
sensors

Review

Complexity Analysis of a Versatile Video Coding Decoder over
Embedded Systems and General Purpose Processors

Anup Saha *,† , Miguel Chavarrías † , Fernando Pescador † , Ángel M. Groba † , Kheyter Chassaigne †

and Pedro L. Cebrián †

����������
�������

Citation: Saha, A.; Chavarrías, M.;

Pescador, F.; Groba, Á.M.; Chassaigne,

K.; Cebrián, P.L. Complexity Analysis

of a Versatile Video Coding Decoder

over Embedded Systems and General

Purpose Processors. Sensors 2021, 21,

3320. https://doi.org/10.3390/

s21103320

Academic Editor: Cosimo Distante

Received: 8 March 2021

Accepted: 7 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Software Technologies and Multimedia Systems for Sustainability (CITSEM) Research Center, Universidad
Politécnica de Madrid (UPM), 28040 Madrid, Spain; miguel.chavarrias@upm.es (M.C.);
fernando.pescador@upm.es (F.P.); angelmanuel.groba@upm.es (Á.M.G.); ka.chassaigne@alumnos.upm.es (K.C.);
pl.cebrian@alumnos.upm.es (P.L.C.)
* Correspondence: anup.saha@upm.es
† These authors contributed equally to this work.

Abstract: The increase in high-quality video consumption requires increasingly efficient video coding
algorithms. Versatile video coding (VVC) is the current state-of-the-art video coding standard.
Compared to the previous video standard, high efficiency video coding (HEVC), VVC demands
approximately 50% higher video compression while maintaining the same quality and significantly
increasing the computational complexity. In this study, coarse-grain profiling of a VVC decoder over
two different platforms was performed: One platform was based on a high-performance general
purpose processor (HGPP), and the other platform was based on an embedded general purpose
processor (EGPP). For the most intensive computational modules, fine-grain profiling was also
performed. The results allowed the identification of the most intensive computational modules
necessary to carry out subsequent acceleration processes. Additionally, the correlation between
the performance of each module on both platforms was determined to identify the influence of the
hardware architecture.

Keywords: versatile video coding; complexity analysis; H.266; codec; multicore; heterogeneous,
GPU; inter prediction; deblocking filter; adaptive loop filter

1. Introduction

The increasing global availability of smart consumer electronic devices is causing a
growing demand for full HD/ultra-HD videos, which is predicted to account for more
than 80% [1] of internet traffic by 2022. However, the capacity of storage devices and
communication channels is limited. As a result, it has become necessary to obtain better
video compression techniques that can achieve bitrate improvements over high efficiency
video coding (HEVC) [2] while maintaining quality.

Considering this situation, the new versatile video coding (VVC) standard was offi-
cially released in July 2020 [3] by the Joint Video Experts Team (JVET) of the ITU-T and JCT
groups within ASO/IEC. Compared to its predecessor, the new standard has achieved a
bitrate improvement of 50% [4] while maintaining quality.

Various new features have been adapted to VVC to achieve better coding efficiency [5].
For example, the largest size of coding tree units (CTUs) is 128 × 128 pixels, quadtree
with nested multi-type tree (QTMT) for coding unit (CU) partition, multiple transform
selection (MTS) support up to 87 intra coding modes [6], cross-component linear model,
affine motion compensation [7] and adaptive loop filter (ALF). However, these features
come with an increment in computational complexity that has been roughly evaluated
as ×10 in the encoder and ×2 in the decoder [8]. Therefore, it has become necessary to
analyse the complexity details of the VVC decoder to achieve real-time performance in
embedded devices with limited resources. Several studies have presented complexity

Sensors 2021, 21, 3320. https://doi.org/10.3390/s21103320 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2268-3642
https://orcid.org/0000-0003-0280-3440
https://orcid.org/0000-0002-3610-4296
https://orcid.org/0000-0001-6066-5328
https://orcid.org/0000-0002-3352-6522
https://orcid.org/0000-0001-9395-5807
https://doi.org/10.3390/s21103320
https://doi.org/10.3390/s21103320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103320
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21103320?type=check_update&version=1


Sensors 2021, 21, 3320 2 of 20

analyses of previous standards in [9–14]. The main target of a complexity analysis is to
guide upcoming research towards acceleration of the reference software as it is focused on
accuracy, completeness and dependability, but not in real-time performance of consumer
electronics systems.

To date, a few VVC implementations have attempted to accelerate the reference soft-
ware for real-time performance. Fan et al. proposed a pipelined 2D transform architecture
for VVC discrete sine transform VII and discrete cosine transform VIII [15]. In [16], a gen-
eral purpose processor (GPP)- and graphical processing unit (GPU)-based implementation
of a VVC decoder was performed to accelerate the decoder by optimizing the motion com-
pensation (MC). The proposed implementation led to a new partition of the coding unit,
and organization of suitable thread schemes of the MC were implemented over the GPU.
Moreover, the authors of the article [17] presented a parallelized multi-CPU core-based
VVC decoder, for which a redesign of the decoding task had been proposed using load
balanced task parallelization and data parallelization at the level of the CTU. In addition,
various other studies have presented methods to accelerate partial functionalities of a VVC
decoder over a GPU using OpenHEVC [18]. In [19], new adaptive multiple transforms of
VVC were ported to an embedded GPU. Thus, a 2D transform was performed over a GPU,
whereas the remaining decoding blocks were processed in a GPP.

This article begins with the premise that the increased complexity of new standard
software solutions will require extensive optimisation processes. To ensure the success of
these processes, it is important to characterise the computational load of the algorithms
in detail. To this end, the authors of the paper decided to implement and characterise,
on two different platforms based on general-purpose processors, the reference software
VVC Test Model (VTM) in its version 8.0 [20]. The profiling process was divided into
two stages: in the first one, the coarse-grained analysis was carried out. Here the main
blocks of the decoding algorithm were featured. Then, the more computationally heavy
blocks were analysed at a fine-grained level of detail. The test bench consists of six high-
resolution sequences, using both 8 and 10 bit-depths, for two different configurations and
four quantization parameter (QP) values. This work is detailed in this paper, introducing
the following contributions:

1. An in-depth analysis of the new VVC standard to assist in the development of
further and necessary optimisations. The more detailed analysis is addressed to inter
prediction (IP), deblocking filter (DBF), and ALF blocks.

2. Two platforms, whose architectures are state of the art, were used:

(a) An AMD-based high performance processor [21].
(b) A heterogeneous NVIDIA Jetson AGX Xavier System on Chip (NXSoC) [22].

3. Possible correlations between the computational load of the algorithm blocks on each
of the architectures were obtained and compared.

4. A comparison between the obtained results with different VVC implementations
available in the scientific literature was performed.

The remainder of this paper is structured as follows: Section 2 summarizes the main
functional blocks of the VVC codec. In Section 3, the working environment is described. In
Section 4, the results of the performance analysis of the VTM decoder, inter prediction, DBF,
and ALF over the platforms are shown. In Section 5, a comparative study of the complexity
analysis of various VVC decoder implementations is presented in the discussion. Finally,
Section 6 concludes the paper.

2. Versatile Video Coding (VVC)

The VVC codec is based on the same hybrid coding scheme used in previous standards,
such as HEVC [2] or AVC [23]. The VVC decoding process scheme is shown in Figure 1 and
can be summarized as follows: bitstream is the input, and video is the output of the system.
First, the decoding process starts from entropy decoding of the bitstream. Here, context
adaptive binary arithmetic coding (CABAC) [24] gives partitioning information of blocks



Sensors 2021, 21, 3320 3 of 20

named coding tree units using inter-picture prediction, intra-picture prediction, and coded
residual data [4]. Therefore, to reconstruct the coded residual data, inverse quantization
is applied followed by inverse transformations (primary and secondary). Finally, in-loop
filters are used to process accumulative reconstructed residual and predicted data. The
in-loop filter contains the DBF, the sample adaptive offset (SAO), and ALF filters. Next, the
main modules integrating the decoding process are presented and detailed.

Figure 1. General block diagram of a VVC decoder.

2.1. Picture Reconstruction

For VVC, a similar but extended CTU concept was inherited from its predecessor,
HEVC. In the new standard, the quadtree scheme had been replaced earlier by a quadtree
plus binary tree [25]. Therefore, a vertical or horizontal directional partition of a binary
tree was added to extend the quadtree plus binary tree. Finally, QTMT partitioning was
adapted to the VVC standard. In the QTMT scheme, the blocks were divided into smaller
square sub-blocks for the QT structure and into smaller rectangular binary and ternary
sub-blocks for the multi type tree structure. Moreover, a block can be divided into the
horizontal or vertical direction using binary and ternary splitting. Further, in the ternary
split, a block was divided into three sub-blocks with a central sub-block 2 times larger
than the outer blocks. The VVC supported partition schemes are displayed in Figure 2.
In addition, VVC allowed a maximum CTU size of 128x128 pixels [26]. These features
helped VVC achieve a more flexible and efficient partitioning structure compared to the
HEVC standard.

Figure 2. VVC supported partitioning schemes: quad, binary and ternary splitting structures.

2.2. Entropy Decoder

The entropy decoding process used in VVC is similar to that used in HEVC. However,
the VVC CABAC engine is more advanced than its predecessor. Here, the index of the
current state was used to linearly express the probability. Therefore, the pre-computed
look-up table of HEVC was removed, and the multi-hypothesis probability update model
was applied to improve the accuracy. In addition, the VVC CABAC introduced a QP
dependent initialization model where total initialization values have 6-bit precision. In
addition, VVC was dependent on the transform block size for the selection of coefficient
group sizes. It allowed coefficient groups of 1 × 16, 2 × 8, 8 × 2, 2 × 4, 4 × 2 and 16 × 1.



Sensors 2021, 21, 3320 4 of 20

2.3. Inverse Quantization (IQ) and Transform (IT)

In VVC, both the residual intra- and inter-CBs are encoded with an MTS scheme with
three transform types: DCT–II, DCT–VIII and DST–VII. Rectangular H × W blocks are
allowed with H ≤ 64, W ≤ 64 for DCT-II and H ≤ 32, W ≤ 32 for DCT–VIII and DST–VII
(e.g., 4 × 64 or 32 × 16). To reduce the computational complexity of large transforms, the
high frequency coefficients of H × 64 and 64 × W DCT-II transforms are zeroed; the same
happens with the high frequency coefficients of the H × 32 and 32 × W DCT-VIII and DST-
VII transforms. After this primary transform, a LFNST was applied before quantization.
LFNST was added to VVC for performing further transform in low-frequency primary
transform coefficients [27]. These coefficients are transform coefficients that come from
directional intra prediction [28].

2.4. Intra Prediction

VVC introduced 65 directional intra prediction modes along with the planar and
DC modes, whereas HEVC supported 33 directional intra prediction modes. In addition,
a wide-angle intra prediction mode was adopted for non-square blocks by substituting
some traditional angular modes, and the candidate with the most probable modes list was
increased to 6. Other intra prediction coding tools were included in VVC: (1) The multiple
reference line tool was used for angular prediction by referencing neighbouring lines 1 and
3 of the prediction block [29]. (2) The mode-dependent intra-smoothing tool was used to
enhance the prediction efficiency using a four-tap intra filter. (3) A cross-component linear
model was used in chroma samples for prediction to build reconstructed luma samples in
the same CU.

2.5. Inter Prediction

The main contribution regarding inter picture prediction in VVC is the introduction of
the merge mode along motion vector differences (MVD) that is used for finer representation
of motion parameters and the adaptive motion vector resolution [8]. Similar to HEVC, the
merge mode adopts candidates from spatial, temporal, and zero motion vectors. Further, it
adopts a pairwise average vector, and a history-based vector [5]. VVC has achieved better
precision accuracy than its predecessors by performing motion prediction at the sub-coding
unit level. Moreover, affine motion compensated predictions [30] have been previously
performed for handling zooming operations, rotation, and transformation motions. Here,
two or three motion vectors were used to describe a sub-prediction unit. Therefore, triangle
partitioning was applied at the CU level, where CU was divided into two triangles. This
approach allowed more precise predictions within a CU.

2.6. In-Loop Filtering

The adaptive loop filter (ALF) is a new feature for VVC; the other filters, DBF [31] and
SAO [32], show a high degree of similarity to those of HEVC. VVC has adopts DBF, SAO
and ALF [33] to handle visible artefacts such as flickering, colour shift, blocking, blurring,
and ringing in the reconstructed samples. In VVC, ALF two diamond-shaped filters are
applied: one of 7 × 7 diamond shapes with thirteen different coefficients to luma blocks
and the other of 5 × 5 diamond shapes with seven different coefficients to chroma blocks.
Based on the vertical, horizontal, and 2 diagonal gradients, one of the twenty-five classes
was chosen for each 4 × 4 block. Therefore, Wiener filters were computed for each class.
However, before in-loop filtering was initiated, luma mapping with chroma scaling was
applied to adjust the input luma signal.

3. The Working Environment

In this study, two platforms were used: an AMD Ryzen Threadripper high per-
formance processor [34] and an embedded NXSoC [22]. The architecture of the Ryzen
processor is shown in Figure 3. This processor is based on Zen microarchitecture [35], which
has a primary building block a core complex (CCX). Ryzen has 4 processing complexes,



Sensors 2021, 21, 3320 5 of 20

and each CCX includes 4 cores. Each core provides 2 threads with a base clock speed of 3.4
GHz, and all 32 threads have simultaneous multi-processing power. Each core is called
a HGPP in this paper. In addition, all 4 cores share 8 MB of L3 cache memory, and each
has its own 512 KB of L2 cache memory. All the L3 cache memories of different CCXs are
allowed to be addressed and accessed by all CCX modules [36]. The maximum memory
speed was 3.67 GHz .

Figure 3. The architecture of a Ryzen processor.

The architecture of NXSoC is presented in Figure 4. In summary, it is composed of an
EGPP complex and an Embedded GPU (EGPU) [37] complex, where the EGPP complex has
4 clusters and each cluster has 2 ARM cores with a maximum clock frequency of 2.26 GHz.
Each of these cores is called an EGPP in this study. In a cluster, 2 EGPP cores share 2 MB L2
cache memory. Furthermore, all the clusters have access to 4 MB L3 cache memory.

Figure 4. Representation of the architecture of the EGPP+EGPU platform, integrated by 8 EGPP
cores, a GPU core with 8 SMs and shared DRAM.

The VTM8.0 reference software was ported over a HGPP and an ARM-based EGPP.
Here, the CMake [38] toolchain was adapted for the EGPP. However, no modification was
required for the HGPP. Then, “-O3” optimization of the GCC7.5 compiler was activated for
both platforms. Therefore, profiling was obtained by executing the decoder using only one
core of both the HGPP running at 3.40 GHz and EGPP running at 2.26 GHz. Here, only one
core was used to fairly compare complexity analysis results obtained for both platforms.

4. Complexity Analysis of the VVC Decoder

In this section, the test bench and the collection of test sequences used are presented.
A coarse grain profile of the VTM8.0 decoder is presented over the HGPP and EGPP. Four
QP values were chosen for the test bench: 22, 27, 32 and 37. Here, the computational load of
the main modules of the VTM8.0 decoder is outlined. Further, fine-grain profile of the most
consuming modules, inter prediction, deblocking filter and adaptive loop filter modules
over the HGPP and EGPP is shown.

4.1. Test Bench Description

The profiling was carried out by decoding two A1-Class video sequences, Camfire (CF)
and FoodMarket4 (FM4); two A2-class sequences, DaylightRoad2 (DL2) and ParkRunning3



Sensors 2021, 21, 3320 6 of 20

(PR3); and two B-Class sequences, BasketballDrive (BBD) and BQTerrace (BQT). These
sequences were obtained from the test sequence set of common test conditions [39]. All
sequences were encoded using the same VTM software version [20]. The features of the
sequences are presented in Table 1. For each sequence the four QPs, two configurations, all
intra (AI) and random access (RA), were used.

Table 1. Features of the VVC Bitstreams used in the tests.

Class Sequence Resolution Frames Bit Depth

A1
Camfire 3840 × 2160 300 10

FoodMarket4 3840 × 2160 300 10

A2
DaylightRoad2 3840 × 2160 300 10

ParkRunning3 3840 × 2160 300 10

B
BasketballDrive 1920 × 1080 500 8

BQTerrace 1920 × 1080 600 8

The VTM8.0 decoder was profiled to identify the most time-consuming functional
blocks of the decoder and instrumented to include timestamps before and after each call
to the following functional blocks: entropy decoding (ED), inverse transforms (TX), inter
prediction (EP), intra prediction (IP), deblocking filter (DBF), and adaptive loop filter (ALF).
The difference among the total times to decode the entire sequence and the sums of the
times measured in all functional blocks were assigned to other (OT). Notably, SAO filtering
had a reduced impact on the total load (below 3% in all cases). For simplicity, in some tables,
SAO impact is included in the OT part. In these cases the SAO is not independently shown.

Table 2 illustrates the results obtained over the HGPP with details of consumed time
(in secs). The average computational load (in %) consumed by the different blocks of the
VVC decoder over the HGPP is displayed in Figure 5. As shown in this figure, in-loop filers
were the most demanding blocks for AI configurations, which represented approximately
average 40% of the decoding time for DBF, SAO and ALF. Entropy decoding and intra
prediction accounted for approximately average 20% and 23%, respectively. Furthermore,
the time consumed by IP, DBF, and ALF were increased by 1–4% with the increment of
the four QP values from 22 to 37. However, the scenario was opposite for ED and OT
which decreased by 1–7%. TX and SAO consumed similar time for different QPs. Therefore,
for the RA configurations, the most demanding blocks were inter prediction and the in-
loop filters, which consumed approximately average 70% of the decoding time. Entropy
decoding and inverse transforms accounted for approximately average 9% and 5% of the
decoding time, respectively. Further, IP and DBF consumed average 6% and 26% of the
decoding time for all the QPs. Moreover, the computational cost of the ED, TX, and SAO
were decreased, and the computational cost of the EP, ALF, and OT were increased with
the changes of the four QPs from 22 to 37. In addition, 0.6 to 17 frames per second (fps)
ratios were achieved for different configurations and QPs over the HGPP.

The VVC decoder profile over the EGPP is shown in Table 3. Here, the average decod-
ing times (in secs) consumed by each functional block are presented for each configuration
and QP over the EGPP-based architecture. These results indicate that the system was able
to decode between 0.3 and 5 fps, depending on the sequence, QP and configuration. There-
fore, to accomplish real-time performance, an increase in fps of roughly ×100 would be
needed. With our experience working on the optimization of previous video decoders with
HEVC-based implementations, a speedup of up to ×10 could be obtained by both optimiz-
ing the code and executing it over several cores (e.g., the 8 cores in the NXSoC) [40]. Hence,
an additional minimum speedup of ×10 should be obtained by GPU-based accelerators to
achieve real-time performance.



Sensors 2021, 21, 3320 7 of 20

Table 2. Processing times (in s) for each decoding block and global fps achieved over the HGPP.

Seq. QP ED TX IP EP DBF ALF OT fps

A
ll

In
tr

a

CF

22 105.1 24.8 77.4 0.0 111.6 14.6 49.5 0.8
27 65.1 21.6 66.3 0.0 96.1 15.5 35.6 1.0
32 31.7 16.1 49.3 0.0 75.0 16.8 18.2 1.5
37 17.3 12.0 36.9 0.0 53.1 11.3 7.6 2.2

FM4

22 41.0 28.1 61.5 0.0 80.1 16.1 11.8 1.3
27 28.4 24.2 52.8 0.0 68.7 17.4 6.6 1.5
32 19.4 19.6 43.2 0.0 56.6 16.3 4.0 1.9
37 14.1 16.5 37.0 0.0 48.0 12.3 0.6 2.3

DR2

22 155.9 36.7 93.5 0.0 151.8 19.2 58.1 0.6
27 49.8 23.0 62.5 0.0 101.6 19.5 30.5 1.1
32 31.6 16.9 47.0 0.0 80.1 18.9 20.8 1.4
37 20.4 13.3 36.6 0.0 62.1 12.0 11.2 1.9

PR3

22 107.8 38.1 88.1 0.0 100.8 19.2 29.8 0.8
27 80.6 35.8 84.5 0.0 105.1 20.6 28.1 0.9
32 55.9 29.7 72.4 0.0 95.8 20.3 22.9 1.0
37 39.5 23.0 58.2 0.0 89.4 14.4 18.9 1.2

BBD

22 52.2 15.0 40.0 0.0 51.5 8.9 25.7 2.6
27 29.1 12.1 31.7 0.0 41.4 9.1 16.7 3.6
32 18.3 9.3 24.5 0.0 31.2 8.4 10.2 4.9
37 12.6 7.3 19.3 0.0 25.4 6.4 6.4 6.5

BQT

22 99.3 20.0 56.9 0.0 65.1 9.6 44.3 2.0
27 55.0 15.8 45.1 0.0 61.0 11.0 32.0 2.7
32 35.4 11.5 34.4 0.0 48.0 10.4 23.6 3.7
37 22.3 8.3 25.9 0.0 32.9 6.2 15.3 5.4

R
an

do
m

A
cc

es
s

CF

22 45.0 16.3 32.1 27.1 64.5 14.1 21.8 1.4
27 17.0 10.3 20.2 22.0 43.4 13.5 13.0 2.2
32 9.4 7.0 14.1 20.8 33.1 11.0 7.3 2.9
37 6.5 4.6 10.0 20.0 30.2 11.0 8.4 3.3

FM4

22 10.1 9.7 5.4 41.8 29.9 14.3 4.9 2.6
27 6.3 7.1 4.2 42.8 25.8 13.0 4.6 2.9
32 3.7 5.1 3.3 39.1 20.0 9.0 3.8 3.6
37 2.6 3.4 2.6 36.4 18.1 5.9 5.0 4.1

DR2

22 27.1 9.4 9.8 40.8 47.8 14.8 20.3 1.8
27 8.2 4.1 4.9 39.9 29.6 12.6 11.4 2.7
32 4.1 2.3 2.8 38.2 22.6 10.2 8.2 3.4
37 3.1 1.4 2.0 37.1 21.6 8.0 9.4 3.6

PR3

22 45.4 15.3 8.3 67.0 66.2 20.1 21.0 1.2
27 23.2 9.3 6.9 58.6 49.9 19.6 17.2 1.6
32 12.8 5.7 5.5 50.2 39.4 18.5 13.4 2.1
37 6.5 3.3 4.0 42.7 29.2 13.0 9.8 2.8

BBD

22 13.1 4.8 5.6 16.8 17.2 6.1 8.2 7.0
27 5.8 2.9 3.7 15.2 12.2 5.4 5.0 10.0
32 3.2 1.9 2.5 14.1 9.8 3.4 3.9 12.6
37 2.1 1.2 1.7 13.5 8.9 3.9 3.8 14.2

BQT

22 30.8 7.6 2.8 31.5 31.6 7.8 17.7 4.6
27 6.4 1.9 2.0 16.2 11.4 6.2 7.8 11.6
32 2.7 0.9 1.4 14.5 7.6 5.2 5.2 16.0
37 1.8 0.5 1.0 14.3 7.3 4.3 5.3 17.4



Sensors 2021, 21, 3320 8 of 20Version May 5, 2021 submitted to Sensors 8 of 20

ED TX IP EP DBF SAO ALF OT
0

10

20

30 27

8

21

0

28

2
5

9

20

9

23

0

32

3
6 7

17

9

24

0

33

3

8
6

15

9

25

0

36

2

8
5

All Intra

QP 22
QP 27
QP 32
QP37

ED TX IP EP DBF SAO ALF OT
0

10

20

30

40

18

7 6

25 26

3

8 7
10

6 6

31

26

2

11
87

4
6

36

26

1

12
8

5
3

5

39

27

0

11 10

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 5. Average time distribution for different blocks of the VVC decoder (in %) over
the HGPP.

ED TX IP EP DBF SAO ALF OT
0

10

20

25

8

21

0

23

1

12
10

19

8

22

0

24

1

17

9

16

8

22

0

25

1

21

7

14

7

21

0

27

1

24

6

All Intra

QP 22
QP 27
QP 32
QP 37

ED TX IP EP DBF SAO ALF OT
0

20

40

14

5 5

28

20

1

20

78
4 5

33

16

1

27

67
3 4

37

16

0

27

64 2 4

44

17

0

24

5

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 6. Average time distribution for different blocks of the VVC decoder (in %) over the EGPP.

the 8 cores in the NXSoC) [40]. Hence, an additional minimum speedup of ×10 should241

be obtained by GPU-based accelerators to achieve real-time performance.242

Figure 5. Average time distribution for different blocks of the VVC decoder (in %) over the HGPP.

In addition, Figure 6 shows the computational cost (in %) for each functional block, QP
and configuration, averaged for all the test sequences. The most time-consuming modules
for AI configurations were the in-loop filters, the intra prediction and the entropy decoding
blocks, which accounted for approximately average 44%, 22%, and 19% of the decoding
time, respectively. Further, TX, IP, and SAO consumed similar time for different QPs. In
addition, the computation load of ED and OT decreased and the computation load of DBF
and ALF increased for the increment of the four QPs from 22 to 37. On the other hand, inter
prediction and in-loop filtering blocks were the most time-consuming blocks for the RA
configuration, and they accounted for approximately 78% of the decoding time. Moreover,
the computational cost of all the decoder blocks were decreased for the changes of four
QPs from 22 to 37 except the computational cost of EP and ALF.

The implementation of the VVC 8.0 decoder over the HGPP and EGPP showed that
the ALF consumed more computational time than the DBF in the EGPP. However, the
scenario was opposite for the HGPP. The other modules had similar shares of decoding
time for the HGPP and EGPP. This analysis points out where optimization efforts can be
overtaken. In the following Sections 4.3–4.5, we delve deeper in the details by presenting a
detailed profiling of the IP, DBF, and ALF blocks, respectively.



Sensors 2021, 21, 3320 9 of 20

Table 3. Processing times (in secs) for each decoding block and global fps achieved over the EGPP.

Seq. QP ED TX IP EP DBF ALF OT fps

A
ll

In
tr

a

CF

22 240.3 58.4 188.7 0.0 233.3 116.7 126.3 0.3
27 146.4 46.5 149.4 0.0 192.3 118.1 82.7 0.4
32 69.7 34.3 109.2 0.0 133.1 117.9 37.7 0.6
37 46.0 27.2 88.2 0.0 126.6 114.2 21.5 0.7

FM4

22 99.3 57.9 139.4 0.0 174.5 120.2 35.3 0.5
27 64.9 47.4 115.7 0.0 130.6 122.9 20.7 0.6
32 46.5 39.1 98.2 0.0 111.5 121.6 12.0 0.7
37 33.9 33.1 83.0 0.0 104.9 115.3 3.7 0.8

DR2

22 328.6 82.5 224.0 0.0 302.0 118.1 141.4 0.3
27 124.1 51.0 149.3 0.0 226.6 123.6 71.2 0.4
32 81.6 37.3 110.9 0.0 150.5 122.6 45.0 0.6
37 53.0 28.4 86.6 0.0 138.3 115.6 27.0 0.7

PR3

22 228.3 86.9 209.2 0.0 220.6 123.4 78.0 0.3
27 174.0 74.9 189.7 0.0 203.3 125.4 71.3 0.4
32 129.8 62.8 165.8 0.0 205.5 125.4 58.8 0.4
37 91.7 49.5 134.3 0.0 178.5 114.8 40.5 0.5

BBD

22 117.7 35.4 99.3 0.0 85.6 50.6 59.0 1.1
27 67.9 25.5 72.1 0.0 66.4 52.3 38.4 1.6
32 44.8 19.5 55.4 0.0 53.2 51.5 22.6 2.0
37 30.5 15.9 45.5 0.0 46.9 48.4 14.0 2.5

BQT

22 224.1 50.0 146.2 0.0 128.6 58.3 115.7 0.8
27 125.1 35.4 105.4 0.0 94.4 62.5 72.3 1.2
32 84.6 26.5 81.9 0.0 78.4 62.4 52.3 1.6
37 60.1 20.1 63.7 0.0 66.3 57.7 36.4 2.0

R
an

do
m

A
cc

es
s

CF

22 105.8 41.1 80.4 93.5 181.6 103.5 52.1 0.5
27 41.5 23.2 49.4 64.0 79.5 95.8 23.3 0.8
32 24.0 15.5 34.3 62.0 62.7 83.3 16.9 1.0
37 14.2 10.3 24.5 63.3 58.8 78.4 15.4 1.1

FM4

22 22.8 19.8 12.7 138.0 61.0 115.3 9.3 0.8
27 9.5 10.8 9.7 138.5 45.2 99.7 16.2 0.9
32 9.3 10.0 7.7 138.8 44.1 74.1 9.6 1.0
37 6.4 6.8 6.0 135.2 39.6 46.8 10.9 1.2

DR2

22 64.3 23.8 24.9 145.1 104.3 115.0 41.3 0.6
27 21.8 9.5 12.0 138.8 55.6 104.6 22.6 0.8
32 11.4 5.3 7.2 140.1 50.6 85.5 17.7 0.9
37 6.9 3.2 4.9 139.3 46.2 54.6 16.5 1.1

PR3

22 105.8 39.5 20.7 233.6 175.4 123.0 47.4 0.4
27 61.8 24.1 17.1 200.3 106.0 122.3 40.9 0.5
32 35.0 14.3 13.5 177.0 81.6 119.8 31.7 0.6
37 17.7 8.1 10.0 163.9 72.8 110.6 23.1 0.7

BBD

22 33.5 13.0 15.2 62.5 38.1 48.2 19.6 2.2
27 15.9 7.2 9.4 54.0 24.3 43.2 12.3 3.0
32 9.1 4.6 6.4 51.3 19.7 35.3 9.1 3.7
37 5.3 3.0 4.5 53.5 18.4 28.7 7.6 4.1

BQT

22 77.0 22.8 7.6 116.1 65.6 58.1 38.3 1.6
27 16.5 4.8 5.4 57.0 22.7 51.7 16.9 3.4
32 7.4 2.2 3.6 54.5 15.1 41.7 10.9 4.4
37 4.4 1.3 2.7 58.8 14.2 28.4 9.4 5.0



Sensors 2021, 21, 3320 10 of 20

Version May 5, 2021 submitted to Sensors 8 of 20

ED TX IP EP DBF SAO ALF OT
0

10

20

30 27

8

21

0

28

2
5

9

20

9

23

0

32

3
6 7

17

9

24

0

33

3

8
6

15

9

25

0

36

2

8
5

All Intra

QP 22
QP 27
QP 32
QP37

ED TX IP EP DBF SAO ALF OT
0

10

20

30

40

18

7 6

25 26

3

8 7
10

6 6

31

26

2

11
87

4
6

36

26

1

12
8

5
3

5

39

27

0

11 10

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 5. Average time distribution for different blocks of the VVC decoder (in %) over
the HGPP.

ED TX IP EP DBF SAO ALF OT
0

10

20

25

8

21

0

23

1

12
10

19

8

22

0

24

1

17

9

16

8

22

0

25

1

21

7

14

7

21

0

27

1

24

6

All Intra

QP 22
QP 27
QP 32
QP 37

ED TX IP EP DBF SAO ALF OT
0

20

40

14

5 5

28

20

1

20

78
4 5

33

16

1

27

67
3 4

37

16

0

27

64 2 4

44

17

0

24

5

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 6. Average time distribution for different blocks of the VVC decoder (in %) over the EGPP.

the 8 cores in the NXSoC) [40]. Hence, an additional minimum speedup of ×10 should241

be obtained by GPU-based accelerators to achieve real-time performance.242

Figure 6. Average time distribution for different blocks of the VVC decoder (in %) over the EGPP.

4.2. Correlation between the HGPP and EGPP

In this subsection, the correlation between the HGPP and EGPP is presented. This
analysis allowed us to identify the effect of the hardware resources on the performance of
different decoding blocks. Table 4 presents the average processing times (in secs) of each
decoding block over the HGPP and EGPP for the AI and RA configurations. The processing
times of ED, TX, IP, DBF, and OT were roughly ×2 higher than the processing time of
the EGPP with respect to the HGPP for both the AI and RA configurations. Moreover,
the processing times of the ALF were ×7.1 and ×7.4 higher than those of the EGPP for
the AI and RA configurations, respectively. Additionally, for the RA configurations, the
EGPP required ×3.5 more time to process the EP. However, the fps values obtained over
the HGPP for the AI and RA configurations were ×2.5 and ×3.3, respectively. These
results show that the influence of the architecture impacts mainly the EP block for the
RA configurations and the ALF block for the AI and RA configurations. Therefore, the
acceleration process is addressed in the EP and ALF over the EGPP.

Table 4. Average processing times (in secs) for each decoding block, average global fps achieved and
ratio between HGPP and EGPP.

ED TX IP EP DBF ALF OT fps

AI
HGPP 49.5 19.9 51.9 0.0 72.2 13.9 22.0 2.2
EGPP 113.0 43.6 121.3 0.0 143.8 98.3 53.6 0.9
Ratio 2.3 2.2 2.3 n/a 2.0 7.1 2.4 2.5

RA
HGPP 12.4 5.7 6.5 31.7 28.2 10.5 9.7 5.6
EGPP 30.3 13.5 16.2 111.6 61.8 77.8 21.6 1.7
Ratio 2.5 2.4 2.5 3.5 2.2 7.4 2.2 3.3



Sensors 2021, 21, 3320 11 of 20

4.3. Complexity Analysis of the Inter Prediction

In this section, the detailed profiling of inter prediction is presented using all the
sequences with the RA sequences over the HGPP and EGPP. In the decoder profiling,
timestamps were placed before and after the following inter prediction modules: inter
texture (ITEX), sub-prediction unit MC (SPUM), sub-prediction unit bio (SPUB), uni-
directional prediction (UDP), decoder side motion vector refinement (DMVR), weighted
prediction (WP). In turn, other (OT) part was calculated as the difference between the
global EP measurement and the sum obtained from previous modules.

Table 5 represents the average consumed time distribution (in %) for different parts
of the inter prediction over the HGPP and EGPP. The DMVR and UDP were the most
computationally heavy modules in the inter prediction for both GPPs. Both DMVR and
UDP together accounted for more than average 58% of the total time required for the inter
prediction. The other modules consumed amounts individually ranging from 1% to 28%
of the total time. The total average time distribution presents a broader view of the inter
prediction profiles.

Table 5. Average processing times (in %) for each inter prediction block profiled over the HGPP
and EGPP.

ITEX SPUM SPUB UDP DMVR WP OT

HGPP 8.2 4.8 5.9 18.2 40.1 6.1 16.7
EGPP 5.5 4.9 6.9 17.4 45.1 5.9 14.3

A detailed view of the inter prediction over the HGPP is shown in Figure 7, which
shows the average time distribution for different parts of the inter prediction (in %) over
the HGPP with QP 22, 27, 32 and 37. It was found that with the change in QP from 22 to 37,
the average computational load of the DMVR increased from 19% to 56%, and the average
computational load of the UDP decreased from 24% to 13%. The average computational
load for the other inter prediction parts varied by 1% to 11% for different QP values.

Version May 5, 2021 submitted to Sensors 11 of 20

Table 5. Average processing times (in %) for each inter prediction block profiled over the HGPP
and EGPP.

ITEX SPUM SPUB UDP DMVR WP OT
HGPP 8.2 4.8 5.9 18.2 40.1 6.1 16.7
EGPP 5.5 4.9 6.9 17.4 45.1 5.9 14.3

to 28% of the total time. The total average time distribution presents a broader view of288

the inter prediction profiles.289

ITEX SPUM SPUB UDP DMVR WP OT
0

20

40

60

14

1
6

24
19

8

28

9
3

7

20

37

7

17

6 5 6

16

48

6

13

4
10

5

13

56

4
8

QP 22
QP 27
QP 32
QP 37

Figure 7. Average time distribution for different parts of the inter prediction (in %) over the HGPP.

A detailed view of the inter prediction over the HGPP is shown in Figure 7, which290

shows the average time distribution for different parts of the inter prediction (in %) over291

the HGPP with QP 22, 27, 32 and 37. It was found that with the change in QP from 22292

to 37, the average computational load of the DMVR increased from 19% to 56%, and293

the average computational load of the UDP decreased from 24% to 13%. The average294

computational load for the other inter prediction parts varied by 1% to 11% for different295

QP values.296

The inter prediction profiling results over the EGPP are shown in Figure 8, where297

the average time distribution for the different parts of the inter prediction (in %) with298

QP 22 to 37 is presented. Here, the DMVR and UDP functions followed the same299

pattern as the profiling of the inter prediction over the HGPP. The average computational300

load of the DMVR increased by 35%, and the average computational load of the UDP301

decreased by 13% with the change in QP from 22 to 37. However, the DMVR represents302

approximately 5% more average computational load over the EGPP than over the HGPP,303

while the average computational loads for the other functions were slightly lower, except304

for the SPUM function.. Finally, considering this fine-grained analysis, the EP profiling305

results show that the DMVR and UDP are the most interesting functions to consider for306

acceleration, regardless of which platform is targeted.307

ITEX SPUM SPUB UDP DMVR WP OT
0

20

40

60

10

1
8

24 25

7

25

6
3

8

19

43

6

15

4 5 7
14

54

5
11

2

10
6

11

60

4 6

QP22
QP 27
QP 32
QP37

Figure 8. Average time distribution for different parts of the inter prediction (in %) over the EGPP.

Figure 7. Average time distribution for different parts of the inter prediction (in %) over the HGPP.

The inter prediction profiling results over the EGPP are shown in Figure 8, where the
average time distribution for the different parts of the inter prediction (in %) with QP 22
to 37 is presented. Here, the DMVR and UDP functions followed the same pattern as the
profiling of the inter prediction over the HGPP. The average computational load of the
DMVR increased by 35%, and the average computational load of the UDP decreased by 13%
with the change in QP from 22 to 37. However, the DMVR represents approximately 5%
more average computational load over the EGPP than over the HGPP, while the average
computational loads for the other functions were slightly lower, except for the SPUM
function.. Finally, considering this fine-grained analysis, the EP profiling results show
that the DMVR and UDP are the most interesting functions to consider for acceleration,
regardless of which platform is targeted.



Sensors 2021, 21, 3320 12 of 20

Version May 5, 2021 submitted to Sensors 11 of 20

Table 5. Average processing times (in %) for each inter prediction block profiled over the HGPP
and EGPP.

ITEX SPUM SPUB UDP DMVR WP OT
HGPP 8.2 4.8 5.9 18.2 40.1 6.1 16.7
EGPP 5.5 4.9 6.9 17.4 45.1 5.9 14.3

to 28% of the total time. The total average time distribution presents a broader view of288

the inter prediction profiles.289

ITEX SPUM SPUB UDP DMVR WP OT
0

20

40

60

14

1
6

24
19

8

28

9
3

7

20

37

7

17

6 5 6

16

48

6

13

4
10

5

13

56

4
8

QP 22
QP 27
QP 32
QP 37

Figure 7. Average time distribution for different parts of the inter prediction (in %) over the HGPP.

A detailed view of the inter prediction over the HGPP is shown in Figure 7, which290

shows the average time distribution for different parts of the inter prediction (in %) over291

the HGPP with QP 22, 27, 32 and 37. It was found that with the change in QP from 22292

to 37, the average computational load of the DMVR increased from 19% to 56%, and293

the average computational load of the UDP decreased from 24% to 13%. The average294

computational load for the other inter prediction parts varied by 1% to 11% for different295

QP values.296

The inter prediction profiling results over the EGPP are shown in Figure 8, where297

the average time distribution for the different parts of the inter prediction (in %) with298

QP 22 to 37 is presented. Here, the DMVR and UDP functions followed the same299

pattern as the profiling of the inter prediction over the HGPP. The average computational300

load of the DMVR increased by 35%, and the average computational load of the UDP301

decreased by 13% with the change in QP from 22 to 37. However, the DMVR represents302

approximately 5% more average computational load over the EGPP than over the HGPP,303

while the average computational loads for the other functions were slightly lower, except304

for the SPUM function.. Finally, considering this fine-grained analysis, the EP profiling305

results show that the DMVR and UDP are the most interesting functions to consider for306

acceleration, regardless of which platform is targeted.307

ITEX SPUM SPUB UDP DMVR WP OT
0

20

40

60

10

1
8

24 25

7

25

6
3

8

19

43

6

15

4 5 7
14

54

5
11

2

10
6

11

60

4 6

QP22
QP 27
QP 32
QP37

Figure 8. Average time distribution for different parts of the inter prediction (in %) over the EGPP.Figure 8. Average time distribution for different parts of the inter prediction (in %) over the EGPP.

4.4. Complexity Analysis of the Deblocking Filter

DBF consists of calculate position and length of the boundaries (CPLB), filtering
decision (FD), luma filter (LUF), chroma filter (CHF) and other (OT) functions. Timestamps
were set before and after these functions for detailed profiling of the DBF using the six
sequences mentioned with respect to the test bench (Section 3B). In Table 6, the average time
distribution (in %) for different parts of the DBF over the HGPP and EGPP is illustrated.
It can be seen that the LUF function alone consumed from approximately 64% to 74%
of the DBF time for the AI and RA configurations over the HGPP and EGPP. The other
functions individually consumed from roughly 5% to 16% of the total DBF time. The details
of the profiling of the DBF over the HGPP and EGPP are displayed in Figures 9 and 10,
respectively. Here, the average time distribution for different parts of the deblocking filter
(in %) with QP 22, QP 27, QP 32 and QP 37 is presented.

Table 6. Average processing times (in %) for each deblocking filter block profiled over the HGPP
and EGPP.

Conf. CPLB FD LUF CHF OT

HGPP AI 5.5 6.3 63.6 8.9 15.7
RA 10.7 7.4 68.5 5.6 7.8

EGPP AI 4.9 6.8 69.3 6.8 12.2
RA 7.3 7.9 74.2 5.0 5.6

Some general conclusions about DBF profiling can be outlined by comparing all
the configurations of the sequences. The time spent by the LUF function for the AI
configuration increased by 22% when the QP changed from 22 to 37 over both the platforms.
For the RA configuration, the increment of the spent time was 7% and 9% over that of the
HGPP and EGPP, respectively. Furthermore, the average computational load of the CPLB,
FD and CHF functions remained similar for RA configurations over the EGPP. However,
the average time consumed by OT decreased approximately 20% and 8% for the AI and
RA configurations with the change in QP from 22 to 37 over the HGPP and EGPP.

The comparison study of DBF profiling over GPPs shows that the computational
importance of LUF increased by approximately average 6% and that the computational
impact of the CHF, FD, CPLB and OT varied by approximately 1% to 5% over the EGPP,
than compared to the HGPP. In conclusion, and considering the detailed results presented
in Figures 9 and 10, LUF can be considered a potential candidate for optimization, as it is
also the most time-consuming function of the DBF. Other potential candidates are CHF
and CPLB.



Sensors 2021, 21, 3320 13 of 20Version May 5, 2021 submitted to Sensors 13 of 20

CPLB FD LUF CHF OT
0

20

40

60

8
4

50

10

29

6 6

64

9
15

5 7

69

9 10
4 7

72

9 8

All Intra

QP 22
QP 27
QP 32
QP 37

CPLB FD LUF CHF OT
0

20

40

60

10 7

64

7
1310 7

69

6 811 8

70

5 6
12

8

71

5 4

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 9. Average time distribution for different parts of the deblocking filter (in %) over the
HGPP.

CPLB FD LUF CHF OT
0

20

40

60

80

7 5

55

9

24

5 7

70

6
12

4
8

75

6 7
3

8

77

6 6

All Intra

QP 22
QP 27
QP 32
QP 37

CPLB FD LUF CHF OT
0

20

40

60

80

7 8

68

6
11

7 8

75

5 57 8

77

5 3
7 8

77

5 3

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 10. Average time distribution for different parts of the deblocking filter (in %) over the
EGPP.

revealed that the LCF, CHCF and DeC functions consumed approximately 90% of the352

Figure 9. Average time distribution for different parts of the deblocking filter (in %) over the HGPP.

Version May 5, 2021 submitted to Sensors 13 of 20

CPLB FD LUF CHF OT
0

20

40

60

8
4

50

10

29

6 6

64

9
15

5 7

69

9 10
4 7

72

9 8

All Intra

QP 22
QP 27
QP 32
QP 37

CPLB FD LUF CHF OT
0

20

40

60

10 7

64

7
1310 7

69

6 811 8

70

5 6
12

8

71

5 4

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 9. Average time distribution for different parts of the deblocking filter (in %) over the
HGPP.

CPLB FD LUF CHF OT
0

20

40

60

80

7 5

55

9

24

5 7

70

6
12

4
8

75

6 7
3

8

77

6 6

All Intra

QP 22
QP 27
QP 32
QP 37

CPLB FD LUF CHF OT
0

20

40

60

80

7 8

68

6
11

7 8

75

5 57 8

77

5 3
7 8

77

5 3

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 10. Average time distribution for different parts of the deblocking filter (in %) over the
EGPP.

revealed that the LCF, CHCF and DeC functions consumed approximately 90% of the352

Figure 10. Average time distribution for different parts of the deblocking filter (in %) over the EGPP.



Sensors 2021, 21, 3320 14 of 20

4.5. Complexity Analysis of the Adaptive Loop Filter

The ALF is one of the most intensive computational modules of the decoder, and it
consumed, on average, 16% of the total decoding time and 37% of the in-loop filtering time.
It was composed of the following most relevant sub-modules: copy reconstructed YUV
(CRY), virtual boundaries check (VBC), derivative classification (DeC), luma component
filtering (LCF), chroma component filtering (CHCF), cross-component filtering (CRCF) and
others (OT). ALF profiling was performed in the same fashion as for the DBF.

The ALF profiling results are shown in Table 7, where average processing times (in %)
for ALF block profiling over the HGPP and EGPP are presented. The most time-consuming
functions of the ALF over the HGPP were for LCF, with 37.7% of the total time consumed
for the AI sequences and 43.2% for the RA sequences, and CRCF, with 22.9% of the total
time consumed for the AI sequences and 11.6% for the RA sequences. The percentage
of computational load of the DeC was 17.5% for the AI sequences and 21.6% for the RA
sequences, and the computational load of the CHCF was 10.7% for the AI sequences and
8.0% for the RA sequences. However, ALF profiling over the EGPP revealed that the LCF,
CHCF and DeC functions consumed approximately 90% of the total time, where LCF alone
consumed approximately 70% of the time used for the ALF process .

Detailed ALF profiling for QPs 22 to 37 with all the configurations over HGPP is
displayed in Figure 11. The average computational load of the CRY, DeC, LCF, CHCF, and
CRCF varied maximum 2% for the AI sequences with QPs 22, 27 and 32. But for QP 37, CRY,
DeC, LCF, and CHCF increased 3% to 14% with respect to other QPs and CRCF decreased
to 0%. Moreover, all the ALF functions for the RA sequences showed a pattern similar to
that of the ALF function for the AI sequences. However, the time consumed by the CHCF
and CRCF decreased by 5% and 16%, respectively with QP 37 compared to QP 22.

Version May 5, 2021 submitted to Sensors 14 of 20

total time, where LCF alone consumed approximately 70% of the time used for the ALF353

process .354

Table 7. Average processing times (in %) for the ALF block profiled over the HGPP and EGPP.

Conf. CRY VBC DeC LCF CHCF CRCF OT

HGPP AI 8.3 1.4 17.5 37.7 10.7 22.9 1.5
RA 12.6 1.4 21.6 43.2 8.0 11.6 1.6

EGPP AI 0.8 0.8 10.7 66.4 16.6 3.9 0.8
RA 1.1 0.8 11.8 72.1 11.5 1.9 0.8

Detailed ALF profiling for QPs 22 to 37 with all the configurations over HGPP is355

displayed in Figure 11. The average computational load of the CRY, DeC, LCF, CHCF,356

and CRCF varied maximum 2% for the AI sequences with QPs 22, 27 and 32. But for357

QP 37, CRY, DeC, LCF, and CHCF increased 3% to 14% with respect to other QPs and358

CRCF decreased to 0%. Moreover, all the ALF functions for the RA sequences showed359

a pattern similar to that of the ALF function for the AI sequences. However, the time360

consumed by the CHCF and CRCF decreased by 5% and 16%, respectively with QP 37361

compared to QP 22.362

CRY VBC DeC LCF CHCF CRCF OT
0

20

40

8

1

16

33

10

31

1
7

1

15

34

9

32

2
7

1

16

35

10

30

1

11

1

23

49

14

0 2

All Intra

QP 22
QP 27
QP 32
QP 37

CRY VBC DeC LCF CHCF CRCF OT
0

20

40

10

1

20

38

11

19

1

10

1

20

44

9
14

2

13

1

21

45

7
11

2

18

1

24

46

6
3 2

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 11. Average time distribution for different parts of the adaptive loop filter (in %) over the
HGPP.

Figure 12 presents the average time distribution for different parts of the ALF (in363

%) over the EGPP. The time consumed by all the functions remained the same or varied364

slightly, less than 4% for all cases, with the change in QP. Therefore, it can be summarized365

that the existence of a large difference in the average processing time distribution of366

different submodules of ALF is observed between HGPP and EGPP. It can be stated that367

different strategies can be used to accelerate EGPP, mainly focusing on the acceleration368

in LCF, DeC, and CHCF functions.369

Figure 11. Average time distribution for different parts of the adaptive loop filter (in %) over
the HGPP.

Figure 12 presents the average time distribution for different parts of the ALF (in %)
over the EGPP. The time consumed by all the functions remained the same or varied slightly,



Sensors 2021, 21, 3320 15 of 20

less than 4% for all cases, with the change in QP. Therefore, it can be summarized that
the existence of a large difference in the average processing time distribution of different
submodules of ALF is observed between HGPP and EGPP. It can be stated that different
strategies can be used to accelerate EGPP, mainly focusing on the acceleration in LCF, DeC,
and CHCF functions.

Version May 5, 2021 submitted to Sensors 15 of 20

CRY VBC DeC LCF CHCF CRCF OT
0

20

40

60

1 1

10

65

17

5
11 1

11

65

16

5
10 1

11

66

16

5
11 1

11

69

17

0 1

All Intra

QP 22
QP 27
QP 32
QP 37

CRY VBC DeC LCF CHCF CRCF OT
0

20

40

60

80

1 1

11

67

16

3 11 1

12

71

12

2 11 1

12

73

10
2 12 1

12

76

8
0 1

Random Access

QP 22
QP 27
QP 32
QP 37

Figure 12. Average time distribution for different parts of the adaptive loop filter (in %) over the
EGPP.

5. Discussion370

The new video coding standard VVC introduces numerous advantages in video371

processing technology. However, it also brings increased computational complexity372

compared to its predecessor. In this section, a comparative study of the complexity373

analysis of our HGPP- and EGPP-based implementations of VTM8.0 with other VVC374

decoder implementations is presented.375

The maximum and minimum numbers of fps are compared for different imple-376

mentations of the VVC decoder in Table 8. To fairly compare, only solutions from the377

reference coding software for A-class resolution sequences with the QP 22, 27, 32 and 37378

were included in this section. To the best of our knowledge, no other VVC implementa-379

tions based on a source code different from VTM8.0 have been reported in the scientific380

literature.381

In [17], the complexity analysis of the VTM5.0 decoder was illustrated using a core382

i9-9900X HGPP with a clock speed of 3.5 GHz. This implementation decoded between383

1.3 and 4.2 fps for RA sequences of A-Class resolution with four QP values 22 to 37.384

Table 8. Comparison of the number of fps decoded by different VVC implementations.

Reference Algorithm Min-Max fps per Conf. HardwareAI RA
Our HGPP VTM8.0 0.6-2.3 1.2-4.1 Ryzen 3.4 GHz
Our EGPP VTM8.0 0.3-0.8 0.4-1.2 ARM v8.2 2.2 GHz

[17] VTM5.0 N/A 1.3-4.2 i9-9900X 3.5 GHz
[16] VTM6.1 N/A 1.7-4.7 i7-8700K 4.7 GHz

[16] GPU VTM6.1 N/A 2.1-8.4 RTX 2080Ti 1.6 GHz
[5] VTM6.0 N/A N/A i7-4790k 4.0 GHz

Figure 12. Average time distribution for different parts of the adaptive loop filter (in %) over
the EGPP.

Table 7. Average processing times (in %) for the ALF block profiled over the HGPP and EGPP.

Conf. CRY VBC DeC LCF CHCF CRCF OT

HGPP AI 8.3 1.4 17.5 37.7 10.7 22.9 1.5
RA 12.6 1.4 21.6 43.2 8.0 11.6 1.6

EGPP AI 0.8 0.8 10.7 66.4 16.6 3.9 0.8
RA 1.1 0.8 11.8 72.1 11.5 1.9 0.8

5. Discussion

The new video coding standard VVC introduces numerous advantages in video pro-
cessing technology. However, it also brings increased computational complexity compared
to its predecessor. In this section, a comparative study of the complexity analysis of our
HGPP- and EGPP-based implementations of VTM8.0 with other VVC decoder implemen-
tations is presented.

The maximum and minimum numbers of fps are compared for different implementa-
tions of the VVC decoder in Table 8. To fairly compare, only solutions from the reference
coding software for A-class resolution sequences with the QP 22, 27, 32 and 37 were in-
cluded in this section. To the best of our knowledge, no other VVC implementations based
on a source code different from VTM8.0 have been reported in the scientific literature.

In [17], the complexity analysis of the VTM5.0 decoder was illustrated using a core
i9-9900X HGPP with a clock speed of 3.5 GHz. This implementation decoded between 1.3
and 4.2 fps for RA sequences of A-Class resolution with four QP values 22 to 37.



Sensors 2021, 21, 3320 16 of 20

Table 8. Comparison of the number of fps decoded by different VVC implementations.

Reference Algorithm
Min–Max fps per Conf.

Hardware
AI RA

Our HGPP VTM8.0 0.6–2.3 1.2–4.1 Ryzen 3.4 GHz
Our EGPP VTM8.0 0.3–0.8 0.4–1.2 ARM v8.2 2.2 GHz

[17] VTM5.0 N/A 1.3–4.2 i9-9900X 3.5 GHz
[16] VTM6.1 N/A 1.7–4.7 i7-8700K 4.7 GHz

[16] GPU VTM6.1 N/A 2.1–8.4 RTX 2080Ti 1.6 GHz
[5] VTM6.0 N/A N/A i7-4790k 4.0 GHz

A HGPP core of an i7-8700K 4.7 GHz processor was used in [16] to analyse the
complexity of a decoder based on VTM6.1. In this previous study, A-class sequences of
RA configurations with QPs: 22, 27, 32, 37 were used as test benches. Additionally, an
optimized complexity analysis was reported using RTX 2080Ti 1.6 GHz GPU. Decoding
ratios of 1.7 to 4.7 fps and of 2.1 to 8.4 fps were obtained for unoptimized and optimized
decoder versions, respectively. In [5], a core i7-4790K 4.0 GHz HGPP was used to profile
an implementation of a VTM6.0 decoder, but the global fps or processing times were
not reported in this paper. As a result, it would not have been possible to make a fair
comparison in terms of fps, but later in this section, it is used to compare the computational
load among functional blocks.

In our study, HGPP- and EGPP-based VTM8.0 complexity analyses were carried out.
A-class sequences with four QP values 22, 27, 32, 37 were used, obtaining ratios between
0.6 and 2.3 fps, and between 1.2 and 4.1 fps over the HGPP, respectively, for the AI and
RA configurations. In addition, decoding ratios of 0.3 to 0.8 fps and from 0.4 to 1.2 fps
were obtained over the EGPP for the AI and RA configurations, respectively. The sequence
with minimum-maximum (min-max) fps over the HGPP was similar to that of [17] for
RA configurations, as both implementations used an HGPP with similar clock speeds.
In addition, the min-max fps of [16] for RA configurations was approximately ×1.2 than
our HGPP implementation, as the clock speed of the HGPP used in the previous study
implementation was ×1.4 than our HGPP. Moreover, the GPU-based optimized solution
of the previous study obtained almost double the min-max fps obtained with our HGPP
implementation.

In summary, the obtained fps for the RA configurations over all HGPP-based imple-
mentations varied slightly due to the different processor resources, which included clock
speed or cache memory, among others. Additionally, an approximately double increase
in speed was achieved using a GPU. However, for RA configurations, fps obtained over
HGPP with respect to EGPP was roughly ×3. These results will guide future work towards
real-time decoding over embedded platforms.

In Table 9, a comparison of the computational load distribution for different blocks of
the decoder is shown. Here, the obtained results are compared with [5,16,17]. For both, RA
and AI configurations, it is evident that our results for HGPP and EGPP were only signifi-
cantly different with respect to the DBF and ALF blocks. In the HGPP, the DBF load was
approximately 9% higher than that in the EGPP, while the ALF load showed the opposite
trend and an average increase of 14% in the EGPP compared to the HGPP. This indicates
that the architectural resources of the EGPP mainly affected the ALF block. Therefore,
acceleration efforts should be carried out in the ALF for the EGPP implementation.

For the RA configuration, our HGPP results on the decoding process were similar
to those reported in [5]. However, it is interesting that the DBF load was increased by
approximately 10% in our HGPP analysis. Additionally, for the AI configuration, the
computational load distribution of [5] was similar for the TX and SAO, roughly ×1.5 for the
ALF, and approximately ×0.5 for the IP and DBF with respect to our HGPP implementation.
Moreover, the results presented by [16] using VTM6.1 corresponded approximately to those
obtained by our EGPP implementation, with the main difference again with the DBF, being



Sensors 2021, 21, 3320 17 of 20

8%. Furthermore, the computational load of all the decoding blocks presented in [17] was
approximately 6% on average, varying from our HGPP implementation.

Table 9. Comparison of the computational load distribution (in %) among functional blocks for
different VVC decoder implementations.

Reference ED TX IP EP DBF SAO ALF OT

AI
our HGPP 19 9 23 0 32 3 7 7
our EGPP 18 8 22 0 24 1 19 8

[5] 27 10 12 0 17 3 13 18

RA

our HGPP 9 5 6 33 26 2 11 8
our EGPP 8 4 3 35 16 1 27 6

[17] 3 2 12 41 19 3 19 -
[16] 7 7 2 39 8 1 31 5
[5] 9 3 2 33 17 3 13 10

These analyses imply that our HGPP architecture mainly affects DBF blocks with
respect to the architecture used in [5,16]. Additionally, the architectural influence between
our HGPP and the HGPP used in [17] varies. However, the architectural resources of
our HGPP processor mainly affect DBF blocks with respect to the processor used in [17].
Moreover, our EGPP processor has a greater impact on DBF blocks than the processor used
in [16].

5.1. Towards the Acceleration Process

In this section, an estimation analysis is performed on the results obtained in Section 4.
This estimation was conducted as follows: first, recent works presenting contributions
on software-level optimization-based approaches were considered. Second, hardware
platform-based solutions were also analysed. Finally, a summary, collecting both ap-
proaches, is presented.

5.1.1. Estimation Based on Software Level Optimization

The work presented by Gudumasu et al. [17] reported a software-based parallelization
of the VVC decoder, which was analysed for software-level estimation analysis. To the
best of our knowledge, this was the unique published work proposing software-based
optimizations with the new VVC standard. Here, the VTM5.0 decoder was redesigned
using load balancing task parallelization (LBTP) and CTU-based data parallelization (CDP).
The LBTP was applied to the CABAC and slice decoding task, whereas CDP was applied
to each sub-module of the slice decoding task. This implementation achieved an average
processing time reduction of 70.2% for motion vector component derivation, 88.2% for
inter-reconstruction, 68.9% for intra-CU reconstruction, 86.8% for the inverse re-shaper,
90.2% for the DBF, 72.3% for the SAO, and 88.2% for the ALF using 4k sequences of A-class
resolution, similar to those stated in Section 4.1. The aforementioned ratio improvements of
different VVC decoder blocks were used to calculate the performance of the corresponding
decoder block over HGPP- and EGPP-based implementations.

5.1.2. Estimation Based on Hardware Platforms

Han et al. [16] presented a GPU-based motion compensation optimization of a VVC
decoder. This study was chosen for estimation analysis over heterogeneous platforms
because it performed acceleration of a VTM6.1 decoder using an architecture similar to
that stated in Section 3. Hither, all the decoder blocks, including entropy decoding, intra
prediction, inverse quantization/transformation, and in-loop filter, were executed on a
CPU, and the execution of the motion compensation module was migrated to a GPU. This
implementation achieved a 16-fold times acceleration compared with the performance on a
CPU using RA sequences of an A-Class resolution similar to those mentioned in Section 4.1.



Sensors 2021, 21, 3320 18 of 20

In addition, Vázquez et al. migrated the new VVC adaptive multiple transform (AMT) over
an EGPU in [19]. In this implementation, the 2D transform was split into one 1D vertical
transform and one 1D horizontal transform. On the other hand, the execution order was
a vertical transform followed by a horizontal transform. This study achieved an 11-fold
improvement in the TX module time. Therefore, the aforementioned improvements of 16%
and 11% acceleration for the EP and TX , respectively, were applied to the results obtained
in Section 5.1.1.

5.1.3. Summary of Both Estimations

Finally, regarding both the detailed profile of the reference VVC software, and the
optimizations applied over similar solutions, a rough estimation of the speed-up perfor-
mance is presented. To complete this study, the following aspects were considered: the
distribution of the measured computational load for each decoder block, the impact of the
reviewed optimizations on each of these blocks, and the resulting speed-up factor, for each
platform and configuration of the sequences, from an optimistic point of view and from a
pessimistic perspective. Table 10 summarizes this study. Here, approximate minimum and
maximum performances obtained with current solutions and with the presented test bench
are shown. Two speed-up factors, one pessimistic and one optimistic, were calculated
taking into account both, the profiling results presented in this work, and the acceleration
techniques applied in these algorithms. The estimation of the performance that can be
obtained in an optimized version of the decoder was then made taking into account the
parameters of the study. As a preliminary conclusion, real-time decoding would not be ob-
tained for almost all cases. In this situation, both, hardware platform-based optimizations
of different parts of the algorithm, and better performance ratios with the initial solution
need to be accomplished to achieve real-time performance.

Table 10. Optimistic (max) and pessimistic (min) estimation of the performance achieved in future
optimized solutions, resulting speedup for those scenarios is also provided.

Platform Scenario Configuration Average Min Max

HGPP

Un-optimized (fps) AI 2.1 0.9 4.2
RA 6.0 1.8 13.8

Optimized (fps) AI 8.4 4.0 16.3
RA 33.6 10.9 66.5

Speedup AI 4.1 3.3 5.6
RA 5.6 4.8 9.1

EGPP

Un-optimized (fps) AI 0.9 0.4 1.8
RA 1.8 0.6 3.9

Optimized (fps) AI 3.8 1.6 6.6
RA 6.6 5.7 9.3

Speedup AI 3.8 3.2 4.9
RA 6.6 5.7 9.0

6. Conclusions

The new VVC standard comes with various advanced features compared to existing
video codecs. However, these features come with higher computational complexity. In
this study, the complexity analysis of a VVC decoder was revealed. In this presentation,
a VTM8.0 decoder was instrumented and implemented over two different architectures:
a homogeneous multicore HGPP integrated in an AMD processor and a heterogeneous
ARM+GPU embedded platform. The goal of this work was to guide future work focusing
on acceleration processes over the brand new state-of-the-art codec, especially over em-
bedded systems and platforms with limited computational resources. First, coarse-grain
profiling was implemented. Here, the computational load of the main coding blocks, ED,
TX, IP, EP, and filters, was outlined. The coding blocks consuming the most time, the



Sensors 2021, 21, 3320 19 of 20

EP, DBF, and ALF, were then fine-grained analysed. The computational load distribu-
tions outlined where optimization efforts should be carried out. Moreover, these results
were compared with the available implementation of VVC over other architectures, which
showed that the influence of processor hardware architecture greatly affected the ALF and
DBF blocks. In this work, the correlation between HGPP and EGPP was also calculated, and
it was shown that the processing time of all decoder blocks was roughly ×2 over the EGPP
with respect to the HGPP except for the ALF block, which was approximately ×7 greater,
and the EP block, which was ×3.5 greater. In addition, the performance results showed
×2.5 and ×3.3 fps ratios running the decoder over the HGPP compared to the EGPP for the
AI and RA configurations, respectively. Finally, a rough estimation analysis was presented
based on software-level optimization and hardware platforms. It can be foreseen that an
average improvement of ×4.8 and ×5.2 in decoding time could be achieved using the
estimation analysis over the HGPP and EGPP, respectively.

Author Contributions: A.S., M.C., F.P., Á.M.G., K.C. and P.L.C. have contributed equally to the
conceptualization and the preparation of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Spanish Ministerio de Economía y Competitividad under
Grant TEC2016-75981-C2-2-R.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Contact with corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Caballar, R.D. Battle of the Video Codecs: Coding-Efficient VVC vs. Royalty-Free AV1. Available online: https://spectrum.ieee.org/

tech-talk/computing/software/battle-video-codecs-hevc-coding-efficiency-vvc-royalty-free-av1 (accessed on 27 December 2020).
2. High Efficiency Video Coding, Recommendation ITU–T H.265. Last Version Approved 29 November 2019. Available online:

https://www.itu.int/rec/T-REC-H.265 (accessed on 10 May 2021).
3. Fraunhofer HHI Is Proud to Present the New State-of-the-Art in Global Video Coding: H.266/VVC Brings Video Transmission

to New Speed. Available online: https://newsletter.fraunhofer.de/-viewonline2/17386/465/11/14SHcBTt/V44RELLZBp/1
(accessed on 24 November 2020).

4. Wieckowski, A.; Hege, G.; Bartnik, C.; Lehmann, C.; Stoffers, C.; Bross, B.; Marpe, D. Towards A Live Software Decoder
Implementation For The Upcoming Versatile Video Coding (VVC) Codec. In Proceedings of the 2020 IEEE International
Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 29 October 2020; pp. 3124–3128. [CrossRef]

5. Pakdaman, F.; Adelimanesh, M.A.; Gabbouj, M.; Hashemi, M.R. Complexity Analysis Of Next-Generation VVC Encoding and
Decoding. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates,
25–28 October 2020. Available online: https://arxiv.org/ftp/arxiv/papers/2005/2005.10801.pdf (accessed on 10 May 2021).

6. Park, J.; Kim, B.; Jeon, B. Fast VVC intra prediction mode decision based on block shapes. In Proceedings of the Applications
of Digital Image Processing XLIII, 29 September 2020; p. 115102H. Available online: https://www.spie.org/Publications/
Proceedings/Volume/11510 (accessed on 15 March 2021). [CrossRef]

7. Choi, Y.; Jun, D.; Cheong, W.; Kim, B. Design of Efficient Perspective Affine Motion Estimation/Compensation for Versatile Video
Coding (VVC) Standard. Electronics 2019, 8, 993. [CrossRef]

8. Gibellino, D. Versatile Video Coding Hits Major Milestone. Available online: https://medium.com/@gibellino/versatile-video-
coding-hits-major-milestone-baeb13c8960a (accessed on 5 June 2020).

9. Bossen, F.; Bross, B.; Suhring, K.; Flynn, D. HEVC Complexity and Implementation Analysis. IEEE Trans. Circuits Syst. Video
Technol. 2012, 22, 1685–1696. [CrossRef]

10. Vanne, J.; Hämäläinen, T.D.; Gabbouj, M.; Lainema, J. Complexity Analysis of Next-Generation HEVC Decoder. In Proceedings of
the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20–23 May 2012; pp. 882–885.

11. Pescador, F.; Chavarrias, M.; Garrido, M.J.; Juarez, E.; Sanz, C. Complexity analysis of an HEVC decoder based on a digital signal
processor. IEEE Trans. Consum. Electron. 2013, 59, 391–399. [CrossRef]

12. Vanne, J.; Viitanen, M.; Hämäläinen, T.D.; Hallapuro, A. Comparative Rate-Distortion-Complexity Analysis of HEVC and AVC
Video Codecs. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1885–1898. [CrossRef]

13. Yan, L.; Duan, Y.; Sun, J.; Guo, Z. An optimized real-time multi-thread HEVC decoder. In Proceedings of the 2012 Visual
Communications and Image Processing, San Diego, CA, USA, 27–30 November 2012; p. 1. [CrossRef]

https://spectrum.ieee.org/tech-talk/computing/software/battle-video-codecs-hevc-coding-efficiency-vvc-royalty-free-av1
https://spectrum.ieee.org/tech-talk/computing/software/battle-video-codecs-hevc-coding-efficiency-vvc-royalty-free-av1
https://www.itu.int/rec/T-REC-H.265
https://newsletter.fraunhofer.de/-viewonline2/17386/465/11/14SHcBTt/V44RELLZBp/1
http://doi.org/10.1109/ICIP40778.2020.9191199
https://arxiv.org/ftp/arxiv/papers/2005/2005.10801.pdf
https://www.spie.org/Publications/Proceedings/Volume/11510
https://www.spie.org/Publications/Proceedings/Volume/11510
http://dx.doi.org/10.1117/12.2567919
http://dx.doi.org/10.3390/electronics8090993
https://medium.com/@gibellino/versatile-video-coding-hits-major-milestone-baeb13c8960a
https://medium.com/@gibellino/versatile-video-coding-hits-major-milestone-baeb13c8960a
http://dx.doi.org/10.1109/TCSVT.2012.2221255
http://dx.doi.org/10.1109/TCE.2013.6531122
http://dx.doi.org/10.1109/TCSVT.2012.2223013
http://dx.doi.org/10.1109/VCIP.2012.6410857


Sensors 2021, 21, 3320 20 of 20

14. Yan, L.; Duan, Y.; Sun, J.; Guo, Z. Implementation of HEVC decoder on x86 processors with SIMD optimization. In Proceedings of
the 2012 Visual Communications and Image Processing, San Diego, CA, USA, 27–30 November 2012; pp. 1–6. [CrossRef]

15. Fan, Y.; Zeng, Y.; Sun, H.; Katto, J.; Zeng, X. A Pipelined 2D Transform Architecture Supporting Mixed Block Sizes for the VVC
Standard. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3289–3295. [CrossRef]

16. Han, X.; Wang, S.; Ma, S.; Gao, W. Optimization Of Motion Compensation Based On GPU And CPU For VVC Decoding. In
Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28
October 2020; pp. 1196–1200. [CrossRef]

17. Gudumasu, S.; Bandyopadhyay, S.; He, Y. Software-based versatile video coding decoder parallelization. In Proceedings of the
11th ACM Multimedia Systems Conference (MMSys’20), Istanbul, Turkey, 8–11 June 2020; Association for Computing Machinery:
New York, NY, USA, May 2020; pp. 202–212. [CrossRef]

18. OpenHEVC. Available online: http://openhevc.insa-rennes.fr/ (accessed on 11 August 2020).
19. Vázquez, M.F.; Saha, A.; Morillas, R.M.; Lapastora, M.C.; Oso, F.P.D. Work-in-Progress: Porting new Versatile Video Coding

transforms to a heterogeneous GPU-based technology. In Proceedings of the 2019 International Conference on Compliers,
Architectures and Synthesis for Embedded Systems (CASES), New York, NY, USA, 13–18 October 2019; pp. 1–2.

20. Chen, J.; Ye, Y.; Kim, H.S. Algorithm Description for Versatile Video Coding Test Model 8 (VTM 8), Joint Video Experts Team
(JVET) of ITU–T SG 16 WP3 and ISO/IEC JTC 1/SC 29/WG 11. In Proceedings of the 17th JVET Meeting, Brussels, Belgium, 7–17
January 2020.

21. AMD Ryzen™ Threadripper™ 1950X Processor. Available online: https://www.amd.com/en/products/cpu/amd-ryzen-
threadripper-1950x (accessed on 7 November 2020).

22. NVIDIA Jetson AGX Xavier Developer Kit, User Guide. DA_09403_003. Published on 17 December 2019. Available online:
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide (accessed on 10 May 2021).

23. Sullivan, G.J.; Wiegand, T. Video Compression—From Concepts to the H.264/AVC Standard. Proc. IEEE 2005, 93, 18–31.
[CrossRef]

24. Zhang, Y.; Lu, C. High-Performance Algorithm Adaptations and Hardware Architecture for HEVC Intra Encoders. IEEE Trans.
Circuits Syst. Video Technol. 2019, 29, 2138–2145. [CrossRef]

25. Wieckowski, A.; Ma, J.; Schwarz, H.; Marpe D.; Wiegand, T. Fast Partitioning Decision Strategies for The Upcoming Versatile
Video Coding (VVC) Standard. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei,
Taiwan, 22–25 September 2019; pp. 4130–4134. [CrossRef]

26. Amestoy, T.; Mercat, A.; Hamidouche, W.; Menard, D.; Bergeron, C. Tunable VVC Frame Partitioning Based on Lightweight
Machine Learning. IEEE Trans. Image Process. 2019, 29, 1313–1328. [CrossRef] [PubMed]

27. Hong, Z.; Lin, J.; Jiang, D.; Yin, J. Improve the Efficiency of Low Frequency Non-Separable Secondary Transform Based on Implicit
Multiple Transform Selection. In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced
Manufacturing (AIAM), Dublin, Ireland, 16–18 October 2019; pp. 148–151. [CrossRef]

28. Koo, M.; Salehifar, M.; Lim, J.; Kim, S. Low Frequency Non-Separable Transform (LFNST). In Proceedings of the 2019 Picture
Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; pp. 1–5. [CrossRef]

29. Chen, J.; Ye, Y.; Kim, S. JVET-Q2002-v3: Algorithm description for Versatile Video Coding and Test Model 8 (VTM 8). In
Proceedings of the 17th JVET Meeting, Brussels, Belgium, 7–17 January 2020.

30. Wiegand, T.; Steinbach E.; Girod, B. Affine multipicture motion-compensated prediction. IEEE Trans. Circuits Syst. Video Technol.
2005, 15, 197–209. [CrossRef]

31. Norkin, A.; Bjontegaard, G.; Fuldseth, A.; Narroschke, M.; Ikeda, M.; Andersson, K.; Zhou, M.; van der Auwera, G. HEVC
deblocking filter. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1746–1754. [CrossRef]

32. Fu, C.-M.; Alshina, E.; Alshin, A.; Huang, Y.-W.; Chen, C.-Y.; Tsai, C.-Y.; Hsu, C.-W.; Lei, S.-M.; Park, J.-H.; Han, W.-J. Sample
adaptive offset in the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1755–1764. [CrossRef]

33. Tsai, C.-Y.; Chen, C.-Y.; Yamakage, T.; Chong, I.S.; Huang, Y.-W.; Fu, C.-M.; Itoh, T.; Watanabe, T.; Chujoh, T.; Karczewicz, M.; et al.
Adaptive loop filtering for video coding. IEEE J. Sel. Top. Signal Process. 2013, 7, 934–945. [CrossRef]

34. Rodríguez, J. AMD Ryzen Threadripper 1950X. Available online: https://www.geeknetic.es/Review/1384/AMD-Ryzen-
Threadripper-1950X.html (accessed on 27 November 2020).

35. Cutress, I. AMD Zen Microarchiture Part 2: Extracting Instruction-Level Parallelism. Available online: https://www.anandtech.
com/show/10591/amd-zen-microarchiture-part-2-extracting-instructionlevel-parallelism/5 (accessed on 27 November 2020).

36. Mitchelson, D. AMD Ryzen Threadripper 1950X Review—The HEDT King? Available online: https://www.vortez.net/articles_
pages/amd_ryzen_threadripper_1950x_review,2.html (accessed on 27 November 2020).

37. Durant, L.; Giroux, O.; Harris, M.; Stam, N. Inside Volta: The World’s Most Advanced Data Center GPU. Available online:
https://developer.nvidia.com/blog/inside-volta/ (accessed on 7 September 2020).

38. CMake. Available online: https://cmake.org/ (accessed on 27 September 2020).
39. Bossen, F.; Boyce, J.; Li, X.; Seregin, V.; Sühring, K. JVET Common Test Conditions and Software Reference Configurations for SDR Video;

Document JVET-N1010; JVET of ITU-T: Geneva, Switzerland, 2019.
40. García, D.; Atienza, S.; Chavarrías, M.; Pescador, F. On the implementation of hevc decoders with high par-allelization degree

with openmp. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7–9
January 2019; pp. 1–2.

http://dx.doi.org/10.1109/VCIP.2012.6410845
http://dx.doi.org/10.1109/TCSVT.2019.2934752
http://dx.doi.org/10.1109/ICIP40778.2020.9190708
http://dx.doi.org/10.1145/3339825.3391871
http://openhevc.insa-rennes.fr/
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-1950x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-1950x
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide
http://dx.doi.org/10.1109/JPROC.2004.839617
http://dx.doi.org/10.1109/TCSVT.2019.2913504
http://dx.doi.org/10.1109/ICIP.2019.8803533
http://dx.doi.org/10.1109/TIP.2019.2938670
http://www.ncbi.nlm.nih.gov/pubmed/31502973
http://dx.doi.org/10.1109/AIAM48774.2019.00037
http://dx.doi.org/10.1109/PCS48520.2019.8954507
http://dx.doi.org/10.1109/TCSVT.2004.841690
http://dx.doi.org/10.1109/TCSVT.2012.2223053
http://dx.doi.org/10.1109/TCSVT.2012.2221529
http://dx.doi.org/10.1109/JSTSP.2013.2271974
https://www.geeknetic.es/Review/1384/AMD-Ryzen-Threadripper-1950X.html
https://www.geeknetic.es/Review/1384/AMD-Ryzen-Threadripper-1950X.html
https://www.anandtech.com/show/10591/amd-zen-microarchiture-part-2-extracting-instructionlevel-parallelism/5
https://www.anandtech.com/show/10591/amd-zen-microarchiture-part-2-extracting-instructionlevel-parallelism/5
https://www.vortez.net/articles_pages/amd_ryzen_threadripper_1950x_review,2.html
https://www.vortez.net/articles_pages/amd_ryzen_threadripper_1950x_review,2.html
https://developer.nvidia.com/blog/inside-volta/
https://cmake.org/

	Introduction
	Versatile Video Coding (VVC)
	Picture Reconstruction
	Entropy Decoder
	Inverse Quantization (IQ) and Transform (IT)
	Intra Prediction
	Inter Prediction
	In-Loop Filtering

	The Working Environment
	Complexity Analysis of the VVC Decoder
	Test Bench Description
	Correlation between the HGPP and EGPP
	Complexity Analysis of the Inter Prediction
	Complexity Analysis of the Deblocking Filter
	Complexity Analysis of the Adaptive Loop Filter

	Discussion
	Towards the Acceleration Process
	Estimation Based on Software Level Optimization
	Estimation Based on Hardware Platforms
	Summary of Both Estimations


	Conclusions
	References

