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Abstract—HyperSpectral (HS) images are commonly used for
classification tasks in different domains, such as medicine. In this
field, a recent use is the differentiation between healthy tissues
and different types of cancerous tissues. To this end, different
machine learning techniques have been proposed to generate
classification maps that indicate the type of tissue corresponding
to each pixel in the image. These 2D representations can be used
stand-alone, but they can not be properly registered with other
valuable data sources like Magnetic Resonance Imaging (MRI),
which can improve the accuracy of the system. For this reason,
this paper builds the foundations of a multi-modal classification
system that will incorporate 3D information into HS images.
Specifically, we address the acceleration of one of the hotspots
in depth estimation tools/algorithms.

MPEG-I Depth Estimation Reference Software (DERS) pro-
vides high-quality depth maps relying on a global energy op-
timizer algorithm: Graph Cuts. However, this algorithm needs
huge processing times, preventing its use during surgical opera-
tions. This work introduces GoRG (Graph cuts Reference depth
estimation in GPU), a GPU accelerated DERS able to produce
depth maps from RGB and HS images. In this paper, due to
the lack of HS multi-view datasets at the moment, results are
reported on RGB images to validate the acceleration strategy.

GoRG shows a ×25 average speed-up compared to baseline
DERS 8.0, reducing total computation time from around one
hour for 8 frames to only a few minutes. A consequence of our
parallelization is an average decrease of 1.6 dB in Weighted-
to-Spherically-Uniform Peak-Signal-to-Noise-Ratio (WS-PSNR),
with some remarkable disparities approaching 4 dB. However,
using Structural Similarity Index (SSIM) as metric results come
closer to baseline DERS. Effectively, an average decrease of only
1.20% is achieved showing that the obtained speed-up gains
compesate the subjective quality losses.

Index Terms—HSI, Depth Estimation
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I. INTRODUCTION AND MOTIVATION

HyperSpectral (HS) imaging has become a trendy research
field when classification and detection is involved. Using
more information from the electromagnetic spectrum allowed
researchers to differentiate materials in a better way, based on
the concept of spectral signature; a 2D representation of an
acquired pixel where x axis refers to the wavelength and y
axis refers to the level of reflectance acquired for that pixel
and wavelength. This strength, joint to the benefits of an image
structure, caused its expansion into numerous areas.

One relevant field is medicine, where HS images informa-
tion can improve the detection and classification of tissues
of different nature. In this regard, several previous works ad-
dressed the border detection of different kind of tumours, using
supervised machine learning and image processing techniques
[8], [11], [20]. These solutions aim at the generation of a 2D
representation of the exposed tissue at a certain position and
time, with a fixed camera position and at the moment the
capture is acquired. However, other widely extended devices
such as MRI (Magnetic Resonance Imaging), also employed
in tumour identification, inherently produce 3D results. Specif-
ically, for brain tumours [7], these two data sources are
independent and even acquired at different moments: HS
images are captured during the surgical operation whilst MRI
before it.

This work represents the first step to create a link between
these two technologies. The aim is to provide, in real-time,
3D depth information to classification maps generated from
HS images during tumour resection operations Thanks to
it, these classification maps could be properly fused with
the information present in MRIs, improving cancer detection
accuracy during surgical operations. In addition, the existence
of a 3D model would help building better visualization tools
for surgeons.

To do so, this work relies on MPEG Depth Estimation
Reference Software (DERS), a tool developed by the MPEG-978-1-7281-9132-4/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on February 22,2022 at 08:38:20 UTC from IEEE Xplore.  Restrictions apply. 



I group and intended to provide accurate depth estimations
used in immersive video applications. Using its structure as a
basis, this paper presents a GPU accelerated application able
to generate depth maps from HS and RGB images. Due to the
lack of multi-view HS data-sets, only the RGB acceleration
is addressed here, building the foundations for the HS depth
estimation that will be tackled in future works.

In this paper we expose the general structure of DERS,
depict its architecture in different stages, which we analyze,
and introduce the acceleration strategies followed. Results
show that our accelerated DERS, denominated Graph cuts
Reference depth estimation in GPU (GoRG), achieves a ×25
average speed-up for the sequences tested, with an average loss
Weighted-to-Spherically-Uniform Peak-Signal-to-Noise-Ratio
(WS-PSNR) of 1.6 dB and Structural SIMilarity Index (SSIM)
loss of 1.20 %.

The paper structure is as follows: Section II contains a brief
review of the state of the art and Section III features a stage
by stage presentation of the algorithm and its acceleration.
We present and analyze the results obtained in Section IV and
draw some conclusions and future lines in Section V.

II. RELATED WORK

Recent depth estimation techniques employ monocular cam-
eras along with Convolutional Neuronal Networks to obtain
depth estimations in real-time using GPUs [6], [17], [21].
However, these works aim at autonomous driving applications,
where the image aspect ratio is wide-horizontal and the
level of detail required is low compared to immersive video
applications, setting them apart from the case considered here.

A novel approach to compute depth maps consists in
using plenoptic cameras, which enable obtaining accurate and
fast depth estimations based on dense light-field acquisitions.
Currently, researchers are addressing this problem from two
points of view: (i) algorithm optimization [10], [23] and (ii)
acceleration, mainly using GPUs [13].

Although specialized devices are employed, the use of tradi-
tional RGB cameras is common practice for depth estimation.
Cheng et al. [4] proposed a GPU-accelerated method that
relies on an adaptive window to improve the generation of the
initial cost map. In another work, Senoh et al. [16] introduced
an algorithm to refine the initial cost map based on non-
iterative edge-adaptive local cost optimization. The objective
is reducing the complexity and hence the computation time
without using an accelerator.

III. ALGORITHM AND ACCELERATION

Figure 1 shows a simplified view of DERS 8.0 structure
[15]. As it can be observed, the application is divided into 7
stages, included in 3 different color boxes. Green-background
represents the initialization step, gray-background the auxiliary
processes and blue-background the core algorithm, respec-
tively. They are further explained in the following sections.

Fig. 1: DERS 8.0 structure: green background represents
the initialization process; gray illustrate processes only using
the main camera as input; and blue stages those that use
all cameras as input. Solid lines represent mandatory whilst
dashed lines optional processes, resp.

A. Read cameras and interpolation

The first step is the insertion of the camera information,
which comprises RGB frames and intrinsic and extrinsic
camera parameters [22]. Unlike DERS 8.0, GoRG allows an
unbounded number of input cameras. The optional frame inter-
polation functionality in DERS 8.0 has not been implemented
in this work.

B. Homography

This stage generates an initial cost volume for the main
camera using all the cameras data. It is divided into two
processes.

In the first process, for each main camera pixel, a number
of corresponding pixels is calculated in other cameras. This
is done by un-projecting rays from the main camera optical
center passing through each pixel. Then, a limited space in
z from a nearest Znear and farthest plane Zfar, is divided
into Zn planes. The cross between the rays and these planes
produce 3D points with a depth candidate associated each one.
These 3D points are then projected to other cameras to obtain
the corresponding projected pixels.

To implement this process, we construct the homography
projection matrix in (1), which enables the calculation of a
corresponding pixel [u v]T for a pair of cameras; given a
pixel [i j]T and a depth candidate z. This way, the matrix
is calculated in advance, reducing the per-pixel operation to
only one matrix multiplication.
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where K refers to the intrinsic matrix, R to the rotation
matrix, t to the translation vector and s to an undetermined
constant.
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In the second process, each pixel of the main camera
is compared to its corresponding pixel, so that a cost per
candidate is obtained. In this work, the cost is an addition of
L1-norms of Y, U and V differences, using a weighted 3× 3
window for Y.

Both corresponding pixels search and cost calculation are
implemented in the GPU as a single kernel where, for each
pixel, all the corresponding pixels for a certain camera are
first calculated and then compared to the main camera. The
independence between pixels and depth candidates, makes the
storage of intermediate data in DRAM memory unnecessary.

The main problem with this implementation is the high
number of memory reads: Y, U and V for all the pixels
and depth candidates in a pair of cameras. This issue can
be partially alleviated using GPU shared memory. As Y,
U and V for the main camera are reused for every depth
candidate, they can be stored in on-chip memory, reducing
DRAM accesses drastically. This fact, along with an specific
structure of overlapped thread blocks also solves the problem
of the Y 3 × 3 window, reusing values of Y not only for a
depth candidate, but also for near pixels. This scheme can not
be applied to the second camera image, given that its accesses
are computed in the process, hence unpredictable.

This kernel is used to calculate an initial cost volume
(for pixel and depth candidate) only for a pair of cameras.
Consequently, this process is repeated iteratively for all the
cameras: whenever a camera produces a lower cost for a pixel
and depth candidate, this value is updated in the previous cost
volume. To improve this approach, each camera has a weight
associated, based on its distance to the main camera.

C. Graph Cuts

Graph Cuts is a well-known global energy minimization
algorithm adopted in computer vision to solve different prob-
lems, including depth estimation [3], [9]. It is based on the
creation of a graph structure where a global-minimum energy
cut is to be found. In GoRG, the energy function to be
minimized is the following:

E(f) =
�

p∈P
R(p)D(p, fp) +

�

(p,q)∈N
Sp,q(p, q)Vp,q(fp, fq)

(2)
where f is a labelling that generates a certain energy, a

depth map in this case, P are the image pixels and N is a
neighborhood of pixels.

The data term, R(p)D(p, fp), measures the cost of assigning
one pixel to a certain depth using the information contained in
the initial cost volume. In addition, it is scaled by the reliability
map (see III-D).

The smoothing term, S(p, q)Vp,q(fp, fq), measures the cost
of associating a depth to a pixel, taking into account its
neighbors depths and similarity; for this reason, this term also
includes the smoothing map information (see III-D).

Graph Cuts is devised to minimize the energy of a binary-
label function and extended it to a multi-label function em-
ploying the alpha expansion move method [9], illustrated in

Algorithm 1. It begins with an empty depth map that is
iteratively updated for each depth candidate Zn. In every
iteration, a graph is initialized and cut to calculate which pixels
from the depth map belong to the current depth candidate.

Algorithm 1 Alpha expansion method.
1: Initialize depth map()
2: for k = 0 → Zn do
3: Step 1: Initialize graph()
4: Step 2: Graph Cut()
5: Step 3: Update depth map()
6: end for

To develop this algorithm in the GPU, one implementation1

of CUDA Cuts [19] have been employed. To the best of the
authors’ knowledge, this library is the most important Graph
Cuts CUDA-based acceleration and hence is used.

CUDA Cuts was designed as an image segmentation ap-
plication, where only one cut is needed and only the case
of binary labelling is considered. We have integrated it into
the alpha expansion method and optimized communications
by removing unnecessary CPU-GPU memory transactions,
drastically reducing the time spent managing memory. This
also implies the creation of auxiliary GPU functions that allow
processing inputs and outputs properly before and after using
CUDA Cuts.

The library may yield sub-optimum results [12], which
is not a major problem in image segmentation. However,
when it is used within the alpha expansion loop, the error
is accumulated iteration by iteration, largely impacting the
resulting quality, specially in borders and narrow details. In
order to overcome this problem, in GoRG, the initial cost
volume is filtered layer by layer with a 3×3 gaussian filter
and also, the depth map in the alpha expansion method is
filtered by a 3×3 median filter every 30 depth steps.

D. Reliability, Smoothing and Motion Maps

To improve depth estimations, reliability, smoothing and
motion maps are implemented using the main camera as input.

The reliability map provides an estimation of the texture
level per pixel present in the main camera. The reason to do
so is the difficulty of matching pixels from different cameras in
textureless areas. This estimation is integrated into the initial
cost volume, where the cost in textureless areas is magnified.

The smoothing map can be seen as the opposite of the
reliability map: it provides an idea of how similar pixels in an
area are. With this information, and assuming that, commonly,
similar pixels present similar depths, this map is employed to
improve the graph generated in the Graph Cuts stage. To do
so, edges between similar pixels are reduced according to their
level of similarity, favouring these areas to be assigned to the
same depth plane.

The motion map is devised as a method to improve the algo-
rithm performance when more than one frame is processed. It

1https://github.com/metthueshoo/graphCut
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is based on the idea that if no motion exists from one frame to
the next, depth values in those areas should remain equal. It is
calculated comparing one main camera frame to the previous
one, finding which pixels have differences above a threshold.
Then, this mask is utilized in the initial cost cube to update
only those pixels that have changed. It is also used in Graph
Cuts, where only the motion pixels are set to 0 depth; the
rest remains with the same depths as in the previous frame
(although they can change during the process).

Reliability and smoothing maps are processed in a single,
user parametrizable kernel where the differences for each pixel
are calculated in a 3×3 window for horizontal and vertical
directions. Given the operations independence and low number
of memory accesses, which can also benefit from L2 cache due
to its locality, this kernel presents a good GPU performance.

Motion map calculation is implemented in the GPU with a
kernel that compares two consecutive frames using an user-
defined window. It obtains a good GPU performance.

IV. RESULTS AND DISCUSSION

The results collected comprise the time needed to process
the considered frames and the quality of the output for both
DERS 8.0 and for GoRG. The former measurement is straight-
forward, whilst the latter is measured using the following
depth-synthesis processing chain:

1) Depth estimation: for each camera in a sequence, depth
estimations are calculated with DERS 8.02 and GoRG.

2) Synthesis: using Versatile View Synthesizer (VVS)3, a
virtual camera is set in the place of a real camera and
then, a synthesized view is generated from the RGB
images and depth of the surrounding cameras.

3) Comparison: the synthesized view is compared with the
real camera RGB image in the same place using two
metrics: WS-PSNR and SSIM.

The platforms used to conduct the experiments are: (i) for
DERS 8.0, one node (2× Intel Xeon Gold 6230 processors,
20 cores each) of the Magerit-3 supercomputer of the Super-
computing and Visualization Center of Madrid (CeSViMa);
and (ii) for GoRG, a desktop computer with an AMD Ryzen
Threadripper 1950X (16 cores) with an NVIDIA Titan Xp
GPU. The test material utilized, from the MPEG-I group, can
be seen in Table I.

Sequences Camera Configuration Frames Resolution
IntelFrog linear 14 × 1 8 1920 × 1080

OrangeDancing arc 14 × 3 8 1920 × 1080
OrangeKitchen array 5 × 5 8 1920 × 1080
OrangeShaman array 5 × 5 8 1920 × 1080
PoznanFencing2 arc 10 × 1 8 1920 × 1080

TechnicolorPainter array 4 × 4 8 2048 × 1088
ULBBabyUnicorn3 array 5 × 3 8 3712 × 2064

ULBUnicornA array 5 × 5 1 1920 × 1080
ULBUnicornB array 5 × 3 1 1920 × 1080

TABLE I: Overview of the sequences [1], [14].

Quality and time results can be observed in Table II. Quality
results are the product of an average process for all the frames

2http://mpegx.int-evry.fr/software/MPEG/Explorations/6DoF/DERS
3http://mpegx.int-evry.fr/software/MPEG/Explorations/6DoF/VVS

and cameras for each sequence. Time results are the average
time to process the number of frames considered for each
sequence.

Regarding quality results, the PSNR obtained for GoRG
is in average 1.6 dB worse than DERS, with important
differences between sequences. For some of them, our results
are around 1 dB worse, whilst for others almost 4 dB worse.
In spite of that, subjective evaluations carried out by the
authors suggest that the quality loss is not as high as might be
inferred from PSNR results. For this reason, the SSIM metric
is also calculated. Results show that SSIM is closer for all the
sequences, with an average loss of 1.20 %.

These quality differences are due to the suboptimal results
produced by Graph Cuts in every iteration. Effectively, this
error is iteratively accumulated giving a partially incorrect
depth map, specially in borders and small depth details. This
also explain the better results in case of SSIM, which measures
structure correlation and does not penalize erroneous borders
as much as PSNR. This is the only source of differences
between DERS and GoRG.A comparison of the generated
depth maps in DERS 8.0 and GoRG can be seen in Figure
2.

(a) Intel Frog DERS 8.0 (b) Intel Frog GoRG

(c) Technicolor Painter DERS 8.0 (d) Technicolor Painter GoRG

(e) Orange Shaman DERS 8.0 (f) Orange Shaman GoRG

(g) ULB Unicorn A DERS 8.0 (h) ULB Unicorn A GoRG

Fig. 2: Example depth maps for 4 different sequences. On
left column, DERS 8.0 estimations, on right column, GoRG
estimations.
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Fig. 3: GoRG stage-wise time analysis. Initialization refers
to memory reads and smoothing, reliability and motion maps
calculations.

Regarding time results, GoRG achieves an average speed-
up of ×25, which greatly outperforms the single-thread DERS
8.0. Nevertheless, our acceleration is far from generating depth
estimations at a real-time video rate due to Graph Cuts, which
takes more than 95% of the whole time, as can be seen in
Figure 3. Although independent pixel operations like in the
homography stage can benefit from a embarrassingly parallel
acceleration, algorithms that require global synchronizations
and memory movements like Graph Cuts can not seize this
architecture, unless deeply modified. Furthermore, it is worth
mentioning that the acceleration only comes from the GPU
implementation, as all the algorithms remain the same.

Sequence YPSNR(dB) SSIM Time/cam(s)
DERS GoRG DERS GoRG DERS GoRG

IFrog 27.52 27.32 0.8232 0.8312 3840 158
ODancing 32.45 29.15 0.9315 0.8826 4440 117
OKitchen 31.74 31.00 0.9663 0.9573 1942 148
OShaman 40.46 36.66 0.9648 0.9393 1997 93
PFencing2 27.23 24.65 0.8379 0.8189 2820 136
TPainter 34.42 35.22 0.9224 0.9294 1726 179

UBabyUnicorn3 28.44 27.16 0.8433 0.8505 7324 555
UUnicornA 30.88 28.11 0.9649 0.9465 718 22
UUnicornB 31.53 30.86 0.9672 0.9637 810 23

TABLE II: Quality and time results for DERS and the pro-
posal. Better resuls are underlined and bold. Sequence names
are abbreviated.

V. CONCLUDING REMARKS AND FUTURE LINES

We have proposed a GPU-accelerated version of DERS
8.0, depicting the implementation details stage by stage. We
demonstrate that most stages of DERS benefit from the GPU
architecture due to the independence among pixels computa-
tions. The exception is Graph Cuts, which represents more
than 95% of the consumed time. Although we also use the
GPU for this stage, the constant need for synchronization dur-
ing the alpha expansion method causes a loss of performance.

GoRG achieves a speed-up of 25× at the cost of an average
1.6 dB loss in PSNR and 1.20% in SSIM. These loses
considerably depend on the sequence tested, finding the worst
cases when sequences have many small depth details. This is

because the erroneous pixels are mainly found at borders and
narrow regions.

This work is a first step in the reduction of the computation
time of global depth estimation techniques in HSI intraopera-
tive scenarios, where the computational time is expected to be
similar or slightly higher, as adding new bands would increase
only the processing time in the homography stage. In addition,
it can become a valuable tool for researchers and developers
as it improves their productivity: algorithm research on one
side and the validation cycle of software updates on the other.

Future work will focus on the generation of different multi-
view HS data-sets, including medical scenarios, in order to test
GoRG with HS images. On the other hand, we will improve
the quality of results, minimizing the errors that are mainly
introduced in the Graph Cuts stage. As this consumes more
than 95% of the computation time, we will explore new strate-
gies for the alpha expansion method that search candidates
more efficiently, e.g., using hierarchical or histogram-based
methods, instead of the current naive iterative pattern.

VI. COPYRIGHTS

This work uses several copyrighted materials including Uni-
corn dataset [2] created in the 3DLicorneA project, supported
by Innoviris, the Brussels Institute for Research and Innova-
tion Belgium, under contract No.: 2015-DS-39a/b/c/d&2015-
DS-39a/b/c/d, 3DLicorneA, Poznan Fencing2 dataset [18]
and Technicolor Painter dataset [5] Copyright: Technicolor-
Armand Langlois. All rights reserved Copyright 2016-2017 –
Technicolor R&D France, SNC All Rights Reserved.
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