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Resumen 

 

La industria de la microelectrónica ha impulsado las capacidades de los dispositivos 

móviles multimedia, pero la batería, que es la única fuente de energía de este tipo de 

dispositivos, está experimentando un desarrollo relativamente lento. Por lo tanto, la 

determinación de cómo optimizar el consumo de energía de los dispositivos móviles bajo un 

requisito de rendimiento predefinido se ha convertido en un problema crítico. Además, según un 

informe reciente, el consumo de vídeo para tablets y teléfonos inteligentes creció un 35% en el 

año 2014 y ha crecido un 170% desde 2013. En realidad, la reproducción de vídeo móvil ha 

experimentado un crecimiento significativo del 2084% de 2011 a 2015. Como ejemplos de las 

tareas que mayor consumo de energía implican, la codificación, decodificación y presentación de 

secuencias de vídeo se encuentran entre los principales temas de investigación sobre la gestión 

de la energía en los sistemas multimedia. Además, cada nuevo estándar de vídeo también tiende 

a aumentar la necesidad de energía de las tareas de vídeo con respecto a las normas anteriores. 

Esta tesis presenta una solución basada en algoritmos de control para la regulación del 

consumo de potencia bajo las limitaciones de capacidad de la batería de los dispositivos 

portátiles multimedia mientras se ejecuta una aplicación de decodificación de vídeo y se 

mantiene una calidad razonable de experiencia de usuario. Se propone un sistema general de 

control que incluye un subsistema de control de bucle cerrado en tiempo real y un gestor de 

control de potencia, y se ha implementado en el sistema operativo de una placa de desarrollo de 

bajo coste. En lugar de utilizar un sensor de consumo específico, se propone un estimador de 

potencia basado en eventos del sistema como señal de realimentación en el subsistema de bucle 

cerrado. El estimador de potencia obtiene periódicamente valores de cuenta de eventos 

significativos y calcula las estimaciones de consumo de potencia a través de modelos 

matemáticos. Este estimador de potencia se ha implementado en un kernel de Linux y se ha 

evaluado mientras se ejecuta una aplicación de decodificación de vídeo en una plataforma de 

desarrollo de sistemas empotrados. Posteriormente, antes de la implementación del sistema de 

control en tiempo real, se utilizan datos de estimación fuera de línea para obtener un modelo de 

sistema que permite la aplicación de métodos clásicos de teoría de control para analizar y diseñar 
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diferentes controladores. Los resultados de la simulación muestran que los controladores 

integrales mantienen la estabilidad del sistema y logran un error medio en régimen permanente 

nulo con tiempos de establecimiento cortos, incluso en presencia de ruido de estimación o 

perturbaciones. A partir de estos resultados de simulación, los controladores han sido 

implementados en el sistema de desarrollo y los resultados reales coinciden con los resultados de 

simulación. El sistema de control es capaz de regular la potencia consumida y la tasa de descarga 

de la batería en presencia de fluctuaciones en la demanda de consumo de energía del 

descodificador, lo que presenta buenos resultados para garantizar una determinada duración de la 

batería1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 La expresión "duración de la batería" se refiere en esta tesis al intervalo de tiempo durante el cual el dispositivo puede funcionar, partiendo 

de una batería completamente cargada hasta el agotamiento de la misma. 
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Abstract 

The micro-electronics industry has been boosting the capabilities of multimedia mobile 

devices, but the battery, which is the only power source of most mobile devices, is experiencing 

relatively slow development. Therefore, determining how to optimize the energy consumption of 

mobile devices under a predefined performance requirement has become a critical issue. Besides, 

according to a recent report, tablet and smartphone video consumption grew 35% in the year 

2014 and has grown 170% since 2013. Actually, mobile video playback has experienced a 

significant growth of 2084% from 2011 to 2015. As some of the most energy-consuming tasks, 

encoding, decoding and presentation of video sequences are among the main subjects of research 

on power management in multimedia systems. In addition, every new video standard also tends 

to increase the energy requirement of video tasks with respect to the previous standards.  

This dissertation presents a solution based on control algorithms for power regulation 

under the limited battery capacities of multimedia hand-held devices while executing a decoder 

application and maintaining a reasonable quality of user experience. A control system, which 

includes a real-time closed-loop control subsystem and a power-control governor, is proposed 

and it has been implemented in the operating system of a low-cost development board. Instead of 

using any specific power sensor, a power estimator based on monitored system events of 

multimedia mobile devices is proposed as the feedback signal in the closed-loop subsystem. The 

power estimator periodically obtains significant-events count values and calculates power-

consumption estimations through mathematical models. This power estimator has been 

implemented in a Linux kernel and evaluated while running a video decoder application on an 

embedded development platform. Afterwards, prior to the implementation of the real-time 

control system, off-line estimation data are used to get a system model, which enables the 

application of classic control-theory methods to analyze and design different controllers. The 

simulation results show that integral controllers keep the system stability and achieve null 

average steady-state error with short settling times, even in the presence of estimation noise or 

disturbance. From these promising simulation results, the controllers have been implemented in 

the development board and the real results match simulation results. The control system is able to 

regulate the power consumption and the battery discharge rate in the presence of fluctuations in 
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the decoder power-consumption demand, which presents good results to guarantee a certain 

battery lifetime2. 

                                                 
2 The term “battery lifetime” refers in this manuscript to the length of time for which the device can run, starting from a fully charged battery. 



v 
 

 

Acknowledgement  

 

First, I would like to thank my supervisors, Dr. Ángel M. Groba and Eduardo Juárez, for 

their valuable feedback and support throughout this work. Their support, diligence, and 

commitment to high-quality research have contributed significantly to this thesis. I am also 

grateful to all the professors and lab mates in GDEM-CITSEM: César Sanz, Matías J. Garrido, 

Fernando Pescador and Pedro J. Lobo, for their efforts in providing and creating such a friendly 

and helpful working environment in the lab. Thanks also to my colleagues:  Rong Ren, Jianguo 

Wei, Henry O. Cruz and Miguel Chavarrías. I have learned a lot from each of them; our 

friendships have made my time at GDEM an enjoyable and unique experience. Thanks to Paula 

and Enrique, I have benefited a lot through the cooperation and the exchange of ideas with them.  

 

Finally, I would like to acknowledge and appreciate the financial support from China 

Scholarship Council (CSC) and GDEM. Besides, I would like to express my love and 

appreciation to my parents. Thanks for them to bring me up and support good quality of 

education for me. During these years, I met difficulties and setbacks that taught me to grow and 

hone my character. I benefit from the doctoral stage of study, and no matter where I work in the 

future, I will keep a serious and focused researcher, and strive to do everything for the 

community to contribute to their own strength. I would like to thank all my friends: Rong Ren, 

Jianguo Wei, Xiaomin Zhao, Meijuan Zhang, Henry, Jesús, Ana and Carmen, for their love and 

concern.  

 

 

 

 

 

 

 

 



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Content 
Resumen .................................................................................................................................... i 

Abstract ................................................................................................................................... iii 

Acknowledgement ................................................................................................................... v 

List of Figures ......................................................................................................................... xi 

List of Tables ......................................................................................................................... xv 

List of Acronyms ................................................................................................................. xvii 

Chapter 1 Introduction ............................................................................................................. 1 

1.1 Background and challenge ............................................................................................. 1 

1.2 Motivation ...................................................................................................................... 3 

1.3 Objectives ....................................................................................................................... 5 

1.4 Contribution ................................................................................................................... 6 

1.5 Methodology and organization ....................................................................................... 8 

Chapter 2 Related work ......................................................................................................... 11 

2.1 OS- and Application-level Power Management ........................................................... 11 

2.1.1 Introduction ........................................................................................................... 11 

2.1.2 Power-aware schemes ............................................................................................ 12 

2.1.3 Battery lifetime-aware management ...................................................................... 13 

2.2 Control algorithms for energy optimization ................................................................. 13 

2.3 Decoder-specific schemes ............................................................................................ 14 

2.4 Comparison and discussion .......................................................................................... 15 

2.5 Summary ...................................................................................................................... 17 

Chapter 3 Power estimator ..................................................................................................... 19 

3.1 PMC events selection ................................................................................................... 19 

3.1.1 PMC introduction .................................................................................................. 19 

3.1.2 PMC event redundancy ......................................................................................... 20 

3.1.3 PMCs filter Method ............................................................................................... 20 

3.2 Accessing PMCs .......................................................................................................... 22 



viii 
 

3.2.1 Accessing PMCs form userspace .......................................................................... 23 

3.2.2 Accessing PMCs from kernel space ...................................................................... 23 

3.3 Modeling power estimator ........................................................................................... 26 

3.3.1 MARS method ....................................................................................................... 26 

3.3.2 Building the power estimation model .................................................................... 31 

3.4 Summary ...................................................................................................................... 32 

Chapter 4 Real-time control system ....................................................................................... 33 

4.1 Introduction .................................................................................................................. 33 

4.2 Theoretical model of the closed-loop control subsystem ............................................. 34 

4.2.1 Plant model ............................................................................................................ 35 

4.2.2 System transfer-function calculation ..................................................................... 39 

4.2.3 Controller design ................................................................................................... 40 

4.3 PCG .............................................................................................................................. 45 

4.3.1 Battery discharge estimator ................................................................................... 46 

4.3.2 Budget calculator ................................................................................................... 47 

4.4 Summary ...................................................................................................................... 48 

Chapter 5 Test bench ............................................................................................................. 51 

5.1 Test-bench and methodology overview ....................................................................... 51 

5.1.1 Test-bench architecture .......................................................................................... 51 

5.1.2 Experimental methodology ................................................................................. 53 

5.2 Experimental platform .................................................................................................. 55 

5.2.1 The hardware environment .................................................................................. 55 

5.2.2 The software environment ................................................................................... 57 

5.2.3   Cpufreq governors ............................................................................................... 58 

5.4 Power supply and measurement system ....................................................................... 61 

5.5 PMC Programming Tool .............................................................................................. 63 

5.6 Decoder application ...................................................................................................... 65 

5.6.1 MPEG-4 part2 ........................................................................................................ 65 

5.6.2 Decoder development environment ....................................................................... 65 

5.7 Summary ...................................................................................................................... 67 



ix 
 

Chapter 6 Simulation and implementation ............................................................................ 69 

6.1 Platform PMC and DVFS enabling .............................................................................. 69 

6.2 PMCs access ................................................................................................................. 70 

6.2.1 PMC implementation based on PAPI .................................................................... 70 

6.2.2 PMC driver in kernel space ................................................................................... 73 

6.3 Power consumption estimator ...................................................................................... 75 

6.3.1 Estimation model ................................................................................................... 76 

6.3.2 PAPI-based estimator ............................................................................................ 79 

6.3.3 OS-level estimator ................................................................................................. 79 

6.3.4 Comparison of both estimators .............................................................................. 80 

6.4 Control system simulator ............................................................................................. 80 

6.4.1 Closed-loop control subsystem simulator .............................................................. 81 

6.4.2 PCG simulator ....................................................................................................... 82 

6.5 Choice of controller gains ............................................................................................ 85 

6.6 Linux-based control system implementation ............................................................... 88 

6.7 Summary ...................................................................................................................... 90 

Chapter 7 Experiments and Results ....................................................................................... 91 

7.1 Estimators validation and evaluation ........................................................................... 91 

7.2 Test of closed-loop subsystem ..................................................................................... 93 

7.2.1 Test case ................................................................................................................ 93 

7.2.2 Results of closed-loop subsystem and their discussion ......................................... 93 

7.3 Test of Disturbance ...................................................................................................... 99 

7.4 Test of PCG ................................................................................................................ 105 

7.5 Summary .................................................................................................................... 107 

Chapter 8 Conclusion and future work ................................................................................ 109 

8.1 Summary .................................................................................................................... 109 

8.2 Limitations and future work ....................................................................................... 111 

8.3 Final words ................................................................................................................. 112 

8.4 Publications ................................................................................................................ 112 

References ............................................................................................................................ 115 



x 
 

 

 



xi 
 

List of Figures 

Figure 1-1Block diagram of the Methodology and Thesis Organization ........................... 9 

Figure 3-1 Linear and cubic basis functions ..................................................................... 31 

Figure 3-2 Structure diagram of power estimation modeling procedure. ......................... 32 

Figure 4-1 General topology of the control system. ......................................................... 34 

Figure 4-2 General topology of the proposed closed-loop consumption control system 

based on estimation feedback. .......................................................................................... 35 

Figure 4-3 Detail of the real board consumption profile for increasing OPPs ................. 36 

Figure 4-4 Actual consumption and model response for OPP26 to OPP27 step .............. 37 

Figure 4-5 (Open-loop) estimated consumption for an OPP26 to OPP27 step ................ 38 

Figure 4-6 Conceptual and mathematical block diagram of the system model. ............... 39 

Figure 4-7 System root locus with BRR-I (up) and FRR-I (down) controllers ................ 42 

Figure 4-8 System root locus with TR-I controller ........................................................... 43 

Figure 4-9 System root locus with PI controller and c=0.5. ............................................. 44 

Figure 4-10 System root locus with PID controller and c1=c2=-1. ................................... 45 

Figure 4-11 Example of the relationship between the system power consumption and 

execution time. .................................................................................................................. 46 

Figure 5-1 Block diagram of the test bench ...................................................................... 52 

Figure 5-2 Overview of the Experimental Methodology. ................................................. 54 

Figure 5-3 Block Diagram of BeagleBoard ...................................................................... 56 

 



xii 
 

Figure 5-4 Procedure of cpufreq scaling ........................................................................... 59 

Figure 5-5 Block diagram of the power supply and measurement system ....................... 61 

Figure 5-6 Software user interface of Agilent acquisition system .................................... 62 

Figure 5-7 PAPI structure ................................................................................................. 63 

Figure 6-1 PAPI Tool Integration ..................................................................................... 71 

Figure 6-2 Flow chart of using PAPI ................................................................................ 72 

Figure 6-3 Flow chart of using PMC driver...................................................................... 74 

Figure 6-4 Bit arrangement of the PMNC register ........................................................... 75 

Figure 6-5 Errors of 78 models ......................................................................................... 77 

Figure 6-6 Model errors of mixed sequences ................................................................... 78 

Figure 6-7 Diagram of the control system simulator. ....................................................... 81 

Figure 6-8 Simulation model of the nonlinear closed-loop subsystem............................. 81 

Figure 6-9 Transfer function of the discrete OPP quantization effect. ............................. 82 

Figure 6-10 Block diagram of the PCG ............................................................................ 83 

Figure 6-11 Block diagram of battery discharge estimator into the simulator ................. 83 

Figure 6-12 Power budget profile examples ..................................................................... 85 

Figure 6-13 Modulus of dominant closed-loop system pole vs integral gain for the I 

controllers. ......................................................................................................................... 86 

Figure 6-14 Modulus of closed-loop system poles vs KPI for the PI controller ................ 87 

Figure 6-15 Modulus of closed-loop system poles vs KPID for the PID controller ........... 87 

Figure 6 -16 Flow chart of control system implementation code ..................................... 89 



xiii 
 

Figure 7-1 Power estimations and real power consumption ............................................. 92 

Figure 7-2 System time response for the P controller ....................................................... 94 

Figure 7-3 System time response for the BRR-I controller .............................................. 95 

Figure 7-4 System time response for the TR-I controller ................................................. 96 

Figure 7-5 System time response for the FRR-I controller............................................... 97 

Figure 7-6 System time response for the PI controller ..................................................... 97 

Figure 7-7 System time response for the PID controller .................................................. 98 

Figure 7-8 MPU Workload for different complexity sequences and OPPs .................... 100 

Figure 7-9 Average Estimation and consumption of different complexity sequences and 

OPPs ................................................................................................................................ 102 

Figure 7-10 Closed-loop subsystem response to disturbance ......................................... 104 

Figure 7-11 Detail of the active OPP when the consumption demand of the decoding task 

increases .......................................................................................................................... 105 

Figure 7-12 Battery lifetime under dynamic governors when decoding the simpler 

sequence .......................................................................................................................... 106 

Figure 7-13 Battery lifetime under dynamic governors when decoding sequences of 

different complexity ........................................................................................................ 107 

 

 

 

 

  



xiv 
 

  



xv 
 

List of Tables 

Table 3-1 CP15 Performance Monitors in Cortex A8 processor ...................................... 24 

Table 4-1 SoC and General Power-Budget Profiler ......................................................... 48 

Table 5-1 Features of BeagleBoard .................................................................................. 55 

Table 5-2  OPP data .......................................................................................................... 58 

Table 5-3 Common Preset Events of Cortex A8 processor .............................................. 64 

Table 5-4 Tools and packages used for building the decoder application ........................ 65 

Table 6-1 Selected Events and Functionality [74] ............................................................ 76 

Table 6-2 Resolution distribution ..................................................................................... 78 

Table 6-3 Gain and system dominant pole for each controller ......................................... 88 

Table 7-1 Estimation Error ............................................................................................... 92 

Table 7-2 MPU Workload for different Sequences and OPPs ......................................... 99 

Table 7-3 Average Estimation and consumption of different complexity sequences .... 100 

  



xvi 
 

 

  



xvii 
 

List of Acronyms  

AAPE = Average Absolute Percentage Error  

API = Application Programming Interface  

APPs = Applications 

BRR = Backward Rectangular Rule 

CCNT  = Cycle Count  

CNTENC = Count Enable Clear 

CNTENS = Count Enable Set  

CPU = Central Processing Unit  

CTU = Coding Tree Unit  

DCT = Discrete Cosine Transform  

DPM = Dynamic Power Management 

DSP = Digital Signal Processors  

DVFS = Dynamic Voltage and Frequency Scaling  

EVTSEL = Event Selection 

FLAG  = Overflow Flag Status  

FRR = Forward Rectangular Rule 

GPP = General Purpose Processors  

GPU = Graphics Processor Unit  

INTENS = Interrupt Enable Set 

MARS = Multivariate Adaptive Regression Splines 

MMU = Memory Management Unit  

MPU = MicroProcessor Unit  

NNZ = Number of NonZero  

OPP = Operating Performance Point 

PAPI = Performance Application Programming Interface  

PC = Program Counter  

PuC = Platform under Control  

PCG = Power Control Governor 



xviii 
 

PCL = Performance Counter for Linux  

PI = Proportional Integral 

PID = Proportional Integral Derivative  

PM = Power management   

PMC = Performance Monitor Counters 

PMCNT = Performance Monitor Count 

PMNXSEL = Performance Counter Selection  

PSM = Power-Saving Mode 

PMU = Power Management Unit  

QoE = Quality of Experience 

QP = Quantization Parameters 

QoS = Quality of Service  

SoC = State of Charge 

SP = Simple Profile 

STB = Set-Top Box 

SWINCR = Software Increment 

TR = Tustin’s bilinear Rule 

USEREN  = User Enable 

VoIP = Voice over IP 



1 
 

Chapter 1 Introduction 

1.1 Background and challenge 

Currently, there is a pervasive utilization of hand-held terminal devices, such as mobile 

phones, tablets, smart watches and so on. The multimedia devices are essential in people’s daily 

life. Smartphones and other types of hand-held sets with multimedia capabilities are increasingly 

utilized in communication and entertainment, and at the same time, mobile computing and 

communication technologies are also rapidly advancing. However, as the only power source of 

most mobile devices, the battery capacity has not experienced an equivalent increase. Therefore, 

optimally utilizing the limited battery energy on mobile devices under a predefined performance 

requirement becomes a critical issue. Mobile devices have already changed the habits of daily 

life due to its integration with some main multimedia functions, such as TV, radio, game 

console, camera, and video telephony and so on. With the support of various applications (APPs), 

the users can simultaneously watch online videos, carry out video, audio and text chat, or 

download video playbacks. The increased complexity and functionality in many mobile devices 

has motivated a transformation of the system usefulness assessment from a quality of service 

(QoS) approach to a quality of experience (QoE) approach [1][2].  

In one report from Ericsson in 2016 [3], video viewing is being gradually switched from 

traditional big-screen devices to online-streaming on smartphones. Especially in teen behaviors, 

between 2011 and 2015, teens increased their TV/video viewing at home on smartphones by 85 

percent and nearly halved their time spent watching on a traditional TV screen. According to the 

latest report from Ooyala [4], 46% of all video plays in the fourth quarter of 2015 were on 

mobile devices like tablets and smartphones. In fact, tablet and smartphone video 

consumption grew 35% in the year 2014 and have grown 170% since 2013. Actually, mobile 

video playback has experienced a significant growth of 2084% from 2011 to 2015. As some of 

the most energy-consuming tasks, encoding, decoding and presentation of video sequences are 

among the main subjects of research on power management in multimedia systems. In fact, the 

introduction of new standards, such as High-efficiency Video Coding (HEVC) [5], is increasing 

the energy requirement of video tasks with respect to the previous standards, such as H.264/AVC 

[6]. Given that the energy capacities of the batteries used in those small sets are not expected to 
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satisfy user needs [7], research on optimizing the energy consumption of the systems becomes 

imperative. 

The research of this thesis is a continue branch of the energy-centric scheduling module 

[8], the energy-centric scheduling module is in charge of scheduling the battery energy to the 

applications to maximize the battery energy utilization. To achieve that, the energy consumption 

of hardware devices should be accurately modeled and correctly accounted to the corresponding 

application that causes the device activities. When the mobile devices are running different 

applications, the scheduler can allocate energy to different applications. With respect to video 

decoders, they are some of the most energy consuming applications and the research group has 

experience of researching in a number of decoders [14]. Thus, this thesis focuses on control 

algorithms for energy optimization in multimedia devices while running video-decoder 

applications, which can significantly mitigate the system energy consumption problems.  

When the users run video-related applications on a battery based mobile device, they 

typically have different preferences for the applications and there is a need of how long the 

battery should last for their current applications. While the ability to ensure the target battery 

lifetime increases the confidence and security of the user using the mobile system [8], in many 

cases, the mobile devices can only provide a notice of the remaining battery capacity, but cannot 

guarantee the target battery lifetime against video applications, which consume most energy. For 

example, when the user is watching a football match, to reduce the power consumption and keep 

the device working until the end of the match is more desirable than to offer a good video 

quality; when the user is carrying out a video call, the quality of video decoding will help the 

user to be more comfortable to chat with friends and family; when the user is having a video 

meeting, a failure to achieve the expected battery lifetime will reduce the QoE of the system or 

even bring economic losses to the users. Therefore, how to dynamically achieve the user 

requirements in real time and under the battery energy restriction is one of the most fundamental 

requirements of mobile system users. This is also an essential element in the assessment of QoE. 

For the above objective, to equip the mobile devices with a high-capacity battery seems to be a 

simple and direct solution. Unfortunately, little industrial progress is achieved in the technology 

to enhance the battery capacity and density in the past few decades. On the contrary, nowadays, 

the continuous pursuit of designing mobile devices to be thinner and lighter poses further 

restriction on the battery size and capacity. For the above reasons, there is no doubt that breaking 
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the bottleneck of hardware limit from the software perspective is a smart choice. 

To guarantee the expected battery lifetime, the power consumption of the multimedia 

applications should be known but the majority of current consumer mobile devices does not 

integrate any power measurement equipment. Adding power measurement sensors to the 

consumer mobile devices is not a good solution because extra cost of hardware will be incurred; 

besides, this solution is not applicable to those already sold devices and has a long time-to 

market. Therefore, monitoring the energy consumption in real time without the assistance of 

specific power measurement sensors becomes a new challenge. If this difficulty is overcome, 

online power measurement and optimization can be widely applied to the existing mobile 

devices with no extra hardware cost. Now, there are some APPs which can estimate the battery 

lifetime generally when the mobile devices are under different work situations. For example, 

some APPs can list the standby time, call time, or even online/offline video viewing time. 

However, those APPs can only play the role of notifying the users instead of controlling the 

mobile devices. Therefore, in order to conveniently monitor power consumption, one innovation 

of this thesis is to regulate the power consumption of embedded multimedia systems without the 

need of adding power monitors but relying on power estimations derived from commonly 

available resources in mobile devices. Besides, some mobile operating systems support different 

power saving modes, such that user can select power saving, balance mode or high performance 

mode. But there are not battery lifetime-oriented modes. How to estimate the energy 

consumption and control the battery lifetime in real time is worth to explore. Our research 

direction field can fill the gap between current solutions and user needs. The aim of this work is 

to guarantee the battery lifetime while running applications. 

Against the above challenges, system designers have to explore the way to optimize 

energy consumption of mobile systems while maintaining a reasonable QoE under the battery 

storage limit. Under this background, a method to optimize energy consumption from the 

operating system can ease the urgent needs of video decoding in mobile devices. The way to 

solve the challenges can contribute to a new generation of mobile devices. 

1.2 Motivation 

Embedded and mobile multimedia systems require, like others, the optimization of the 

quality of experience (QoE) they offer to the user. However, their common battery dependency 

makes also necessary the optimization of their energy consumption. Indeed, for example, the 
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wide spectrum of usual available applications for current smartphones make them to have quite 

limited operating times, especially when they execute common video encoding, decoding and/or 

presentation applications. Therefore, there is an increasing effort into trying to reduce the energy 

consumption of this kind of systems from different points of view. Hardware and software are 

the two aspects that are considered to optimize energy consumption. In order to easily transplant 

the energy consumption optimization methods, software design is a very convenient way to 

investigate. There are two directions, one is from the applications in the user space, and other is 

through the operating system. 

The first direction investigates how APPs can save energy consumption. Redundancy 

reduction and multiple modes switching are typical methods of power management. Redundancy 

reduction concerns basic solutions like simplifying the framework of the APPs and reducing 

unnecessary operations of computing or communication. Multiple modes switching can support 

more ways to save energy depending on the user requirements, which means, against the 

different states of battery, the APPs can choose high performance with high energy consumption 

or low performance with low energy consumption. One typical application of multiple modes 

switching in video decoding is: when there is enough battery, high-definition video is streamed 

to the mobile devices, and when the battery is low, low-definition and small-sized video is 

delivered to save energy and extend battery lifetime.  

The second research direction is how to control the energy consumption in general 

through the operating-system level. The operating system plays an important role because it is 

aware of the power consumption status of the platform and the battery discharging rate, as well 

as, it can monitor the users’ requirements and the applications performance through special 

interfaces. Therefore, research in this field is popular and there are numbers of technologies of 

power optimization through operating system. Unfortunately, the majority of them are not strong 

power-aware enough to provide a battery lifetime guarantee. 

The work of this dissertation focuses on implementing control algorithms for energy 

optimization by controlling power consumption in multimedia mobile devices when they are 

decoding video, while also maintaining a reasonable quality of user experience (QoE). For this 

reason, a control system has been proposed for the platform under control (PuC), in which the 

microprocessor unit (MPU) executes a video decoder application.  
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1.3 Objectives 

Currently, multimedia hand-held devices like smartphones have operating times less than 

a few hours and the QoE is a fundamental issue that determines the degree of use of a platform. 

Therefore, it is necessary that QoE and energy consumption are considered jointly in present 

multimedia embedded systems. Since it is not foreseeable that the density of energy stored in 

lithium batteries will increase considerably in coming years, the only improvement of batteries 

will not significantly increase the operating time of terminals.  

And within these multimedia systems, the functionalities of video encoding, decoding 

and presentation consume a very important part of the energy available in the terminals. 

Moreover, the introduction of emerging standards as HEVC is increasing this balance. 

In this thesis, the main objective is to apply the control theory to the optimization of 

power consumption in this kind of systems. In order to implement it in multimedia devices, the 

main objective can be separated into the following sub-objectives. 

1. Activate the dynamic voltage and frequency scaling subsystem (DVFS): One of the 

features of these systems that can be used to act on their own power consumption is the 

processor DVFS subsystem. With DVFS, clock rates and voltages can be scaled by software 

based on the performance requirements of the application. For each operating performance point 

(OPP), a software module sends control signals to external regulators in order to set the 

minimum allowable voltage. DVFS is a method commonly employed to reduce energy 

consumption and extend battery lifetime for mobile devices. It provides an efficient energy 

saving mechanism for components that remain in active states. In this manuscript, DVFS is 

supported by processors designed for decoder applications such as hand-held devices, in which 

multiple voltage and frequency levels can be utilized by the system software in different 

conditions to save on energy consumption. For example, when an application does not need to be 

run at the highest performance, it may reduce the frequency and voltage so as to reduce the 

power consumption while remaining reasonable QoE.  

2. Set-up of an estimation model:  In order to have a feedback line with power 

consumption information and given that conventional devices do not offer it, certain power 

estimation methodology is required to estimate the power consumption of video decoders at each 

OPP. The methodology should be able to identify the most appropriate training data and power-

related events to be counted, to cover the main application characteristics. It is needed to build a 
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dynamic power estimation model of a video decoder, considering the observation of a set of 

actual consumption experimental results. In the operating system, since it is hard to know the 

actual power consumption directly, the estimation model is required to calculate the power 

values, which can be fed to the control system back as well as to the user interface.  

3. Implement a general power estimator: Once the estimation model has been built, it 

should be applied into the power estimator in order to avoid the need of a hardware power 

monitor subsystem, different approaches should be explored to estimate the power consumption. 

The power estimating approaches will be compared to select the suitable one that will work as 

the feedback.  The estimator used in the control system should satisfy two requirements: the first 

one is that the estimator should accurately reflect the power consumption of the applications; the 

second one is that it should decouple the user multimedia application execution from the power 

control system. 

4. Design and implement different control algorithms: once the PuC is provided with 

suitable input action and output feedback signals, different closed-loop control strategies will be 

applied. This implies the steps of system modeling, simulation and implementation. Through 

suitable experiments, the benefits of the each proposed control algorithm will be showed in 

maximizing the user experience in battery-limited multimedia mobile systems.  

5. Implement the Power Control Governor (PCG): once the closed-loop control 

subsystem is verified, a battery discharge estimator that implemented into the operating system 

will estimate the battery state of charge (SoC) based on the feedback power estimation. Then, a 

power budget generator will complete the PCG to generate a suitable set-point for the closed-

loop control subsystem. Therefore, the power budget generator will provide multiple 

personalized battery discharge mechanisms to guarantee a target battery lifetime while satisfying 

user requirements. The whole control system should be tested with stable workload and varying 

workload in order to be compared with other methods. 

1.4 Contribution 

  This work investigates control algorithms for energy optimization by controlling power 

consumption in multimedia hand-held devices. Hand-held devices are battery based mobile 

devices that are under energy limit. This thesis focuses on saving energy by controlling power 

consumption to extend the battery lifetime in order to satisfy the users’ requirements while 



7 
 

maintaining a reasonable QoE. Based on this starting point, this work explores the design of 

control algorithms for controlling power consumption in order to guarantee a certain battery 

lifetime in mobile systems. The main contributions of this dissertation are the following: 

1. Energy optimization for one of the most energy-consuming multimedia applications. 

Among the various APPs, capture, encoding, decoding and presentation of video sequences are 

some of the most energy-consuming tasks for that type of equipment. This thesis focuses on 

energy optimization of decoder multimedia applications, which can significantly alleviate the 

energy consumption problems. 

2. General and simple mathematical model of PuC. The design of the system controller is 

based on a suitable model of the PuC. In order to facilitate the application of the classic control 

theory, a simple and general model of the PuC has been obtained and validated in an application 

case. Although the proposed classic control algorithms have generated promising results, this 

model could also be refined and sophisticated for applying different advanced closed-loop 

control strategies. 

3. Precise PMC-based power-awareness model. Power-awareness of mobile devices while 

running applications includes sensors monitoring, estimation and prediction. After selecting the 

high energy-related PMCs, PMC-based power model is built which is close to the actual power 

consumption of PuC while running video decoder and without needing specific power sensors.  

4. Generally applicable estimation subsystems. To widely apply the estimation subsystem on 

various mobile devices, it was implemented within the operating system, such that it is able to 

calculate power estimation samples in real time, periodically and independently of the 

application in order to act as feedback for the control system.  

5. Power control governor. The proposed PCG can calculate the set-point of the closed-loop 

subsystem based on the feedback of power-consumption estimation. Besides, the PCG supports 

personalized and multiple battery-discharge profiles to regulate video decoding power 

consumption, while maintaining a reasonable QoE. 

6. Closed-loop power control subsystem. Under battery limit, the target battery lifetime can 

be achieved if the power consumption is controlled. Depending on the desired battery lifetime, 

the proposed closed-loop control subsystem is correspondingly given a suitable set-point by the 

PCG to guarantee the battery lifetime in real time. Besides, the closed-loop power control 
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subsystem can quickly respond to workload variations in order to keep stable the power 

consumption.   

7. Multiple controllers. A set of classic linear controllers has been designed to check their 

effects on the power control. They imply different system behaviors, which is a heuristic 

exploration for adjusting the power consumption of mobile devices while executing applications. 

8 The real-time control system. The proposed control system, which includes a PCG and a 

closed-loop subsystem, can dynamically adjust the battery lifetime depending on the users 

requirements while maintaining a reasonable QoE in real time. The battery lifetime management 

is based on users’ current activities. Even in the face of disturbances, the control system can 

control power consumption of the video decoder application regardless of the complexity of the 

video sequences. 

9. Linux-based implementation of the control system. The proposed control system is 

implemented in the Linux kernel. Experiments based on a concrete computing platform and 

different decoded sequences are tested to evaluate the Linux-based control system, the accuracy 

of the feedback estimator and the extended battery lifetime. 

10. Experimental and analytical exploration of energy optimization for battery-based mobile 

systems. Through a comparative analysis of the experimental results under the PCG and the 

default Linux cpufreq governors, this work explores a method to extend battery lifetime based on 

a power control system, while maintaining a reasonable QoE. 

1.5 Methodology and organization 

  To achieve the above objectives Figure 1-1 indicates the methodology and organization 

of this thesis. Through the block diagram, it can be seen the structure of the dissertation around 

the design, simulation and implementation of the control system. 
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Figure 1- 1 Block diagram of the Methodology and Thesis Organization 

  Chapter 1 introduces the background and challenges of energy optimizing in battery-

limited mobile devices. It lists the issues that need to be solved and also proposes the objectives 

of this thesis. Chapter 2 concerns the related research field, from the origin of the power 

management until the advanced techniques to optimize the energy consumption. Besides, 

comparisons of the related work with the control system are proposed in this dissertation. 

Chapter 3 presents the method of building estimation model and setting up the software 

estimator, which can be used as feedback so that no hardware sensors are required. Different 

approaches have been explored and their features have been compared in order to select the most 

suitable one for the next step. In Chapter 4 the control system is designed and the whole system 

is separated in two parts: closed-loop control subsystem and PCG. The former introduces the 

method of modeling the PuC and designing the controller. The latter presents the method to 

design the PCG, which can control the battery lifetime by using the feedback estimation and 

dynamically supports set-points for the closed-loop subsystem. Chapter 5 describes the test-

bench and experimental methodology. The computing platform is introduced from both hardware 

and software point of view. The tools used to measure the power consumption, construct the 

applications and access performance monitor counters (PMC) are introduced in detail, besides, 

the system simulator is also explained. After that, Chapter 6 presents the implementation of the 

control system in a Linux-based test bench. The implementation consists of the two approaches 

of the estimator, classic controllers and the PCG. Considering the complexity and difficulty of 

the Linux implementation work, a simulation tool is employed for verifying the behaviors of 
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different controllers and the PCG. In Chapter 7, the results are analyzed and discussed. The 

accuracy of the estimator has been verified and, based on that, the behavior of controllers has 

been compared with the simulation results to check the correctness. What’s more, the whole 

control system is tested under constant workload and variable workload and the results compared 

to other approaches. Finally, Chapter 8 concludes the thesis work and suggests directions for 

future research.   
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Chapter 2 Related work 

Given the increasing concern on saving energy whenever is possible, a great number of 

research developments can be found related to energy consumption optimization in 

microprocessor-based systems, even with the application of control techniques [9][10]. The 

development of the power control system needs an investigation of the related works on both 

energy awareness and control algorithms. In this chapter, different power management 

mechanisms are firstly surveyed, with a focus on the power awareness of multimedia 

applications and battery lifetime management of the mobile devices. Then, the control algorithms 

against different embedded systems and applications are investigated and comparatively 

discussed. Besides, the investigations of generating energy consumption models of video 

decoder applications are introduced. After that, the related works on power estimation and 

control algorithms are summarized, and finally the possibility of applying control algorithms for 

energy optimization is discussed.  

2.1 OS- and Application-level Power Management 

2.1.1 Introduction  

In recent years, there has been continuous consideration, research, and innovation of the 

energy management of mobile devices, not only in battery-operated systems [11][12] but also in 

wireless networks [13] and multimedia applications [14]-[17]. To reduce power consumption of 

embedded processors, a Power Management Unit (PMU) with Power management (PM) 

capability is often employed. PM observes the state of the system and the workload to control the 

power-performance tradeoff of the system by issuing a given PM policy. Most PM schemes fall 

into two categories: Dynamic Power Management (DPM) [18]-[20], which is designed to deliver 

peak performance of CPU and disk and then reset the system into the idle mode, and Dynamic 

Voltage and Frequency Scaling (DVFS) [21]-[24], which is a framework to change the frequency 

and/or operating voltage of the processor based on system performance requirements. The design 

principle of both DPM and DVFS is to allow the devices to perform needed tasks with the 

minimum amount of required power. To achieve this objective, these two PM schemes firstly 

allow the applications to be executed with the desired performance requirements, and after the 
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performance goal is achieved, it starts to save energy consumption. Therefore, these PM schemes 

can be considered as low power-aware which cannot adjust the energy consumption depending 

on the battery discharging status. In order to guarantee the battery lifetime and maintain the 

reasonable QoE, the power consumption of applications and the battery lifetime should be 

managed.  

2.1.2 Power-aware schemes 

To monitor the power consumption of APPs, a number of research works have been 

carried out from different aspects. One example of energy management for multimedia 

applications in battery-based devices is that of Kamat [11], which conserves the battery power by 

intelligently exploiting the features and redundancy that are specific to multimedia applications. 

Energy awareness is built into each application and depending on the battery state, which is 

monitored by a sensor. Mercati et al. [25] proposes the Applications-dependent Power states 

(AP-states) to monitor the frequency of Central Processing Unit (CPU) and Graphics Processor 

Unit (GPU) as well as the execution time of each APP. Then, the average power consumption of 

each APP can be calculated by the pairs of frequency and execution time. Hwang et al. [26] 

proposed a PMU design that is a hardware-based method of collecting and analyzing the pattern 

of Program Counter (PC) values to make predictions on when the next I/O device accesses will 

resume. There are also previous approaches to this type of estimation, such as Wang et al. [27], 

where the L2 cache power consumption is estimated by using the processor PMCs (Performance 

Monitor Counters), or Lively et al. [28], and Xiao et al. [29], where those PMCs are used in 

combination with the multivariate adaptive regression splines (MARS) method to model an 

energy consumption pattern.  

There are many methods to access PMCs, for instant, in windows 2000 and later versions 

there are graphic tools, such as System Monitor, Performance Logs and Alerts, and Server 

Performance Advisor, that can indicate how the system performs by counting the data which are 

consumed by applications. Besides, Linux provides tools, such as perf [30] and perfmonX [31], 

which are performance monitor interfaces to access PMCs from user space. Red Hat Enterprise 

Linux 6 includes Performance Counter for Linux (PCL) which is a new kernel-based subsystem 

for collecting and analyzing performance data. The system-activity-related parameters, also 

known as PMC events, may vary based on the performance monitoring hardware and the 
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software configuration of the system. To sum up, in order to regulate the power consumption of 

commonly embedded multimedia systems without the need of adding power monitors, to 

estimate the power consumption based on PMCs is a smart choice. 

2.1.3 Battery lifetime-aware management 

Battery lifetime-aware schemes are aware of the battery discharging state and are able to 

adapt the application performance according to the user requirements while maintain a 

reasonable QoE [32]. Under battery lifetime-aware schemes, the target battery lifetime can be 

achieved if the applications can adapt their performance based on remaining battery energy [33]. 

Flinn et al. [34] firstly proposed the Odyssey platform [35][36], which achieves the battery 

lifetime by periodically measuring the residual battery energy, and predicting future energy 

demand based on historical power usage. The behaviors of applications will self-adapt based on 

the energy demands. Kamat [11] built the energy awareness into each application and the battery 

lifetime is extended by changing the operating point of the applications. Mercati et al. [25] 

presents a method to maximize performance of applications while letting the device battery to 

last at least for a certain required lifetime. In their research, the power consumption of frequently 

used APPs are measured to estimate the battery lifetime while running different APPs. Nemesis 

[37] requires applications to be energy-aware and cooperative, but introduces a model of Quality 

of Service (QoS) to provide feedback to the applications. Since there are millions of applications, 

battery-lifetime-aware management through operating system is more economic than through 

applications that have to be programmed as self-adaptive. 

2.2 Control algorithms for energy optimization 

Efforts towards research and innovation of control algorithms for saving energy have 

increased during the last years, and across a wide variety of microprocessor-based areas. A great 

number of these research lines are based on control systems. The application of closed-loop 

techniques appears in the literature of all these fields with widespread use of DVFS. However, 

where there is a broader variety of proposals is in how to feed back the closed-loop system, 

mainly because there is not a clear feedback signal available in conventional platforms, as 

mentioned above. 

In [38] and [39] the controlled variable is the processor utilization factor (U), which is 

varied through the DVFS system by means of a PI controller. The energy savings increase as U 
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approaches 100%, meeting the task deadlines. Also based on targeting a suitable value of U, in 

[40] the feedback signal is the memory access rate (MAR), calculated from PMC values.  Some 

examples based on DVFS are [41], in which a PID controller is used to minimize the energy-

delay product by controlling the number of data/instructions stored in uniprocessor multiple-

clock domain queues and threads in chip multiprocessor queues; and [42], where a nonlinear 

controller is used in queue-based streaming applications.  

Other closed-loop approaches are those in which the controlled variable is a time for which a 

relationship with energy consumption can be found. For example, end-to-end delay in [43] or 

average slack time in [44] and [45], all of them are based again on DVFS. There are cases in 

which the control loop adapts the DVFS OPP to the rightly needed frequency by estimating the 

processor workload, like [46] where the clock cycles for each game frame are estimated by a PID 

controller; and [46] where a Kalman filter estimates the computation time needed by MPEG-2 

decoded frames. Another example, presented in Ramakrishnan et al. [47], is a fuzzy-logic-based 

closed-loop control system whose feedback information is actual received-signal strength. In this 

system, a base station receiver detects the received power level from a mobile station through a 

reverse channel. Then from that power level, the base station makes an estimation of power 

control bits and transmits through forward channel control bits to the mobile station so as to 

adjust the transmitting power of mobile station to the desired level. Other examples are Wang et 

al. [48], and Mishra et al. [49], in which linear controllers are inserted in loops where the 

feedback signal is the processor utilization factor, related to its power consumption. In cases like 

Garg et al. [50], the feedback signal is the occupancy of some system queues, given that a 

constant occupancy would imply that the consumed energy is the optimal one. Other approaches 

relate the energy consumption with the processor workload, which acts as feedback signal, such 

as in Bang et al. [46] or in some Linux cpufreq governors [51][79][80]. When the actual power 

consumption is directly used as the feedback signal, as in Wang et al. [10] and Kamat [11], some 

specific power sensors are needed in the system, which is not always possible.  

2.3 Decoder-specific schemes 

As one of the most energy-consuming multimedia application of mobile devices, there 

are many researches on energy estimation models of video decoders. Herglotz [58] investigates 

the energy required by a CPU when decoding videos on mobile platforms. A model is derived 

that describes the energy consumption of the new HEVC decoder for intra-coded videos. Ren et 
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al. [14] proposed a platform-independent energy estimation methodology, which can estimate 

the energy consumption of reconfigurable video coding (RVC)-CAL video codec specifications. 

Monteiro et al. [59] presents analysis of energy consumption of software HEVC decoder, 

specifically to estimate the energy consumption in all levels of cache hierarchies. X. Li et al. [60] 

proposes an analytical power consumption model for H.264/AVC video decoding using 

hardware accelerator on popular mobile platforms and the model is expressed as the product of 

the power functions of video spatial resolution (i.e., frame size) and temporal resolution. 

Benmoussa et al. [61] developed a model, which describes the relationship between performance 

and the energy consumption of H.264/AVC video decoding on both Digital Signal Processors 

(DSP) and General Purpose Processors (GPP) in terms of video bit-rate, clock frequency and a 

set of comprehensive hardware and video related coefficients. The entire energy model included 

four sub-models: quantization parameters (QP) -rate model, dynamic power model, static power 

model, and time model. The coefficients of those parameters were obtained by consumption 

measurements and regression analysis. Their model achieves a balance between an abstract high 

level model and a detailed lower level one while guaranteeing very good prediction properties 

for the tested videos. Mallikarachchi et al. [62] proposes an energy model whose parameters 

describe the relationship among energy requirements of decoder, the number of nonzero DCT 

coefficients (NNZ) and the QP. The proposed model determines the NNZ for a given Coding 

Tree Unit (CTU) and predicts the energy requirements of the decoder, thereby facilitating the 

encoder to determine the appropriate level of quantization required for a CTU to generate a bit 

stream that operates within the decoder's limited energy budget. As the above-mentioned 

schemes are quite specific to the decoder details, a more general approach will be explored at the 

system level in this dissertation, which is based on the power consumption of the whole decoder 

application rather than on some of its parameters. 

2.4 Comparison and discussion 

As it has been introduced in Chapter 1, this thesis aims to accurately calculate the 

remaining battery energy based on power estimation of a video decoder application. And the 

closed-loop control subsystem and PCG are integrated into the operating system, which is not 

affected by user space. The control system can adjust the power consumption depending on the 

user requirements in order to guarantee the battery lifetime. Some heuristic optimization 

algorithms are listed and compared as below. 
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One example of power saving mechanism in multimedia mobile devices is Kim et al. 

[52], which implemented a load-based processor hotplug algorithm. This algorithm periodically 

monitors the average load of online cores and turns off the surplus cores according average load. 

In turn, multi-core consists of several single cores, therefore power control of a single core is an 

energy-saving mechanism which can collaborate with multi-core hotplug algorithm to enhance 

overall power saving. And, instead of hotplug multi core, saving energy based on each 

independent core itself can fundamentally optimize energy consumption in lower level. The 

research of this thesis is based on energy optimization of the most basic unit to provide the most 

basic guarantee for more complex mobile devices. 

Other recent example refers to the set-top box (STB) as a small multimedia device, which is 

widely used in smart homes. Jung et al. [17] indicate a power saving method by using bitmap-

based activity logs to turn on/off some STB functions. What’s more, the passive standby mode 

uses activity logs, which are represented in a bitmap form, to find a pattern and to predict the 

next user activity. Similarly, Lee et al. [53] also suppose a hybrid system model to perform 

future idle period prediction. But the work developed in this thesis is a real-time control system, 

which can dynamically adjust the power saving state depending on user current activity, which 

can accurately satisfy the users’ requirements. 

Besides, Choi et al. [54] investigated a Power-Saving Mode (PSM) for mobile Voice 

over IP (VoIP) devices in wireless networks. And they evaluated the performance of the VoIP 

PSM and derived a theoretical maximum bound of sleep interval that minimizes the total power 

consumption of mobile stations while still guaranteeing VoIP QoS. Lim et al. [55] proposed a 

solution for finding out the optimal checkpoint interval, which minimizes the energy expenditure 

of a mobile device in remote check pointing wireless environments. There are other researches 

about the development of 3G/4G networks, such as Huang et al. [56] and Fowler et al. [57]. 

Although the work of this thesis focuses on the video-decoding task as the main power-

consuming application, it could also be considered to be conveniently transplanted to other 

systems with suitable adaptations. For example, it could be introduced into power saving 

mechanisms related to 3G/4G like those referenced above. I.e., when the wireless interface 

transfers the multimedia data packets, the proposed closed-loop subsystem could feed the power-

consumption estimation back, which could help the wireless module to adjust the power saving 

model [56] while satisfying QoE. .  
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In addition, comparing with other related work, such as the work of Ren [14], in which it 

can be highlighted that power measurements are correlated off-line with counts of some suitable 

events by using the processor PMCs. From that correlation, static power estimations are obtained 

for the processor decoding video at a fixed OPP. In order to implement power optimization in 

mobile devices, the power estimation should react to variable OPPs. One further innovation of 

this thesis is an accurate PMC-based estimator, which can be applied with all 27 OPPs. What’s 

more, the estimation subsystem was implemented within the operating system, such that it is able 

to calculate power estimation samples in real time, periodically and independently of the video-

frame rate in order to act as feedback for the control system. 

Besides, currently, operating systems also provide dynamic governors that support energy 

saving. For instance, in Linux operating system, there are two dynamic governors, ondemand 

and conservative [51][79][80], which can reduce energy consumption depending on the system 

workload. Although they can extend the battery lifetime to a certain degree, the battery lifetime 

varies depending on the workload. The work of this thesis not only can extend longer battery 

lifetime, but also guarantee the work time of mobile devices to satisfy user’s requirements 

regardless of the video decoding workload.  Considering that the original Linux dynamic 

governors are widely used to optimize energy consumption and that they are highly related to 

this work, more quantitative comparison details are explained in Chapter 7. 

As a summary, comparing with other control algorithms, the work of this thesis can   

dynamically adjust the battery lifetime between the shortest battery lifetime (under the best 

performance) and the longest (under the lowest performance) while still maintaining a reasonable 

QoE, as well as guarantee the battery lifetime regardless of the workload variation.  The work of 

this manuscript is based on the basic processing unit that can be integrated into other multi-core 

devices to optimize energy consumption. “In order to get a more meaningful comparison, the 

results obtained are finally contrasted with other highly related works which a coherent 

comparison can be set with, such as original Linux governors (see Section 7.4). Besides, the 

accuracy of the power estimation model is compared with Ren et al. [74] in Section 8.1. 

2.5 Summary 

In this chapter, the related works on OS- and application-level power management, 

control algorithms for energy optimization, and decoder-specific power management have been 

surveyed. In some specific cases, the target system includes a power monitor unit that is able to 
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feed actual consumption data back to the closed-loop controller. In order to generally apply the 

OS-level power management to common mobile devices, there is research using third party-

tools, graphic tools and hardware tools to monitor the power consumption of the applications. To 

directly and conveniently achieve power management, the aim of this thesis is to reach a control 

system which can regulate the power consumption of an embedded multimedia system without 

the need of adding power monitors but relying on power estimations derived from commonly 

available information. Therefore the researches that access the PMCs to estimate the power 

consumption while executing applications give a good inspiration to this thesis. What’s more, 

since a good control of the battery lifetime is pivotal to the user experience of mobile terminal, 

battery-lifetime-aware management schemes have also been investigated. The researches of 

battery-lifetime-aware usually have two focal points, one is to merge energy-awareness into the 

applications, and another one is battery lifetime management through the operating system. 

Considering that the inclusion of energy self-adaptation into applications would imply to modify 

lots of them, the later solution is more convenient and economical. Besides, a great number of 

research lines are related to control algorithms for energy optimization. Some of them apply 

closed-loop and DVFS techniques to control the energy consumption and there are various 

feedback signals, such as memory access rate, actual received-signal strength, occupancy of 

some system queues, processor utilization factor and so on. There is not a clear feedback signal 

available in all conventional platforms to promote the application of closed-loop control; 

therefore, the idea of using commonly available information, such as PMCs is a practical choice. 

Then, comparing with other control-based research lines, the idea of this thesis can complement 

and cooperate with other energy-saving control algorithms. Finally, video decoder application is 

one of the most energy-consuming multimedia applications. This thesis focuses on energy 

optimization of decoder multimedia application, which can significantly alleviate the energy 

consumption problems. Previous researches about decoder-specific power management give 

inspiration to us, but they are quite specific to the decoder details, a more general approach will 

be explored at the system level in this dissertation.  
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Chapter 3 Power estimator 

Chapter 2 has introduced some researches that focus on energy optimization in mobile 

devices while running different multimedia applications. Among those researches, sometimes 

control techniques are applied in the operating system that can conveniently and effectively 

control the power consumption in order to guarantee the battery lifetime. The present work aims 

to base the control system in a feedback signal as close to the actual power consumption as 

possible, but without needing specific power monitoring sensors that are not available in many 

common consumer mobile platforms. The adopted solution is to estimate the power consumption 

from commonly available system event counters. The proposed power consumption estimation 

method used to feed power consumption information back to the controller is specifically based 

on Ren et al. [14], where energy measurements are correlated off-line with counts of some 

suitable events by using the processor PMCs. This chapter focus on the integration of the power 

estimator in both OS and decoder application, as a part of the whole control system. It is based 

on event counts taken from the PMCs of the MPU. 

To simplify the work and focus on the power estimator, this chapter starts introducing 

PMCs and the method of filtering the PMCs that are highly related with power consumption. 

Then, two methods of accessing PMCs from user space and kernel space are indicated. After that, 

how to build power estimation model is explained. 

3.1 PMC events selection  

3.1.1 PMC introduction 

PMCs are used as a valuable tool for measuring performance of a program that can be 

analyzed to identify the bottlenecks in the program. These counters are hardware registers 

attached within the processor that measure various programmable events occurring in the 

processor, such as instructions executed, cache misses or branches miss predicted. These 

counters are present in most modern processors such as Intel Core and ARM Cortex. They do not 

require any additional overhead and supports a wide range of events. Implementation of PMCs in 

different processors could differ from the quantity or the monitored types of events. In a broad 

sense, PMCs consist of three types: a cycle counter, event counters and counters controlling. The 
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cycle counter is programmed to increment on every clock cycle; an event counter can be 

configured to select one specific event and increments as this event occurs; counters controlling 

is used to control the according PMC to carry out various operations which include enable, reset, 

start, stop or enable interrupts on counter overflow. 

3.1.2 PMC event redundancy 

The main concept of the PMC-based estimator is to relate the energy behavior to the 

occurrence of several events [1], which depend on the hardware monitoring capabilities. The 

platforms support several PMC events and the available PMC events are different against 

different platforms.  

Introducing as many PMC events as possible is a simple way to estimate power 

consumption, but it will cause high overhead. Therefore, suitable PMC events should be selected 

to build the estimation model in order to guarantee the accuracy of power estimator and low 

overhead. What’s more, considering the system integrity and continuity, there are dependencies 

among PMC events. It means the information provided by one PMC event can be predicted or 

explained by others PMC events, so some of the PMC events are highly correlated. If two PMC 

events are perfectly correlated, they include the same content to build the estimator, which will 

increase unnecessarily the number of PMC events. Since multi-collinearity will lead to PMC 

event redundancy, a filter method is needed to be applied in order to reduce the PMC events 

redundancy. 

3.1.3 PMCs filter Method 

In order to reduce the PMC redundancy and maintain the accuracy of power estimator, 

the utilized PMCs filter method includes two parts: the spearman rank correlation coefficient is 

introduced to calculate the dependence relationship between different PMC events which is used 

to reduce the information redundancy; another part has to do with the method of selecting 

energy-related PMC events. 

3.1.3.1 Spearman Rank Correlation Coefficient 

Spearman's rank correlation coefficient (ρ) is a non-parametric statistic parameter that is 

used to describe the statistical dependence and the relationship between two variables. One 
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variable is a strictly monotone function of the other if the Spearman correlation coefficient is +1 

or -1 when there are no repeated values of the sampling data. These two values, +1 and -1, are 

called perfect Spearman correlation.  

For example, let Xi and Yi be two variables. When there is no repeated value in the 

original data samples, the correlation coefficient sr  can be calculated by equation 3-1, otherwise 

r  is calculated by equation 3-2. 
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Where di denotes the difference between the ranks of each observation on the two variables, the 

original variables iX and iY  are converted into ranks ix and iy . Let x  denote the average 

descending rank of ix , y  denote the average descending rank of iy, n denote the size of a 

sample and i denote the paired score. 

Judging the variable dependence with the correlation coefficient is mainly based on 

experience. For example, if the value of the correlation coefficient is between 0.8 and 1.0, it can 

be considered that the two variables are strongly related; and when the value belongs to the 

interval [0.6,0.8], the variables are highly related. If the value is larger than 0.4 and smaller than 

0.6, that means there is a moderate relationship between them; otherwise, they only have weak 

relationship. 

A more accurate method to interpret the correlation coefficient is to calculate the 

coefficient of determination (r2). The coefficient of determination is the square of the correlation 

between predicted scores and actual scores and it ranges from 0 to 1. When r2 equals to 0, it 

means the dependent variable cannot be predicted from the independent variable and when r2 

equals to 1, it means the dependent variable can be predicted without error from the independent 

variable. If r2 is between 0 and 1, it indicates the extent to which the dependent variable is 

predictable. For example, if  r2=0.850, it means that 85% of the total variation in yi can be 
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explained by the linear relationship between xi and yi. The other 15% of the total variation in yi 

remains unexplained.  

3.1.3.2 PMC Event Selection method 

Not all the performance monitor events are relevant to power estimation; therefore, the 

events with higher correlation to power consumption should be selected. Assuming a linear 

correlation between PMCs and power consumption, equation 3-3 is employed to predict the 

system power consumption:  

idle
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Where αi is the linear parameter of power weights, n is the number of selected PMCs and Pidle is 

a constant representing the idle processor power consumption. There are also some non-linear 

relationships, but this work shows high accuracy with a fully-linear model. 

The filtering procedure can identify the set of events that are most significantly related to 

the power consumption. Then, the Spearman’s rank correlation r  is computed between each 

event and power consumption. After this step, a threshold α is established to eliminate any event 

below this threshold. On the other hand, to reduce event redundancy, correlations r (i,j) between 

each pair of events ‘i’ and ‘j’ are computed to identify the event relationship. The purpose is to 

eliminate those events whose information can also be obtained from other events. Hence, starting 

from the event ‘a’ with the largest correlation r a, those events ‘j’ whose correlation r (a,j) 

exceeds certain threshold β are eliminated. Then, the procedure continues with event ‘b’, with 

correlation value r b, to eliminate the events ‘j’ whose r (b,j) exceeds β. This process is 

repeated until there are no more events to eliminate. Finally, the remaining events are orthogonal 

to each other and highly related with power consumption. In this work, specifically, α is set to 

0.5 and β is set to 0.9 because this leads to the best results. 

 

3.2 Accessing PMCs  

PMCs can be accessed through both user space and kernel space. If accessing PMCs from 

userspace, a suitable PMCs monitor tool should be used. The used tool not only supports the PuC 
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in this work, but also can be easily applied for other normal different platforms. If accessing 

PMCs from kernel space, corresponding source code should be added such that the PMCs can be 

periodically accessed.  

3.2.1 Accessing PMCs form userspace 

PMCs can be accessed from user space though third-party tools. In Windows operating 

system, there are some tools with graphical monitoring view of system working state by counting 

the data consumed by applications. In Linux operating system, performance counters for 

Linux (PCL) is a new kernel-based subsystem that provides a framework for collecting and 

analyzing performance-related data. The PMC events will vary based on the performance 

monitoring hardware and the software configuration of the system, such as perf_event [30] 

which is an application programming interface (API) of the Linux kernel and perfmonX [31] 

which is a hardware-based performance monitoring interface for reading the PMCs from user 

space. Since the hardware used in this work does not support perfmonX nor perf_event, another 

tool is considered to easily and effectively access PMCs.  In Linux operating system, 

Performance Application Programming Interface (PAPI) is a widely used third-party tool which 

can easily access PMCs from the application level. Besides, the interface of PAPI is the same for 

all platforms. Therefore, in this work PAPI is used to monitor PMCs for preliminary tests. The 

implementation details will be explained in Chapter 6. 

3.2.2 Accessing PMCs from kernel space 

In order to completely decouple the user applications from the power control system, the 

power estimator has been included into the OS, which directly and periodically accesses the 

PMCs for carrying out the estimation task at kernel level. The need of including the estimator 

into the OS implies to know the processor low-level details and to develop the code to access the 

registers.  

The work of this thesis focuses on control algorithms for energy optimization in 

multimedia devices; therefore a development board with a single-core is considered to be the 

smallest unit of study. Cortex A8 is the general-purpose processor included in the experimental 

test bench used in this work and it has four PMCs, which are accessed, in system control 

coprocessor (CP15) space. CP15 can control and provide status information for the functions 
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implemented in the processor. It has some main functions, such as overall system control and 

configuration, cache configuration and management, Memory Management Unit (MMU) 

configuration and management, preloading engine for L2 cache and system performance 

monitoring. Performance monitor registers are mapped into the CP15 register and the purpose of 

it is to monitor and count system events, such as cache misses, TLB misses, pipeline stalls and 

other related features. Performance monitor registers can help system developers to profile 

energy-related behaviors of the processor when it executes different applications. It can generate 

interruptions when the number of events reaches a given value.  

Table 3-1 shows a summary of the register allocation and reset values of the performance 

monitor registers C9, which is used to control CP15 and reserved encodings for implementation-

defined performance monitors. In the table, CRn is the register number of CP15, Op1 is the 

Opcode_1 value for the register, CRm is the operational register, Op2 is the Opcode_2 valued for 

the register, and security state can be either secure (S) or non-secure (NS). R/W means read/write 

access in privileged modes only and X indicates the register access depends on another register 

or an external signal.  

Table 3-1 CP15 Performance Monitors in Cortex A8 processor 

 

CRn    Op1 CRm Op2 Register or Operation Security     State 
 NS            S 

 c9         0 c12    0 Performance Monitor Control(PMNC) R/W,X R/W,X 
   1 Count Enable Set (CNTENS) R/W,X R/W,X 
   2 Count Enable Clear (CNTENC) R/W,X R/W,X 
   3 Overflow Flag Status (FLAG) R/W,X R/W,X 
   4 Software Increment (SWINCR) R/W,X R/W,X 
   5 Performance Counter Selection (PMNXSEL) R/W,X R/W,X 

c13    0 Cycle Count (CCNT) R/W,X R/W,X 
   1 Event Selection (EVTSEL) R/W,X R/W,X 
   2 Performance Monitor Count (PMCNT) R/W,X R/W,X  

c14    0 User Enable (USEREN) R/W R/W 
   1 Interrupt Enable Set (INTENS) R/W R/W 

 

The purpose of the performance monitor control (PMNC) register is to control the 

operation of the four performance monitor counts registers and the cycle count register, as well 

as to inform about the hardware processor and the number of PMCs available in the hardware. 

Besides, in order to enable or disable any PMCs, the count enable set (CNTENS) or count enable 

clear (CNTENC) register is needed. When reading these two registers, any enable that reads as 0 
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indicates the counter is disabled and any enable that reads as 1 indicates the counter is enabled. 

When writing to the enable-bit of CNTENS with the value of 0 is ignored, and when writing with 

the value of 1 indicates to enable the counter. Similarly, writing into CNTENC with the value of 

0 cannot update the counter state while writing with the value of 1 clears the enable-bit to 0 to 

disable the counter. The overflow flag status (FLAG) register can enable or disable any of the 

PMCs to produce an overflow flag. When reading this register, overflow flag that is read as 0 

indicates the counter has not overflowed, and once there is any overflow that reads as 1 indicates 

the counter has overflowed. And, if the interrupt overflow enable bit is written with a value of 0 

it is ignored, while any overflow flag written with a value of 1 clears the counter overflow. The 

purpose of the software increment (SWINCR) register is to increment the count of PMC register. 

When writing to this register, the value of 1 increment the counter and the value of 0 does 

nothing. The performance counter selection (PMNXSEL) register can select a PMC register 

through writing the corresponding bit value into the SEL field. The purpose of the cycle count 

(CCNT) register is to count the number of clock cycles since the register was reset. It should be 

disabled before any software can write into it; otherwise, any attempt to write to this register 

when it is enabled will lead to unpredictable result. Moreover, the event selection (EVTSEL) 

register can select the events which PMC registers are needed for counting. In Cortex A-8 

processor, the four PMCNT registers (PMCNT0-PMCNT3) are selected by the PMNXSEL 

register and each of them counts instances of an event that is selected by the EVTSEL register. 

Bits [31:0] of each PMCNT register contain an event count. Accessing the PMCNTs in user 

space needs to enable the user mode of the PMCNTs, and user enable (USEREN) register is used 

to control this configuration. The purpose of the interrupt enables set or interrupt enable clear 

(INTENS) register is to determine if any of the PMCNTs, PMCNT0-PMCNT3 or CCNT, 

generates an interrupt on overflow. When reading this register, any interrupt overflow enable bit 

read as 0 indicates the interrupt overflow flag is disabled, and when any interrupt overflow 

enable bit is read as 1, it indicates the interrupt overflow flag is enabled. Writing to this register 

is similar, when any interrupt overflow enable bit is written with a value of 0, it will be ignored. 

Any interrupt overflow enable bit written with a value of 1 sets the interrupt overflow enable bit. 

PMCs can be accessed by reading or writing CP15 with the ARM assembly MRC and 

MCR instructions, respectively.  
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The instruction MRC can transfer an internal co-processor register to an ARM-processor 

register. It takes the form as below: 

 MRC    <co-pro>, <op>, <ARM reg>, <co-pro reg>, <co-pro reg2>, <op2>; 

The register <co-pro reg> is written to <ARM reg>, by using operation <op>, while the 

register <co-pro reg2> is written to  <ARM reg> by using operation <op2>. 

The form of instruction MCR is the same as MRC and MCR instruction also can transfer 

a co-processor register to an ARM-processor register. It takes the form as below: 

MCR    <co-pro>, <op>, <ARM reg>, <co-pro reg>, <co-pro reg2>, <op2>; 

The contents of the ARM register are written to the co-processor register using the given 

operation code, which may be further modified by the second co-processor register and/or the 

second operation code.  

The process of accessing PMCs from kernel space can be described as below:  

The PMNC can control the operation of the PMCs, with one register used to set up each 

counter. The four PMCNT registers contain the event counts for the selected events being 

counted. The MRC instruction can be used by programs or procedure running at any privilege 

level to read these counters. After setting CNTENS and EVTSEL, PMCs start to work until 

FLAG or CNTENC are enabled. Besides, the counters can be stopped by clearing the enable 

counters flag or by clearing all the bits in the CNTENC. The PMCs are periodically recorded, 

and the data can be used to analyze the performance of the applications. 

3.3 Modeling power estimator 

Modeling power estimator is to find the relationship between PMC events and real power 

consumption. Chapter 2 introduced some methods to estimate power consumption by using 

PMCs. Based on Ren et al. [1], in this work the mathematic method is MARS which can 

accurately estimate the power consumption. 

3.3.1 MARS method 

Multivariate Adaptive Regression Splines (MARS) is an implementation of techniques to 

predict the values of a continuous dependent or outcome variable from a set of independent or 

predictor variables. MARS constructs the relationship between the dependent and independent 

variables from a set of coefficients and basis functions that are entirely driven from the 

regression data. 
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MARS partitions the input variable space by the tensor product of interval sets on each of 

the n axes and the tensor product of spline functions are defined as the basis functions. Each 

input axis is partitioned into K+1 intervals delineated by K points (“knots”) and the regions in 

the n-dimensional space are taken to be the ሺܭ ൅ 1ሻ௡ intersections of all such intervals. Each 

divided space corresponds to a coefficient and an input variable	ݔ௜. MARS model obtains its 

prediction value by combining all basis functions. In the system, the input set contains the 

independent variables ݔ ൌ ሺݔଵ, … , ௤ሻݔ , and the output set contains the dependent variables 

ݕ ൌ ሺݕଵ, … ,  .௤ሻ. The method that generates the data is described by equation 3-4ݕ
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Where	 f is a single valued deterministic function of its n-dimensional argument, q is the number 

of independent variables,  is the additive stochastic component whose expected value is 

defined to be zero. 

MARS can obtain an approximated function f̂  to analyze and calculate the system 

response through a series of training data, and it can be represented by summing up a set of basis 

functions as indicated in equation 3-5:  
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mc  are the coefficients of the expansion and M is the number of basis functions. 

The basis function )( xBm  is indicated in equation 3-6: 
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 mK is the number of factors in the tensor product; ݔሺ௞,௠ሻ is a subset of independent 

variables; ),( mkP is a set of functional parameters, i.e. ),(),( kmkmmk tsP  . kmb  is a constant or a hinge 

function expression in 3-7. 
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Where s is the truncated direction 1s ; t is the knot position of the basis function. The 

subscript “+” of 3-6 indicates a positive part, i.e.: 
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To achieve the desired accuracy of objective function f̂ , MARS algorithm obtains the set of 

basis functions through a forward and backward iterative process. Forward pass iteratively 

divides the training data and fits the estimation models, which will produce a large number of 

basis functions. The backward pass will selectively remove some basis functions with the 

premise to ensure the highest suitability to fit the final model.  

 In order to improve estimation accuracy and save computing time, a reasonable number 

of counts should be selected. Therefore it is unnecessary to test whether each point is suitable for 

a new basis function. There are a great number of data for knot calculation; therefore, a 

minimum step size L for variable selection is introduced, which can reduce the selection of data. 

The step L is calculated as in equation 3-9: 
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Where α locates in a closed interval ሾ0.01, 0.05ሿ , which is a reasonable range for 

narrowing the selection of candidate nodes, n is the number of predictors or input variables; the 

quantity mN is the number of observations.  

In the forward procedure, the entire iterative process will continue until the number of 

basis functions reaches the maximum number of basis functions maxM or the minimal lack of fit 
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(LoF) is achieved, being LoF the difference between the real function f  and the model function

f̂ . 

As mentioned above, since MARS algorithm only allows building new basis functions 

based on those previous generated basis functions, this will cause too many basis functions 

constructed by the forward procedure. Besides, the original generated functions used to produce 

subsequent basis functions have little influence on the final model. Therefore, in order to 

improve the generalization ability, MARS backward procedure will remove the basis functions 

which have small effect on the final model, until it finds the best model. The performances of 

models are evaluated by using generalized cross validation (GCV), which is calculated as in 

equation 3-10. 
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Where ܰ is the number of observations; )(MC is the effective number of parameters and 

  .is the number of hinge-function knots  ܯ

The final model obtained by the MARS algorithm is expressed in equation 3-11: 
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Where 0c  is a constant basis function, M is the number of basis functions, mc is the 

constant coefficient of every basis function and 1kms . In this thesis mK is set as 1 in order to 

simplify the model, which also simplifies equation 3-11 to 3-12: 
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In order to make the model be continuous and have continuous first derivative, the hinge 

function can be replaced by its corresponding cubic truncated form as equations 3-13 and 3-14:  
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with ݐ > ݐ > ିݐା, ݐ，ݐା and ିݐ are the knots of cubic function.  P  and r  are as 3-15 to 

3-18. 
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),,,(  tttsxC is first order differentiable, but its second derivative is not continuous at 

ݔ ൌ  േ. Each knot t can define a linear truncated function, while a cubic function needs threeݐ

knots: ݐ，ݐା，ିݐ. Figure 3-1 shows an example of linear and cubic hinge functions [14]. The 

cubic functions are smoother and accurate than linear functions, which do not introduce many 

computable complexities.  
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 (a) Linear and cubic basis functions when s=1. 

 

 (b) Linear and cubic basis functions when s=-1. 

Figure 3 -1 Linear and cubic basis functions 

3.3.2 Building the power estimation model 

Since system activities can be quantified with PMCs, the power estimation model builds 

the relationship between power consumption and a set of selected PMC events. Figure 3-2 

describes the power estimation modeling procedure, in which the MARS method is employed to 

fit the selected PMC events and power consumption due to its simplicity and high efficiency. In 

order to estimate the power consumption of PuC, PMCs are recorded when executing the 

application under different states of PuC. The current consumption of the PuC and supply 

voltage have been measured and their multiplication is used as the power consumption input. 

Section 3.3.1 explains the MARS modeling procedure and once the coefficients of independent 

variables are set, the model can estimate the power consumption. Then, by comparing the 

estimation with power consumption, the accuracy rate is calculated. When the accuracy is not 

good enough, it means the estimation value cannot suitably reflect the power consumption. In 

this case, some adjustments should be considered, such as re-select PMCs, remove spikes of 

PMCs data, re-calculate average power consumption and so on. If the accuracy of the model is 

adequately good, the estimation model can be used to estimate the power consumption of  PuC. 
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Figure 3-2 Structure diagram of power estimation modeling procedure. 

3.4 Summary  

In this chapter, the power estimation modeling method has been presented. The model 

based on PMCs that can reflect the power consumption while running the video decoder has 

been introduced. To graduate the accuracy of the power estimation and do not cause too much 

overhead, the PMCs strongly related with power consumption should be selected. Correlation 

coefficient is a common method to evaluate the degree of relationship between two variables. 

Based on Spearman’s rank correlation coefficient and coefficient of determination, suitable PMC 

events have been selected. PMCs can be accessed through user space and kernel space. In this 

dissertation, PAPI has been merged into the decoder to monitor the PMCs from userspace. 

Moreover, PMCs can also be accessed from kernel space. Once the list of significant events has 

been obtained, MARS method is applied to build the power estimation model. Based on selected 

PMC events and power consumption of PuC, MARS function can calculate the parameters of 

models. After checking and adjusting the accuracy of power estimation, the power estimator can 

be refined and fixed.  
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Chapter 4 Real-time control system  

4.1 Introduction 

This section focuses on control algorithms for energy optimization in multimedia mobile 

devices when they are decoding video, while also keeping a reasonable quality of user 

experience (QoE). For this reason, a control system has been built in the PuC, in which the 

microprocessor unit (MPU) executes a video decoder application. Figure 4-1 shows the general 

topology of the control system, which includes a power-control governor (PCG) and a closed-

loop control subsystem. With respect to the closed-loop subsystem, depending on the power-

consumption set-point, the controller will operate on the multimedia platform (plant) input and 

keep the plant output close to the set-point. For the plant input, the dynamic voltage and 

frequency scaling (DVFS) mechanism of the MPU is employed because it is present in many 

commercial platforms. DVFS enables to adjust the MPU dynamic power consumption by putting 

it to work under different operating performance points (OPPs), i.e., voltage and frequency pairs. 

Meanwhile, the plant output provides the feedback signal, which should be its own power 

consumption. The feedback information not only works in the closed-loop subsystem, but also 

feeds the PCG. The PCG consists of a battery-discharge estimator, which estimates the 

remaining battery energy, i.e., the battery state of charge (SoC), and a power-budget generator, 

which selects in real time a suitable power budget for the MPU to guarantee a certain battery 

lifetime. The generated power budget is passed to the closed-loop control subsystem as its set 

point. Due to its feedback feature, the closed-loop control subsystem is able to regulate the MPU 

power consumption, and, hence, the battery discharge rate, according to the set-point, regardless 

of possible fluctuations in the decoder power-consumption demand (which act as disturbances 

over the closed-loop subsystem). One more interesting innovation is that PCG supports multiple 

and personalized power-budget profiles to meet user requirements. Then, different control 

algorithms have been implemented in the control system to verify the effectiveness and stability 

of the system. 
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Figure 4-1 General topology of the control system. 

In order to generally apply the control system in common multimedia mobile devices, 

instead of using any special power sensor, the precise PMC-based OS-level real-time power-

consumption estimator has been used as the feedback-signal generator (see Figure 4-1). The 

proposed estimator has been introduced in chapter 3. 

4.2 Theoretical model of the closed-loop control subsystem 

The general topology of the proposed closed-loop control subsystem is depicted in Figure 

4-2. The idea is to regulate the power consumption according to a set point (target), i.e., the 

system keeps the power consumption close to the set point, which will depend on the power 

needs at each moment, regardless of possible consumption fluctuations (disturbances) in the 

multimedia plant, i.e., the MPU executing the video decoder. For this purpose, a controller acts 

on the plant depending on the system error between the target and the estimation-based feedback. 

Both the feedback from, and the action to the plant are proposed to be based on features 

generally available in common mobile processors, i.e., PMCs and DVFS, respectively. Anyway, 

as also depicted in Figure4-2, an acquisition system has been used during the test phases to 

confirm that the control system is working properly. Additionally, as depicted in Figure 4-1, 

based on power-estimation feedback, the battery-discharge estimator will calculate the battery 

state of charge (SoC). In that way, the power-budget generator can correspondingly select a 

suitable power budget for the plant in order to guarantee battery lifetime. Therefore, the set-point 

will dynamically change based on power budget.  
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Figure 4-2 General topology of the proposed closed-loop consumption control system based on estimation feedback.   

4.2.1 Plant model  

One mean of designing the system controller is to base it on a suitable model of the plant. 

As a first approach to the problem, working with actual consumption data, a simplified model is 

used to facilitate the application of the classic control theory. Later, this model could be refined 

and sophisticated and different advanced closed-loop control strategies could be applied. 

      For modelling purposes, the actual power consumption of the open-loop plant has to be 

captured when it is decoding video under different OPPs. As exposed in more detail in Chapter 5, 

this has been done for the experimental test bench by measuring the board current consumption.  

     As an example, Figure 4-3 shows the real measured current of the board while 

continuously decoding video and with OPPs increasing. The repetition of the capture experiment 

for always the same video sequence indicates that there is a certain basis of (average) 

consumption for each OPP, which is nearly constant for all repetitions, plus a number of big 

consumption spikes that appear in different moments in each repetition. For this reason, those 

spikes are not considered to be due to the video task executed in the CPU but to other “irrelevant” 

sinks in the board. Moreover, it can be observed from the graph that, apart from the biggest 

“random” consumption spikes, there is a second level of pseudo-periodic consumption peaks, 

whose period decreases as the OPP frequency increases. These are due to accesses to the SD card 

to get the video file data packets but not to decoding activities. Hence, these consumption peaks 

should not be taken into account to model the plant, given that neither the power estimation 

procedure will reflect them.  

Plant 
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Figure 4-3 Detail of the real board consumption profile for increasing OPPs 

 

If the zoom of Figure 4-3 is focused on how the consumption changes from one OPP to 

another, the dynamics of this change can be analysed. From this analysis, a mathematical model 

of the system plant can be obtained. Thus, for example, choosing a simple linear first-order 

Laplace-based model, a transfer function of the plant, G(s), can be obtained [63]. Equation 4-1 

shows G(s) for the experimental test bench:  
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G(s) in Equation 4-1 relates the current consumption with input OPP average current level3. 

Figure 4-4 shows the comparison between the time response of this theoretical model and the 

actual consumption for an input step from OPP26 to OPP27 levels in the experimental test bench. 

The time response of G(s) has been compared also with the rest of steps of the OPP sequence 

described in Figure 4-3 and its average validity has been verified.
 

                                                 
3 The consideration of the measured OPP average current level as the input for the plant transfer function is for normalization purposes, i.e., 

unitary steady-state gain. 
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Figure 4-4 Actual consumption and model response for OPP26 to OPP27 step 

 

The proposed model G(s) is a continuous one, which has to be discretized depending on 

the action period T to be considered. If a digital-to-analog converter (zero-order hold) + 

continuous process + analog-to-digital converter (sample & hold) scheme model is considered 

for the discretization, a Z transfer function can be derived from the continuous model as equation 

4-2 [64]:  
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Where p is the pole of G(s). As it can be deduced from Figure 4-4, the time needed by the 

hardware to adapt to a new OPP to change the power consumption is quite short. Mainly, this 

time should be always much shorter than the action period T in order to avoid unnecessary 

overhead. Taking this into account, the value of the pole of G(z) in Equation 4-2 should tend to 

zero. Then, the discrete-time transfer function of the plant can be simplified to the one shown in 

equation 4-3 [65]. If the results finally prove the validity of this model, it will have the additional 

advantage of its simplicity and generality. 
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The z-1 term in G(z) represents that, for a reasonable low-overhead action period T, the 

system adapts its power consumption after an OPP step in less than a sample time. On the other 

hand, the unitary static gain of G(z), i.e., G(1)=1, represents a normalized model in which the 

input, modelled with A(z) in 4-3, is the average power consumption value corresponding to the 

active OPP and the output, modelled with C(z) in equation 4-3, is the power consumed by the 

system for that OPP. As introduced above, this simple model is valid while the system sample 

period is much longer than the settling time of the analogue power consumption process, 

otherwise the system overhead would be unbearable. 

The records of consumption estimation used to validate the estimator module are also 

useful for modeling purposes. For example, if the power estimator is considered to be included 

into the plant itself, the analysis of how it responds to a change in the OPP enables the plant 

dynamics modelling. Thus, for example, Figure 4-5 shows the estimator output for the OPP 

changing from number 26 to number 27 during a certain video sequence decoding in the 

experimental test bench. Since the estimation period is long enough as to allow the estimator to 

detect completely the new consumption level due to the OPP switch from one sample to the next, 

as it can be seen at t=260s in Figure 4-5, the model of Equation 4-3 is also valid in terms of 

power estimation apart from power consumption.  

 

      
 Figure 4-5  (Open-loop) estimated consumption for an OPP26 to OPP27 step 
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4.2.2 System transfer-function calculation 

In the ideal linear closed-loop control system model, the action signal to the plant input 

comes from the controller output, as depicted in Figure 4-6. Hence, if the controller Z transfer 

function is called F(z), then it can be expressed as F(z)=A(z)/E(z), where E(z), i.e., the controller 

input, models the input-output error of the system (see Figure. 4-6). 

 

                 

 

     Figure 4-6 Conceptual and mathematical block diagram of the system model. 

 

Because the output of the system model is the plant output, i.e., the power consumption 

estimation, modelled with C(z) in equation 4-3, then the feedback transfer function is unitary; 

therefore, the Z transform of the error sequence can be calculated as E(z)=R(z)-C(z), where the 

system input, modelled with R(z), is the desired power consumption, i.e., the set point. All these 

relationships can be better understood with the block diagram of the system model shown in 

Figure 4-6. Taking into account the previous definitions, the Z transfer function of the whole 

closed-loop system, M(z), can be calculated as indicated in equation 4-4. 
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Once a mathematical model of the system is obtained, different techniques can be applied 

to design controllers and to foresee the corresponding system behaviour, as explained below. 

Further simulation and implementation details are included in Chapter 6.  
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4.2.3 Controller design  

Apart from other technological issues, the stability of the closed-loop system is one of the 

characteristics that must be ensured. As a first approach, the simplest controller that can be used 

in closed loop is a proportional (P) one [2]. It would lead to a system transfer function 

MP(z)=KP/(z+KP) from 4-3 and 4-4 and where KP is the P-controller gain. With the system pole 

in pMP=–KP, the (highest positive) critical gain in the limit of the system stability is KPc=1.  

Because the closed-loop steady-state error, ess, is calculated with equation 4-5 as the 

percentage of a stepped set point: 
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For the P controller we have essP=100/(1+KP). Therefore, the lower bound for the closed-

loop system error in steady state is min(ess)=100/(1+max(Kp))=50% [1], which is too high. In 

order to avoid this limitation and still keeping a classic linear controller, an integral action (I) 

should be added to it. As stated above for the plant model, if the results finally prove the validity 

of these simple controllers, they will have the additional advantage of its simplicity, which is a 

desirable feature for an algorithm that has to be implemented in an embedded system with 

limited resources. 

Three types of I controllers are proposed, based on a forward rectangular rule (FRR), a 

backward rectangular rule (BRR) and a trapezoid or Tustin’s bilinear rule (TR), respectively. 

Their corresponding Z transfer functions, FF(z) for the FRR-I, FB(z) for the BRR-I and FT(z) for 

the TR-I one, are shown in equation 4-6:
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where KF, KB and KT are the respective integral gains and T is the system sample period, 

as previously defined. In all cases, the controller pole in z=1 ensures a null value of ess in 

equation 4-5. 
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To calculate M(z) for the I cases, i.e., MF(z), MB(z) and MT(z), equation 4-3 and 4-6 should be 

applied to equation 4-4, resulting in the three cases of equation 4-7, with the closed-loop system 

poles indicated in equation 4-8, i.e., pMF, pMB and pMT.  
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The difference of Z transfer functions between FRR and BRR is only a zero in z=0. The 

zero-pole cancellation in a series of a BRR I and G(z) will enable shorter settling times than with 

a FRR I when closing the control loop because the system dominant pole can be closer to z=0. 

This can be deduced from the Z-plane root loci shown in Figure 4-7. In the FRR case, the 

modulus of the system dominant pole is always greater than or equal to 0.5, whereas in the BRR 

case the system dominant pole can reach the minimum value of 0 thus enabling settling times 

shorter than the sample period. Thus, considering the BRR option, the closed-loop pole of the 

system for a long enough sample period is pMB =1- KBT, being again KB the controller gain. Let 

us consider a sample period T of 100ms, which seems to be a good trade-off value for keeping 

reasonable relative overhead, immunity to jitter effects and frequency of control actions. For this 

period, the critical gain which leads the system to instability (pMB =-1) is KB =20, whereas the 

gain for the shortest settling time (pMB =0) is KB =10. 
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Figure 4-7 System root locus with BRR-I (up) and FRR-I (down) controllers 
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The root loci of TR I controller is shown in Figure 4-8, with two real/complex branches 

which, starting from within the unit circle, allow the system stability. 

 

                

                                               
  Figure 4-8 System root locus with TR-I controller 

 

Some combinations of the previous linear controllers can also be used. Examples like 

proportional-integral (PI) or even proportional-integral-derivative (PID) are well known in the 

control domain. Their transfer functions, FPI(z) and FPID(z), are shown in 4-9, where KPI and KPID 

are the respective gains, and c, c1 and c2 are zeros of the transfer functions. The inclusion of the 

integral action in both cases keeps a controller pole in z=1, which still ensures a null value of ess 

in 4-5.  
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As it can be deduced from 4-9, once the period T is fixed, the PI combination offers two 

degrees of freedom, i.e., KPI and c, whereas the PID combination offers three degrees of freedom, 

i.e., KPID, c1 and c2. In order to test one case of each of these two combinations, the values of the 
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zeros are fixed to achieve a system root locus that, at least, allows the closed-loop system 

stability. Thus, for the PI combination, if a value of c=0 were chosen, then FPI(z) would be 

analogous to FB(z), as it can be deduced from 4-6 and 4-9. In order to have a different behaviour, 

a value of c=0.5 has been chosen, which leads to a root locus like the one shown in Figure 4-9, 

with two real branches, one positive and finite and another negative and infinite. The coexistence 

of both branches within the unit circle allows the system stability. 

 

             

     Figure 4-9 System root locus with PI controller and c=0.5 
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Figure 4-10 System root locus with PID controller and c1=c2=-1 
 

Using the chosen values for the zeros and applying 4-3 and 4-9 to 4-4, the closed-loop 

transfer function M(z) for both combinations appears in the two cases of 4-10, i.e., MPI(z) and 

MPID(z). The poles of these two transfer functions are represented in Figure 4-11 and Figure 4-12 

as functions of KPI and KPID, respectively. 
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4.3 PCG 

In order to guarantee the battery lifetime of mobile devices under a predefined performance 

requirement, a dynamic PCG is creatively added in the control system in order to adjust a 

suitable set-point of the closed-loop control subsystem. The PCG consists of a battery discharge 

estimator and a budget calculator, which depends on the current remaining battery. Different 

-3 -2 -1 0 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Z real axis

Z
 im

ag
in

ar
y 

ax
is



46 
 

from the Linux original governors, PCG bases its work on the estimation power consumption 

instead of the CPU usage. Another interesting innovation is that the PCG supports multiple and 

personalized power budget profiles to meet user requirements. 

4.3.1 Battery discharge estimator 

For those cases in which the battery SoC cannot be measured directly or indirectly, this 

work proposes a SoC estimator based on the value of power-consumption estimation (Power) of 

the closed-loop subsystem (see Figure 4-1). Current SoC can be estimated in units of A·s at 

every sample instant from previous-instant SoC (SoCpre), working voltage V and sample time T, 

as indicated in 4-11. 

 

        
SoC  SoCpre 

Power

V
T                4-11 

 

The power consumption of a real system can be abstracted to a model in which the 

system power consumption is a piecewise constant function of the execution time. Their 

relationship is illustrated with the example of Figure 4-11 during different intervals. In the 

proposed system, the power consumption depends on the video-decoding task and the active 

OPP caused by the controller.  

 

 

Figure 4-11 Example of the relationship between the system power consumption and execution time 
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From the power-consumption model illustrated in Figure 4-11, the energy E(n) removed 

from the battery between t1 and tn could be calculated as in 4-12. 

 

  

E(n)  Pi  ti
i1

n

            4-12 

 

Where Pi denotes the system power consumption during interval i, ti denotes time interval i, 

and n is the number of elapsed intervals. 

4.3.2 Budget calculator 

Corresponding to the value of SoC, the power-budget generator calculates a suitable 

power budget in order to extend the battery lifetime while keeping a reasonable QoE. A power-

budget profile can describe the relationship between SoC and power budget, i.e., the set-point for 

the closed-loop subsystem. Although even a quasi-continuous function could be used to calculate 

the power budget from the SoC, given the quantized nature of the DVFS-based plant input of the 

closed-loop subsystem, it is more suitable to use a discrete function with no more steps than the 

number of available OPPs. Hence, Table 4-1 shows the general structure of the preset discrete 

power-budget profiler, which can be particularized for different user requirements. A number n 

of SoC thresholds, i.e., SoCTh(i) with i from 1 to n, can be defined such that the power budget is 

changed each time the SoC crosses a threshold. In order to have a good tradeoff between QoE 

and battery lifetime, the power budget should be decreased as the SoC crosses thresholds down, 

like proposed in Table 4-1. It means that, for example after a battery recharge, when the battery 

energy is higher than SoCTh(n), the power budget for the video decoder can be the highest one in 

order to support very good QoE. With the energy state changing, the set-point is dynamically 

changed following the power-budget profile. Thus, for example, when the SoC is in the interval 

[SoCTh(1), SoCTh(2)), a suitable medium-low set-point should be selected. Finally, when the SoC is 

lower than SoCTh(1), the mobile devices should consume as less power as possible in order to 

guarantee battery lifetime. The threshold and set-point values can be adjusted by requirements of 

users. Therefore, depending on feedback power consumption, PCG can generate a power-budget 

profile which supports the set-point of the closed-loop subsystem.   
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Table 4-1 SoC and General Power-Budget Profiler 

 

The ondemand and conservative governors are dynamic Linux cpufreq governors which 

can change the OPPs following the different cpufreq policies. Ondemand and conservative can 

increase or decrease the frequency depending on the workload and some parameters can be set in 

order to decide when changing to another OPP. This is one of the methods to support power 

optimization. However, PCG can dynamically extend the battery lifetime depending on the user 

requirements and maintain it regardless of the complexity of the video sequences, whereas the 

Linux dynamic governors vary the battery lifetime depending on the workload, as it will be 

shown in Chapter 7.  

4.4 Summary  

In this chapter, a control system has been introduced, which includes a closed-loop 

control subsystem and a PCG. Firstly, before designing the system controller, a suitable model of 

the plant has been built. The model of the plant is fixed by analyzing the power consumption 

behavior in OPP switching situations. Once the plant model has been obtained, a system model is 

fixed so that classic controllers can be explored before having a system implementation. 

Proportional (P) and integral (I) controllers, as well as some classic combinations of linear 

controllers, are designed to verify the behavior of the closed-loop control subsystem in 

subsequent chapters. The feedback of the closed-loop control subsystem is based on an OS-level 

estimator which can accurately calculate the estimation power consumption in real time. The 

feedback information is subtracted to the set-point in order to adjust the output close to the 

desired power consumption by means of the controller. At the same time, the estimation value is 

also taken by the PCG to estimate the battery SoC and then generate the power budget to lead the 

set-point. On the other hand, the original Linux dynamic cpufreq governors adjust the OPPs 

SoC  Energy state Power budget  

)(nThSoCSoC   High energy Set-point n (highest) 

)1()(  nThnTh SoCSoCSoC  Medium-high energy Set-point n-1 

             
    

)1()2( ThTh SoCSoCSoC   Medium-low energy Set-point 1 

)1(ThSoCSoC   Low energy Set-point 0 (lowest) 
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depending on the CPU usage, and they can be configured when to change the OPPs. Their 

cpufreq policies can save energy consumption without considering remaining battery. The 

proposed PCG can estimate the remaining battery based on the feedback power estimation and it 

supports multiple and personalized power budget profiles to meet user requirements. 
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Chapter 5 Test bench  

The system proposed in Chapters 3 and 4 is implemented and tested as described in next 

chapters. This chapter presents the test-bench design of the experiments. It starts with an 

overview of the test-bench architecture, which includes an experimental platform and a power 

supply and measurement system, as well as the experimental method. Then, it continues with an 

introduction to the experimental platform from both hardware and software environments, and to 

the power supply and measurement system. Besides, the tool used to access PMCs is presented. 

To integrate the tool interface into the decoder application, the decoder and its reconfigurable 

development environment are also described. 

5.1 Test-bench and methodology overview  

5.1.1 Test-bench architecture  

The architecture of the test bench for the control system is shown in Fig. 5-1.  

  
 
 ( a ) The test bench of  User-level power estiamtion approach 
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( b ) The test bench of  OS-level power estimation approach 

Figure 5-1 Block diagram of the test bench 

 

As it can be observed, the test bench consists of two parts, the experimental platform and 

the power supply and measurement system. The experimental platform includes a multimedia 

application, encoded sequences, a Linux-based operating system, an ARM-based hardware and a 

SD card. As explained in Chapter 3, there are two approaches of power estimation. Figure 5-1 (a) 

shows the experimental platform when using the user-level power estimation approach. If the 

PAPI-based power estimator is considered, the decoder application includes the PAPI interface 

to access the PMCs, as well as the MARS model, which calculates the consumption estimation 

based on PMCs. If the OS-level power estimator is used (Figure 5-1 (b)), the decoder application 

does not need any modifications. The PAPI-based power estimation approach is used only as the 

initial study of accessing PMCs to feedback power estimation, therefore, when the work applies 
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to the real-time control system, the OS-level power estimator is used for the feedback 

information instead of the PAPI-based power estimator. The detail of comparing the two 

estimators will be explained in Chapter 6. In addition, the control system includes a PCG and a 

closed-loop control subsystem where the OS-level power estimator has been included. The PCG 

can emulate the battery discharging and in simulation part it is employed to replace a real 

Lithium-ion battery. And different video sequences are employed to test the control system. In 

the following sections, an expanded description of the experimental platform through hardware 

and software is given. 

The power supply and measurement system is composed of a power source, an 

acquisition system and a digital voltmeter & ammeter. The acquisition system can set the voltage 

in 5 V and control the sampling frequency of digital voltmeter & ammeter. The digital voltmeter 

& ammeter measures the voltage and current supplied by the power source to the experimental 

platform. Then, a data-acquisition system takes samples of the measured voltage and current and 

sends them to a PC-based software, through which the measuring sample time can be configured, 

as well as the output voltage level. The digital voltmeter & ammeter is used to profile the power 

consumption of the whole experimental platform. A detailed description of the power supply and 

measurement system is provided in Section 5.3. 

5.1.2 Experimental methodology  

The control system relies on the online real-time power estimation which feeds the power 

consumption of the application back. Therefore, the ideal way to address the control system is to 

build a complete power-centric system with the power accounting module properly implemented.  

The experimental methodology is explained in Figure 5-2. Two different approaches have 

been considered to get power consumption estimations prior to the the final control-system 

implementation. The first approach (Figure 5-2①) is based on a user-level implementation 

through a third-party library, PAPI, which is used as the PMC driver and is included into the 

user-level decoding application to read PMC event counts after decoding every frame. Besides, a 

second alternative approach (Figure 5-2②) is added: in order to decouple the user application 

from the power control system, the power estimator is moved from the user level to the OS, 

which accesses directly and periodically the PMCs for carrying out the estimation task at kernel 

level. The OS-level estimator is used to feedback the power consumption estimation. 
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Figure 5-2 Overview of the Experimental Methodology 

The methodology includes three parts. The first part focuses on the power estimation of 

decoder application while decoding different video sequences; the second part is to design and 

test different controllers within the closed-loop control subsystem; and the third part is to add the 

PCG, which will generate different power budget profiles in order to lead the set-point of the 

closed-loop control system. 

In the first part, each sequence is individually decoded on the experimental platform; and 

in the meantime, the power consumption is profiled via the power measurement unit that 

periodically samples the voltage and current of the experimental platform. After repeating this 

process for those sequences, the power consumption of all sequences can be obtained. Besides, 

the PMCs of PuC when decoding every sequence are also recorded. Based on PMCs and power 

consumption, the generally applicable power estimation model was built at the end of the first 

part. In the second part, different classic controllers have been introduced to the closed-loop 

control subsystem, and it has been tested on the experimental platform to validate the results of 

the controllers. In the third phase, the PCG has been added to the system in order to generate 

suitable power budget profiles, which will generate the set-point for the closed-loop controllers.  
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5.2 Experimental platform 

   To implement and analyze control algorithms for energy optimization, a simple and low-

cost single-core multimedia platform was chosen in a first approach. After knowing how the 

control system works in the single-core hardware, the control algorithms can be enhanced to be 

tested in multi-core platforms. Besides, in order to focus on energy optimization of the single-

core devices, less peripheral circuits and functions will be able to interfere into the energy 

consumption. What’s more, the hardware should support the DVFS and PMC mechanisms. 

Hence, the hardware for the experiments is a commercial board named BeagleBoard [66], which 

runs the Ubuntu Linux operating system with the control system implemented in the kernel. In 

the remaining of this section, the experimental platform will be introduced from two aspects: the 

hardware and the software environments.   

5.2.1 The hardware environment 

As introduced above, the test bench is based on a single-core hardware development 

platform for multimedia embedded systems: BeagleBoard. Its features are listed in Table 5-1.  

 

Table 5-1 Features of BeagleBoard 

Component Features 

Processors 

                                              One ARM Cortex-A8 core 
Digital Signal Processor (DSP) 
Image and Video accelerator 
Image Signal Processor (ISP) 

2D/3D graphic accelerator 
Memory 512 MB LPDDR RAM ,SD/MMC Card Cage 

Indicators 
Power 2-User Controllable 

PMU  

Connector 

Video Audio 

DVI-D 
S-Video Connector 

LCD Expansion Connector 
L+R Stereo out, L+R Stereo In 

10/100 Ethernet  

USB Port USB 2.0 OTG Port, USB Host Ports 

Expansion 
General Purpose Expansion (I2C, USB, MMC,DSS...) 

Camera Expansion Connector 

Debug                                    14 Pin JTAG, UART/RS-232 Port, GPIO Pins 

User Interface Switches, Reset Button 

 



56 
 

A general description of the BeagleBoard architecture is given in Figure 5-3. As shown in 

Figure 5-3, the BeagleBoard features an OMAP 3530 system-on-chip, which includes a 720 

MHz ARM Cortex-A8 CPU for general purpose computation and a TMS320C64x+ DSP for 

accelerated multimedia applications. Built-in storage and memory is provided for the OMAP 

3530 through a Package-On-Package (POP) chip that includes 256MB of NAND flash and 

256MB of SDRAM. Additional memory can be added to the BeagleBoard by installing a SD or 

MMC card in the SD/MMC slot, or driving a USB thumb drive or hard drive through the USB 

OTG port and the EHCI USB port. The TPS65950 is a power management chip (PMIC) that 

provides different power domains and clock frequencies to the BeagleBoard, its 5V power source 

can come from the USB OTG port connected to a PC powered USB HUB, or a 5V DC supply. 

Besides, TPS65950 also provides stereo audio in and out. The video output of the BeagleBoard 

is provided through a separate S-Video connector and a DVI-D connector that can partially 

support High-Definition Multimedia Interface (HDMI). In addition, BeagleBoard provides a RS-

232 serial connector, a Join Test Action Group (JTAG) connector, and an expansion connector.  

 

      

                 Figure 5-3 Block Diagram of BeagleBoard 

 

The functions of the BeagleBoard can be divided into four categories: computation, 

storage, I/O, and communication. Note that the communication unit and the I/O unit are 

combined together due to the lack of specific physical interface for network communication. But 
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there are several USB to network adapters on the market that can add Ethernet, Wi-Fi or 

Bluetooth connectivity to the BeagleBoard by using the EHCI USB port or the USB OTG port in 

the host mode.  

In this thesis work, not all functions and devices of the BeagleBoard are employed for the 

experiments. To simplify the work and focus on the energy consumptions caused by the ARM 

Cortex-A8 CPU, the memory subsystem, and the related I/O buses, the BeagleBoard has been 

configured as a minimal system that disables the unnecessary components such as the display 

and network subsystems.  

5.2.2 The software environment 

The Ubuntu Linux is a special Linux distribution that is tailored for embedded systems 

and shipped with the BeagleBoard. A full package of the Ubuntu distribution images includes an 

X-loader (MLO), a U-boot (u-boot.bin), a Linux kernel image (uImage), and a Linux root 

filesystem. To boot the Ubuntu Linux on the BeagleBoard from SD card, the SD card has been 

formatted into two partitions, with the X-loader, U-boot and uImage held in the first partition and 

the Linux root filesystem held in the second partition. The procedure of Linux booting is as 

follows: when the BeagleBorad is powered on, the ROM program loads and executes the X-

loader, which further loads the U-boot and executes it; the U-boot reads its commands and loads 

the Linux OS kernel image with the U-boot commands as arguments; once the kernel image is 

fully loaded to the memory, it is uncompressed and begins the initialization procedure; at certain 

point of the kernel initialization, the kernel mounts the root filesystem partition based on the U-

boot commands; after the Linux OS is fully booted, a login interface appears and the system is 

ready for use.  

In this work, a Linux 3.8.0 kernel, patched to support the platform DVFS mechanism, is 

running in the processor. The DVFS subsystem is managed through the cpufreq Linux driver. As 

already addressed in the previous chapter, this driver includes four predefined governors to fix 

the MPU OPP, two static and two dynamic, which react to the system load. This is achieved by a 

function called cpufreq_driver_target, one of whose input parameters is the target frequency of 

the desired OPP to switch to. This function searches the target frequency among the ones of the 

OPPs defined in an internal table and selects the appropriate one by applying a ceil- or a floor-

rounding algorithm, depending on another input parameter. The function then sets the frequency 
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and the voltage corresponding to the selected OPP. The default cpufreq definitions for the 

BeagleBoard only consider 6 OPPs. In order to decrease this strong nonlinearity in the DVFS-

based plant input, additional valid OPPs were searched. The BeagleBoard supports voltage 

scaling from 0.6V to 1.45 V with a step of 12.5 mV. After verified all possible pairs of frequency 

and voltage, there are 27 valid OPPs. The characteristics of these 27 OPPs are shown in Table 5-

2. The first column is the OPP number, whereas the frequency and voltage of each OPP are 

indicated in the second and third column, respectively. Besides, running the decoder application 

to decode the 78 sequences under each OPPs while measureing the power consumption of the 

board. The measured average current consumption for every OPP is listed in the fourth column. 

Table 5-2  OPP data 

No. MHz    V  A  No. MHz V     A 
1 125 0.981 0.186  15 430 1.156 0.245 
2 200 0.933 0.197  16 500 1.168 0.259 
3 210 1.006 0.199  17 510 1.181 0.263 
4 220 1.018 0.201  18 520 1.193 0.266 
5 240 1.031 0.205  19 530 1.206 0.270 
6 250 1.043 0.207  20 540 1.218 0.274 
7 270 1.056 0.211  21 550 1.230 0.278 
8 290 1.068 0.215  22 560 1.243 0.282 
9 310 1.081 0.219  23 570 1.256 0.288 
10 330 1.093 0.224  24 580 1.280 0.290 
11 350 1.106 0.228  25 590 1.293 0.297 
12 370 1.118 0.233  26 600 1.306 0.301 
13 390 1.131 0.236  27 720 1.306 0.327 

14 410 1.143 0.241 

 

5.2.3  Cpufreq governors 

As a special part of the Linux kernel, the DVFS mechanism, which acts on the plant, is 

managed through the cpufreq Linux driver. This driver includes four predefined governors to fix 

the MPU OPP, two static and two dynamic, which react to the system load. In the initial version 

of Linux kernel, the cpufreq driver only offered the CPU to be set to a fixed frequency. Only the 

two static governors “powersave” and “performance” were patched in, which set the frequency 

statically to the lowest or highest frequency, respectively. Since kernel 2.6.9, “ondemand” and 

“conservative” governors have been added, such that they can dynamically scale the CPU 

frequency up or down in order to save power. The procedure of cpufreq scaling is shown in 
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Figure 5-4 [51]. In order to achieve dynamic frequency scaling, the cpufreq core should be able 

to tell the cpufreq driver a “target frequency”. So the cpufreq driver was transformed by cpufreq 

core to offer a "->target/target_index" call instead of the existing "->set policy" call. Through 

cpufreq governors the frequency within the cpufreq policy can be decided. 

 

 

Figure 5-4 Procedure of cpufreq scaling [51] 

5.2.3.1 Ondemand governor 

The cpufreq ondemand governor sets the CPU depending on the current usage and CPU 

must have the capability to switch the frequency very quickly. Below are the main accessible 

parameters of ondemand governor: 

sampling_rate: The sampling rate is measured in microseconds, which indicates how often 

the kernel monitors the CPU usage and makes decisions on what to do.  Sampling rate is adjusted 

by considering the frequency transition latency, which default value is transition_latency * 1000. 

Sampling_rate_min: The sampling rate is limited by the hardware transition latency and 

its default value is transition_latency * 100. 

up_threshold: The parameter defines the threshold value, which means when the average 

CPU usage is higher than the defined value during the sample time, the frequency will be 

increased. For example, when the up_threshold is set as 95, this means that within a checking 

interval, if the average usage of CPU is larger than 95%, the CPU frequency will be increased. 
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ignore_nice_load: This parameter takes 0 or 1. When it is set as the default value 0, all 

processes are counted towards the CPU utilisation value. Otherwise, when it is set as 1, the 

processes that are executed with a nice value will not be counted in the overall usage. 

sampling_down_factor: This parameter controls the rate at which the kernel makes a 

decision on when to decrease the frequency while running at top speed. When it is set as the 

default value 1 decisions to revaluate load are made during the same interval regardless the 

current clock speed. When it is set greater than 1, it acts as a multiplier for the scheduling 

interval for revaluating load when the CPU is at its top speed. This improves performance by 

reducing the overhead of load evaluation and helps the CPU to stay at its top speed when the 

workload is heavy, rather than shifting back and forth in speed. This parameter has no effect on 

behavior at lower speeds/lower CPU loads. 

powersave_bias: This parameter takes a value between 0 and 100 which defines the 

percentage (times 10) value of the target frequency that will be saved off of the target. For 

example, when it set to 100, instead of setting the target frequency to 1000Mhz, ondemand 

governor will target 1000MHz-(10%* 1000MHz)=900MHz. This is set to 0 (disabled) by default.  

5.2.3.2 Conservative governor 

The cpufreq conservative governor works similar to ondemand governor, which sets the 

CPU frequency depending on the current usage. However, the behaviour of conservative 

governor increases and decreases more gracefully the CPU speed rather than jumping to the 

highest speed while the workload is variable.  Below are the main accessible parameters of 

conservative governor: 

freq_step: This parameter describes what percentage steps the cpufreq should be smoothly 

increased and decreased. The default value is 5 which means CPU frequency will increase in 5% 

chunks of the maximum CPU frequency. The value of freq_step can be set between 0 and 100, in 

which 0 will effectively lock the CPU at a fixed speed regardless of its load, while 100 means the 

conservative governor will work the same as ondemand governor. 

down_threshold: The parameter defines the threshold value, which means when the 

average CPU usage is lower than the defined value during the sample time, the frequency will be 

decreased. For example, the default value is 20, which means if the CPU usage is less than 20% 

during every sample time, the frequency will be decreased. 
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          sampling_down_factor: This parameter controls the rate at which the kernel makes a 

decision on when to decrease the frequency while running at any speed. 

5.4 Power supply and measurement system  

The power supply and measurement system is based on commercial equipment from Agilent, 

i.e., Agilent 66321D [67]. As it has been mentioned in the architecture overview of the test-

bench, the power supply and measurement system consists of three functional modules: a power 

source, a digital voltmeter & ammeter and a PC-based acquisition system. The block diagram of 

the power supply and measurement system is shown in Figure 5-4.  

 

 

Figure 5-5 Block diagram of the power supply and measurement system 

 

Agilent 66321D internally includes a digital voltmeter & ammeter and a power source. 

The power source supplies power to PuC while the digital voltmeter & ammeter measures the 

supplied current and voltage. Besides, the acquisition system controls the sampling frequency 

and the voltage output, which is fixed in a level of 5V to power on the BeagleBoard. To build the 

power measurement system, the PC and the Agilent 66321D are connected through a USB to 

General-Purpose Interface Bus (USB-GPIB). The voltage value chosen from the acquisition 
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system is programmed into the power supply via the USB-GPIB. In the meantime, digital 

voltmeter & ammeter measure the voltage and current values of the PuC. Again, through the 

USB-GPIO interface, the acquisition system can configure the measuring frequency of the digital 

voltmeter & ammeter and obtain the voltage and current samples from it.  

The software user interface of the Agilent acquisition system is shown in Figure 5-5. On 

the left, the output voltage option is to set the voltage via the USB-GPIB interface (see in Figure 

5-5①). The integration time option is used to set the sample time of digital ammeter, and in this 

thesis work, the sampling period is set as 5 milliseconds (see in Figure 5-5②). At the middle of 

the window, measured current is shown in real time and the historical data can be saved (see in 

Figure 5-5③).  

 

 

Figure 5-6 Software user interface of Agilent acquisition system 
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5.5 PMC Programming Tool 

As section 3.2.1 has introduced, the tool used to access PMC in this thesis work is PAPI. 

PAPI can easily and directly access PMCs from the application level. Besides, the interface of 

PAPI is the same for all platforms so that it is widely used. PMCs. Based on Ren et al. [14], 

PAPI is used as the initial approach to access PMCs. As it can be seen in Figure 5-6, PAPI can 

be divided into two layers of software.  

  

Figure 5-7 PAPI structure 

The upper layer is a portable layer that consists of the API in low level and high level, as 

well as machine independent support functions. High-level interface is used for collecting simple 

measurements and it simply provides the ability to start, stop and read specific events, one at a 

time. Low-level interface is directed towards users with more sophisticated needs, it deals with 

hardware events in groups called EventSets. EventSets reflect how the counters are most 

frequently used, such as taking simultaneous measurements of different hardware events and 

relating them to one another. For example, relating cycles to memory references or flops to level 

1 cache miss can indicate poor locality and memory management. In addition, EventSets allow a 

highly efficient implementation, which translates to more detailed and accurate measurements. 

EventSets have features such as guaranteed thread safety, writing of counter values, multiplexing 

and notification on threshold crossing, as well as processor specific features. Both a high-level 

and a low-level interface and are implemented on a number of Linux platforms and the latest 

release now provides support for ARM Cortex A8, which is the platform used for this work.  The 

lower layer is a machine specific layer that defines and exports a machine independent interface 

to machine dependent functions and data structures. These functions access the substrate, which 
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may consist of the operating system, a kernel extension or assembly functions to directly access 

the processor registers.  

PAPI only monitors the hardware events that are occurrences of specific signals related to a 

processor’s function, such as cache misses and floating point operations while the program 

executes on the processor. Each processor has a number of events that are native to that 

architecture. PAPI provides a software abstraction of these architecture-dependent native events 

into a collection of preset events that are accessible through the PAPI interface. Preset events are 

a common set of events deemed relevant and useful for application performance tuning. They are 

typically found in many CPUs that provide performance counters and give access to the memory 

hierarchy, cache coherence protocol events, cycle and instruction counts, functional unit, and 

pipeline status. A preset can be either directly available as a single counter or derived using a 

combination of counters. PAPI defined approximately 100 preset events for CPUs, but some of 

them may be unavailable on certain platforms. For a given platform, some preset events can be 

counted through both the high- and low-level interfaces of the portable layer. PAPI provides 

access to native events on all supported platforms through the low-level interface. Even if there 

is no preset event available, native events can still be accessed directly. Table 5-3 lists the native 

events which are directly accessed from a single event in Cortex A8 processor, the one employed 

in this work. Derived events that use more than one event at the same time could intensify the 

limitation of the simultaneous PMCs number. In order to avoid too much overhead, only native 

events are used in this dissertation. 

Table 5-3 Common Preset Events of Cortex A8 processor 

 

Events Events Description 

Cache access 
PAPI_L1_DCA L1 data cache accesses 
PAPI_L1_DCM L1 data cache misses 
PAPI_L1_ICM L1 instruction cache misses 

Conditional 
branching 

PAPI_BR_MSP Conditional branch instructions mispredicted 
PAPI_BR_INS Branch instructions 

Instruction counting 
PAPI_TOT_INS Instructions completed 
PAPI_TOT_CYC Total cycles 

Data access 
PAPI_SR_INS Store instructions 
PAPI_LD_INS Load instructions 

TLB operations 
PAPI_TLB_DM Data translation lookaside buffer misses 
PAPI_TLB_IM Instruction translation lookaside butter misses 

Access 
PAPI_L1_ICA L1 instruction cache accesses 
PAPI_L2_TCM L2 total cache accesses 
PAPI_L2_TCM L2 total cache misses 
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Conditional 
branching 

PAPI_BR_TKN Conditional branch instructions taken 

Instruction counting PAPI_STL_ICY Cycles with no instruction issued 

 

5.6 Decoder application 

5.6.1 MPEG-4 part2 

Due to the hardware limitations of BeagleBoard, too complex video decoder standards 

cannot be executed on it, therefore MPEG-4 part2 standard [68]-[70] is employed. All the test 

video sequences come from the JVC conformance sequences. They are widely used in research 

and display a wide variety as far as the amount of spatial detail and movement concerns.  

MPEG-4 is a video-coding standard designed for rich multimedia. It provides various 

codec tools with good compression capability. MPEG-4 uses a number of technologies such as 

shape encoding and adaptive discrete cosine transform (DCT) to improve the coding efficiency. 

MPEG-4 Part2 is a DCT based standard defined to provide high compression efficiency with 

some compression tools such as combination of motion-compensated prediction and scalar-

quantized DCT coefficient coding [68]. Video applications are ranged from low-quality and low-

resolution requirements to high definition preference; thus, video standards are structured in 

profiles with a set of capabilities in a manner appropriate for various applications. Each profile is 

declared with different code in the encoder to allow a decoder to recognize the applied 

constraints and requirements to correctly decode the stream. MPEG-4 Part 2 has 21 profiles 

ranging from simple one to advanced one. Among them, the simple profile (SP) has been 

implemented in the video decoder source code. SP is designed for applications that are 

constrained by low bit rate and low-resolution conditions.  

5.6.2 Decoder development environment 

Since the PAPI interface needs to be included into the decoder, it should be reconfigured. 

Table 5-4 lists the tools and libraries used for building the decoder development environment. 

Table 5-4 Tools and packages used for building the decoder application 

Tools and Libraries               Functionalities 
ORCC A plugin for Programming languages translation 
SDL An open source library to facilitate multimedia implementation 
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Cmake 
An advanced platform-crossed compilation tool for source code management and 
compilation 

Eclipse  An integrated development environment  
Java-JRE and Java-JDK Support for Java running environment and development environment 

 

Orcc is an open-source Integrated Development Environment based on Eclipse and 

dedicated to dataflow programming. The primary purpose of Orcc is to provide developers with 

a compiler infrastructure to allow software/hardware code to be generated from dataflow 

descriptions. Orcc does not generate assembly or executable code directly; rather it generates 

source code that must be compiled by another tool. 

SDL is a simple open source cross-platform library designed to provide a common 

abstract layer to hardware components via OpenGL and Direct3D [71]. SDL officially supports 

Windows, Mac OS X, Linux, iOS, and Android. SDL is designed in C language and provides 

several low level controls on images, audio, and I/O peripherals and currently is widely used for 

developing games, simulators, media player, and other multimedia applications.  

CMake is an open-source, cross-platform family of tools designed to build, test and 

package software. It is also used to control the software compilation process using simple 

platform and compiler independent configuration files, and generate native makefiles and 

workspaces that can be used in the compiler environment.  The configuration file of Cmake is 

named as CmakeLists.txt, which is a set of Cmake scripts to manage all the components of the 

project. Instead of directly building the final executable file, it can generate the standard build 

files, and then it executes the application in accordance with general compilation approaches. 

Another feature of Cmake is to support directory hierarchies and applications that depend on 

multiple libraries [72]. The main goal to use Cmake in this thesis is to compile and install the 

decoder in the target environment. What’s more, Cmake is more like a tool to facilitate source 

code management and compilation rather than a compiler. Cmake is OS-dependent and the 

calling of a real compiler is embedded into the configuration file of Cmake. For Linux-based 

platforms, GCC-based method is the most widely used tool to obtain the executable files.  

Eclipse IDE is an open source community of tools, projects and collaborative working 

groups. ORCC is implemented in Java as an Eclipse plugin. In this work, depending on user 

needs, Eclipse IDE packages either for C/C++ developers or for Java developers can be 

employed. Meanwhile, ORCC requires a Java environment. The Java Runtime Environment 
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(JRE) is required with at least the version 1.6. of Sun's JRE. OpenJDK is recommended on Linux 

[73].   

5.7 Summary 

This chapter presents the experimental test bench and experimental methodology that is 

employed to implement and verify the proposed control system. The experimental test bench is 

composed of two parts: the experimental platform and the power supply and measurement 

system. The hardware of the experimental platform is a single-core multimedia device: 

BeagleBoard. The main features of the board have been listed and since the work of this thesis 

focuses on controlling the power consumption caused by the ARM Cortex-A8 CPU, the 

BeagleBoard has been configured as a minimal system that disables the unnecessary 

components, such as the display and network subsystems. The BeagleBoard runs Linux 3.8.0 

kernel, patched to support the platform DVFS mechanism, in which additional valid OPPs were 

added. 

The power supply and measurement system is used to supply the experimental platform 

and measure its power consumption. It is composed of three functional modules: a power source, 

a digital voltmeter & ammeter and a PC-based acquisition system. The acquisition system can 

configure the output voltage and control the sampling frequency, thus, the software user interface 

of Agilent acquisition system has been shown to explain how to configure these options. The 

digital voltmeter & ammeter can measure the voltage and current of the whole PuC and return 

the values to the acquisition software. PC and power supply are connected through a USB-GPIB 

interface, which is a communication bridge. 

In this thesis work, there are two approaches of power estimator. The first approach is a 

PAPI-based power estimator, for which the PAPI interface should be integrated into the decoder 

to access the PMCs from userspace. Besides, the decoder application also includes the MARS 

model that calculates the consumption estimation based on PMCs. Apart from introducing the 

MPEG4 part2 decoder application, those tools and packages used for compiling the decoder 

application have also been introduced. The second approach is the OS-level power estimator, for 

which the decoder application does not need any modifications. The PAPI-based power 

estimator approach is used as the initial way to address the PMC access. Comparing with OS-

level estimator, PAPI-based estimator has some limitations that make it not suitable to be applied 

into the control system. The comparing process is explained in next chapter. Then, the OS-level 
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power estimator is decided to be used as the final feedback source instead of the PAPI-based 

power estimator.  
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Chapter 6 Simulation and implementation  

In this chapter the method to simulate and implement the control system is presented. The 

implementation of the control system consists of three main parts: the power estimator, the 

closed-loop control subsystem and the PCG. To manage the estimator to feedback power 

consumption, an estimation model has been explained in Chapter 3, which is based on PMCs. 

Besides, two approaches of building power estimators have also been introduced in order to 

describe the process of implementation. The process of simulation and implementation of 

different controllers in the closed-loop control subsystem will be described, as well as the 

features of the control system. Finally, the PCG, which includes a battery SoC estimator and a 

power budget profile, will be explained in detail.  

6.1 Platform PMC and DVFS enabling 

The particular details of the embedded hardware/software platform used in this thesis were 

described in Chapter 5. As already mentioned in Chapter 5, a low-cost development board was 

adopted for the test-bench application platform. Since the focus of the work is firstly on the 

control system, the decision on the chosen board was more based on aspects like easy DVFS and 

PMC accessibility or open hardware/software, than on others like computational performance. 

Hence, some of the main features of the platform are the following. 

The OS is based on Linux kernel 3.8.0 patched to support the DVFS mechanism, which is 

managed through the cpufreq Linux driver. In order to enable the PMC, the below configurations 

should be followed. One is enabling performance events and counters, and other is enabling 

OMAP 3 debugging peripheral to enable the according hardware. Besides, the option of generic 

dynamic voltage and frequency scaling support should be selected to enable DVFS. 

The Linux performance event subsystem provides a framework for collecting and analyzing 

performance data. These events will vary based on the performance monitoring hardware and 

software configuration of the system. Besides, it provides per task and per CPU counters, and it 

provides event capabilities on top of those. The Linux performance events and counters are 

selected to enable the kernel support for various performance events.  



70 
 

6.2 PMCs access 

PMC is widely implemented in majority modern processors. In this work, two different 

approaches have been considered to obtain PMCs prior to the estimator implementation. The first 

approach is based on a user-level implementation through a third-party library (Performance 

Application Programming Interface – PAPI), which is used as the PMC driver and is integrated 

into the user-level decoding application to read PMC event counts after decoding every frame. 

The second approach: in order to decouple the user application from the power control system, 

accessing PMCs is moved from the user level to the OS, which accesses directly and periodically 

the PMCs for carrying out the estimation task at kernel level.  

6.2.1 PMC implementation based on PAPI 

PAPI functions should be integrated in decoder to take PMC event samples when decoder is 

being executed. Figure 6-1 shows the decoder whith PAPI function calls to monitor PMCs have 

been inserted in. As it can be seen, after initializing the decoder, PAPI starts to access PMCs, and 

after a number of frames are decoded, a stop signal sent from the display actor stops accessing 

PMCs. The number of decoded frames can be set depending on the users requirements, which 

mean the period of monitoring PMCs is fixed on demand. Then the PMCs data are stored in an 

array for next work. 
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       Figure 6-1 PAPI Tool Integration 

As the initial approach, PAPI is used to count events by reading the PMCs before and after a 

performance-critical region of code. The application is a multimedia decoder, which can decode 

videos frame by frame. PAPI functions are inserted before and after the frame-decoding code. 

Figure 6-2 shows the flow chart of using PAPI. 
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Figure 6-2 Flow chart of using PAPI 

In order to initialize PAPI, the functions PAPI_library_init, which initializes the PAPI 

library, and PAPI_get_hardware_info, which gets information of the system hardware, are 

inserted into the decoder. Then, to configure PAPI, several functions are needed, such as 

PAPI_multiplex_init, which initializes multiplex support in the PAPI library; 

PAPI_create_eventset, to create a new empty PAPI event set; PAPI_set_multiplex, which 

converts the created event set to a multiplexed event set. Then it is needed to check the overflow 

of PAPI counters, which can set up an event to begin registering overflows. 
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PAPI_get_event_info can get the name and description for a given preset or native event code. 

Chapter 3 has introduced the method of selecting power-related events, which can be added 

though PAPI_add_event function. PAPI_add_event (int EventSet, int Event) only adds single 

PAPI events to an event set, then, PAPI_enum_event will return the event code for the next 

available present or native event. After the selected events are all added in the set, 

PAPI_get_real_usec is inserted before and after PAPI counting in order to return the total 

number of microseconds since the starting point. PAPI only supports thread monitoring, which 

means PAPI will not inherit the counting information or values from the parent threads that can 

distinguish individual threads; it will not confuse the parent thread with other child thread. 

PAPI_start starts counting hardware events in an event set, while PAPI_stop will stop counting 

hardware events in the event set. In this work, PAPI counts the events during the decoding of a 

frame, then, it will continue counting for the next frame and recording the data in a file until all 

the frames have been decoded, i.e., the frame number i exceeds f_num_max, which is the 

maximum frame number of a sequence. 

PAPI monitors the PMC counters between frames, and the frame time is variable. The 

recorded data of PMCs and frame time can be used to estimate power consumption. However, 

the sampling time of the real-time control system has to be fixed and, therefore, PAPI is only 

used as an initial access to PMCs from userspace and it can help in validating the final 

implementation.  

6.2.2 PMC driver in kernel space 

In order to synchronize the PMC access time with the sampling time of the control system, a 

PMC driver has been inserted into the Linux cpufreq driver as part of a governor, Figure 6-3 

shows the flow chart of PMC driver. The real-time sampling period is synchronously set to 

T=100 ms in all the control system modules in order to meet the time requirements of the 

mathematical model, as explained in Chapter 4. 
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Figure 6-3 Flow chart of using PMC driver 

PMC driver includes two main parts, one is initializing the related registers, and another is to 

monitor and record PMC counters. In the initialization part, PMNC register is read and the 

number of PMC registers is checked whether it is equal to 4 (ARM Cortex-A8 in Beagleboard 
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features 4 PMC registers), if not, there is an error, otherwise, the PMNC register is configured to 

control the operation of the four PMC registers and the cycle counter register. Figure 6-4 shows 

the bit arrangement of the PMNC register. The bits [31:24] are preset to 0x41 which means the 

processor is ARM; [15:11] are preset to 0x4 in order to fix the number of available PMC 

counters; D bit is set to 1 to count every 64th processor clock cycle; C bit is set to 1 in order to 

reset cycle counter (CCNT); P bit configured to 1 means reset all performance counters to zero; 

E bit also set to 1 enables all counters including CCNT. 

 

 

Figure 6-4 Bit arrangement of the PMNC register 

 

Then, the procedure enters a checking where the number of counters is issued, if for any 

reason it is larger than 4, the number of counters is reset as 4. Otherwise, enable CNTENS so 

that PMC is enabled. After that, the procedure enters a loop to select performance counter (select 

PMNXSEL) and event (enable EVTSEL), then it resets the performance counter (reset PMCNT) 

until the 4 PMCs are all accessed. After the previous loop, the cycle count is reset (reset CCNT), 

CNTENS is set to enable PMCs, and the overflow flag is reset. Then INTENS is disabled to 

make sure there is not overflow. Once the initialization part is finished, the next part is executed 

periodically. First, the overflow flag is read; if there is not an overflow, a time stamp starts to 

record the period time of accessing PMCs. Then the loop enters in a loop for accessing PMCs, 

the counters are selected and PMCNT is read to know its value. The data of counters is recorded 

in an array for the further work, and PMCNT is reset after previous work. After the four PMCs 

are recorded, the cycle count will be read, recorded and reset.  

6.3 Power consumption estimator 

The first phase of the estimator implementation consists on identifying the set of events, 

which are most significant with respect to the power estimation. This is achieved by a filtering 

procedure that has been explained in Chapter 3. Table 6-1 lists the events resulting from the filter 

procedure.  
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Table 6-1 Selected Events and Functionality [74] 

Event names Description 

L2_TCM Level2 total cache misses 
TLB_IM Instruction translation look aside buffer misses 
BR_TKN Conditional branch instruction taken 
SR_INS Store instructions executed 
TOT_CYC Total cycles 

 

In the Beagleboard environment, five events, L2_TCM, TLB_IM, BR_TKN, SR_INS and 

TOT_CYC are finally selected as the events that are highly related with power consumption.  

L2_TCM:  A significant percentage of stall cycles might lead to cache misses [75] which 

means it costs more power consumption than when obtaining useful data, therefore, L2_TCM 

should be included in the selected events. 

TLB_IM: Level 2 cache can indicate the affections of instruction and data misses. TLB 

misses have greater influences on power consumption due to the processor needs to handle 

memory page table, therefore, TLB_IM is related with power consumption. 

BR_TKN: If branch prediction fails, the pipeline will no longer wait for new instructions 

filling, which is important to CPU stalls and effects power consumption. 

SR_INS: The store instruction can monitor the data write/read operations in any layer, which 

should be taken into account in affecting power consumption. 

TOT_CYC: The number of cycles indicates a basic principle that is the application power 

tendency is depending on its execution time. Although the predication is not quite precise, it also 

descripts the high relation with power consumption.   

Once the list of significant events is obtained, the MARS method is applied to estimate 

power consumption from PMC event counts. The power models have been adjusted and tested 

with all the available test sequences against 27 OPPs.  

6.3.1 Estimation model 

The model is build based on MARS method that was already introduced in Chapter 3. In 

order to calculate the coefficients between PMCs and power consumption, 78 video sequences 

have been used to model the power consumption of the decoding system. They are a subset of 

the conformance-test bit streams of the MPEG-4 part 2 simple profiles as part of ISO/IEC 

14496-4 standard and which can be downloaded from [76]. The power consumption and PMCs 

of the 78 sequences are used to build 78 models, which are then used to estimate the power 
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consumption of other sequences. The average absolute percentage error (AAPE), which is the 

percentage of the difference between the estimated consumption and the measured power 

consumption, is calculated to show the accuracy of models as equation 7-1. 
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Where tx  is the measured value, tx̂ is the estimated value, and n is the number of the fitted 

points, i.e., the number of frames of this sequence or the number of samples. 

The AAPE between estimate power consumption and real power consumption of those 

78 models can be identified in Figure 6-5.  

 

Figure 6-5 Errors of 78 models 

The brown color means the error is higher than 40%, the orange part means the error is 

between 10% and 40% and the green one indicates the error is less than 10%. From the initial 

approach to build the model, it can be seen that the brown color occupies a great part of the 

figure, which means models results are not good enough.  

Therefore, a new way to rebuild the model should be explored in order to reduce the error. 

The 78 different test sequences belong to 5 resolution groups and their resolutions are: 16x16, 
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144x80, 288x176, 176x144 and 352x288. The number of sequences belonging to each of the 5 

resolution groups is listed in Table 6-2. 

        Table 6-2 Resolution distribution 

Resolution Number of sequences 

16x16 2 
144x80 2 
288x176 4 
176x144 10 
352x288 60 

 

Another approach is to mix the 78 sequences by resolutions, which means to classify the 

78 sequences in 5 group arrays corresponding to their resolution, and the PMC values and power 

estimation value of each sequence can be assumed as an element. Taking out one element from 

each of the 5 arrays and integrating the corresponding 5 elements as a new element that can also 

be considered as a new mix sequence, the number of mixed sequences is 

96006010422  . Then the new mixed sequences are used to rebuild the model. Figure 

6-6 shows the AAPE among those mixed sequences. 

 

      Figure 6-6 Model errors of mixed sequences 
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Since it has a larger green surface, Figure 6-6 shows that the results are better than with 

previous models. Line 4752 corresponds to the selected model which has the smallest average 

error, that is, 2.36%.  

6.3.2 PAPI-based estimator  

PAPI functions have been integrated into the decoder source code in order to periodically 

record PMCs counters, and estimation functions have been also inserted into the decoder to 

calculate the power consumption estimation by using the MARS model parameters. Then, the 

source code is recompiled to build the decoder. While the decoder is executing, the sequences 

will be decoded and the PMCs data and the power consumption estimation will be recorded. 

Since the control system is applied into the kernel space, the estimation value, which is produced 

in user space, is sent to the kernel space. That means if PAPI-based estimator cooperates with 

control system, communication between user space and kernel space is necessary. To send the 

estimation values, the system call interfaces should be added into the operating system and 

decoder application.  

6.3.3 OS-level estimator 

Now, the MARS-based estimator is implemented inside the Linux kernel, specifically in one 

of the cpufreq governors in order to have also an easy access to the DVFS facilities. The 

governor code has been modified to get real-time power estimations of the PUC. The migration 

of the user-level implementation to this new kernel-level one has implied two main challenges, 

which have been successfully overcome: the first is the lack of PAPI support within the kernel, 

whereas the second is the need of using integer numbers instead of floating-point ones. 

In the final implementation, a kernel thread has been created and the performance 

monitoring unit (PMU) of the MPU has been configured by means of specific assembler 

instructions to read the selected event counts from PMCs. Besides, an endless loop was included 

into the kernel thread such that it repeats periodically the estimation procedure with a delay 

period of 100ms. With this period, the estimation and DVFS overhead has been measured to be 

less than 3%. In each loop iteration, the PMC values are sent to the MARS module to calculate a 

power estimation sample. The estimation samples are written into a file for off-line validation 

purposes, and also are used as real-time feedback samples in the final closed-loop control 
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system. It is worth noting that this OS-level implementation runs transparently in the cpufreq 

governor while the video decoder is executed at the user level. 

6.3.4 Comparison of both estimators 

PAPI is easily used to directly access PMCs and it can easily be applied to different devices, 

therefore, PAPI-based estimator was the initial approach for estimating power consumption. 

Besides, as another approach, OS-level estimator allows the OS to obtain accurate power 

consumption estimations of a video decoding task in a multimedia mobile device. Comparing the 

two estimators, the OS-level estimator has some advantages: the OS-level estimator can run 

without interfering with the user-level decoding application; related to this, whereas PAPI-based 

estimations have to be calculated on a video-frame time basis, the sampling frequency of the OS-

level estimator can be freely fixed; furthermore, the OS-level infrastructure avoids the need of 

user signals to the OS for DVFS commands. Besides, the OS-level average estimation error is 

lower than with PAPI-based estimator, which is presented in Chapter 7. For these reasons, OS-

level estimator is a good approach to be used as the feedback unit of the real-time closed-loop 

control system which is aimed to be implemented to regulate the power consumption of OS-

based multimedia mobile devices.  

6.4 Control system simulator 

A simulator has been developed for the system by means of a commercial tool of dynamic 

system simulation [77]. This tool allows users to develop, configure and simulate graphic block 

diagrams. The simulator enables to anticipate the behavior of the power control system before 

implementing it, even considering the effects that the nonlinear OPP-based plant interface 

implies on the system response expected from the theoretical linear model. Furthermore, it is also 

helpful for validating the results obtained from the real system, as far as they match the 

simulation results. Figure 6-7 shows the general diagram of the control system simulator. It has 

two parts: a closed-loop control subsystem simulator and a PCG. The closed-loop control 

subsystem simulator is implemented to simulate the behavior of different controllers. Besides, 

based on the consumption estimation, the PCG can emulate the battery discharging and is 

employed to provide a suitable power budget for the video decoder depending on the battery 

SoC. Next sections introduce more details of the control system simulator. 
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Figure 6-7 Diagram of the control system simulator. 

6.4.1 Closed-loop control subsystem simulator  

In section 4.2.2, the linear model of the closed-loop control subsystem was obtained. Now, 

that initial linear model is being enhanced in the simulator with more real system details. For 

example, one of the main advantages of closed-loop control systems is their capability to react to 

disturbances on the controlled output. Therefore, the simulation model should be tested with a 

disturbance input, as shown in Figure 6-8, to analyse its influence. The disturbance input would 

simulate the effect of a consumption variation when the system is following the set point, due, 

for example, to a variation in the processor load. 

What’s more, the clearest nonlinearity of the system is that the DVFS interface to the plant 

only admits a discrete number of different levels, i.e., the OPPs. This implies a strong 

quantization process previous to the plant, whose steps can even be irregular. Hence, the closed-

loop control subsystem simulator should include a block, previous to the plant, implementing 

this quantization (shown in Figure 6-8).  

 

  

    Figure 6-8 Simulation model of the nonlinear closed-loop subsystem     

with OPP quantization block and disturbance input block. 
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The quantization also includes implicitly the nonlinear effect of saturation beyond the 

limits of the extreme OPPs. The transfer function of this quantization block has to be obtained 

from the OPP average consumption values. In the case of the experimental test bench, it has the 

aspect represented with the stepped line of 27 irregular steps shown in Figure 6-9. The diagonal 

line of that figure is a reference to identify how the input breakpoints should be fixed in the 

middle of the step values in order to limit the maximum quantization error to ±step/2. This is a 

feature added to the final implementation in the experimental test bench because the default 

DVFS interface offers both ceil and floor functionality but not rounding to the nearest valid OPP 

value.  

   

           Figure 6-9 Transfer function of the discrete OPP quantization effect. 

6.4.2 PCG simulator 

Figure 6-10 shows the structure of the PCG which is simulated and implemented in the 

system. The PCG consists of a battery discharge estimator that can emulate the battery discharge, 

and a power budget generator that produces power budget profiles. The input of PCG is the 

power estimation that is calculated by OS-level estimator, and depending on the estimation value, 

the remaining battery can be estimated, so that a SoC percentage can be calculated. Then, the 

power budget generator will generate the power budgets corresponding to the battery SoC. The 
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power budget profiles contain the changing policies of the set-point of the closed-loop control 

subsystem. Next subsections introduce the PCG components. 

 

Battery discharge 
estimator

Power budget
generator

PCG

SoC

Power 
estimation

Power budget 
profiles

 

Figure 6-10 Block diagram of the PCG 

6.4.2.1 Battery discharge estimator 

The battery discharge estimator in PCG subsystem is used to estimate the SoC. Although 

the capacity of lithium-ion batteries is currently greater than 2000 mAh in most mobile devices, 

for testing purposes, the capacity of the battery is set to only 15 mAh (54 A·s) in order to easily 

and quickly monitor battery lifetime. Figure 6-11 shows the block diagram of the battery 

discharge estimator into the simulator. 

 

  
         Figure 6-11 Block diagram of battery discharge estimator into the simulator 

 

The input (1) of the battery discharge estimator is the power estimation, which divided by 

the voltage (5 V) is the estimated current. The estimated current is multiplied by -1 to decrease 

charge and then is integrated to calculate the remaining charge of the battery. The integrator 

block in Figure 6-11 has three parameters, the initial value of the integrator (54 A·s), i.e., the 

battery capacity, the gain (K=1), and the system sampling period (Ts =100 ms). Finally, the 

battery SoC can be monitored through outputs 1. 

6.4.2.2 Power budget generator 

The power budget generator can produce different power budgets depending on the SoC of 

battery. Figure 6-12 shows three examples of power budget profiles. In Figure 6-1 2(a), when the 
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battery SoC is larger than 80%, the power budget is set as 1.006 W; when the SoC is between 80% 

and 20%, the power budget remains at 0.929 W; and when the battery SoC is less than 20%, the 

power budget is 0.878 W. In Figure 6-12(b), every 25% of the SoC, the power budget follows 

this sequence: 1.2455W, 1.0902W, 0.9387W and 0.7873, respectively. In Figure 6-1 2(c), every 

10% of SoC decrease, the power budget changes. 

 

 

(a) Example 1 

 

(b) Example 2 
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(c) Example 3 

Figure 6-12 Power budget profile examples 

6.5 Choice of controller gains 

The model proposed in chapter 4.2.2 should be tested in the control system. For this 

purpose and once the sample period has been fixed to T=100 ms in the implementation, the 

mathematical transfer functions of the controllers have to be particularized for a suitable value of 

gain. Looking for maximizing the relative stability of the control system, a key issue in closed-

loop schemes, the modulus of the closed-loop system dominant pole should be theoretically as 

small as possible, i.e., the relative stability of the system improves as the dominant pole is deeper 

included into the unit circle. In this sense, Figure 6-13 represents that modulus, from 4-6, versus 

the integral gain for the aforementioned value of T and for the three integral controllers. From 

Figure 6-13, it is clear that the smallest modulus of the system dominant pole is achieved with 

the BRR-I controller: min(|pMB|)=0 for a gain of KB=10. Next, the TR-I controller achieves a 

min(|pMT|)=0.41 for a gain of KT=3.43. And finally, the FRR-I controller achieves a 

min(|pMF|)=0.5 when KF=2.5. These are, then, the integral gain values chosen for each integral 

controller.  
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Figure 6-13 Modulus of dominant closed-loop system pole vs integral gain for the I controllers 

 

With respect to the PI combination, Figure 6-14 shows the modulus of the two poles of MPI 

versus KPI. In order to avoid undesired oscillations in the system response, the positive pole 

should be kept as the dominant one, i.e., its modulus should be greater than that of the negative 

pole [65]. Taking this into account, a value of KPI=0.75 has been chosen, which leads to a 

dominant closed-loop pole pMPI=0.75. 
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Figure 6-14 Modulus of closed-loop system poles vs KPI for the PI controller  

 
      Figure 6-15 Modulus of closed-loop system poles vs KPID for the PID controller  
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Finally, for comparison and initial checking purposes, the P controller was also tested with 

a value of KP=0.5, which has been chosen as a mid-point within the system stability margin. 

Hence, it puts the closed-loop pole in pMP=–0.5. 

As a summary, Table 6-3 includes the chosen value for each of the controller gains, as well 

as the corresponding closed-loop dominant pole. 

Table 6-3 Gain and system dominant pole for each controller 

 

Controller Gain Dominant Pole 

P KP=0.5 pMP=-0.5 
FRR-I KF=2.5 pMF=0.5 
BRR-I KB=10 pMB=0 
TR-I KT=3.43 pMT=0.41 
PI KPI=0.75 pMPI=0.75 
PID KPID=0.056 pMPID=0.56 

 

6.6 Linux-based control system implementation 

After the control system has been simulated, the next step is to integrate the control system 

into the C-language kernel code. Thus, it can be analysed if the behaviour of the control system 

matches the simulation results. In this section, the method of implementation is presented and the 

flowchart of the implementation code is indicated in Figure 6-16,  
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Figure 6 -16 Flow chart of control system implementation code 

 

At the beginning, SoC_init sets the initial battery SoC to 100, which means the battery is 

full of charge, OPP_init sets the medium OPP 14 as the initial OPP and, correspondingly, 

action_init sets the initial value of action to 1.059 W, which is the average consumption 

estimation of OPP14. Within the working loop, Cal_SoC is used to calculate the current battery 

SoC. It is calculated from the battery SoC of previous sample time and the estimation of the 

power consumed during the current sample time. The calculation method is shown in equation 4-

11. Then, depending on the current SoC, Setup_set_point produces the set-point of the closed-

loop control subsystem following a certain preset power-budget profile. The set-point changing 

policy is defined through considering the battery lifetime while maintaining a reasonable QoE. 

Besides, Setup_set_point supports multiple and personalized power budget profiles to meet user 

requirement, Figure 6-12 shows three examples. The set-point is the input of the closed-loop 
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control subsystem, whose first stage in Figure 6-16 is Cal_action (observe the feedback line 

from the Cal-estimation stage). Cal_action calculates the action value of the control system in 

two steps: first, it obtains the closed-loop error between the set-point and the feedback (power 

estimation); and second, it obtains the action value by processing that error through the controller. 

Several controllers have been implemented in the control system through the difference 

equations derived from the transfer functions proposed in Chapter 4 and their results are shown 

in Chapter 7. Based on the action value, Obtain_freq finds in a lookup table the processor 

frequency that corresponds to the power consumption suggested by the controller action. The 

processor frequency is needed as the input parameter of the cpufreq function used to set the OPP 

in Assign_OPP. Cal_estimation works as OS-level estimator, accessing PMCs and estimating 

power consumption during every sample period. Cal_estimation sends finally the estimation 

value to Cal_SoC and Cal_action to close the functional loop.  

6.7 Summary 

In this chapter both simulation and implementation of the control system have been 

presented. DVFS mechanism of the MPU is used because it is present in many consumer-

electronics platforms. This mechanism enables the MPU to work in different OPPs. Besides, the 

feedback information of PuC is the power consumption estimation that is based on PMCs. 

Therefore, both DVFS and PMC should be enabling in the platform. There are two approaches to 

access PMC: one is accessing PMC through PAPI and another one is accessing PMC through 

kernel space. After the estimation model is gotten in Chapter 3, PAPI-based estimator and OS-

level estimator have been built. Furthermore, the system call interface of Linux is extended to 

allow kernel-space interact with the user-space threads or processes. Through comparing the 

advantages and disadvantages of these two estimators, OS-level estimator has been selected to be 

used as the feedback of closed-loop control subsystem. After that, the control system simulator 

has been built, which consists of a closed-loop control subsystem simulator and a PCG. After the 

initial linear model of the system is obtained in Chapter 4, more real system details are added to 

enhance the simulator. Therefore, OPP quantization block and disturbance input block were 

added into the simulator. Besides, a PCG is developed to simulate the behavior of battery 

discharge and provides power budget for the video decoder. Finally, different controllers have 

been researched in Chapter 4, previous to their implementation in the operating system. 
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Chapter 7 Experiments and Results 

To meet the requirements of control algorithms for energy optimization, the control 

system has been implemented in Linux operating system, which can extend the battery lifetime 

of multimedia mobile devices depending on the user requirements while maintaining a 

reasonable QoE. This mechanism includes an OS-level estimator that works as the feedback of 

the control system. PAPI-based estimator as the first approach to estimate power consumption is 

used to compare with the OS-level one in order to accurately calculate estimation values. In this 

chapter, the experimental results, including the validation and evaluation of the two estimators, 

the controllers implementation, the battery life time extension and the test of disturbance will be 

given in four parts: for the first part, the accuracy of PAPI-based and OS-level estimators have 

been compared and their features for the control system are stated, the overhead of the OS-level 

estimator will be given to show its real performance. Then, different classic controllers have 

been implemented in both system simulator and real system; their behaviors also are compared in 

order to verify the correction. Thirdly, the potential battery life extension achieved by PCG will 

be shown, one example of power budget profiles will be listed in order to compare its features 

with other Linux original governors. Finally, the effect of power consumption variations has 

been tested in both simulation and implementation. 

All the experiments are carried out on the BeagleBoard platform, running a Linux 3.8.0 

kernel patched with a DVFS mechanism. As Chapter 5 has introduced, the simple profile of the 

MPEG4 Part 2 decoder has been considered as the decoder application. 78 conformance 

sequences were used to test the control system and they have been configured with the common 

test conditions such as different spatial resolutions, frame combinations, slice types, quantization 

parameters, frame rates, and entropy coding methods.  

7.1 Estimators validation and evaluation 

Rather than using any sensor, to correctly feedback the power consumption for the 

control system, an accurate estimator is necessary. As described in Chapter 3, before building the 

estimator, firstly, suitable PMCs that are high related with power consumption should be filtered; 

then, MARS regression is used to build the power estimation model. Once the model is built, 

estimation results and measurement results are compared to test the accuracy of the model. 
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As an example, Figure 7-1 compares real power consumption of the board with PAPI-

based estimations and OS-level estimations, while decoding the foreman sequence through a set 

of consecutive OPPs, which change every 10s. As it can be seen in Figure 7-1, the power 

consumption and its estimations increase with the OPP. In order to understand the differences 

between the shape of the real consumption and that of the estimations, note that consumption 

records are acquired from the whole board, whereas the estimations focus on the power 

consumption core mainly due to the decoding task in the processor, without the sporadic 

consumption spikes not due to the decoding activity. Note also in Figure 7-1 that the time 

resolution (sampling frequency) of OS-level estimations is higher than PAPI-based ones. 

Moreover, Table 7-1 lists maximum, minimum and average error between mean real power 

consumption core and the two power estimation approaches.  

 

Figure 7-1 Power estimations and real power consumption 

 

Table 7-1 Estimation Error 

Error (%) Max Min Avg 

PAPI-based estimation 4.92 0.12 3.63 

OS-level estimation 3.14 0.00 2.36 
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7.2 Test of closed-loop subsystem 

The general model proposed in Chapter 4 has been implemented and tested in the system 

presented in Chapter 5. The sampling period has been fixed to T=100 ms in both simulation and 

implementation, whose details are given in Chapter 6. Next subsections show the experimental 

test and its results. 

7.2.1 Test case 

The system has been tested initially against steps in the set-point input. A step-shaped 

set-point would indicate that a different (constant) power is desired for the system consumption 

from a certain point in time. Thus, the results show how the system behaves in a situation in 

which a constant power consumption is required during a video decoding activity, for example to 

lead to a regulated battery-discharge rate regardless of other energy- or QoE-related issues. In 

further experiments, the set point will have to be dynamically adjusted to satisfy the power needs 

at each moment. These needs depend mainly on two aspects: the user expectations, in terms of 

battery recharge cycle and/or QoE, as well as the video decoder requirements, in terms of, for 

example, decoding complexity. Recent developments in digital-video standards are proposing the 

integration of metadata in the bit stream for signaling the video decoding complexity, which 

could also be used to tune the control-subsystem set point. 

Suppose the system is working in its mid-OPP (the default state), which implies an 

average consumption estimation of 1.059 W. Suppose also that, at a certain moment, it is needed 

that the system reduces its power consumption. For the sake of clarity in the analysis of the 

closed-loop subsystem response, the target reduced consumption is made to coincide with the 

average consumption level of an OPP. If the target consumption were chosen between two 

consecutive OPP levels, the integral action of the proposed controllers (except P controller) 

would generate oscillations in the steady-state system response due to the nonlinear quantized 

plant input. Thus, the proposed test decreases the set point from 1.059 W to the average 

consumption level of OPP8, i.e. 933 mW, at a time t=1 s. This implies an input step of -126 mW 

of amplitude. 

7.2.2 Results of closed-loop subsystem and their discussion 

The following figures show how the control system responds to the test-case step. For 
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validation purposes, each figure represents both the simulation and the real time response for a 

controller, i.e., the output of the systems depicted in Figure 4-2 and Figure 4-6, respectively. 

Thus, as it can be observed in the figures, the power consumption of the real system follows the 

profile predicted by simulation for all controllers, which validates the implementation of the 

control subsystem. On the other hand, the comparison between figures enables the identification 

of the effects of the different controllers on the system response. In this sense, perhaps the most 

especial case is the one corresponding to the P controller, in Figure 7-2, because it is the only one 

which does not reach the desired final average consumption of 933 mW. It is due to the inherent 

steady-state error of the P controller. Moreover, the P controller response shows a one-sample 

overshoot due to the negative value of the system pole (see PMP in Table 6-3). Besides, although 

the settling time could be thought to be longer for a value of |PMP|=0.5 (comparable to the FRR-I 

or PID cases, as it can be seen in Table 6-3), the combined effect of both the system error 

(avoided in the integral cases) and the nonlinear quantized plant input, similar to a dead-zone 

effect, prevents that the system response can reach its linearly expected final value, thus 

shortening the transient response. 

 

Figure 7-2 System time response for the P controller 
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The rest of controllers, which include an integral component, reach the desired final value 

because they imply a null steady-state error to a step-shaped set point (ess in 4-3). Hence, the 

differences between their time responses are confined to the transient part. In this sense, an 

interesting case is the one corresponding to the BRR-I controller, because it gives rise to the 

shortest settling time in the system response, i.e., a single sample interval, as it can be seen in 

Figure 7-3. This is because the modulus of the system pole is the smallest one for this controller, 

i.e., pMB=0 (see Table 6-3). 

 
 

Figure 7-3 System time response for the BRR-I controller 

 
The TR-I controller places the two poles of the system in z=0.41 (see PMT in Table 6-3) 

and leads to a system response like that of Figure 7-4. In this case, the settling time of the step 

response is 500 ms and it approaches monotonically to the final value along the 5 samples of this 

interval, as corresponds to positive real poles. 
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Figure 7-4 System time response for the TR-I controller  

 

In turn, the FRR-I controller places the two system poles in z=0.5 (see PMF in Table 6-3) 

and gives rise to a time response like the one shown in Figure 7-5. With a pole modulus slightly 

greater than that of the TR-I case, the settling time of the system response goes a bit further (700 

ms). Besides, since the transfer function of the FRR-I controller has no zeros, it adds a sample 

delay to the one of the plant itself and, therefore, the first change in the system response appears 

two samples after the input step, i.e., at t=1.2 (see Figure 7-5). Here again, the positive real poles 

avoid oscillations in the time response. 

With respect to the two combined controllers, the PI places the dominant system pole in 

z=0.75. Since it has the greatest modulus (see pMPI in Table 6-3), the settling time is also the 

longest, i.e., almost 1 s (see Figure 7-6). Furthermore, since the other system pole, although non-

dominant, is real negative, its effect appears in the form of an oscillation at the end of the 

transient response. 
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Figure 7-5 System time response for the FRR-I controller 

 

          

Figure 7-6 System time response for the PI controller 
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Finally, the PID combination, with a dominant double pole of the system in z=0.56 (see 

pMPID in Table 6-3), leads to a settling time similar to that of the FRR-I controller, with pMF=0.5 

(see Figure 7-7). Also as in the case of the FRR-I controller, the time response shows a two-

sample input-output delay, i.e., 200 ms are needed to react to the input step. In this case, the 

reason is simply the quantization process at the plant input. 

 

 

Figure 7-7 System time response for the PID controller 

 
The results show, on one hand, how the real system consumption matches the simulated 

response, which validates the mathematical model proposed as well as the system 

implementation. On the other hand, the system is stable in all cases and is able to follow the set 

point in steady state, with clear advantages of I-based controllers over the simplest P controller. 

Furthermore, the combined PI and PID controllers do not achieve better results than some of the 

simpler integral controllers. In fact, the BRR-I controller leads to the fastest response, with only 

one sample of settling interval. However, due to the DVFS nonlinearity, this responsiveness 

might cause undesired and frequent oscillations when there is no OPP that can cancel the loop 

error. Among the tested controllers, the best trade-off between settling time and responsiveness 

is achieved with the TR-I controller, which leads to a smooth and quick enough response. 
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Therefore, TR-I is chosen as a valid simple controller to be applied into the control system for 

next system tests. These results, along with the low overhead implied by the control system, 

validate it as a means of keeping the system consumption close to the desired value (set point), 

regardless of the dynamic consumption demand of the video decoder as proven in next section. 

The overhead is equal to the execution time of running TR-I controller is divided by the sample 

time and the value of overhead is 4.1%. 

7.3 Test of Disturbance  

To test the effect of power consumption variations due to variations in the video 

processing load, two video sequences of different complexity are decoded in a never-ending 

succession (carousel), for 60 seconds each. Table 7-2 lists the MPU workloads under different 

OPPs when decoding the two sequences, i.e., Sequence_s (simpler) and Sequence_c (more 

complex). The workload is expressed as the average percentage of time the MPU needs to 

process a video frame for each frame interval of 40 ms. 

 

Table 7-2 MPU Workload for different Sequences and OPPs 

 

OPP Sequence_s Sequence_c  OPP Sequence_s Sequence_c 

1 76.67% 100%  15 22.59% 44.4% 
2      45.2% 99.64%  16 19.61% 37.77% 
3  43.18% 95.75%  17 19.46% 37.46% 
4      41.2% 87.82%  18 19% 36.62% 
5 37.54% 81.33%  19 18.92% 36.12% 
6 36.85%     75.15%  20 18.46% 34.49% 
7 33.88% 68.36%  21 18.31% 33.42% 
8 31.36% 61.19%  22 18.3% 32.96% 
9 30.98% 59.66%  23 17.78% 32.04% 

10 29.07% 56.84%  24 17.47% 31.82% 
11 28.61%     53.18%  25 17.32% 31.28% 
12 25.18% 51.12%  26 17.24% 29.98% 
13 23.73% 49.18%  27 11.6% 26.17% 
14      22.97% 46.62%   

 

 

Figure 7-8 is generated from Table 7-2 data, which intuitively clarifies with the growing 
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of OPP number, the workload of MPU is decreasing. Besides, the higher the video complexity is, 

the higher the workload. 

 

 

Figure 7-8  MPU Workload for different complexity sequences and OPPs 

 
Table 7-3 lists the average power estimation, average power consumption and average 

absolute error of those two sequences when running them under different OPPs, while 

maintaining a reasonable QoE, which means the decoder can decode at least 25 frames per 

second. The general average absolute estimation error of the Sequence_c and Sequence_s in all 

OPPs are 1.99% and 1.931%, respectively, which can indicate the estimation model has high 

accuracy. 

 

Table 7-3 Average Estimation and consumption of different complexity sequences 

 
OPP                             Sequence_s                              Sequence_c  

Avg. Est (W) Avg. Con (W) Avg.error (%) Avg. Est (W) Avg. Con(W) Avg.error (%) 
OPP1 0.7789 0.7850     0.5240 0.8101 0.7913     1.5196 

OPP2 0.8002 0.8215     1.8297 0.8643 0.8455     1.5196 

OPP3 0.8080 0.8253     1.4861 0.8776 0.8492     2.2955 

OPP4 0.8099 0.8316     1.8641 0.8781 0.8581     1.6166 

OPP5 0.8253 0.8442     1.6236 0.9021 0.8719     2.4410 

OPP6 0.8285 0.8505     1.8899 0.9053 0.8807     1.9884 

OPP7 0.8308 0.8618     2.6630 0.9128 0.8921     1.6731 
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OPP8 0.8429 0.8732     2.6029 0.9291 0.9072     1.7701 

OPP9 0.8529 0.8832     2.6029 0.9387 0.9223     1.3256 

OPP10 0.8661 0.8933     2.3366 0.9560 0.9349     1.7055 

OPP11 0.8861 0.9059     1.7009 0.9769 0.9500     2.1743 

OPP12 0.8958 0.9223     2.2764 0.9916 0.9651     2.1419 

OPP13 0.9056 0.9261     1.7610 1.0013 0.9727     2.3117 

OPP14 0.9198 0.9399     1.7267 1.0058 0.9878     1.4549 

OPP15 0.9433 0.9550     1.0051 1.0293 1.0042     2.0288 

OPP16 0.9553 0.9916     3.1183 1.0630 1.0419     1.7055 

OPP17 0.9707 1.0004     2.5513 1.0798 1.0520     2.2470 

OPP18 0.9803 1.0092     2.4826 1.0902 1.0659     1.9641 

OPP19 0.9923 1.0193     2.3194 1.1040 1.0759     2.2713 

OPP20 1.0076 1.0281     1.7610 1.1174 1.0860     2.5380 

OPP21 1.0170 1.0394     1.9242 1.1264 1.0986     2.2470 

OPP22 1.0396 1.0495     0.8504 1.1454 1.1112     2.7643 

OPP23 1.0516 1.0684     1.4432 1.1615 1.1301     2.5380 

OPP24 1.0598 1.0722     1.0652 1.1722 1.1377     2.7886 

OPP25 1.0696 1.0923     1.9500 1.1852 1.1616     1.9075 

OPP26 1.0887 1.1062     1.5033 1.2040 1.1754     2.3117 

OPP27 1.1275 1.1641     3.1441 1.2455 1.2372     0.6709 

 

From Figure 7-9, it can be seen that the average power consumption increases with the 

growth of OPP. On the other hand, the higher the video complexity is, the higher the power 

consumption. 

 



102 
 

 
Figure 7-9 Average Estimation and consumption of different complexity sequences and OPPs 

Accordingly, the disturbance block of the simulator simulates the differential average 

power consumption of one sequence relative to the other in open loop, which has been measured 

as 86 mW, i.e., the average difference between the two lines of Figure 7-9 is 86 mW. Therefore, 

the disturbance block is a +86-mW-amplitude step-shaped input that is active while the higher-

consumption video sequence (Sequence_c) decoding is being simulated and inactive while the 

lower-consumption video sequence (Sequence_s) decoding is being simulated.  

Figure 7-10 shows the behavior of the closed-loop subsystem output in the presence of a 

consumption disturbance with the chosen TR-I controller. Thus, for a set point of 933 mW, 

Figure 7-10(a) shows how the average power consumptions, both estimated by the real system 

and simulated, stay near the set point regardless of the video sequence complexity. Some spikes 

(overshoots) can be seen at the instants in which the decoded video sequence switches within the 

carousel, i.e., at t=60 s, t=120 s, t=180 s and t=240 s. In Figure 7-10 (b), the details of what 

occurs when the decoding of Sequence_c begins can be seen, which results in a transient rise in 

power consumption at t=60 s of approximately 86 mW.  In Figure 7-10 (c), the details of what 

occurs when Sequence_s returns to be decoded can be seen, which leads to a transient decrease 

at t=120 s corresponding again to the difference in power consumption between both sequences, 

i.e., approximately 86 mW. In any case, the TR-I controller returns the system consumption to 

the desired value after a settling time of approximately 500 ms, which matches the results 

obtained from the step response experiment described in previous section (see Figure 7-4). 
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               (c) 

Figure 7-10   Closed-loop subsystem response to disturbance 

 

Clearly, this is achieved by changing the OPP and, correspondingly, the MPU working 

frequency, while maintaining a reasonable QoE. Since the closed-loop subsystem is tasked with 

maintaining the power budget for the video decoder, Figure 7-11 illustrates how when the 

consumption demand of the decoding task is lower (until t=60 s), the decoder can make use of 

more system resources, i.e., a higher OPP, whereas when the consumption demand of the 

decoding task is higher (from t=60 s), the decoder has to manage with fewer resources, i.e., the 

OPP decreases from OPP14/15 to OPP 8/9, in order to respect its power budget.   
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Figure 7-11 Detail of the active OPP when the consumption demand of the decoding task increases 

7.4 Test of PCG 

The PCG has been implemented in the Linux cpufreq driver such that, depending on the 

estimated SoC, a power budget is assigned to the decoder in real time and the closed-loop control 

subsystem takes charge of controlling it. That means the power budget for the decoder is the set 

point for the control subsystem. A number of profiles were implemented and tested for the 

following comparative tests, and Figure 6-12(a) is one representative example of them. In this 

profile, when the battery SoC is larger than 80%, the power budget is set as 1.006 W; when the 

SoC is between 80% and 20%, the power budget remains at 0.929 W; and when the battery SoC 

is less than 20%, the power budget is 0.878 W.  

In order to have a reference of the performance of the proposed system implemented in 

the experimental platform, a coherent comparison has been done with original Linux governors. 

Performance, conservative, ondemand and powersave are the original Linux cpufreq governors. 

The performance governor sets statically the highest OPP, whereas the powersave governor sets 

statically the lowest OPP. The other two cpufreq governors, ondemand and conservative, are 

dynamic governors that can set the OPP in real time depending on the current workload. The 

difference between them is that the conservative governor gradually increases and decreases the 
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CPU speed rather than jumping to the maximum speed when there is any load increase on the 

CPU. It is well known that, since the performance governor sets the highest OPP, it leads to the 

shortest battery lifetime, whereas the powersave governor works under the lowest OPP in order 

to guarantee the longest possible battery lifetime. However, since they are static, they cannot 

adapt to the system status. Figure 7-12 shows a comparison of the battery lifetimes achieved by 

the two dynamic cpufreq governors for the example profile of PCG proposed in Figure 6-12(a) 

when decoding the same video sequence for a battery capacity of 15 mAh. In that figure, it can 

be seen that conservative and ondemand governors can make the battery last up to 257.1 s and 

262.6 s, respectively, whereas the example profile of PCG leads to a battery lifetime of 289.7 s 

(12.6% and 10.3% improvement, respectively) in the real system, with a similar simulation 

result. 

 

Figure 7-12 Battery lifetime under dynamic governors when decoding the simpler sequence 

 
On the other hand, when there are variations in the video-processing load, forced in the 

tests by decoding two video sequences of different complexity in carousel for 60 s each, as 

explained above, the corresponding battery lifetimes are those indicated in Figure 7-13. In this 

case, with conservative and ondemand governors the battery lifetime decreases to 250.7 s and 

256.9 s, respectively, because there are some intervals during which the processing load 
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increases with respect to the experiment of Figure 7-12. However, the proposed example profile 

of PCG keeps a battery lifetime of 289.7 s (15.5% and 12.8% improvement, respectively) in the 

real system, with a similar simulation result. This is due to the robustness of the I-based closed-

loop control subsystem to the disturbances. 

 

  

Figure 7-13 Battery lifetime under dynamic governors when decoding sequences of different complexity 
 

7.5 Summary 

In this chapter, the two proposed estimators are validated and evaluated, their AAPE have 

been listed in a table which indicates that the accuracy of OS-level estimator is slightly higher 

than PAPI-based estimator. Then, the effects on the system behaviour of those classic linear 

controllers that were designed in Chapter 4 have been checked.  The results show the real system 

consumption matches the simulated response. Besides, the system is stable in all proposed cases 

and is able to follow the set point in steady state. However, the DVFS nonlinearity might cause 

undesired and frequent oscillations when there is no OPP that can cancel the loop error. 

Therefore, TR-I controller, which leads to a smooth and quick enough response, is the best trade-

off between settling time and responsiveness, with enough simplicity as to not imply a 
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significant overhead on the system implementation. Therefore, TR-I controller is selected to be 

applied in the control system. 

After that, a disturbance block is added to the simulator to test the capability of the control 

system to react to disturbances in its controlled output. This is because changes in the video 

sequence complexity imply changes in the decoder power consumption, which can be seen as 

disturbances over the control-system plant. For testing purposes, the disturbance has been 

considered from two levels of workload: the decoding of a default simpler (low power 

consumption) video sequence with a periodic swap to the decoding of a more complex (high 

power consumption) sequence. The corresponding disturbance simulation block switches 

periodically between two constant levels. One of them is 0, as the default no-disturbance status 

for the initial reference sequence, and the other one is the change (increase) in the open-loop 

power consumption estimation while decoding the more complex sequence in the real system. 

The simulation and implementation results match well. 

Finally, PCG was tested with an example profile and compared with other original Linux 

governors. PCG can dynamically extend the battery lifetime depending on the user requirements 

and maintain it regardless of the complexity of the video sequences, whereas the Linux dynamic 

governors vary the battery lifetime depending on the workload. Using the proposed example of 

power budget profile, PCG can extend the battery lifetime further than with the conservative and 

ondemand Linux governors, up to a 15.5% and 12.8% of improvement, respectively, when there 

are variations in the video-processing load. 
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Chapter 8 Conclusion and future work  

The microelectronics industry has been boosting the capabilities of multimedia mobile 

devices, but the battery, which is the only power source of most mobile devices, is experiencing 

relatively slow development. Therefore, determining how to optimize the energy consumption of 

mobile devices under a predefined performance requirement has become a critical issue. The 

video decoder, as one of the main energy-consuming multimedia applications, is the target 

application of this work/thesis. This chapter is divided into three sections, the first one 

summarizes the work of this dissertation and states its contributions; the second section analyses 

the limitations and depicts the future work that can be explored in a next step. The final section 

highlights again the contribution of this work to the research of applying control algorithms to 

energy optimization in multimedia hand-held devices. 

8.1 Summary 

The user experience of modern mobile systems is greatly affected by the battery lifetime, 

which should be addressed by energy optimization to provide a strong guarantee on the battery 

lifetime. In addition, as a popular multimedia task, video decoding is one of the main energy-

consuming applications. Therefore, this thesis proposes a power-control system that can 

effectively save energy and extend the battery lifetime while maintaining a reasonable QoE. This 

power-control system consists of a closed-loop subsystem and a PCG. In the forward part of the 

closed loop, the common DVFS mechanism is selected to act on the power consumption, 

whereas in the feedback part, the use of a PMC-based power estimation method is proposed 

instead of using specific power/energy sensors. This design makes our proposed solution highly 

applicable because both DVFS and PMCs are widely available in common consumer-electronic 

mobile devices. Two approaches to estimate the power consumption have been considered: 

PAPI-based estimations (1st approach) and OS-level estimations (2nd approach). PAPI is a widely 

used third-party tool which can easily access PMCs from the application level. Besides, the 

interface of PAPI is the same for all platforms. Therefore, in this work PAPI is used to monitor 

PMCs for preliminary tests, because it is a more generally and easily applicable tool than the 

more specific OS-based solution. Comparing the two approaches, however, the OS-level 

estimator has some other advantages: it can run without interfering with the user-level decoding 
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application; related to this, whereas PAPI-based estimations have to be calculated on a video-

frame time basis, the sampling frequency of the OS-level estimator can be freely fixed; 

furthermore, the OS-level infrastructure avoids the need of user signals to the OS for DVFS 

commands. Besides, the OS-level average estimation error is only 0.15%, even slightly lower than 

that of the PAPI-based estimator. For these reasons, OS-level estimator is used into the control 

system as the feedback unit of the real-time closed-loop control subsystem, which is implemented 

to regulate the power consumption of OS-based multimedia mobile devices. Besides, comparing 

with the work of Ren [74], whose energy estimation model has an AAPE about 5% and can only 

be applied with one fixed OPP, the OS-based estimator proposed in this dissertation has less 

AAPE, about 2.46%, while it can be applied to all OPPs. 

The proposed simplified linear system model is general and simple enough as to be 

applicable to most common multimedia mobile platforms. To validate the proposal, a 

commercial low-cost open-source software application platform has been used to implement the 

video decoder and power-control system for the set of designed controllers. As a first approach, 

classic linear controllers have been tested and the result obtained from them has been considered 

good enough as to avoid the need to explore other more complex ones. Also a simulator 

including the OPP-based nonlinear DVFS interface has been used to validate the control system.  

The results show, on one hand, how the real system estimation matches the simulated 

response. On the other hand, the system is stable for all the proposed controllers and is able to 

follow the set point in steady state, with clear advantages of I-based controllers over the simplest 

P controller. Furthermore, the combined PI and PID controllers do not achieve better results than 

some of the simpler integral controllers. In fact, the BRR-I controller leads to the fastest 

response, with only one sample of settling interval. However, due to the nonlinearity of DVFS, 

this responsiveness might cause undesired and frequent oscillations when there is no OPP that 

can cancel the loop error. Therefore, the best trade-off between settling time and responsiveness 

is achieved with the TR-I controller, which leads to a smooth and quick enough response. 

Additionally, a small-capacity battery module is simulated to test the battery lifetime. 

Disturbances in the decoder power demand have been both generated in the real system and 

simulated as a disturbance generator block in the simulator. Both real and simulation results 

indicate that the closed-loop subsystem is able to react to disturbances and regulate video 

decoding power consumption in steady state with quite short settling times, regardless of the 
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complexity of the video sequences. These results, along with the low overhead implied by the 

control system, validate it as a means of keeping the system consumption close to the desired 

value (set point), regardless of the dynamic consumption demand of the video decoder. 

The original Linux dynamic cpufreq governors change the processor frequency 

depending on the current CPU workload, which tends to reduce overall power consumption, 

regardless of the battery SoC and user requirements. PCG can dynamically extend the battery 

lifetime depending on the user requirements and maintain it regardless of the complexity of the 

video sequences, whereas the Linux dynamic governors vary the battery lifetime depending only 

on that decoding complexity. Using a proposed example of power budget profile, PCG can 

extend the battery lifetime 15.5% more than the conservative Linux governor and 12.8% more 

than the ondemand Linux governor when the decoding workload is variable. 

Therefore, with respect to other energy-saving algorithms, the algorithm proposed in this 

dissertation has a number of advantages. Firstly, it relies on a PMC-based power-consumption 

estimator that can accurately feed the current power consumption back in real time, which is 

applicable even to many consumer devices that lack specific power measurement sensors. 

Secondly, it focuses on one of the main high power-consuming multimedia applications, i.e., the 

video decoder, and is thus expected to lead to substantial energy savings for multimedia 

applications. Thirdly, it supports personalized and multiple battery discharge profiles while 

maintaining a reasonable QoE. Finally, it can guarantee the battery lifetime to avoid unexpected 

power outages.  

8.2 Limitations and future work 

Further developments can be addressed, such as the real-time adaptation of the set point 

to other system variables like QoE, performance parameters or video-decoding complexity. This 

will pave the way to the comparison of the proposed approach with other kinds of energy saving 

algorithms. Besides, other types of control techniques (predictive, adaptive, robust, fuzzy, etc.), 

not necessarily linear, can be applied to evaluate if the increase in complexity compensates the 

possible improvement of results. In addition, a cooperation with other advanced control 

methodologies could be set, for example, an adaptive predictive expert control methodology 

using adaptive predictive control (APC) to predict the process evolution and preempt potential 

deviations from the desired set-point could be applied [78]. Moreover, the OS-level estimator 

can be more universally used, which can contribute to estimate the power consumption of more 
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types of applications, not only video decoders. Besides, the governor can include more 

functionality such as thermal management, in such a way that the set-point could also consider 

the temperature of the hardware or certain component. Other further work can lead to extend the 

proposal to more complex and realistic scenarios in which, for example, both the CPU and GPU 

offer more than one processor and the software is partitioned among different processing cores. 

Then, the closed-loop control of power consumption of several CPU cores or coprocessors in a 

platform will be worth researching. 

8.3 Final words  

This dissertation presents control algorithms for power regulation under the limited battery 

capacity of multimedia hand-held devices while executing a video decoder application and 

maintaining a reasonable quality of user experience. The proposed control system, which includes 

a real-time closed-loop control subsystem and a power-control governor (PCG), has been 

implemented in the operating system of a low-cost development board to validate the control 

algorithms. Instead of using any specific power sensor, a PMC-based estimator is used as the 

feedback signal in the closed-loop subsystem. After a theoretical system model has been obtained 

and verified, classic controllers have been implemented in the development board for validation 

purposes. The control system is able to regulate the system power consumption and the battery 

discharge rate in the presence of fluctuations in the decoder power-consumption demand. The 

proposed PCG has better performance in extending the battery lifetime than the conservative and 

ondemand governors of Linux in the presence of disturbances. 

8.4 Publications  

International conference papers 

 

[1] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “Modeling, analysis and design of a closed-

loop power regulation system for multimedia embedded devices,” in Proc. International 

Conference on Pervasive and Embedded Computing and Communication Systems, Angers, 

France, pp. 363-372, Feb. 2015. 
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In this paper, the plant modeling as well as the theoretical analysis and design and simulation of a 

closed-loop control system for the power consumption of a hand-held multimedia embedded 

device are presented. This is a first validation step for a target system in which the power 

consumption will be regulated based on estimation feedback. Prior to the availability of power 

estimation data, actual power consumption measurements are used to obtain a mathematical 

model of the controlled plant. Then, classic control-theory methods are applied to get a closed-

loop integral controller able to regulate the power consumption of a video decoder running in an 

embedded development platform.  

 

[2] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “On the estimation-based closed-loop power 

consumption control in multimedia mobile devices,” in Proc. International Conference on 

Advances in Multimedia, Barcelona, Spain, pp. 61-66, Apr. 2015. 

 

In this paper, a closed-loop approach to control the power consumption of multimedia mobile 

devices is presented, such that the feedback signal is an estimation based on monitored system 

events.  

 

[3] Q. Tang, A. M. Groba, E. Blázquez, and E. Juárez, “OS-level power consumption estimator 

for multimedia mobile devices,” in Proc. IEEE International Symposium on Consumer 

Electronics, Madrid, Spain, pp. 1-2, June 2015. 

 

In this paper, an OS-level power estimator based on monitored system events for multimedia 

mobile devices is presented. The OS level power estimator periodically obtains significant-events 

count values and calculates power-consumption estimations through mathematical models.  

 

[4] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “Real-time power consumption control 

system for multimedia mobile devices,” in Proc. IEEE International Conference on 

Consumer Electronics, Las Vegas, USA, pp. 385-386, Jan. 2016. 
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This paper presents a real-time closed-loop system to regulate the power consumption of 

multimedia mobile devices. The system feedback is an OS-level power estimator based on 

monitored events of the target system, i.e., an embedded platform executing a video decoder.  

 

 

JCR papers 

 

[1]   Q. Tang, A. M. Groba, E. Juárez, C. Sanz and F. Pescador, “Real-time power-consumption 

control system for multimedia mobile devices,” IEEE Trans. Consum. Electron, vol. 62, no. 4, 

pp. 362-370, Nov. 2016. 

This paper presents the proposal, implementation and test of a real-time closed-loop control 

system applicable to the power-consumption regulation of multimedia mobile devices. 

 

[2]  Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “Closed-loop Power-control Governor for 

Multimedia Mobile Devices,” IEEE Trans. Consum. Electron, submitted. 

This paper presents control algorithms for power regulation under the limited battery capacities 

of multimedia hand-held devices while executing a decoder application and maintaining a 

reasonable quality of user experience. A control system, which includes a real-time closed-loop 

control subsystem and a power-control governor (PCG), has been implemented in the operating 

system of a low-cost development board and its results in regulating the battery lifetime are 

shown.  
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