop and read specific events, one at a

time. Low-level interface is directed towards users with more sophisticated needs, it deals with

hardware events in groups called EventSets. EventSets reflect how the counters are most

frequently used, such as taking simultaneous measurements of different hardware events and

relating them to one another. For example, relating cycles to memory references or flops to level

1 cache miss can indicate poor locality and memory management. In addition, EventSets allow a

highly efficient implementation, which translates to more detailed and accurate measurements.

EventSets have features such as guaranteed thread safety, writing of counter values, multiplexing

and notification on threshold crossing, as well as processor specific features. Both a high-level

and a low-level interface and are implemented on a number of Linux platforms and the latest

release now provides support for ARM Cortex A8, which is the platform used for this work. The

lower layer is a machine specific layer that defines and exports a machine independent interface

to machine dependent functions and data structures. These functions access the substrate, which

64

may consist of the operating system, a kernel extension or assembly functions to directly access

the processor registers.

PAPI only monitors the hardware events that are occurrences of specific signals related to a

processor’s function, such as cache misses and floating point operations while the program

executes on the processor. Each processor has a number of events that are native to that

architecture. PAPI provides a software abstraction of these architecture-dependent native events

into a collection of preset events that are accessible through the PAPI interface. Preset events are

a common set of events deemed relevant and useful for application performance tuning. They are

typically found in many CPUs that provide performance counters and give access to the memory

hierarchy, cache coherence protocol events, cycle and instruction counts, functional unit, and

pipeline status. A preset can be either directly available as a single counter or derived using a

combination of counters. PAPI defined approximately 100 preset events for CPUs, but some of

them may be unavailable on certain platforms. For a given platform, some preset events can be

counted through both the high- and low-level interfaces of the portable layer. PAPI provides

access to native events on all supported platforms through the low-level interface. Even if there

is no preset event available, native events can still be accessed directly. Table 5-3 lists the native

events which are directly accessed from a single event in Cortex A8 processor, the one employed

in this work. Derived events that use more than one event at the same time could intensify the

limitation of the simultaneous PMCs number. In order to avoid too much overhead, only native

events are used in this dissertation.

Table 5-3 Common Preset Events of Cortex A8 processor

Events Events Description

Cache access
PAPI_L1_DCA L1 data cache accesses
PAPI_L1_DCM L1 data cache misses
PAPI_L1_ICM L1 instruction cache misses

Conditional
branching

PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_INS Branch instructions

Instruction counting
PAPI_TOT_INS Instructions completed
PAPI_TOT_CYC Total cycles

Data access
PAPI_SR_INS Store instructions
PAPI_LD_INS Load instructions

TLB operations
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside butter misses

Access
PAPI_L1_ICA L1 instruction cache accesses
PAPI_L2_TCM L2 total cache accesses
PAPI_L2_TCM L2 total cache misses

65

Conditional
branching

PAPI_BR_TKN Conditional branch instructions taken

Instruction counting PAPI_STL_ICY Cycles with no instruction issued

5.6 Decoder application

5.6.1 MPEG-4 part2

Due to the hardware limitations of BeagleBoard, too complex video decoder standards

cannot be executed on it, therefore MPEG-4 part2 standard [68]-[70] is employed. All the test

video sequences come from the JVC conformance sequences. They are widely used in research

and display a wide variety as far as the amount of spatial detail and movement concerns.

MPEG-4 is a video-coding standard designed for rich multimedia. It provides various

codec tools with good compression capability. MPEG-4 uses a number of technologies such as

shape encoding and adaptive discrete cosine transform (DCT) to improve the coding efficiency.

MPEG-4 Part2 is a DCT based standard defined to provide high compression efficiency with

some compression tools such as combination of motion-compensated prediction and scalar-

quantized DCT coefficient coding [68]. Video applications are ranged from low-quality and low-

resolution requirements to high definition preference; thus, video standards are structured in

profiles with a set of capabilities in a manner appropriate for various applications. Each profile is

declared with different code in the encoder to allow a decoder to recognize the applied

constraints and requirements to correctly decode the stream. MPEG-4 Part 2 has 21 profiles

ranging from simple one to advanced one. Among them, the simple profile (SP) has been

implemented in the video decoder source code. SP is designed for applications that are

constrained by low bit rate and low-resolution conditions.

5.6.2 Decoder development environment

Since the PAPI interface needs to be included into the decoder, it should be reconfigured.

Table 5-4 lists the tools and libraries used for building the decoder development environment.

Table 5-4 Tools and packages used for building the decoder application

Tools and Libraries Functionalities
ORCC A plugin for Programming languages translation
SDL An open source library to facilitate multimedia implementation

66

Cmake
An advanced platform-crossed compilation tool for source code management and
compilation

Eclipse An integrated development environment
Java-JRE and Java-JDK Support for Java running environment and development environment

Orcc is an open-source Integrated Development Environment based on Eclipse and

dedicated to dataflow programming. The primary purpose of Orcc is to provide developers with

a compiler infrastructure to allow software/hardware code to be generated from dataflow

descriptions. Orcc does not generate assembly or executable code directly; rather it generates

source code that must be compiled by another tool.

SDL is a simple open source cross-platform library designed to provide a common

abstract layer to hardware components via OpenGL and Direct3D [71]. SDL officially supports

Windows, Mac OS X, Linux, iOS, and Android. SDL is designed in C language and provides

several low level controls on images, audio, and I/O peripherals and currently is widely used for

developing games, simulators, media player, and other multimedia applications.

CMake is an open-source, cross-platform family of tools designed to build, test and

package software. It is also used to control the software compilation process using simple

platform and compiler independent configuration files, and generate native makefiles and

workspaces that can be used in the compiler environment. The configuration file of Cmake is

named as CmakeLists.txt, which is a set of Cmake scripts to manage all the components of the

project. Instead of directly building the final executable file, it can generate the standard build

files, and then it executes the application in accordance with general compilation approaches.

Another feature of Cmake is to support directory hierarchies and applications that depend on

multiple libraries [72]. The main goal to use Cmake in this thesis is to compile and install the

decoder in the target environment. What’s more, Cmake is more like a tool to facilitate source

code management and compilation rather than a compiler. Cmake is OS-dependent and the

calling of a real compiler is embedded into the configuration file of Cmake. For Linux-based

platforms, GCC-based method is the most widely used tool to obtain the executable files.

Eclipse IDE is an open source community of tools, projects and collaborative working

groups. ORCC is implemented in Java as an Eclipse plugin. In this work, depending on user

needs, Eclipse IDE packages either for C/C++ developers or for Java developers can be

employed. Meanwhile, ORCC requires a Java environment. The Java Runtime Environment

67

(JRE) is required with at least the version 1.6. of Sun's JRE. OpenJDK is recommended on Linux

[73].

5.7 Summary

This chapter presents the experimental test bench and experimental methodology that is

employed to implement and verify the proposed control system. The experimental test bench is

composed of two parts: the experimental platform and the power supply and measurement

system. The hardware of the experimental platform is a single-core multimedia device:

BeagleBoard. The main features of the board have been listed and since the work of this thesis

focuses on controlling the power consumption caused by the ARM Cortex-A8 CPU, the

BeagleBoard has been configured as a minimal system that disables the unnecessary

components, such as the display and network subsystems. The BeagleBoard runs Linux 3.8.0

kernel, patched to support the platform DVFS mechanism, in which additional valid OPPs were

added.

The power supply and measurement system is used to supply the experimental platform

and measure its power consumption. It is composed of three functional modules: a power source,

a digital voltmeter & ammeter and a PC-based acquisition system. The acquisition system can

configure the output voltage and control the sampling frequency, thus, the software user interface

of Agilent acquisition system has been shown to explain how to configure these options. The

digital voltmeter & ammeter can measure the voltage and current of the whole PuC and return

the values to the acquisition software. PC and power supply are connected through a USB-GPIB

interface, which is a communication bridge.

In this thesis work, there are two approaches of power estimator. The first approach is a

PAPI-based power estimator, for which the PAPI interface should be integrated into the decoder

to access the PMCs from userspace. Besides, the decoder application also includes the MARS

model that calculates the consumption estimation based on PMCs. Apart from introducing the

MPEG4 part2 decoder application, those tools and packages used for compiling the decoder

application have also been introduced. The second approach is the OS-level power estimator, for

which the decoder application does not need any modifications. The PAPI-based power

estimator approach is used as the initial way to address the PMC access. Comparing with OS-

level estimator, PAPI-based estimator has some limitations that make it not suitable to be applied

into the control system. The comparing process is explained in next chapter. Then, the OS-level

68

power estimator is decided to be used as the final feedback source instead of the PAPI-based

power estimator.

69

Chapter 6 Simulation and implementation

In this chapter the method to simulate and implement the control system is presented. The

implementation of the control system consists of three main parts: the power estimator, the

closed-loop control subsystem and the PCG. To manage the estimator to feedback power

consumption, an estimation model has been explained in Chapter 3, which is based on PMCs.

Besides, two approaches of building power estimators have also been introduced in order to

describe the process of implementation. The process of simulation and implementation of

different controllers in the closed-loop control subsystem will be described, as well as the

features of the control system. Finally, the PCG, which includes a battery SoC estimator and a

power budget profile, will be explained in detail.

6.1 Platform PMC and DVFS enabling

The particular details of the embedded hardware/software platform used in this thesis were

described in Chapter 5. As already mentioned in Chapter 5, a low-cost development board was

adopted for the test-bench application platform. Since the focus of the work is firstly on the

control system, the decision on the chosen board was more based on aspects like easy DVFS and

PMC accessibility or open hardware/software, than on others like computational performance.

Hence, some of the main features of the platform are the following.

The OS is based on Linux kernel 3.8.0 patched to support the DVFS mechanism, which is

managed through the cpufreq Linux driver. In order to enable the PMC, the below configurations

should be followed. One is enabling performance events and counters, and other is enabling

OMAP 3 debugging peripheral to enable the according hardware. Besides, the option of generic

dynamic voltage and frequency scaling support should be selected to enable DVFS.

The Linux performance event subsystem provides a framework for collecting and analyzing

performance data. These events will vary based on the performance monitoring hardware and

software configuration of the system. Besides, it provides per task and per CPU counters, and it

provides event capabilities on top of those. The Linux performance events and counters are

selected to enable the kernel support for various performance events.

70

6.2 PMCs access

PMC is widely implemented in majority modern processors. In this work, two different

approaches have been considered to obtain PMCs prior to the estimator implementation. The first

approach is based on a user-level implementation through a third-party library (Performance

Application Programming Interface – PAPI), which is used as the PMC driver and is integrated

into the user-level decoding application to read PMC event counts after decoding every frame.

The second approach: in order to decouple the user application from the power control system,

accessing PMCs is moved from the user level to the OS, which accesses directly and periodically

the PMCs for carrying out the estimation task at kernel level.

6.2.1 PMC implementation based on PAPI

PAPI functions should be integrated in decoder to take PMC event samples when decoder is

being executed. Figure 6-1 shows the decoder whith PAPI function calls to monitor PMCs have

been inserted in. As it can be seen, after initializing the decoder, PAPI starts to access PMCs, and

after a number of frames are decoded, a stop signal sent from the display actor stops accessing

PMCs. The number of decoded frames can be set depending on the users requirements, which

mean the period of monitoring PMCs is fixed on demand. Then the PMCs data are stored in an

array for next work.

71

 Figure 6-1 PAPI Tool Integration

As the initial approach, PAPI is used to count events by reading the PMCs before and after a

performance-critical region of code. The application is a multimedia decoder, which can decode

videos frame by frame. PAPI functions are inserted before and after the frame-decoding code.

Figure 6-2 shows the flow chart of using PAPI.

72

Figure 6-2 Flow chart of using PAPI

In order to initialize PAPI, the functions PAPI_library_init, which initializes the PAPI

library, and PAPI_get_hardware_info, which gets information of the system hardware, are

inserted into the decoder. Then, to configure PAPI, several functions are needed, such as

PAPI_multiplex_init, which initializes multiplex support in the PAPI library;

PAPI_create_eventset, to create a new empty PAPI event set; PAPI_set_multiplex, which

converts the created event set to a multiplexed event set. Then it is needed to check the overflow

of PAPI counters, which can set up an event to begin registering overflows.

73

PAPI_get_event_info can get the name and description for a given preset or native event code.

Chapter 3 has introduced the method of selecting power-related events, which can be added

though PAPI_add_event function. PAPI_add_event (int EventSet, int Event) only adds single

PAPI events to an event set, then, PAPI_enum_event will return the event code for the next

available present or native event. After the selected events are all added in the set,

PAPI_get_real_usec is inserted before and after PAPI counting in order to return the total

number of microseconds since the starting point. PAPI only supports thread monitoring, which

means PAPI will not inherit the counting information or values from the parent threads that can

distinguish individual threads; it will not confuse the parent thread with other child thread.

PAPI_start starts counting hardware events in an event set, while PAPI_stop will stop counting

hardware events in the event set. In this work, PAPI counts the events during the decoding of a

frame, then, it will continue counting for the next frame and recording the data in a file until all

the frames have been decoded, i.e., the frame number i exceeds f_num_max, which is the

maximum frame number of a sequence.

PAPI monitors the PMC counters between frames, and the frame time is variable. The

recorded data of PMCs and frame time can be used to estimate power consumption. However,

the sampling time of the real-time control system has to be fixed and, therefore, PAPI is only

used as an initial access to PMCs from userspace and it can help in validating the final

implementation.

6.2.2 PMC driver in kernel space

In order to synchronize the PMC access time with the sampling time of the control system, a

PMC driver has been inserted into the Linux cpufreq driver as part of a governor, Figure 6-3

shows the flow chart of PMC driver. The real-time sampling period is synchronously set to

T=100 ms in all the control system modules in order to meet the time requirements of the

mathematical model, as explained in Chapter 4.

74

Figure 6-3 Flow chart of using PMC driver

PMC driver includes two main parts, one is initializing the related registers, and another is to

monitor and record PMC counters. In the initialization part, PMNC register is read and the

number of PMC registers is checked whether it is equal to 4 (ARM Cortex-A8 in Beagleboard

75

features 4 PMC registers), if not, there is an error, otherwise, the PMNC register is configured to

control the operation of the four PMC registers and the cycle counter register. Figure 6-4 shows

the bit arrangement of the PMNC register. The bits [31:24] are preset to 0x41 which means the

processor is ARM; [15:11] are preset to 0x4 in order to fix the number of available PMC

counters; D bit is set to 1 to count every 64th processor clock cycle; C bit is set to 1 in order to

reset cycle counter (CCNT); P bit configured to 1 means reset all performance counters to zero;

E bit also set to 1 enables all counters including CCNT.

Figure 6-4 Bit arrangement of the PMNC register

Then, the procedure enters a checking where the number of counters is issued, if for any

reason it is larger than 4, the number of counters is reset as 4. Otherwise, enable CNTENS so

that PMC is enabled. After that, the procedure enters a loop to select performance counter (select

PMNXSEL) and event (enable EVTSEL), then it resets the performance counter (reset PMCNT)

until the 4 PMCs are all accessed. After the previous loop, the cycle count is reset (reset CCNT),

CNTENS is set to enable PMCs, and the overflow flag is reset. Then INTENS is disabled to

make sure there is not overflow. Once the initialization part is finished, the next part is executed

periodically. First, the overflow flag is read; if there is not an overflow, a time stamp starts to

record the period time of accessing PMCs. Then the loop enters in a loop for accessing PMCs,

the counters are selected and PMCNT is read to know its value. The data of counters is recorded

in an array for the further work, and PMCNT is reset after previous work. After the four PMCs

are recorded, the cycle count will be read, recorded and reset.

6.3 Power consumption estimator

The first phase of the estimator implementation consists on identifying the set of events,

which are most significant with respect to the power estimation. This is achieved by a filtering

procedure that has been explained in Chapter 3. Table 6-1 lists the events resulting from the filter

procedure.

76

Table 6-1 Selected Events and Functionality [74]

Event names Description

L2_TCM Level2 total cache misses
TLB_IM Instruction translation look aside buffer misses
BR_TKN Conditional branch instruction taken
SR_INS Store instructions executed
TOT_CYC Total cycles

In the Beagleboard environment, five events, L2_TCM, TLB_IM, BR_TKN, SR_INS and

TOT_CYC are finally selected as the events that are highly related with power consumption.

L2_TCM: A significant percentage of stall cycles might lead to cache misses [75] which

means it costs more power consumption than when obtaining useful data, therefore, L2_TCM

should be included in the selected events.

TLB_IM: Level 2 cache can indicate the affections of instruction and data misses. TLB

misses have greater influences on power consumption due to the processor needs to handle

memory page table, therefore, TLB_IM is related with power consumption.

BR_TKN: If branch prediction fails, the pipeline will no longer wait for new instructions

filling, which is important to CPU stalls and effects power consumption.

SR_INS: The store instruction can monitor the data write/read operations in any layer, which

should be taken into account in affecting power consumption.

TOT_CYC: The number of cycles indicates a basic principle that is the application power

tendency is depending on its execution time. Although the predication is not quite precise, it also

descripts the high relation with power consumption.

Once the list of significant events is obtained, the MARS method is applied to estimate

power consumption from PMC event counts. The power models have been adjusted and tested

with all the available test sequences against 27 OPPs.

6.3.1 Estimation model

The model is build based on MARS method that was already introduced in Chapter 3. In

order to calculate the coefficients between PMCs and power consumption, 78 video sequences

have been used to model the power consumption of the decoding system. They are a subset of

the conformance-test bit streams of the MPEG-4 part 2 simple profiles as part of ISO/IEC

14496-4 standard and which can be downloaded from [76]. The power consumption and PMCs

of the 78 sequences are used to build 78 models, which are then used to estimate the power

77

consumption of other sequences. The average absolute percentage error (AAPE), which is the

percentage of the difference between the estimated consumption and the measured power

consumption, is calculated to show the accuracy of models as equation 7-1.

%100
ˆ1

1




 


n

t t

tt

x

xx

n
AAPE 7-1

Where tx is the measured value, tx̂ is the estimated value, and n is the number of the fitted

points, i.e., the number of frames of this sequence or the number of samples.

The AAPE between estimate power consumption and real power consumption of those

78 models can be identified in Figure 6-5.

Figure 6-5 Errors of 78 models

The brown color means the error is higher than 40%, the orange part means the error is

between 10% and 40% and the green one indicates the error is less than 10%. From the initial

approach to build the model, it can be seen that the brown color occupies a great part of the

figure, which means models results are not good enough.

Therefore, a new way to rebuild the model should be explored in order to reduce the error.

The 78 different test sequences belong to 5 resolution groups and their resolutions are: 16x16,

78

144x80, 288x176, 176x144 and 352x288. The number of sequences belonging to each of the 5

resolution groups is listed in Table 6-2.

 Table 6-2 Resolution distribution

Resolution Number of sequences

16x16 2
144x80 2
288x176 4
176x144 10
352x288 60

Another approach is to mix the 78 sequences by resolutions, which means to classify the

78 sequences in 5 group arrays corresponding to their resolution, and the PMC values and power

estimation value of each sequence can be assumed as an element. Taking out one element from

each of the 5 arrays and integrating the corresponding 5 elements as a new element that can also

be considered as a new mix sequence, the number of mixed sequences is

96006010422  . Then the new mixed sequences are used to rebuild the model. Figure

6-6 shows the AAPE among those mixed sequences.

 Figure 6-6 Model errors of mixed sequences

79

Since it has a larger green surface, Figure 6-6 shows that the results are better than with

previous models. Line 4752 corresponds to the selected model which has the smallest average

error, that is, 2.36%.

6.3.2 PAPI-based estimator

PAPI functions have been integrated into the decoder source code in order to periodically

record PMCs counters, and estimation functions have been also inserted into the decoder to

calculate the power consumption estimation by using the MARS model parameters. Then, the

source code is recompiled to build the decoder. While the decoder is executing, the sequences

will be decoded and the PMCs data and the power consumption estimation will be recorded.

Since the control system is applied into the kernel space, the estimation value, which is produced

in user space, is sent to the kernel space. That means if PAPI-based estimator cooperates with

control system, communication between user space and kernel space is necessary. To send the

estimation values, the system call interfaces should be added into the operating system and

decoder application.

6.3.3 OS-level estimator

Now, the MARS-based estimator is implemented inside the Linux kernel, specifically in one

of the cpufreq governors in order to have also an easy access to the DVFS facilities. The

governor code has been modified to get real-time power estimations of the PUC. The migration

of the user-level implementation to this new kernel-level one has implied two main challenges,

which have been successfully overcome: the first is the lack of PAPI support within the kernel,

whereas the second is the need of using integer numbers instead of floating-point ones.

In the final implementation, a kernel thread has been created and the performance

monitoring unit (PMU) of the MPU has been configured by means of specific assembler

instructions to read the selected event counts from PMCs. Besides, an endless loop was included

into the kernel thread such that it repeats periodically the estimation procedure with a delay

period of 100ms. With this period, the estimation and DVFS overhead has been measured to be

less than 3%. In each loop iteration, the PMC values are sent to the MARS module to calculate a

power estimation sample. The estimation samples are written into a file for off-line validation

purposes, and also are used as real-time feedback samples in the final closed-loop control

80

system. It is worth noting that this OS-level implementation runs transparently in the cpufreq

governor while the video decoder is executed at the user level.

6.3.4 Comparison of both estimators

PAPI is easily used to directly access PMCs and it can easily be applied to different devices,

therefore, PAPI-based estimator was the initial approach for estimating power consumption.

Besides, as another approach, OS-level estimator allows the OS to obtain accurate power

consumption estimations of a video decoding task in a multimedia mobile device. Comparing the

two estimators, the OS-level estimator has some advantages: the OS-level estimator can run

without interfering with the user-level decoding application; related to this, whereas PAPI-based

estimations have to be calculated on a video-frame time basis, the sampling frequency of the OS-

level estimator can be freely fixed; furthermore, the OS-level infrastructure avoids the need of

user signals to the OS for DVFS commands. Besides, the OS-level average estimation error is

lower than with PAPI-based estimator, which is presented in Chapter 7. For these reasons, OS-

level estimator is a good approach to be used as the feedback unit of the real-time closed-loop

control system which is aimed to be implemented to regulate the power consumption of OS-

based multimedia mobile devices.

6.4 Control system simulator

A simulator has been developed for the system by means of a commercial tool of dynamic

system simulation [77]. This tool allows users to develop, configure and simulate graphic block

diagrams. The simulator enables to anticipate the behavior of the power control system before

implementing it, even considering the effects that the nonlinear OPP-based plant interface

implies on the system response expected from the theoretical linear model. Furthermore, it is also

helpful for validating the results obtained from the real system, as far as they match the

simulation results. Figure 6-7 shows the general diagram of the control system simulator. It has

two parts: a closed-loop control subsystem simulator and a PCG. The closed-loop control

subsystem simulator is implemented to simulate the behavior of different controllers. Besides,

based on the consumption estimation, the PCG can emulate the battery discharging and is

employed to provide a suitable power budget for the video decoder depending on the battery

SoC. Next sections introduce more details of the control system simulator.

81

Figure 6-7 Diagram of the control system simulator.

6.4.1 Closed-loop control subsystem simulator

In section 4.2.2, the linear model of the closed-loop control subsystem was obtained. Now,

that initial linear model is being enhanced in the simulator with more real system details. For

example, one of the main advantages of closed-loop control systems is their capability to react to

disturbances on the controlled output. Therefore, the simulation model should be tested with a

disturbance input, as shown in Figure 6-8, to analyse its influence. The disturbance input would

simulate the effect of a consumption variation when the system is following the set point, due,

for example, to a variation in the processor load.

What’s more, the clearest nonlinearity of the system is that the DVFS interface to the plant

only admits a discrete number of different levels, i.e., the OPPs. This implies a strong

quantization process previous to the plant, whose steps can even be irregular. Hence, the closed-

loop control subsystem simulator should include a block, previous to the plant, implementing

this quantization (shown in Figure 6-8).

 Figure 6-8 Simulation model of the nonlinear closed-loop subsystem

with OPP quantization block and disturbance input block.

82

The quantization also includes implicitly the nonlinear effect of saturation beyond the

limits of the extreme OPPs. The transfer function of this quantization block has to be obtained

from the OPP average consumption values. In the case of the experimental test bench, it has the

aspect represented with the stepped line of 27 irregular steps shown in Figure 6-9. The diagonal

line of that figure is a reference to identify how the input breakpoints should be fixed in the

middle of the step values in order to limit the maximum quantization error to ±step/2. This is a

feature added to the final implementation in the experimental test bench because the default

DVFS interface offers both ceil and floor functionality but not rounding to the nearest valid OPP

value.

 Figure 6-9 Transfer function of the discrete OPP quantization effect.

6.4.2 PCG simulator

Figure 6-10 shows the structure of the PCG which is simulated and implemented in the

system. The PCG consists of a battery discharge estimator that can emulate the battery discharge,

and a power budget generator that produces power budget profiles. The input of PCG is the

power estimation that is calculated by OS-level estimator, and depending on the estimation value,

the remaining battery can be estimated, so that a SoC percentage can be calculated. Then, the

power budget generator will generate the power budgets corresponding to the battery SoC. The

83

power budget profiles contain the changing policies of the set-point of the closed-loop control

subsystem. Next subsections introduce the PCG components.

Battery discharge
estimator

Power budget
generator

PCG

SoC

Power
estimation

Power budget
profiles

Figure 6-10 Block diagram of the PCG

6.4.2.1 Battery discharge estimator

The battery discharge estimator in PCG subsystem is used to estimate the SoC. Although

the capacity of lithium-ion batteries is currently greater than 2000 mAh in most mobile devices,

for testing purposes, the capacity of the battery is set to only 15 mAh (54 A·s) in order to easily

and quickly monitor battery lifetime. Figure 6-11 shows the block diagram of the battery

discharge estimator into the simulator.

 Figure 6-11 Block diagram of battery discharge estimator into the simulator

The input (1) of the battery discharge estimator is the power estimation, which divided by

the voltage (5 V) is the estimated current. The estimated current is multiplied by -1 to decrease

charge and then is integrated to calculate the remaining charge of the battery. The integrator

block in Figure 6-11 has three parameters, the initial value of the integrator (54 A·s), i.e., the

battery capacity, the gain (K=1), and the system sampling period (Ts =100 ms). Finally, the

battery SoC can be monitored through outputs 1.

6.4.2.2 Power budget generator

The power budget generator can produce different power budgets depending on the SoC of

battery. Figure 6-12 shows three examples of power budget profiles. In Figure 6-1 2(a), when the

84

battery SoC is larger than 80%, the power budget is set as 1.006 W; when the SoC is between 80%

and 20%, the power budget remains at 0.929 W; and when the battery SoC is less than 20%, the

power budget is 0.878 W. In Figure 6-12(b), every 25% of the SoC, the power budget follows

this sequence: 1.2455W, 1.0902W, 0.9387W and 0.7873, respectively. In Figure 6-1 2(c), every

10% of SoC decrease, the power budget changes.

(a) Example 1

(b) Example 2

0,8

0,85

0,9

0,95

1

1,05

100-81
80-21

20-0

1,006

0,929

0,878

P
ow

er
 b

u
d

ge
t

(W
)

Battery State-of-Charge (%)

0

0,5

1

1,5

100-76 75-51 50-26 25-0

1,2455
1,0902

0,9387
0,7873

P
ow

er
 b

u
d

ge
t

(W
)

Battery State-of-Charge (%)

85

(c) Example 3

Figure 6-12 Power budget profile examples

6.5 Choice of controller gains

The model proposed in chapter 4.2.2 should be tested in the control system. For this

purpose and once the sample period has been fixed to T=100 ms in the implementation, the

mathematical transfer functions of the controllers have to be particularized for a suitable value of

gain. Looking for maximizing the relative stability of the control system, a key issue in closed-

loop schemes, the modulus of the closed-loop system dominant pole should be theoretically as

small as possible, i.e., the relative stability of the system improves as the dominant pole is deeper

included into the unit circle. In this sense, Figure 6-13 represents that modulus, from 4-6, versus

the integral gain for the aforementioned value of T and for the three integral controllers. From

Figure 6-13, it is clear that the smallest modulus of the system dominant pole is achieved with

the BRR-I controller: min(|pMB|)=0 for a gain of KB=10. Next, the TR-I controller achieves a

min(|pMT|)=0.41 for a gain of KT=3.43. And finally, the FRR-I controller achieves a

min(|pMF|)=0.5 when KF=2.5. These are, then, the integral gain values chosen for each integral

controller.

0
0,2
0,4
0,6
0,8

1
1,2
1,4 1,24551,18521,16151,12641,1041,07981,0233

1,0013
0,9021

0,7873

P
ow

er
 b

u
d

ge
t

(W
)

Battery State-of-Charge (%)

86

Figure 6-13 Modulus of dominant closed-loop system pole vs integral gain for the I controllers

With respect to the PI combination, Figure 6-14 shows the modulus of the two poles of MPI

versus KPI. In order to avoid undesired oscillations in the system response, the positive pole

should be kept as the dominant one, i.e., its modulus should be greater than that of the negative

pole [65]. Taking this into account, a value of KPI=0.75 has been chosen, which leads to a

dominant closed-loop pole pMPI=0.75.

87

Figure 6-14 Modulus of closed-loop system poles vs KPI for the PI controller

 Figure 6-15 Modulus of closed-loop system poles vs KPID for the PID controller

88

Finally, for comparison and initial checking purposes, the P controller was also tested with

a value of KP=0.5, which has been chosen as a mid-point within the system stability margin.

Hence, it puts the closed-loop pole in pMP=–0.5.

As a summary, Table 6-3 includes the chosen value for each of the controller gains, as well

as the corresponding closed-loop dominant pole.

Table 6-3 Gain and system dominant pole for each controller

Controller Gain Dominant Pole

P KP=0.5 pMP=-0.5
FRR-I KF=2.5 pMF=0.5
BRR-I KB=10 pMB=0
TR-I KT=3.43 pMT=0.41
PI KPI=0.75 pMPI=0.75
PID KPID=0.056 pMPID=0.56

6.6 Linux-based control system implementation

After the control system has been simulated, the next step is to integrate the control system

into the C-language kernel code. Thus, it can be analysed if the behaviour of the control system

matches the simulation results. In this section, the method of implementation is presented and the

flowchart of the implementation code is indicated in Figure 6-16,

89

Figure 6 -16 Flow chart of control system implementation code

At the beginning, SoC_init sets the initial battery SoC to 100, which means the battery is

full of charge, OPP_init sets the medium OPP 14 as the initial OPP and, correspondingly,

action_init sets the initial value of action to 1.059 W, which is the average consumption

estimation of OPP14. Within the working loop, Cal_SoC is used to calculate the current battery

SoC. It is calculated from the battery SoC of previous sample time and the estimation of the

power consumed during the current sample time. The calculation method is shown in equation 4-

11. Then, depending on the current SoC, Setup_set_point produces the set-point of the closed-

loop control subsystem following a certain preset power-budget profile. The set-point changing

policy is defined through considering the battery lifetime while maintaining a reasonable QoE.

Besides, Setup_set_point supports multiple and personalized power budget profiles to meet user

requirement, Figure 6-12 shows three examples. The set-point is the input of the closed-loop

90

control subsystem, whose first stage in Figure 6-16 is Cal_action (observe the feedback line

from the Cal-estimation stage). Cal_action calculates the action value of the control system in

two steps: first, it obtains the closed-loop error between the set-point and the feedback (power

estimation); and second, it obtains the action value by processing that error through the controller.

Several controllers have been implemented in the control system through the difference

equations derived from the transfer functions proposed in Chapter 4 and their results are shown

in Chapter 7. Based on the action value, Obtain_freq finds in a lookup table the processor

frequency that corresponds to the power consumption suggested by the controller action. The

processor frequency is needed as the input parameter of the cpufreq function used to set the OPP

in Assign_OPP. Cal_estimation works as OS-level estimator, accessing PMCs and estimating

power consumption during every sample period. Cal_estimation sends finally the estimation

value to Cal_SoC and Cal_action to close the functional loop.

6.7 Summary

In this chapter both simulation and implementation of the control system have been

presented. DVFS mechanism of the MPU is used because it is present in many consumer-

electronics platforms. This mechanism enables the MPU to work in different OPPs. Besides, the

feedback information of PuC is the power consumption estimation that is based on PMCs.

Therefore, both DVFS and PMC should be enabling in the platform. There are two approaches to

access PMC: one is accessing PMC through PAPI and another one is accessing PMC through

kernel space. After the estimation model is gotten in Chapter 3, PAPI-based estimator and OS-

level estimator have been built. Furthermore, the system call interface of Linux is extended to

allow kernel-space interact with the user-space threads or processes. Through comparing the

advantages and disadvantages of these two estimators, OS-level estimator has been selected to be

used as the feedback of closed-loop control subsystem. After that, the control system simulator

has been built, which consists of a closed-loop control subsystem simulator and a PCG. After the

initial linear model of the system is obtained in Chapter 4, more real system details are added to

enhance the simulator. Therefore, OPP quantization block and disturbance input block were

added into the simulator. Besides, a PCG is developed to simulate the behavior of battery

discharge and provides power budget for the video decoder. Finally, different controllers have

been researched in Chapter 4, previous to their implementation in the operating system.

91

Chapter 7 Experiments and Results

To meet the requirements of control algorithms for energy optimization, the control

system has been implemented in Linux operating system, which can extend the battery lifetime

of multimedia mobile devices depending on the user requirements while maintaining a

reasonable QoE. This mechanism includes an OS-level estimator that works as the feedback of

the control system. PAPI-based estimator as the first approach to estimate power consumption is

used to compare with the OS-level one in order to accurately calculate estimation values. In this

chapter, the experimental results, including the validation and evaluation of the two estimators,

the controllers implementation, the battery life time extension and the test of disturbance will be

given in four parts: for the first part, the accuracy of PAPI-based and OS-level estimators have

been compared and their features for the control system are stated, the overhead of the OS-level

estimator will be given to show its real performance. Then, different classic controllers have

been implemented in both system simulator and real system; their behaviors also are compared in

order to verify the correction. Thirdly, the potential battery life extension achieved by PCG will

be shown, one example of power budget profiles will be listed in order to compare its features

with other Linux original governors. Finally, the effect of power consumption variations has

been tested in both simulation and implementation.

All the experiments are carried out on the BeagleBoard platform, running a Linux 3.8.0

kernel patched with a DVFS mechanism. As Chapter 5 has introduced, the simple profile of the

MPEG4 Part 2 decoder has been considered as the decoder application. 78 conformance

sequences were used to test the control system and they have been configured with the common

test conditions such as different spatial resolutions, frame combinations, slice types, quantization

parameters, frame rates, and entropy coding methods.

7.1 Estimators validation and evaluation

Rather than using any sensor, to correctly feedback the power consumption for the

control system, an accurate estimator is necessary. As described in Chapter 3, before building the

estimator, firstly, suitable PMCs that are high related with power consumption should be filtered;

then, MARS regression is used to build the power estimation model. Once the model is built,

estimation results and measurement results are compared to test the accuracy of the model.

92

As an example, Figure 7-1 compares real power consumption of the board with PAPI-

based estimations and OS-level estimations, while decoding the foreman sequence through a set

of consecutive OPPs, which change every 10s. As it can be seen in Figure 7-1, the power

consumption and its estimations increase with the OPP. In order to understand the differences

between the shape of the real consumption and that of the estimations, note that consumption

records are acquired from the whole board, whereas the estimations focus on the power

consumption core mainly due to the decoding task in the processor, without the sporadic

consumption spikes not due to the decoding activity. Note also in Figure 7-1 that the time

resolution (sampling frequency) of OS-level estimations is higher than PAPI-based ones.

Moreover, Table 7-1 lists maximum, minimum and average error between mean real power

consumption core and the two power estimation approaches.

Figure 7-1 Power estimations and real power consumption

Table 7-1 Estimation Error

Error (%) Max Min Avg

PAPI-based estimation 4.92 0.12 3.63

OS-level estimation 3.14 0.00 2.36

50 100 150 200 250
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time (s)

Po
w

er
 (

W
)

Boad Real consumption
Os-level estimation
PAPI-based estimation

93

7.2 Test of closed-loop subsystem

The general model proposed in Chapter 4 has been implemented and tested in the system

presented in Chapter 5. The sampling period has been fixed to T=100 ms in both simulation and

implementation, whose details are given in Chapter 6. Next subsections show the experimental

test and its results.

7.2.1 Test case

The system has been tested initially against steps in the set-point input. A step-shaped

set-point would indicate that a different (constant) power is desired for the system consumption

from a certain point in time. Thus, the results show how the system behaves in a situation in

which a constant power consumption is required during a video decoding activity, for example to

lead to a regulated battery-discharge rate regardless of other energy- or QoE-related issues. In

further experiments, the set point will have to be dynamically adjusted to satisfy the power needs

at each moment. These needs depend mainly on two aspects: the user expectations, in terms of

battery recharge cycle and/or QoE, as well as the video decoder requirements, in terms of, for

example, decoding complexity. Recent developments in digital-video standards are proposing the

integration of metadata in the bit stream for signaling the video decoding complexity, which

could also be used to tune the control-subsystem set point.

Suppose the system is working in its mid-OPP (the default state), which implies an

average consumption estimation of 1.059 W. Suppose also that, at a certain moment, it is needed

that the system reduces its power consumption. For the sake of clarity in the analysis of the

closed-loop subsystem response, the target reduced consumption is made to coincide with the

average consumption level of an OPP. If the target consumption were chosen between two

consecutive OPP levels, the integral action of the proposed controllers (except P controller)

would generate oscillations in the steady-state system response due to the nonlinear quantized

plant input. Thus, the proposed test decreases the set point from 1.059 W to the average

consumption level of OPP8, i.e. 933 mW, at a time t=1 s. This implies an input step of -126 mW

of amplitude.

7.2.2 Results of closed-loop subsystem and their discussion

The following figures show how the control system responds to the test-case step. For

94

validation purposes, each figure represents both the simulation and the real time response for a

controller, i.e., the output of the systems depicted in Figure 4-2 and Figure 4-6, respectively.

Thus, as it can be observed in the figures, the power consumption of the real system follows the

profile predicted by simulation for all controllers, which validates the implementation of the

control subsystem. On the other hand, the comparison between figures enables the identification

of the effects of the different controllers on the system response. In this sense, perhaps the most

especial case is the one corresponding to the P controller, in Figure 7-2, because it is the only one

which does not reach the desired final average consumption of 933 mW. It is due to the inherent

steady-state error of the P controller. Moreover, the P controller response shows a one-sample

overshoot due to the negative value of the system pole (see PMP in Table 6-3). Besides, although

the settling time could be thought to be longer for a value of |PMP|=0.5 (comparable to the FRR-I

or PID cases, as it can be seen in Table 6-3), the combined effect of both the system error

(avoided in the integral cases) and the nonlinear quantized plant input, similar to a dead-zone

effect, prevents that the system response can reach its linearly expected final value, thus

shortening the transient response.

Figure 7-2 System time response for the P controller

95

The rest of controllers, which include an integral component, reach the desired final value

because they imply a null steady-state error to a step-shaped set point (ess in 4-3). Hence, the

differences between their time responses are confined to the transient part. In this sense, an

interesting case is the one corresponding to the BRR-I controller, because it gives rise to the

shortest settling time in the system response, i.e., a single sample interval, as it can be seen in

Figure 7-3. This is because the modulus of the system pole is the smallest one for this controller,

i.e., pMB=0 (see Table 6-3).

Figure 7-3 System time response for the BRR-I controller

The TR-I controller places the two poles of the system in z=0.41 (see PMT in Table 6-3)

and leads to a system response like that of Figure 7-4. In this case, the settling time of the step

response is 500 ms and it approaches monotonically to the final value along the 5 samples of this

interval, as corresponds to positive real poles.

96

Figure 7-4 System time response for the TR-I controller

In turn, the FRR-I controller places the two system poles in z=0.5 (see PMF in Table 6-3)

and gives rise to a time response like the one shown in Figure 7-5. With a pole modulus slightly

greater than that of the TR-I case, the settling time of the system response goes a bit further (700

ms). Besides, since the transfer function of the FRR-I controller has no zeros, it adds a sample

delay to the one of the plant itself and, therefore, the first change in the system response appears

two samples after the input step, i.e., at t=1.2 (see Figure 7-5). Here again, the positive real poles

avoid oscillations in the time response.

With respect to the two combined controllers, the PI places the dominant system pole in

z=0.75. Since it has the greatest modulus (see pMPI in Table 6-3), the settling time is also the

longest, i.e., almost 1 s (see Figure 7-6). Furthermore, since the other system pole, although non-

dominant, is real negative, its effect appears in the form of an oscillation at the end of the

transient response.

97

Figure 7-5 System time response for the FRR-I controller

Figure 7-6 System time response for the PI controller

98

Finally, the PID combination, with a dominant double pole of the system in z=0.56 (see

pMPID in Table 6-3), leads to a settling time similar to that of the FRR-I controller, with pMF=0.5

(see Figure 7-7). Also as in the case of the FRR-I controller, the time response shows a two-

sample input-output delay, i.e., 200 ms are needed to react to the input step. In this case, the

reason is simply the quantization process at the plant input.

Figure 7-7 System time response for the PID controller

The results show, on one hand, how the real system consumption matches the simulated

response, which validates the mathematical model proposed as well as the system

implementation. On the other hand, the system is stable in all cases and is able to follow the set

point in steady state, with clear advantages of I-based controllers over the simplest P controller.

Furthermore, the combined PI and PID controllers do not achieve better results than some of the

simpler integral controllers. In fact, the BRR-I controller leads to the fastest response, with only

one sample of settling interval. However, due to the DVFS nonlinearity, this responsiveness

might cause undesired and frequent oscillations when there is no OPP that can cancel the loop

error. Among the tested controllers, the best trade-off between settling time and responsiveness

is achieved with the TR-I controller, which leads to a smooth and quick enough response.

99

Therefore, TR-I is chosen as a valid simple controller to be applied into the control system for

next system tests. These results, along with the low overhead implied by the control system,

validate it as a means of keeping the system consumption close to the desired value (set point),

regardless of the dynamic consumption demand of the video decoder as proven in next section.

The overhead is equal to the execution time of running TR-I controller is divided by the sample

time and the value of overhead is 4.1%.

7.3 Test of Disturbance

To test the effect of power consumption variations due to variations in the video

processing load, two video sequences of different complexity are decoded in a never-ending

succession (carousel), for 60 seconds each. Table 7-2 lists the MPU workloads under different

OPPs when decoding the two sequences, i.e., Sequence_s (simpler) and Sequence_c (more

complex). The workload is expressed as the average percentage of time the MPU needs to

process a video frame for each frame interval of 40 ms.

Table 7-2 MPU Workload for different Sequences and OPPs

OPP Sequence_s Sequence_c OPP Sequence_s Sequence_c

1 76.67% 100% 15 22.59% 44.4%
2 45.2% 99.64% 16 19.61% 37.77%
3 43.18% 95.75% 17 19.46% 37.46%
4 41.2% 87.82% 18 19% 36.62%
5 37.54% 81.33% 19 18.92% 36.12%
6 36.85% 75.15% 20 18.46% 34.49%
7 33.88% 68.36% 21 18.31% 33.42%
8 31.36% 61.19% 22 18.3% 32.96%
9 30.98% 59.66% 23 17.78% 32.04%

10 29.07% 56.84% 24 17.47% 31.82%
11 28.61% 53.18% 25 17.32% 31.28%
12 25.18% 51.12% 26 17.24% 29.98%
13 23.73% 49.18% 27 11.6% 26.17%
14 22.97% 46.62%

Figure 7-8 is generated from Table 7-2 data, which intuitively clarifies with the growing

100

of OPP number, the workload of MPU is decreasing. Besides, the higher the video complexity is,

the higher the workload.

Figure 7-8 MPU Workload for different complexity sequences and OPPs

Table 7-3 lists the average power estimation, average power consumption and average

absolute error of those two sequences when running them under different OPPs, while

maintaining a reasonable QoE, which means the decoder can decode at least 25 frames per

second. The general average absolute estimation error of the Sequence_c and Sequence_s in all

OPPs are 1.99% and 1.931%, respectively, which can indicate the estimation model has high

accuracy.

Table 7-3 Average Estimation and consumption of different complexity sequences

OPP Sequence_s Sequence_c

Avg. Est (W) Avg. Con (W) Avg.error (%) Avg. Est (W) Avg. Con(W) Avg.error (%)
OPP1 0.7789 0.7850 0.5240 0.8101 0.7913 1.5196

OPP2 0.8002 0.8215 1.8297 0.8643 0.8455 1.5196

OPP3 0.8080 0.8253 1.4861 0.8776 0.8492 2.2955

OPP4 0.8099 0.8316 1.8641 0.8781 0.8581 1.6166

OPP5 0.8253 0.8442 1.6236 0.9021 0.8719 2.4410

OPP6 0.8285 0.8505 1.8899 0.9053 0.8807 1.9884

OPP7 0.8308 0.8618 2.6630 0.9128 0.8921 1.6731

0,00

20,00

40,00

60,00

80,00

100,00

120,00

1 3 5 7 9 11 13 15 17 19 21 23 25 27

W
or

k
lo

ad
 (

%
)

OPP

Sequence_s
Sequence_c

101

OPP8 0.8429 0.8732 2.6029 0.9291 0.9072 1.7701

OPP9 0.8529 0.8832 2.6029 0.9387 0.9223 1.3256

OPP10 0.8661 0.8933 2.3366 0.9560 0.9349 1.7055

OPP11 0.8861 0.9059 1.7009 0.9769 0.9500 2.1743

OPP12 0.8958 0.9223 2.2764 0.9916 0.9651 2.1419

OPP13 0.9056 0.9261 1.7610 1.0013 0.9727 2.3117

OPP14 0.9198 0.9399 1.7267 1.0058 0.9878 1.4549

OPP15 0.9433 0.9550 1.0051 1.0293 1.0042 2.0288

OPP16 0.9553 0.9916 3.1183 1.0630 1.0419 1.7055

OPP17 0.9707 1.0004 2.5513 1.0798 1.0520 2.2470

OPP18 0.9803 1.0092 2.4826 1.0902 1.0659 1.9641

OPP19 0.9923 1.0193 2.3194 1.1040 1.0759 2.2713

OPP20 1.0076 1.0281 1.7610 1.1174 1.0860 2.5380

OPP21 1.0170 1.0394 1.9242 1.1264 1.0986 2.2470

OPP22 1.0396 1.0495 0.8504 1.1454 1.1112 2.7643

OPP23 1.0516 1.0684 1.4432 1.1615 1.1301 2.5380

OPP24 1.0598 1.0722 1.0652 1.1722 1.1377 2.7886

OPP25 1.0696 1.0923 1.9500 1.1852 1.1616 1.9075

OPP26 1.0887 1.1062 1.5033 1.2040 1.1754 2.3117

OPP27 1.1275 1.1641 3.1441 1.2455 1.2372 0.6709

From Figure 7-9, it can be seen that the average power consumption increases with the

growth of OPP. On the other hand, the higher the video complexity is, the higher the power

consumption.

102

Figure 7-9 Average Estimation and consumption of different complexity sequences and OPPs

Accordingly, the disturbance block of the simulator simulates the differential average

power consumption of one sequence relative to the other in open loop, which has been measured

as 86 mW, i.e., the average difference between the two lines of Figure 7-9 is 86 mW. Therefore,

the disturbance block is a +86-mW-amplitude step-shaped input that is active while the higher-

consumption video sequence (Sequence_c) decoding is being simulated and inactive while the

lower-consumption video sequence (Sequence_s) decoding is being simulated.

Figure 7-10 shows the behavior of the closed-loop subsystem output in the presence of a

consumption disturbance with the chosen TR-I controller. Thus, for a set point of 933 mW,

Figure 7-10(a) shows how the average power consumptions, both estimated by the real system

and simulated, stay near the set point regardless of the video sequence complexity. Some spikes

(overshoots) can be seen at the instants in which the decoded video sequence switches within the

carousel, i.e., at t=60 s, t=120 s, t=180 s and t=240 s. In Figure 7-10 (b), the details of what

occurs when the decoding of Sequence_c begins can be seen, which results in a transient rise in

power consumption at t=60 s of approximately 86 mW. In Figure 7-10 (c), the details of what

occurs when Sequence_s returns to be decoded can be seen, which leads to a transient decrease

at t=120 s corresponding again to the difference in power consumption between both sequences,

i.e., approximately 86 mW. In any case, the TR-I controller returns the system consumption to

the desired value after a settling time of approximately 500 ms, which matches the results

obtained from the step response experiment described in previous section (see Figure 7-4).

0,7

0,8

0,9

1

1,1

1,2

1,3

1 3 5 7 9 11 13 15 17 19 21 23 25 27

A
ve

ra
ge

 p
ow

er
 e

st
im

at
io

n
 (

W
)

OPP

Sequence_s
Sequence_c

103

(a)

 (b)

60 80 100 120 140 160 180 200 220 240

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Time (s)

Po
w

er
 c

on
su

m
pt

io
n

(W
)

Simulation
Estimation

57 58 59 60 61 62 63 64

0.92

0.94

0.96

0.98

1

1.02

1.04

Time (s)

P
ow

er
 c

on
su

m
pt

io
n

(W
)

Simulation
Estimation

104

 (c)

Figure 7-10 Closed-loop subsystem response to disturbance

Clearly, this is achieved by changing the OPP and, correspondingly, the MPU working

frequency, while maintaining a reasonable QoE. Since the closed-loop subsystem is tasked with

maintaining the power budget for the video decoder, Figure 7-11 illustrates how when the

consumption demand of the decoding task is lower (until t=60 s), the decoder can make use of

more system resources, i.e., a higher OPP, whereas when the consumption demand of the

decoding task is higher (from t=60 s), the decoder has to manage with fewer resources, i.e., the

OPP decreases from OPP14/15 to OPP 8/9, in order to respect its power budget.

118 119 120 121 122 123 124 125

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Time (s)

P
ow

er
 c

on
su

m
pt

io
n

(W
)

Simulation
Estimation

105

Figure 7-11 Detail of the active OPP when the consumption demand of the decoding task increases

7.4 Test of PCG

The PCG has been implemented in the Linux cpufreq driver such that, depending on the

estimated SoC, a power budget is assigned to the decoder in real time and the closed-loop control

subsystem takes charge of controlling it. That means the power budget for the decoder is the set

point for the control subsystem. A number of profiles were implemented and tested for the

following comparative tests, and Figure 6-12(a) is one representative example of them. In this

profile, when the battery SoC is larger than 80%, the power budget is set as 1.006 W; when the

SoC is between 80% and 20%, the power budget remains at 0.929 W; and when the battery SoC

is less than 20%, the power budget is 0.878 W.

In order to have a reference of the performance of the proposed system implemented in

the experimental platform, a coherent comparison has been done with original Linux governors.

Performance, conservative, ondemand and powersave are the original Linux cpufreq governors.

The performance governor sets statically the highest OPP, whereas the powersave governor sets

statically the lowest OPP. The other two cpufreq governors, ondemand and conservative, are

dynamic governors that can set the OPP in real time depending on the current workload. The

difference between them is that the conservative governor gradually increases and decreases the

56 58 60 62 64 66 68
8

9

10

11

12

13

14

15

Time (s)

O
P

P

Simulation
Real

106

CPU speed rather than jumping to the maximum speed when there is any load increase on the

CPU. It is well known that, since the performance governor sets the highest OPP, it leads to the

shortest battery lifetime, whereas the powersave governor works under the lowest OPP in order

to guarantee the longest possible battery lifetime. However, since they are static, they cannot

adapt to the system status. Figure 7-12 shows a comparison of the battery lifetimes achieved by

the two dynamic cpufreq governors for the example profile of PCG proposed in Figure 6-12(a)

when decoding the same video sequence for a battery capacity of 15 mAh. In that figure, it can

be seen that conservative and ondemand governors can make the battery last up to 257.1 s and

262.6 s, respectively, whereas the example profile of PCG leads to a battery lifetime of 289.7 s

(12.6% and 10.3% improvement, respectively) in the real system, with a similar simulation

result.

Figure 7-12 Battery lifetime under dynamic governors when decoding the simpler sequence

On the other hand, when there are variations in the video-processing load, forced in the

tests by decoding two video sequences of different complexity in carousel for 60 s each, as

explained above, the corresponding battery lifetimes are those indicated in Figure 7-13. In this

case, with conservative and ondemand governors the battery lifetime decreases to 250.7 s and

256.9 s, respectively, because there are some intervals during which the processing load

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Time (s)

B
at

te
ry

 S
oC

 (
%

)

Conservative governor
Ondemand governor
PCG

107

increases with respect to the experiment of Figure 7-12. However, the proposed example profile

of PCG keeps a battery lifetime of 289.7 s (15.5% and 12.8% improvement, respectively) in the

real system, with a similar simulation result. This is due to the robustness of the I-based closed-

loop control subsystem to the disturbances.

Figure 7-13 Battery lifetime under dynamic governors when decoding sequences of different complexity

7.5 Summary

In this chapter, the two proposed estimators are validated and evaluated, their AAPE have

been listed in a table which indicates that the accuracy of OS-level estimator is slightly higher

than PAPI-based estimator. Then, the effects on the system behaviour of those classic linear

controllers that were designed in Chapter 4 have been checked. The results show the real system

consumption matches the simulated response. Besides, the system is stable in all proposed cases

and is able to follow the set point in steady state. However, the DVFS nonlinearity might cause

undesired and frequent oscillations when there is no OPP that can cancel the loop error.

Therefore, TR-I controller, which leads to a smooth and quick enough response, is the best trade-

off between settling time and responsiveness, with enough simplicity as to not imply a

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Time (s)

B
at

te
ry

 S
oC

 (
%

)

Conservative governor
Ondemand governor
PCG

108

significant overhead on the system implementation. Therefore, TR-I controller is selected to be

applied in the control system.

After that, a disturbance block is added to the simulator to test the capability of the control

system to react to disturbances in its controlled output. This is because changes in the video

sequence complexity imply changes in the decoder power consumption, which can be seen as

disturbances over the control-system plant. For testing purposes, the disturbance has been

considered from two levels of workload: the decoding of a default simpler (low power

consumption) video sequence with a periodic swap to the decoding of a more complex (high

power consumption) sequence. The corresponding disturbance simulation block switches

periodically between two constant levels. One of them is 0, as the default no-disturbance status

for the initial reference sequence, and the other one is the change (increase) in the open-loop

power consumption estimation while decoding the more complex sequence in the real system.

The simulation and implementation results match well.

Finally, PCG was tested with an example profile and compared with other original Linux

governors. PCG can dynamically extend the battery lifetime depending on the user requirements

and maintain it regardless of the complexity of the video sequences, whereas the Linux dynamic

governors vary the battery lifetime depending on the workload. Using the proposed example of

power budget profile, PCG can extend the battery lifetime further than with the conservative and

ondemand Linux governors, up to a 15.5% and 12.8% of improvement, respectively, when there

are variations in the video-processing load.

109

Chapter 8 Conclusion and future work

The microelectronics industry has been boosting the capabilities of multimedia mobile

devices, but the battery, which is the only power source of most mobile devices, is experiencing

relatively slow development. Therefore, determining how to optimize the energy consumption of

mobile devices under a predefined performance requirement has become a critical issue. The

video decoder, as one of the main energy-consuming multimedia applications, is the target

application of this work/thesis. This chapter is divided into three sections, the first one

summarizes the work of this dissertation and states its contributions; the second section analyses

the limitations and depicts the future work that can be explored in a next step. The final section

highlights again the contribution of this work to the research of applying control algorithms to

energy optimization in multimedia hand-held devices.

8.1 Summary

The user experience of modern mobile systems is greatly affected by the battery lifetime,

which should be addressed by energy optimization to provide a strong guarantee on the battery

lifetime. In addition, as a popular multimedia task, video decoding is one of the main energy-

consuming applications. Therefore, this thesis proposes a power-control system that can

effectively save energy and extend the battery lifetime while maintaining a reasonable QoE. This

power-control system consists of a closed-loop subsystem and a PCG. In the forward part of the

closed loop, the common DVFS mechanism is selected to act on the power consumption,

whereas in the feedback part, the use of a PMC-based power estimation method is proposed

instead of using specific power/energy sensors. This design makes our proposed solution highly

applicable because both DVFS and PMCs are widely available in common consumer-electronic

mobile devices. Two approaches to estimate the power consumption have been considered:

PAPI-based estimations (1st approach) and OS-level estimations (2nd approach). PAPI is a widely

used third-party tool which can easily access PMCs from the application level. Besides, the

interface of PAPI is the same for all platforms. Therefore, in this work PAPI is used to monitor

PMCs for preliminary tests, because it is a more generally and easily applicable tool than the

more specific OS-based solution. Comparing the two approaches, however, the OS-level

estimator has some other advantages: it can run without interfering with the user-level decoding

110

application; related to this, whereas PAPI-based estimations have to be calculated on a video-

frame time basis, the sampling frequency of the OS-level estimator can be freely fixed;

furthermore, the OS-level infrastructure avoids the need of user signals to the OS for DVFS

commands. Besides, the OS-level average estimation error is only 0.15%, even slightly lower than

that of the PAPI-based estimator. For these reasons, OS-level estimator is used into the control

system as the feedback unit of the real-time closed-loop control subsystem, which is implemented

to regulate the power consumption of OS-based multimedia mobile devices. Besides, comparing

with the work of Ren [74], whose energy estimation model has an AAPE about 5% and can only

be applied with one fixed OPP, the OS-based estimator proposed in this dissertation has less

AAPE, about 2.46%, while it can be applied to all OPPs.

The proposed simplified linear system model is general and simple enough as to be

applicable to most common multimedia mobile platforms. To validate the proposal, a

commercial low-cost open-source software application platform has been used to implement the

video decoder and power-control system for the set of designed controllers. As a first approach,

classic linear controllers have been tested and the result obtained from them has been considered

good enough as to avoid the need to explore other more complex ones. Also a simulator

including the OPP-based nonlinear DVFS interface has been used to validate the control system.

The results show, on one hand, how the real system estimation matches the simulated

response. On the other hand, the system is stable for all the proposed controllers and is able to

follow the set point in steady state, with clear advantages of I-based controllers over the simplest

P controller. Furthermore, the combined PI and PID controllers do not achieve better results than

some of the simpler integral controllers. In fact, the BRR-I controller leads to the fastest

response, with only one sample of settling interval. However, due to the nonlinearity of DVFS,

this responsiveness might cause undesired and frequent oscillations when there is no OPP that

can cancel the loop error. Therefore, the best trade-off between settling time and responsiveness

is achieved with the TR-I controller, which leads to a smooth and quick enough response.

Additionally, a small-capacity battery module is simulated to test the battery lifetime.

Disturbances in the decoder power demand have been both generated in the real system and

simulated as a disturbance generator block in the simulator. Both real and simulation results

indicate that the closed-loop subsystem is able to react to disturbances and regulate video

decoding power consumption in steady state with quite short settling times, regardless of the

111

complexity of the video sequences. These results, along with the low overhead implied by the

control system, validate it as a means of keeping the system consumption close to the desired

value (set point), regardless of the dynamic consumption demand of the video decoder.

The original Linux dynamic cpufreq governors change the processor frequency

depending on the current CPU workload, which tends to reduce overall power consumption,

regardless of the battery SoC and user requirements. PCG can dynamically extend the battery

lifetime depending on the user requirements and maintain it regardless of the complexity of the

video sequences, whereas the Linux dynamic governors vary the battery lifetime depending only

on that decoding complexity. Using a proposed example of power budget profile, PCG can

extend the battery lifetime 15.5% more than the conservative Linux governor and 12.8% more

than the ondemand Linux governor when the decoding workload is variable.

Therefore, with respect to other energy-saving algorithms, the algorithm proposed in this

dissertation has a number of advantages. Firstly, it relies on a PMC-based power-consumption

estimator that can accurately feed the current power consumption back in real time, which is

applicable even to many consumer devices that lack specific power measurement sensors.

Secondly, it focuses on one of the main high power-consuming multimedia applications, i.e., the

video decoder, and is thus expected to lead to substantial energy savings for multimedia

applications. Thirdly, it supports personalized and multiple battery discharge profiles while

maintaining a reasonable QoE. Finally, it can guarantee the battery lifetime to avoid unexpected

power outages.

8.2 Limitations and future work

Further developments can be addressed, such as the real-time adaptation of the set point

to other system variables like QoE, performance parameters or video-decoding complexity. This

will pave the way to the comparison of the proposed approach with other kinds of energy saving

algorithms. Besides, other types of control techniques (predictive, adaptive, robust, fuzzy, etc.),

not necessarily linear, can be applied to evaluate if the increase in complexity compensates the

possible improvement of results. In addition, a cooperation with other advanced control

methodologies could be set, for example, an adaptive predictive expert control methodology

using adaptive predictive control (APC) to predict the process evolution and preempt potential

deviations from the desired set-point could be applied [78]. Moreover, the OS-level estimator

can be more universally used, which can contribute to estimate the power consumption of more

112

types of applications, not only video decoders. Besides, the governor can include more

functionality such as thermal management, in such a way that the set-point could also consider

the temperature of the hardware or certain component. Other further work can lead to extend the

proposal to more complex and realistic scenarios in which, for example, both the CPU and GPU

offer more than one processor and the software is partitioned among different processing cores.

Then, the closed-loop control of power consumption of several CPU cores or coprocessors in a

platform will be worth researching.

8.3 Final words

This dissertation presents control algorithms for power regulation under the limited battery

capacity of multimedia hand-held devices while executing a video decoder application and

maintaining a reasonable quality of user experience. The proposed control system, which includes

a real-time closed-loop control subsystem and a power-control governor (PCG), has been

implemented in the operating system of a low-cost development board to validate the control

algorithms. Instead of using any specific power sensor, a PMC-based estimator is used as the

feedback signal in the closed-loop subsystem. After a theoretical system model has been obtained

and verified, classic controllers have been implemented in the development board for validation

purposes. The control system is able to regulate the system power consumption and the battery

discharge rate in the presence of fluctuations in the decoder power-consumption demand. The

proposed PCG has better performance in extending the battery lifetime than the conservative and

ondemand governors of Linux in the presence of disturbances.

8.4 Publications

International conference papers

[1] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “Modeling, analysis and design of a closed-

loop power regulation system for multimedia embedded devices,” in Proc. International

Conference on Pervasive and Embedded Computing and Communication Systems, Angers,

France, pp. 363-372, Feb. 2015.

113

In this paper, the plant modeling as well as the theoretical analysis and design and simulation of a

closed-loop control system for the power consumption of a hand-held multimedia embedded

device are presented. This is a first validation step for a target system in which the power

consumption will be regulated based on estimation feedback. Prior to the availability of power

estimation data, actual power consumption measurements are used to obtain a mathematical

model of the controlled plant. Then, classic control-theory methods are applied to get a closed-

loop integral controller able to regulate the power consumption of a video decoder running in an

embedded development platform.

[2] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “On the estimation-based closed-loop power

consumption control in multimedia mobile devices,” in Proc. International Conference on

Advances in Multimedia, Barcelona, Spain, pp. 61-66, Apr. 2015.

In this paper, a closed-loop approach to control the power consumption of multimedia mobile

devices is presented, such that the feedback signal is an estimation based on monitored system

events.

[3] Q. Tang, A. M. Groba, E. Blázquez, and E. Juárez, “OS-level power consumption estimator

for multimedia mobile devices,” in Proc. IEEE International Symposium on Consumer

Electronics, Madrid, Spain, pp. 1-2, June 2015.

In this paper, an OS-level power estimator based on monitored system events for multimedia

mobile devices is presented. The OS level power estimator periodically obtains significant-events

count values and calculates power-consumption estimations through mathematical models.

[4] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “Real-time power consumption control

system for multimedia mobile devices,” in Proc. IEEE International Conference on

Consumer Electronics, Las Vegas, USA, pp. 385-386, Jan. 2016.

114

This paper presents a real-time closed-loop system to regulate the power consumption of

multimedia mobile devices. The system feedback is an OS-level power estimator based on

monitored events of the target system, i.e., an embedded platform executing a video decoder.

JCR papers

[1] Q. Tang, A. M. Groba, E. Juárez, C. Sanz and F. Pescador, “Real-time power-consumption

control system for multimedia mobile devices,” IEEE Trans. Consum. Electron, vol. 62, no. 4,

pp. 362-370, Nov. 2016.

This paper presents the proposal, implementation and test of a real-time closed-loop control

system applicable to the power-consumption regulation of multimedia mobile devices.

[2] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “Closed-loop Power-control Governor for

Multimedia Mobile Devices,” IEEE Trans. Consum. Electron, submitted.

This paper presents control algorithms for power regulation under the limited battery capacities

of multimedia hand-held devices while executing a decoder application and maintaining a

reasonable quality of user experience. A control system, which includes a real-time closed-loop

control subsystem and a power-control governor (PCG), has been implemented in the operating

system of a low-cost development board and its results in regulating the battery lifetime are

shown.

115

References

[1] U. Reiter, “Perceived quality in consumer electronics – from quality of service to quality

of experience,” 13th IEEE International Symposium on Consumer Electronics, Kyoto, Japan,

May. 2009.

[2] S. Kim, H. Kim, J. Hwang, J. Lee, and E. Seo, “An event-driven power management

scheme for mobile consumer electronics,” IEEE Trans. Consumer Electron., vol. 59, no.1,

pp. 259-266, Feb. 2013.

[3] Ericsson Mobility Report. https://www.ericsson.com/res/docs/2016/ericsson-mobility-

report-2016.pdf , (Last access: May 2017).

[4] Global video index Q4 2015. http://go.ooyala.com/rs/447-EQK-225/images/Ooyala-

Global-Video-Index-Q4-2015.pdf, (Last access: May 2017).

[5] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency

video coding (HEVC) standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

pp. 1649-1668, Dec. 2012.

[6] ITU-T Rec. H.264 & ISO/IEC 14496-10, Advanced video coding for generic audiovisual

services, 2012.

[7] T. Coughlin, “A Moore’s law for mobile energy: improving upon conventional batteries

and energy sources for mobile devices,” IEEE Consum. Electron. Mag., vol. 4, no. 1, pp. 74-

82, 2015

[8] J. Wei, R. Ren, E. Juarez and F. Pescador, “A Linux Implementation of the Energy-based

Fair Queuing Scheduling Algorithm for Battery-limited Mobile Systems,” IEEE Transactions

on Consumer Electronics, Volume. 60, Issue. 2, pp. 267-275, May. 2014.

[9] D. Le and H. Wang, “An effective feedback-driven approach for energy saving in battery

powered systems,” Procs. of IEEE Int. Workshop on Quality of Service, 2010, pp. 1-9.

[10] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power control for chip

multiprocessors with online model estimation,” Procs. of Int. Symposium on Computer

Architecture, 2009, pp. 314-324.

[11] S. P. Kamat, “Energy management architecture for multimedia applications in battery

powered devices,” IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 763-767, May. 2009.

116

[12] D. Le and H. Wang, “An effective feedback-driven approach for energy saving in battery

powered system,” in Proc. International Workshop on Quality of Service, Beijing, China, pp.

1-9, June 2010.

[13] V. Petrucci, E. V. Carrera, O. Loques, J. C. B. Leite, and D. Mossé, “Optimized

management of power and performance for virtualized heterogeneous server clusters,” in

Proc. International Symposium on Cluster, Cloud and Grid Computing, Newport Beach, CA,

USA, pp. 23-32, May 2011.

[14] R. Ren, E. Juárez, C. Sanz, M. Raulet, and F. Pescador, “Energy-aware decoder

management: a case study on RVC-CAL specification based on just-in-time adaptive decoder

engine,” IEEE Trans. Consum. Electron., vol. 60, no. 3, pp. 499-507, Aug. 2014.

[15] E. Juárez, F. Pescador, P. Lobo, A. Groba, and C. Sanz, “Distortion-energy analysis of an

OMAP-based H.264/SVC decoder,” in Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering, Vol. 77: Mobile Multimedia

Communications, Springer Berlin Heidelberg, 2012, pp 544-559.

[16] G. Cao, A. Ravindran, S. Kamalasadan, B. Joshi, and A. Mukherjee, “A cross-stack

predictive control framework for multimedia applications,” in Proc. International Symposium

on Multimedia, Anaheim, CA, USA, pp. 403-404, Dec. 2013.

[17] E. S. Jung, J. Bang, Y. T. Lee and W. Ryu, “Power saving with passive standby mode

using bitmap-based activity logs for energy-efficient set-top box,” IEEE Trans. Consum.

Electron, vol. 62, no. 1, pp. 62-68, Feb. 2016.

[18] J. Lorch and A. Smith. “Software Strategies for Portable Computer Energy

Management,” IEEE Personal Commun., vol. 5, pp. 60–73, June 1998.

[19] L. Benini and G. De Micheli. “Dynamic Power Management: Design Techniques and

CAD Tools,” Norwell, MA: Kluwer, 1998.

[20] L. Benini, A. Bogliolo, S. Cavallucci, and B. Riccó. “Monitoring System Activity for

OS-directed Dynamic Power Management,” In Proceedings of the International Symposium

on Low Power Electronics and Design, pp. 185–190, Aug. 1998.

[21] T. Pering, T. D. Burd, and R. W. Brodersen. “The Simulation and Evaluation of Dynamic

Scaling Algorithms,” In Proceedings of the International Symposium on Low Power

Electronics and Design, August 1998.

117

[22] W. Yuan and K. Nahrstedt. “Energy-efficient Soft Real-time CPU Scheduling for Mobile

Multimedia Systems,” In Proc. 19th ACM Symp. Operating Systems Principles (SOSP 03),

ACM Press, pp. 149–163, 2003.

[23] J. Lorch and A. Smith. “Improving Dynamic Voltage Scaling Algorithms with PACE,” In

Proc. of ACM SIGMETRICS Conference, June 2001.

[24] P. Pillai and K. G. Shin. “Real-time Dynamic Voltage Scaling for Low-power Embedded

Operating Systems,” In Proc. of 18th Symposium on Operating Systems Principles, Oct.

2001.

[25] P. Mercati, V. Hanumaiah, J. Kulkarni, S. Bloch, and T. Rosing. “BLAST: Battery

Lifetime-constrained Adaptation with Selected Target in Mobile Devices,” In Proc. of 12th

EAI International Conference on Mobile and Ubiquitous Systems, July 2015.

[26] Y. S. Hwang, S. K. Ku and K. S. Chung, “A predictive dynamic power management

technique for embedded mobile devices,” IEEE Trans. Consum. Electron., vol. 56, no. 2, pp.

713-719, May. 2011.

[27] X. Wang, K. Ma, and Y. Wang, “Achieving fair or differentiated cache sharing in power-

constrained chip multiprocessors,” in Proc. International Conference on Parallel Processing,

San Diego, CA, USA, pp. 1-10, Sept. 2010.

[28] C. Lively, X. Wu, V. Taylor, S. Moore, H. C. , et al., “Power-aware predictive models of

hybrid (MPI/OpenMP) scientific applications on multicore system,” Comput. Sci.-Res. &

Dev., vol. 27, no. 4, pp. 245-253, Nov. 2012.

[29] Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen, P. Savolainen, et al., “A system-level

model for runtime power estimation on mobile devices,” in Proc. International Conference on

Green Computing and Communications, Hangzhou, China, pp. 27-34, Dec. 2010.

[30] V.Weaver,“perf_eventprogrammingguide”,

http://web.eece.maine.edu/~vweaver/projects/perf_events/programming.html, (Last access:

May 2017).

[31] Perfmon2, http://perfmon2.sourceforge.net/docs_v4.html, (Last access: May 2017).

[32] R. Neugebauer and D. McAuley, “Energy is just another resource: energy accounting and

energy pricing in the Nemesis OS,” In Proceedings of the 8th IEEE Workshop on Hot Topics

in Operating Systems, May. 2001.

118

[33] J Wei, E. Juarez, M. J. Garrido and F. Pescador. “ Maximzing the user experience with

energy-based fair sharing in battery limited mobile systems”, IEEE Trans. Consum. Electro.,

vol. 59. no.3, pp. 690-698, 2013.

[34] J. Flinn, M. Satyanarayanan, “Managing battery lifetime with energy-aware adaptation,”

ACM Transactions on Computer Systems (TOCS), v.22 n.2, p.137-179, May.2004.

[35] C. S. Ellis. “The Case for Higher-Level Power Management,” In Proceedings of the 7th

Workshop on Hot Topics in Operating Systems, Rio Rico, AZ, March.1999.

[36] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn et al., “Agile

application-aware adaptation for mobility,”In Proceedings of the 16th ACM Symposium on

Operating Systems and Principles, pages 276–287, Saint-Malo, France, October.1997.

[37] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E.

Hyden. “The Design and Implementation of an Operating System to Support Distributed

Multimedia Applications,” IEEE Journal on Selected Areas In Communications, 14(7): 1280-

1297, Sept.1996.

[38] F. Xia, Y. C. Tian, Y. Sun. and, J. Dong. “Control-theoretic dynamic voltage scaling for

embedded controllers,” IET Computers & Digital Techniques, vol. 2, no. 5, pp. 377-385.

[39] A. S. Ahmadian, M. Hosseingholi, and A. Ejlali, “A control-theoretic energy

management for fault-tolerant hard real-time systems,” IEEE International Conference on

Computer Design, Nov.2010.

[40] C. Poellabauer, L. Singleton, and K. Schwan, “ Feedback-based dynamic voltage and

frequency scaling for memory-bound real-time applications,” 11th IEEE Real Time and

Embedded Technology and Applications Symposium , March.2005.

[41] Q. Wu, P. Juang, M. Martonosi, L. S. Peh, and D. W. Clark, “ Formal control techniques

for power-performance management,” IEEE Micro, vol. 25, no. 5, pp. 52-62, 2005.

[42] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini, “A feedback-based

approach to DVFS in data-flow applications,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 28, no. 11, pp. 1691-1704, 2009.

[43] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic voltage scaling in

multitier web servers with end-to-end delay control,” IEEE Transactions on Computers,

vol.56, no. 4, pp. 444-458, 2007.

119

[44] Z. Lu, J. Lach, M. Stan, and K. Skadron, “Design and implementation of an energy

efficient multimedia playback system,” Asilomar Conference on Signals, Systems and

Computers, Nov.2006.

[45] Y. Zhu, and F. Mueller, “Exploiting synchronous and asynchronous DVS for feedback

EDF scheduling on an embedded platform,” ACM Transactions on Embedded Computing

Systems, vol. 7, no. 1, pp. 3:1-3:26, 2007.

[46] S. Y. Bang, K. Bang, S. Yoon, and E. Y. Chung, “Run-time adaptive workload estimation

for dynamic voltage scaling,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.

28, no. 9, pp. 1334-1347, Sept. 2009.

[47] S. Ramakrishnan ; B. T. Krishna, “Fuzzy logic based closed loop adaptive power control

for minimization of near-far interference in CDMA systems,” in Proc. Computer

Communication and Systems, Chennai, India, pp. 20-21, Feb. 2014.

[48] X. Wang, X. Fu, X. Liu, and Z. Gu, “PAUC: power-aware utilization control in

distributed real-time systems,” IEEE Trans. Ind. Informat., vol. 6, no. 3, pp. 302-315, Aug.

2010.

[49] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, “CPM in CMPs: coordinated

power management in chip-multiprocessors,” in Proc. International Conference for High

Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, pp. 1-

12, Nov. 2010.

[50] S. Garg, D. Marculescu, and R. Marculescu, “Custom feedback control: enabling truly

scalable on-chip power management for MPSoCs,” in Proc. International Symposium on

Low-Power Electronics and Design, Austin, TX, USA, pp. 425-430, Aug. 2010.

[51] https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt, (Last access: May

2017).

[52] S. Kim, H. Kim, J. Hwang, J. Lee and E. Seo, “An event-driven power management

schem for mobile consumer electronics,” IEEE Trans. Consum. Electron., vol. 59, no. 4,

pp. 259-266, Feb. 2013

[53] W. K. Lee, S. W. Lee and W. O. S, “Hybrid model for dynamic power management,”

IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 656-664, 2009.

120

[54] H. H. Choi, J. R. Lee and D. H. Cho, “On the use of a power-saving mode for mobile

VoIP devices and its performance evaluation,” IEEE Trans. Consum. Electron., vol. 55, no.

3, pp. 1537-1545, Aug. 2009.

[55] S. H. Lim, S. W. Lee, B. H. Lee and S. Lee, “Power-aware optimal checkpoint intervals

for mobile consumer devices,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1637-

1645, Nov. 2011.

[56] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen and O. Spatscheck, “A Close

Examination of Performance and Power Characteristics of 4G LTE Networks,” in Proc.

International Conference on mobile systems, applications and services, New York, USA, pp.

225-238, June 2012.

[57] S. Fowler, R. S. Bhamber and A. Mellouk, “Analysis of Adjustable and Fixed DRX

Mechanism for Power Saving in LTE/LTE-Advanced,” in Proc. IEEE International

Conference on Communications, pp. 1964-1969, June 2012.

[58] C. Herglotz , D. Springer , A. Eichenseer , and A. Kaup, “Modeling the energy

consumption of HEVC intra decoding,” in Proc. 20th International Conference on Systems,

Signals and Image Processing, Oct. 2013.

[59] E. Monteiro, M. Grellert, S. Bampi, B. Zatt, “Energy-aware cache assessment of HEVC

decoding,” in Proc. IEEE International Symposium on Circuits and Systems, May 2016.

[60] X. Li , Z. Ma and F. C. A. Fernandes, “Modeling power consumption for video decoding

on mobile platform and its application to power-rate constrained streaming”, Visual

Communications and Image Processing, pp.1-6, Nov. 2012.

[61] Y. Benmoussa, J. Boukhobza, E. Senn, and D. Benazzouz, “Energy Consumption

Modeling of H.264/AVC Video Decoding for GPP and DSP,” Euromicro Conf.on Digital

System Design, pp. 890-897, Sept. 2013.

[62] T. Mallikarachchi , H. K. Arachchi , D. S. Talagala and A. Fernando, “CTU level decoder

energy consumption modelling for decoder energy-aware HEVC encoding” in Proc. IEEE

International Conference on CE, Jan. 2016.

[63] Ogata, K., 2010. Modern control engineering, Prentice Hall, 5th edition.

[64] Phillips, C. L. and Parr, J. M., 2010. Feedback Control Systems, Prentice Hall, 5th

edition.

121

[65] Franklin, G. F. and Powell, J. D., 1997. Digital Control of Dynamic Systems. Addison

Wesley, 3rd edition.

[66] BeagleBoard System Reference Manual Rev. C4, December 2009.

[67] USER’S GUIDE, Agilent Technologies, Model 66319B/D, 66321B/D, Mobile

Communications DC Source. http://cp.literature.agilent.com/litweb/pdf/5964-8184.pdf,

(Last access: May 2017).

[68] ISO/IEC 14496-2 (MPEG-4), “Information Technology-Coding of Audio-Visual

Objects-Part 2: Visual, 2002

[69] MPEG-4 Visual, http://mpeg.chiariglione.org/standards/mpeg-4/video

[70] J. W. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet,

“Synthesizing Hardware from Dataflow Programs: An MPEG-4 Simple Profile Decoder Case

Study”, Journal of Signal Processing Systems, vol.63, no.2, pp. 241–249, May 2011.

[71] Simple DirectMedia Layer, http://wiki.libsdl.org/FrontPage, (Last access: May 2017).

[72] Cross Platform Make, http://www.cmake.org/overview/, (Last access: May 2017).

[73] Orcc,http://orcc.sourceforge.net/getting-started/install-orcc/, (Last access: May 2017).

[74] R. Ren, “Energy/Power Consumption Model for an Embedded Processor Board”, Máster

en Ingeniería de Sistemas y Servicios para la Sociedad de la Información, Trabajo Fin de

Máster, ETSIST-UPM, 2012.

[75] H. Jin, R. Hood, J. Chang, J. Djomehri, D. Jespersen, K. Taylor, R. Biswas, and P.

Mehrotra, “Characterizing application performance sensitivity to resource contention in

multicore architectures,” Technical Report NAS-09-002, NASA Ames Research Center,

2009.

[76] RVC-CAL-Sequences. Available: http://sourceforge.net/projects/orcc/files/Sequences,

(Last access: May 2017).

[77] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “On the estimation-based closed-loop

power consumption control in multimedia mobile devices,” in Proc. International Conference

on Advances in Multimedia, Barcelona, Spain, pp. 61-66, Apr. 2015.

[78] J.M. Martín Sánchez, J. Rodellar, “ADEX Optimized Adaptive Controllers and Systems,”

Springer International Publishing, ISBN 978319097930, 2015.

[79] V. Pallipadi, A. Starikovskiy, “The ondemand governor: past, present, and future”, Intel

open source technology center, Linux Symposium., vol. 2, pp. 215-230, July, 2006.

122

[80] L. Brown, A. Keshavamurthy, D. S. Li, R. Moore, V. Pallipadi, L. Yu, “ACPI in Linux

Architecture, advances, and challenges”, Intel open source technology center, Linux

Symposium., vol. 1, pp. 51-67, July, 2005.

